[go: up one dir, main page]

CN110233063A - Advanced electrolyte system and its purposes in energy accumulating device - Google Patents

Advanced electrolyte system and its purposes in energy accumulating device Download PDF

Info

Publication number
CN110233063A
CN110233063A CN201910288116.2A CN201910288116A CN110233063A CN 110233063 A CN110233063 A CN 110233063A CN 201910288116 A CN201910288116 A CN 201910288116A CN 110233063 A CN110233063 A CN 110233063A
Authority
CN
China
Prior art keywords
degrees celsius
ultracapacitor
electrolyte
supercapacitor
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910288116.2A
Other languages
Chinese (zh)
Other versions
CN110233063B (en
Inventor
里卡尔多·西尼奥雷利
约翰·J·库利
克里斯托弗·约翰·西巴尔德·迪恩
詹姆斯·爱泼斯坦
帕德马纳班·萨斯桑·库蒂皮莱
法布里齐奥·马丁尼
林赛·A·威廉默斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano Ramic Corp.
Original Assignee
Kuai Mao System House
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2012/045994 external-priority patent/WO2013009720A2/en
Priority claimed from US13/553,716 external-priority patent/US20130026978A1/en
Application filed by Kuai Mao System House filed Critical Kuai Mao System House
Publication of CN110233063A publication Critical patent/CN110233063A/en
Application granted granted Critical
Publication of CN110233063B publication Critical patent/CN110233063B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

The present invention provides a kind of advanced electrolyte system and its purposes in energy accumulating device, it includes immersing in advanced electrolyte system and being arranged in the intracorporal energy storage unit of gas-tight seal shell, the unit is electrically coupled to positive contact and cathode contact part, wherein exporting electric energy within the temperature range of Cheng Yue -40 degrees Celsius to about 210 degrees Celsius of the ultracapacitor configurations.The present invention also provides its manufacture and purposes.

Description

先进的电解质体系及其在能量储存装置中的用途Advanced electrolyte systems and their use in energy storage devices

本申请是名为“先进的电解质体系及其在能量储存装置中的用途”、申请号为201380022019.X的中国专利申请的分案申请,专利申请201380022019.X是根据专利合作条约于2013年2月25日提交的国际申请(PCT/US2013/027697)进入中国国家阶段的国家申请。This application is a divisional application of a Chinese patent application entitled "Advanced Electrolyte System and Its Use in Energy Storage Devices" with application number 201380022019.X. Patent application 201380022019.X was filed in February 2013 under the Patent Cooperation Treaty. The international application (PCT/US2013/027697) filed on March 25 is a national application that has entered the Chinese national phase.

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请要求2012年2月24日提交的题为“用于超级电容器的电解质(Electrolytesfor Ultracapacitors)”的美国临时专利申请第61/602,713号、2012年7月9日提交的题为“高温能量储存装置(High Temperature Energy Storage Device)”的国际申请第PCT/US2012/045994号、2012年7月19日提交的题为“用于井下仪器的电源(Power Supply forDownhole Instruments),,的美国申请序列第13/553,716号以及2012年11月9日提交的题为“用于超级电容器的电解质(Electrolytes for Ultracapacitors)”的美国临时专利申请第61/724,775号的优先权的权益。在此通过引用将这些公开内容中的每一个并入本文。This application claims U.S. Provisional Patent Application No. 61/602,713, filed Feb. 24, 2012, entitled "Electrolytes for Ultracapacitors," and entitled "High Temperature Energy Storage" Device (High Temperature Energy Storage Device)" International Application No. PCT/US2012/045994, filed on July 19, 2012, entitled "Power Supply for Downhole Instruments," U.S. Application Serial No. 13/553,716 and the benefit of priority of U.S. Provisional Patent Application No. 61/724,775, entitled "Electrolytes for Ultracapacitors," filed November 9, 2012. These are incorporated herein by reference Each of the disclosures is incorporated herein.

技术领域technical field

本文中公开的本发明涉及能量储存单元,具体地涉及用在这些能量储存单元中的先进的电解质体系,以及用于提供可在高温下操作的双电层电容器的相关技术。The invention disclosed herein relates to energy storage cells, and in particular to advanced electrolyte systems for use in these energy storage cells, and related techniques for providing electric double layer capacitors that can operate at high temperatures.

背景技术Background technique

能量储存单元普遍存在于我们的社会中。虽然大多数人将能量储存单元简单地认为是“电池”,但是其他类型的单元也应该被包括在该范围之内。例如,最近,超级电容器因其有利的特性而备受关注。简言之,现今许多类型的能量储存单元是已知的并且在使用中。Energy storage units are ubiquitous in our society. While most people think of energy storage units simply as "batteries," other types of units should also be included in the scope. For example, recently, supercapacitors have attracted much attention due to their favorable properties. In short, many types of energy storage units are known and in use today.

双电层电容器,也称作“超级电容器(supercapacitor、supercondenser、ultracapacitor)”、“赝电容器”或“电化学双电层电容器”,是一种表现出优于常规电容器的性能显著提高的电容器。一个这种参数是能量密度。一般而言,超级电容器的能量密度比高容量电解电容器的能量密度高约数千倍的数量级。Electric double layer capacitors, also known as "supercapacitors (supercapacitors, supercondenser, ultracapacitors", "pseudocapacitors" or "electrochemical electric double layer capacitors", are capacitors that exhibit significantly improved performance over conventional capacitors. One such parameter is energy density. In general, the energy density of supercapacitors is on the order of thousands of times higher than that of high-capacity electrolytic capacitors.

电容器是在任何电子器件和电子系统中的关键部件中之一。常规功能包括电源电压平滑化、给能量源提供支持,以及滤波。多个行业存在对实施电子器件和电容器的需求环境。Capacitors are one of the key components in any electronic device and electronic system. General functions include supply voltage smoothing, support for energy sources, and filtering. A demand environment for implementing electronic devices and capacitors exists across multiple industries.

考虑例如具有需要电部件在高温下(例如,在超过80摄氏度的温度下)连续工作的一些应用的行业,例如石油钻井、航天、航空、军工和汽车行业。这种热暴露与各种因素一起造成能量储存系统在升高的温度下的性能劣化,并且导致能量储存单元的过早劣化。耐久性和安全性在典型的航天应用和国防应用中是关键要求。例如发动机、涡轮风扇以及控制和感测电子器件设置在火箭发动机外壳附近的那些应用。汽车应用例如小型变速箱或嵌入式交流发电机/启动器也要求在升高的温度下的耐久性和长寿命。Consider, for example, industries with some applications that require electrical components to operate continuously at high temperatures (eg, temperatures in excess of 80 degrees Celsius), such as oil drilling, aerospace, aviation, military and automotive industries. This thermal exposure, along with various factors, causes the performance of the energy storage system to degrade at elevated temperatures and results in premature degradation of the energy storage unit. Durability and safety are key requirements in typical aerospace and defense applications. Examples are those applications where engines, turbofans, and control and sensing electronics are located near a rocket motor casing. Automotive applications such as small transmissions or embedded alternators/starters also require durability and long life at elevated temperatures.

用在工业环境中的电子部件必须在满足性能需求的同时还是物理上牢固的。对于超级电容器的设计者和生产者而言,伴随的挑战中之一是获得能在高温下运作良好且可靠的电解质以及能在高温和低温两者下运作良好且可靠的电解质。遗憾的是,一些电解质的期望特性在较高温度下不能表现出或者在较高温度下不能持续,并且甚至已经在高温下实现耐久性的那些电解质不能在低温下可靠地工作。因而,所需要的是在需求的条件下运行良好的用于超级电容器的电解质。优选地,电解质在整个宽范围的温度内提供稳定的电导率和低的内阻以及稳定且高的电容,以及稳定且低的漏电流。Electronic components used in industrial environments must be physically robust while meeting performance requirements. One of the attendant challenges for designers and producers of supercapacitors is to obtain electrolytes that work well and reliably at high temperatures and electrolytes that work well and reliably at both high and low temperatures. Unfortunately, the desired properties of some electrolytes do not exhibit or persist at higher temperatures, and even those electrolytes that have achieved durability at high temperatures do not operate reliably at low temperatures. Thus, what is needed is an electrolyte for supercapacitors that performs well under the required conditions. Preferably, the electrolyte provides stable conductivity and low internal resistance and stable and high capacitance, and stable and low leakage current over a wide range of temperatures.

发明内容SUMMARY OF THE INVENTION

在一个实施方案中,公开了一种超级电容器。该超级电容器包括气密密封壳体内的能量储存单元和先进的电解质体系(AES),该单元电耦接至正极接触件和负极接触件,其中该超级电容器配置成在约-40摄氏度至约210摄氏度的温度范围内的温度下操作。In one embodiment, an ultracapacitor is disclosed. The ultracapacitor includes an energy storage cell and an advanced electrolyte system (AES) within a hermetically sealed housing, the cell being electrically coupled to positive and negative contacts, wherein the ultracapacitor is configured to operate at a temperature of about -40 degrees Celsius to about 210 degrees Celsius Operates at temperatures in the temperature range of Celsius.

在另一实施方案中,提供了一种用于制造超级电容器的方法。该方法包括如下步骤:将包括能量储存介质的能量储存单元设置在壳体内;和用先进的电解质体系(AES)填充所述壳体,使得超级电容器被制造成在约-40摄氏度至约210摄氏度的温度范围内操作。In another embodiment, a method for fabricating an ultracapacitor is provided. The method includes the steps of: disposing an energy storage unit including an energy storage medium within a housing; and filling the housing with an advanced electrolyte system (AES) such that the supercapacitor is fabricated at a temperature of about -40 degrees Celsius to about 210 degrees Celsius operating temperature range.

在又一个实施方案中,提供了一种使用高温可再充电能量储存装置(HTRESD)的方法。该方法包括如下步骤:获得包括先进的电解质体系(AES)的HTRESD;和通过对HTRESD交替充电和放电至少两次来循环HTRESD,同时维持HTRESD两端的电压,使得HTRESD表现出0.01W/升至150kW/升的初始峰值功率密度,使得HTRESD在为约-40摄氏度至约210摄氏度的温度范围内的温度的环境温度下操作。In yet another embodiment, a method of using a high temperature rechargeable energy storage device (HTRESD) is provided. The method includes the steps of: obtaining an HTRESD comprising an advanced electrolyte system (AES); and cycling the HTRESD by alternately charging and discharging the HTRESD at least twice while maintaining the voltage across the HTRESD such that the HTRESD exhibits 0.01 W/up to 150 kW The initial peak power density per liter enables the HTRESD to operate at ambient temperature at a temperature ranging from about -40 degrees Celsius to about 210 degrees Celsius.

在又一个实施方案中,提供了一种使用超级电容器的方法。该方法包括如下步骤:获得如本文中所述的超级电容器,其中该超级电容器表现出在约100摄氏度和约150摄氏度之间的范围内的基本恒定的温度下保持时低于约10mA/立方厘米的体积漏电流(mA/立方厘米);并且通过对所述超级电容器交替充电和放电至少两次来循环超级电容器,同时维持超级电容器两端的电压,使得所述超级电容器在约-40摄氏度至约210摄氏度之间的范围内的基本恒定的温度下保持时使用至少1小时之后表现出低于约1000%的ESR升高。In yet another embodiment, a method of using an ultracapacitor is provided. The method includes the steps of obtaining an ultracapacitor as described herein, wherein the ultracapacitor exhibits a flow rate of less than about 10 mA/cm when maintained at a substantially constant temperature in a range between about 100 degrees Celsius and about 150 degrees Celsius Volume leakage current (mA/cm3); and cycling the supercapacitor by alternately charging and discharging the supercapacitor at least twice while maintaining the voltage across the supercapacitor such that the supercapacitor is at about -40 degrees Celsius to about 210 A substantially constant temperature in the range between degrees Celsius exhibits an ESR increase of less than about 1000% after use for at least 1 hour when maintained at a substantially constant temperature.

在另一个实施方案中,提供了一种给使用者提供高温可再充电能量储存装置的方法。该方法包括如下步骤:选择包括先进的电解质体系(AES)的高温可再充电能量储存装置(HTRESD),所述高温可再充电能量储存装置在暴露于约-40摄氏度至约210摄氏度的温度范围内的环境温度时表现出0.01W/升和100kW/升之间的初始峰值功率密度和至少1小时的耐久期;并交付所述储存装置,使得给使用者提供所述HTRESD。In another embodiment, a method of providing a high temperature rechargeable energy storage device to a user is provided. The method includes the steps of selecting a high temperature rechargeable energy storage device (HTRESD) comprising an advanced electrolyte system (AES) that is exposed to temperatures ranging from about -40 degrees Celsius to about 210 degrees Celsius exhibit an initial peak power density of between 0.01 W/liter and 100 kW/liter and a durability of at least 1 hour at ambient temperature within; and deliver the storage device such that the HTRESD is provided to the user.

在又一个实施方案中,提供了一种给使用者提供高温可再充电能量储存装置的方法。该方法包括如下步骤:获得如本文中所述的任意超级电容器,所述超级电容器表现出保持在约-40摄氏度和约210摄氏度之间的范围内的基本恒定的温度下时低于约10mA/立方厘米的体积漏电流(mA/立方厘米);并交付所述储存装置,使得给使用者提供所述HTRESD。In yet another embodiment, a method of providing a high temperature rechargeable energy storage device to a user is provided. The method includes the steps of obtaining any ultracapacitor as described herein, the ultracapacitor exhibiting less than about 10 mA/cubic when maintained at a substantially constant temperature in a range between about -40 degrees Celsius and about 210 degrees Celsius centimeter volume leakage current (mA/cm 3 ); and deliver the storage device so that the HTRESD is provided to the user.

在又一个实施方案中,公开了一种先进的电解质体系(AES)。该AES包括含有至少一种阳离子和至少一种阴离子的离子液体并且表现出低于1000ppm的卤离子含量和低于100ppm的水含量。In yet another embodiment, an advanced electrolyte system (AES) is disclosed. The AES includes an ionic liquid containing at least one cation and at least one anion and exhibits a halide ion content of less than 1000 ppm and a water content of less than 100 ppm.

在又一个实施方案中,公开了一种先进的电解质体系(AES)。该AES包括含有至少一种阳离子和至少一种阴离子以及至少一种溶剂的离子液体并且表现出低于1000ppm的卤离子含量和低于1000ppm的水含量。In yet another embodiment, an advanced electrolyte system (AES) is disclosed. The AES includes an ionic liquid containing at least one cation and at least one anion and at least one solvent and exhibits a halide ion content of less than 1000 ppm and a water content of less than 1000 ppm.

附图说明Description of drawings

通过下述的具体实施方式结合附图,本发明的前述及其他特征和优点是明显的,不应将所述附图视为限制性的:The foregoing and other features and advantages of the present invention are apparent from the following detailed description, taken in conjunction with the accompanying drawings, which should not be considered limiting:

图1示出了示例性超级电容器的各方面;1 illustrates aspects of an exemplary ultracapacitor;

图2是描绘生长到衬底上的多个碳纳米管(CNT)的框图;2 is a block diagram depicting a plurality of carbon nanotubes (CNTs) grown onto a substrate;

图3是描绘将集电器沉积到图3的CNT上以提供电极元件的框图;3 is a block diagram depicting the deposition of a current collector onto the CNTs of FIG. 3 to provide electrode elements;

图4是描绘添加转移带至图3的电极元件的框图;Figure 4 is a block diagram depicting the addition of a transfer tape to the electrode element of Figure 3;

图5是描绘转移过程期间的电极元件的框图;5 is a block diagram depicting electrode elements during the transfer process;

图6是描绘转移之后的电极元件的框图;6 is a block diagram depicting electrode elements after transfer;

图7是描绘由多个电极元件制造的示例性电极的框图;7 is a block diagram depicting an exemplary electrode fabricated from a plurality of electrode elements;

图8描绘了可包括在示例性超级电容器中的阳离子的一级结构的实施方案;8 depicts an embodiment of the primary structure of cations that may be included in an exemplary supercapacitor;

图9和图10分别提供了利用原始电解质和经纯化的电解质的示例性超级电容器的比较数据;Figures 9 and 10 provide comparative data for exemplary supercapacitors utilizing pristine and purified electrolytes, respectively;

图11描绘了示例性超级电容器的壳体的实施方案;FIG. 11 depicts an embodiment of a housing of an exemplary ultracapacitor;

图12示出了示例性超级电容器的储存单元的实施方案;FIG. 12 shows an embodiment of a storage cell of an exemplary supercapacitor;

图13描绘了设置在壳体的主体的内部上的阻隔器;Figure 13 depicts a barrier disposed on the interior of the body of the housing;

图14A和图14B(在本文中统称为图14)描绘了壳体的盖的各方面;Figures 14A and 14B (collectively referred to herein as Figure 14) depict aspects of the cover of the housing;

图15描绘了根据本文教导的超级电容器的组合件;15 depicts an assembly of ultracapacitors in accordance with the teachings herein;

图16A和图16B(在本文中统称为图16)是分别描绘超级电容器的不具有阻隔物的实施方案和包括阻隔物的类似实施方案的性能的图;Figures 16A and 16B (collectively referred to herein as Figure 16) are graphs depicting the performance of an embodiment of a supercapacitor without a barrier and a similar embodiment including a barrier, respectively;

图17描绘了作为包裹件设置在储存单元周围的阻隔物;Figure 17 depicts a barrier disposed around a storage unit as a wrap;

图18A、图18B和图18C(在本文中统称为图18)描绘了包括分多层的材料的盖的实施方案;Figures 18A, 18B, and 18C (collectively referred to herein as Figure 18) depict an embodiment of a lid comprising a multi-layered material;

图19是包括玻璃-金属密封件(glass-to-metal seal)的电极组合件的横截面图;19 is a cross-sectional view of an electrode assembly including a glass-to-metal seal;

图20是安装在图18B的盖中的图19的电极组合件的横截面图;Figure 20 is a cross-sectional view of the electrode assembly of Figure 19 installed in the cover of Figure 18B;

图21描绘了组合件中能量储存单元的布置;Figure 21 depicts the arrangement of energy storage cells in the assembly;

图22A、图22B和图22C(在本文中统称为图22)描绘了组装的能量储存单元的实施方案;Figures 22A, 22B, and 22C (collectively referred to herein as Figure 22) depict an embodiment of an assembled energy storage unit;

图23描绘了聚合物绝缘体到超级电容器中的结合;Figure 23 depicts the incorporation of polymer insulators into supercapacitors;

图24A、图24B和图24C(在本文中统称为图24)描绘了用于能量储存器的盖的另一个实施方案的模板的各方面;Figures 24A, 24B, and 24C (collectively referred to herein as Figure 24) depict aspects of a template for another embodiment of a lid for an energy storage device;

图25是包括半球形材料的电极组合件的透视图;25 is a perspective view of an electrode assembly including a hemispherical material;

图26是包括安装在图24的模板中的图25的电极组合件的盖的透视图;26 is a perspective view of a cover including the electrode assembly of FIG. 25 installed in the template of FIG. 24;

图27是图26的盖的横截面图;Figure 27 is a cross-sectional view of the cover of Figure 26;

图28描绘了电极组合件与储存单元的端子的耦接;Figure 28 depicts the coupling of the electrode assembly to the terminals of the storage cell;

图29是设置在圆柱形壳体内的能量储存单元的透明等距视图;Figure 29 is a transparent isometric view of an energy storage unit disposed within a cylindrical housing;

图30是储存单元的侧视图,示出了一个实施方案的多个层;Figure 30 is a side view of a storage unit showing layers of one embodiment;

图31是卷起(rolled up)的储存单元的等距视图,其包括用于布置多根引线的参考标记;31 is an isometric view of a rolled up storage unit including reference marks for routing a plurality of leads;

图32是图31的储存单元一旦展开后的等距视图;Figure 32 is an isometric view of the storage unit of Figure 31 once deployed;

图33描绘了包含有多根引线的卷起的储存单元;Figure 33 depicts a rolled-up storage cell containing multiple leads;

图34描绘了赋予到与储存单元耦接的对齐的引线(即,端子)的Z-折叠;34 depicts Z-folds imparted to aligned leads (ie, terminals) coupled to storage cells;

图35、图36、图37、图38是描绘示例性超级电容器的性能的图;以及Figures 35, 36, 37, 38 are graphs depicting the performance of exemplary ultracapacitors; and

图39、图40、图41、图42、图43是描绘示例性超级电容器在210摄氏度下的性能的图。39, 40, 41, 42, 43 are graphs depicting the performance of exemplary ultracapacitors at 210 degrees Celsius.

图44A和图44B分别是描绘具有新型电解质实体:1-丁基-1-甲基哌啶双(三氟甲基磺酰基)亚胺的超级电容器在150摄氏度和1.5V下的性能的电容曲线和ESR曲线。Figures 44A and 44B respectively depict entities with a novel electrolyte: 1-butyl-1-methylpiperidine Capacitance and ESR curves of supercapacitor performance of bis(trifluoromethylsulfonyl)imide at 150 degrees Celsius and 1.5 V.

图45A和图45B分别是描绘具有新型电解质实体三己基十四烷基双(三氟甲基磺酰基)亚胺的超级电容器在150摄氏度和1.5V下的性能的电容曲线和ESR曲线。Figures 45A and 45B respectively depict trihexyltetradecyl with a novel electrolyte entity Capacitance and ESR curves of supercapacitor performance of bis(trifluoromethylsulfonyl)imide at 150 degrees Celsius and 1.5 V.

图46A和图46B分别是描绘具有新型电解质实体丁基三甲铵双(三氟甲基磺酰基)亚胺的超级电容器在150摄氏度和1.5V下的性能的电容曲线和ESR曲线。46A and 46B are capacitance and ESR curves, respectively, depicting the performance of supercapacitors with the novel electrolyte entity butyltrimethylammonium bis(trifluoromethylsulfonyl)imide at 150 degrees Celsius and 1.5V.

图47A和图47B分别是描绘具有选自用在制备增强的电解质组合中的离子液体的离子液体的超级电容器在125摄氏度和1.5V下的性能的电容曲线和ESR曲线。47A and 47B are capacitance and ESR curves, respectively, depicting the performance of a supercapacitor with ionic liquids selected from ionic liquids used in the preparation of enhanced electrolyte combinations at 125 degrees Celsius and 1.5V.

图48A和图48B分别是描绘具有37.5%有机溶剂-离子液体(与图47中的一样)v/v的超级电容器在125摄氏度和1.5V下的性能的电容曲线和ESR曲线。Figures 48A and 48B are capacitance and ESR curves depicting the performance of a supercapacitor with 37.5% organic solvent-ionic liquid (same as in Figure 47) v/v at 125 degrees Celsius and 1.5V, respectively.

图49是描绘具有37.5%有机溶剂-离子液体(与图47中的一样)v/v的超级电容器在-40摄氏度和1.5V下的性能的ESR曲线。Figure 49 is an ESR curve depicting the performance of a supercapacitor with 37.5% organic solvent-ionic liquid (same as in Figure 47) v/v at -40 degrees Celsius and 1.5V.

具体实施方式Detailed ways

在本申请中描述了各种变量,包括但不限于组成(例如,电极材料、电解质等)、条件(例如,温度、各种杂质在各种水平下的自由度)、以及性能特性(例如,相对于初始电容的后循环电容、低漏电流等)。应该理解,这些变量中的任意变量的任意组合可以限定本发明的实施方案。例如,本发明的实施方案为特定电极材料、具有特定电介质、在特定温度范围下和具有小于特定量的杂质的组合、具有后循环电容的操作和特定值的漏电流(尽可能地包括这些变量但可能未对特定组合进行着重陈述)。也可以从本文中所列的变量之中具体地选择制品、组成、条件和/或方法的其他组合以限定其他实施方案,这些对本领域技术人员是明显的。Various variables are described in this application, including but not limited to composition (eg, electrode materials, electrolytes, etc.), conditions (eg, temperature, degrees of freedom of various impurities at various levels), and performance characteristics (eg, post-cycle capacitance relative to initial capacitance, low leakage current, etc.). It should be understood that any combination of any of these variables may define embodiments of the invention. For example, embodiments of the invention are specific electrode materials, with specific dielectrics, at specific temperature ranges and with combinations of impurities less than a specific amount, operation with post-cycle capacitance, and specific values of leakage current (including these variables as much as possible) However, specific combinations may not be highlighted). Other combinations of articles, compositions, conditions and/or methods may also be specifically selected from among the variables listed herein to define other embodiments, as will be apparent to those skilled in the art.

将参考为方便起见在下面阐述的以下定义来描述包括先进的电解质体系及其用途的本发明。除非另有说明,在本文中使用以下术语定义如下:The present invention, including advanced electrolyte systems and their uses, will be described with reference to the following definitions set forth below for convenience. Unless otherwise stated, the following terms are used herein as defined below:

I.定义I. Definitions

在介绍本发明或其实施方案的元件时,当名词前没有数量词修饰时,其旨在包括单数形式和复数形式。类似地,当使用形容词“另一”修饰元件时,其旨在包括单数形式和复数形式。术语“包括”、“包含”和“具有”意指包括除所列的元件之外的另外的元件。When introducing elements of the invention or its embodiments, when nouns are not modified by a quantifier, they are intended to include both the singular and the plural. Similarly, when the adjective "another" is used to modify an element, it is intended to include both the singular and the plural. The terms "comprising", "comprising" and "having" are meant to include additional elements other than the listed elements.

术语“烯基”和“炔基”在本领域中是公认的,并且是指与下述烷基的长度和可能取代物类似但分别含有至少一个双键或三键的不饱和的脂肪族基团。The terms "alkenyl" and "alkynyl" are art-recognized and refer to unsaturated aliphatic groups similar in length and possible substitution to the alkyl groups described below, but containing at least one double or triple bond, respectively group.

术语“烷基”在本领域中是公认的,并且可以包括饱和的脂肪族基团,包括直链烷基、支链烷基、环烷基(脂环族)基团、烷基取代的环烷基以及环烷基取代的烷基。在某些实施方案中,直链或支链烷基在其骨架中具有约20个或更少的碳原子(例如,直链的C1-C20,支链的C1-C20)。同样,环烷基在其环结构中具有约3至约10个碳原子,或者在环结构中具有约5、6或7个碳。烷基的实例包括但不限于甲基、乙基、丙基、丁基、戊基、己基、乙基己基、环丙基、环丁基、环戊基、环己基等。The term "alkyl" is art-recognized and can include saturated aliphatic groups, including straight chain alkyl groups, branched chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl substituted rings Alkyl and cycloalkyl-substituted alkyl groups. In certain embodiments, a straight or branched chain alkyl group has about 20 or fewer carbon atoms in its backbone (eg, C 1 -C 20 for straight chain, C 1 -C 20 for branched chain). Likewise, a cycloalkyl group has about 3 to about 10 carbon atoms in its ring structure, or about 5, 6, or 7 carbons in its ring structure. Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, ethylhexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.

本文中使用的术语“包覆”、“熔覆”等是指将不同金属接合在一起。包覆常通过将两种金属通过模具挤出以及在高压下将片压制或卷制在一起来实现。可以使用其他方法,例如激光熔覆。结果是由多层构成的材料的片,其中多个材料层接合在一起使得材料可以作为单片(例如,形成为均匀材料单片)一起工作。As used herein, the terms "cladding", "cladding" and the like refer to the joining together of dissimilar metals. Cladding is often accomplished by extruding the two metals through a die and pressing or rolling sheets together under high pressure. Other methods such as laser cladding can be used. The result is a sheet of material composed of multiple layers, wherein the multiple layers of material are bonded together so that the material can work together as a single sheet (eg, formed into a single sheet of uniform material).

作为惯例,可以认为,“污染物”可以被定义为若被引入将不利地影响超级电容器10的性能的任何非期望的材料。还应注意,在本文中一般而言,污染物可以以浓度来评估,例如份/百万份(ppm)。浓度可以采用按重量计、按体积计、按样品重量计或以确定合适的任意其他方式计。As a general rule, it is believed that a "contaminant" may be defined as any undesired material that would adversely affect the performance of the ultracapacitor 10 if introduced. It should also be noted that in general herein, contaminants can be evaluated in terms of concentrations, such as parts per million (ppm). Concentrations can be by weight, by volume, by weight of the sample, or by any other means as determined to be appropriate.

术语“氰基”被赋予其在本领域中的通常含义,并且是指基团CN。术语“硫酸酯基(sulfate)”被赋予其在本领域中的通常含义,并且是指基团SO2。术语“磺酸基”被赋予其在本领域中的通常含义,并且是指基团SO3X,其中X可以是电子对、氢、烷基或环烷基。术语“羰基”在本领域中是已知的,并且是指基团C=O。The term "cyano" is given its ordinary meaning in the art and refers to the group CN. The term " sulfate " is given its ordinary meaning in the art and refers to the group SO2. The term "sulfonic acid" is given its ordinary meaning in the art, and refers to the group SO3X , where X can be an electron pair, hydrogen, alkyl, or cycloalkyl. The term "carbonyl" is known in the art and refers to the group C=O.

一般而言,术语“电极”是指用于在可结合到电路的装置中与常为非金属的另一材料接触的电导体。一般而言,本文中使用的术语“电极”涉及集电器2和可伴随集电器2的另外的部件(例如能量储存介质1)以提供期望的功能性(例如,与集电器2相匹配的能量储存介质1来提供能量储存和能量传输)。In general, the term "electrode" refers to an electrical conductor used in contact with another material, often non-metal, in a device that can be incorporated into an electrical circuit. In general, the term "electrode" as used herein refers to the current collector 2 and additional components (eg, energy storage medium 1 ) that may accompany the current collector 2 to provide the desired functionality (eg, energy matching the current collector 2 ) storage medium 1 to provide energy storage and energy transfer).

“能量密度”是峰值器件电压的平方乘以器件电容的二分之一除以所述器件的质量或体积。"Energy density" is the square of the peak device voltage multiplied by one-half the capacitance of the device divided by the mass or volume of the device.

如本文所讨论的,“气密”是指其性质(即,泄漏速率)以“atm-立方厘米/秒”为单位定义的密封,“atm-立方厘米/秒”意指在环境大气压力和温度下每秒1立方厘米的气体(例如,He)。这相当于以“标准He-立方厘米/秒”为单位的表示。此外,认为1atm-立方厘米/秒等于1.01325豪巴-升/秒。As discussed herein, "hermetic" refers to a seal whose properties (ie, leak rate) are defined in units of "atm-cubic centimeters per second," which means at ambient atmospheric pressure and 1 cubic centimeter per second of gas (eg, He) at temperature. This is equivalent to a representation in "standard He-cubic centimeters per second". Also, consider 1 atm-cubic centimeter/second equal to 1.01325 millibar-liter/second.

术语“杂烯基”和“杂炔基”在本领域中是已知的,并且是指其中一个或更多个原子是杂原子(例如,氧、氮、硫等)的如本文所述的烯基和炔基。The terms "heteroalkenyl" and "heteroalkynyl" are known in the art and refer to compounds as described herein wherein one or more atoms are heteroatoms (eg, oxygen, nitrogen, sulfur, etc.) Alkenyl and alkynyl.

术语“杂烷基”在本领域中是已知的,并且是指其中一个或更多个原子是杂原子(例如,氧、氮、硫等)的如本文所述的烷基。例如,烷氧基(例如,-OR)是杂烷基。The term "heteroalkyl" is known in the art and refers to an alkyl group as described herein wherein one or more atoms are heteroatoms (eg, oxygen, nitrogen, sulfur, etc.). For example, an alkoxy group (eg, -OR) is a heteroalkyl group.

作为惯例,术语“内阻”和“有效串联电阻”以及“ESR”、本领域所公知的用于表示器件的电阻方面的术语在本文中可互换地使用。By convention, the terms "internal resistance" and "effective series resistance" and "ESR", terms known in the art to refer to the resistive aspect of a device, are used interchangeably herein.

作为惯例,术语“漏电流”一般是指在给定时间期间之后测量的电容器所引入的电流。该测量在电容器端子保持在基本固定的电势差(端电压)时进行。在评估漏电流时,典型的时间段为七十二(72)小时,但也可以使用不同的时间段。应注意,现有技术电容器的漏电流一般随能量储存介质的体积和表面积的增加并伴随壳体的内表面积的增加而升高。一般而言,认为升高的漏电流表示超级电容器10中逐渐升高的反应速率。漏电流的性能要求一般由特定应用中普遍的环境条件定义。例如,就体积为20mL的超级电容器10而言,漏电流的实际限制可降至低于200mA。As a convention, the term "leakage current" generally refers to the current drawn by a capacitor measured after a given period of time. This measurement is made while the capacitor terminals are held at a substantially fixed potential difference (terminal voltage). When evaluating leakage current, a typical time period is seventy-two (72) hours, although different time periods may be used. It should be noted that the leakage current of prior art capacitors generally increases as the volume and surface area of the energy storage medium increases with the increase in the internal surface area of the housing. In general, elevated leakage current is considered to be indicative of a progressively higher reaction rate in the ultracapacitor 10 . The performance requirements for leakage current are generally defined by the environmental conditions prevailing in a particular application. For example, for a supercapacitor 10 with a volume of 20 mL, the practical limit of leakage current can be reduced to less than 200 mA.

电容器的“寿命”一般还由特定应用定义并且通常表示为漏电流的某一升高百分比或另一参数(如电容或内阻)的劣化(适当时或者对于给定应用是决定性的)。例如,在一个实施方案中,汽车应用中电容器的寿命可以定义为漏电流升高至其初始(寿命开始,“BOL”)值的200%的时间。在另一个实施例中,石油和天然气应用中电容器的寿命可以定义为出现如下现象中的任何现象的时间:电容下降至其BOL值的50%;内阻升高至其BOL值的200%;漏电流升高至其BOL值的200%。作为惯例,本文中使用的术语装置的“耐久性”和“可靠性”一般涉及如上所定义的所述装置的寿命。The "lifetime" of a capacitor is also generally defined by a particular application and is usually expressed as some percentage increase in leakage current or degradation of another parameter such as capacitance or internal resistance (as appropriate or decisive for a given application). For example, in one embodiment, the lifetime of a capacitor in automotive applications can be defined as the time for the leakage current to rise to 200% of its initial (begin of life, "BOL") value. In another embodiment, the lifetime of a capacitor in oil and gas applications can be defined as the time when any of the following phenomena occur: the capacitance drops to 50% of its BOL value; the internal resistance rises to 200% of its BOL value; The leakage current rises to 200% of its BOL value. As a convention, the terms "durability" and "reliability" of a device as used herein generally relate to the lifetime of the device as defined above.

装置的“操作温度范围”一般涉及在其中维持一定水平的性能的温度的范围并且一般针对给定应用而确定。例如,在一个实施方案中,石油和天然气领域的操作温度范围可以定义为如下温度范围,在该温度范围中装置的电阻低于所述装置在30摄氏度下的电阻的约1000%,并且电容大于在30摄氏度下的电容的约10%。The "operating temperature range" of a device generally relates to the range of temperatures within which a certain level of performance is maintained and is generally determined for a given application. For example, in one embodiment, an operating temperature range in the oil and gas field may be defined as a temperature range in which the resistance of a device is less than about 1000% of the resistance of the device at 30 degrees Celsius, and the capacitance is greater than About 10% of the capacitance at 30 degrees Celsius.

在一些情况下,操作温度范围规格提供了有效温度的下限而寿命规格提供了有效温度的上限。In some cases, the operating temperature range specification provides a lower limit for the effective temperature and the lifetime specification provides an upper limit for the effective temperature.

“峰值功率密度”是峰值器件电压的平方的四分之一除以所述器件的有效串联电阻除以所述装置的质量或体积。"Peak power density" is one quarter of the square of the peak device voltage divided by the effective series resistance of the device divided by the mass or volume of the device.

如本文中引用的,超级电容器10的“体积漏电流”一般是指漏电流除以超级电容器10的体积,并且可以例如以mA/立方厘米为单位表示。类似地,超级电容器10的“体积电容”一般是指超级电容器10的电容除以超级电容器10的体积,并且可以例如以F/立方厘米为单位表示。此外,超级电容器10的“体积ESR”一般是指超级电容器10的ESR乘以超级电容器10的体积,并且可以例如以欧姆·立方厘米为单位表示。As referred to herein, the "volume leakage current" of an ultracapacitor 10 generally refers to the leakage current divided by the volume of the ultracapacitor 10, and may be expressed, for example, in units of mA per cubic centimeter. Similarly, the "volumetric capacitance" of an ultracapacitor 10 generally refers to the capacitance of the ultracapacitor 10 divided by the volume of the ultracapacitor 10, and may be expressed, for example, in units of F/cc. Furthermore, the "volume ESR" of an ultracapacitor 10 generally refers to the ESR of the ultracapacitor 10 multiplied by the volume of the ultracapacitor 10, and may be expressed, for example, in units of ohm-cubic centimeters.

作为惯例,应认为,如本文中所使用的术语“可以”理解为可选的;“包括”理解为不排除其他选项(即,步骤、材料、部件、组分等);“应”并非暗示要求,而仅是偶然的优选或根据情况的优选。其他类似术语以一般常规方式类似地使用。As a general rule, it should be understood that the term "may" as used herein is understood to be optional; "comprising" is understood to not exclude other options (ie, steps, materials, components, components, etc.); "should" does not imply requirements, but only an accidental preference or preference according to circumstances. Other similar terms are used analogously in a generally conventional manner.

如本文所讨论的,可认为术语例如“调整”、“配置”、“构造”等涉及本文中公开的任何技术以及其他类似技术(如目前已知的或之后开发的)的应用,以提供预期结果。As discussed herein, terms such as "adjust," "configure," "configure," etc. may be considered to refer to the application of any of the techniques disclosed herein, as well as other similar techniques (as now known or later developed), to provide the intended result.

II.本发明的电容器II. The capacitor of the present invention

本文中所公开的是为使用者提供在宽的温度范围内具有改进性能的电容器。例如,本发明的包括本文中所描述的先进的电解质体系的电容器能够在大约低至-40摄氏度至高至约210摄氏度的温度范围下操作。Disclosed herein is to provide users with capacitors with improved performance over a wide temperature range. For example, capacitors of the present invention including the advanced electrolyte systems described herein are capable of operating at temperatures ranging from about as low as -40 degrees Celsius to as high as about 210 degrees Celsius.

一般而言,与现有技术装置相比,本发明的电容器包括适合于提供高可靠性、宽操作温度范围、高功率密度和高能量密度的组合的能量储存介质。电容器包括配置成确保在所述温度范围内操作的部件,并且包括仅选自本文中所描述的先进的电解质体系的电解质6。构造、能量储存介质和先进的电解质体系的组合提供了本发明的稳健电容器(robustcapacitors),该稳健电容器能够提供在极端条件下具有优于现有电容器的增强的性质并且具有更好的性能和耐久性的操作。In general, capacitors of the present invention include energy storage media suitable for providing a combination of high reliability, wide operating temperature range, high power density, and high energy density compared to prior art devices. The capacitor includes components configured to ensure operation within the stated temperature range, and includes an electrolyte 6 selected only from the advanced electrolyte systems described herein. The combination of construction, energy storage medium and advanced electrolyte system provides robust capacitors of the present invention capable of providing enhanced properties over existing capacitors under extreme conditions and with better performance and durability sexual operation.

因此,本发明提供了一种超级电容器,该超级电容器包括:气密密封壳体内的能量储存单元和先进的电解质体系(AES),该单元电耦接至正极接触件和负极接触件,其中超级电容器配置成在如下温度范围内的温度(“操作温度”)下操作:约-40摄氏度至约210摄氏度;约-35摄氏度至约210摄氏度;约-40摄氏度至约205摄氏度;约-30摄氏度至约210摄氏度;约-40摄氏度至约200摄氏度约;约-25摄氏度至约210摄氏度;约-40摄氏度至约195摄氏度;约-20摄氏度至约210摄氏度;约-40摄氏度至约190摄氏度度;约-15摄氏度至约210摄氏度;约-40摄氏度至约185摄氏度约;约-10摄氏度至约210摄氏度;约-40摄氏度至约180摄氏度;约-5摄氏度至约210摄氏度;约-40摄氏度至约175摄氏度;约0摄氏度至约210摄氏度;约-40摄氏度至约170摄氏度;约5摄氏度至约210摄氏度;约-40摄氏度至约165摄氏度;约10摄氏度至约210摄氏度;约-40摄氏度至约160摄氏度;约15摄氏度至约210摄氏度;约-40摄氏度至约155摄氏度;约20摄氏度至约210摄氏度;约-40摄氏度至约150摄氏度。Accordingly, the present invention provides a supercapacitor comprising: an energy storage cell and an advanced electrolyte system (AES) within a hermetically sealed housing, the cell being electrically coupled to positive and negative contacts, wherein the supercapacitor is The capacitors are configured to operate at temperatures ("operating temperatures") within the following temperature ranges: about -40 degrees Celsius to about 210 degrees Celsius; about -35 degrees Celsius to about 210 degrees Celsius; about -40 degrees Celsius to about 205 degrees Celsius; about -30 degrees Celsius to about 210 degrees Celsius; about -40 degrees Celsius to about 200 degrees Celsius; about -25 degrees Celsius to about 210 degrees Celsius; about -40 degrees Celsius to about 195 degrees Celsius; about -20 degrees Celsius to about 210 degrees Celsius; degrees; about -15 degrees Celsius to about 210 degrees Celsius; about -40 degrees Celsius to about 185 degrees Celsius; about -10 degrees Celsius to about 210 degrees Celsius; about -40 degrees Celsius to about 180 degrees Celsius; about -5 degrees Celsius to about 210 degrees Celsius; 40 degrees Celsius to about 175 degrees Celsius; about 0 degrees Celsius to about 210 degrees Celsius; about -40 degrees Celsius to about 170 degrees Celsius; about 5 degrees Celsius to about 210 degrees Celsius; about -40 degrees Celsius to about 165 degrees Celsius; -40 degrees Celsius to about 160 degrees Celsius; about 15 degrees Celsius to about 210 degrees Celsius; about -40 degrees Celsius to about 155 degrees Celsius; about 20 degrees Celsius to about 210 degrees Celsius; about -40 degrees Celsius to about 150 degrees Celsius.

在一个特定实施方案中,AES包括新型电解质实体(NEE),例如,其中NEE适合于在高温超级电容器中使用。在某些实施方案中,超级电容器配置成在约80摄氏度至约210摄氏度的温度范围(例如,约80摄氏度至约150摄氏度的温度范围)内的温度下操作。In a specific embodiment, the AES includes a Novel Electrolyte Entity (NEE), eg, where the NEE is suitable for use in high temperature supercapacitors. In certain embodiments, the ultracapacitor is configured to operate at a temperature within a temperature range of about 80 degrees Celsius to about 210 degrees Celsius (eg, a temperature range of about 80 degrees Celsius to about 150 degrees Celsius).

在一个特定实施方案中,AES包括高度纯化的电解质,例如,其中高度纯化的电解质适合于在高温超级电容器中使用。在某些实施方案中,超级电容器配置成在约80摄氏度至约210摄氏度的温度范围内的温度下操作。In a particular embodiment, the AES includes a highly purified electrolyte, eg, where the highly purified electrolyte is suitable for use in high temperature supercapacitors. In certain embodiments, the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 210 degrees Celsius.

在一个特定实施方案中,AES包括增强的电解质组合,例如,其中增强的电解质组合适合于在高温超级电容器和低温超级电容器两者中使用。在某些实施方案中,超级电容器配置成在约-40摄氏度至约150摄氏度的温度范围内的温度下操作。In a particular embodiment, the AES includes an enhanced electrolyte combination, eg, wherein the enhanced electrolyte combination is suitable for use in both high temperature and low temperature supercapacitors. In certain embodiments, the ultracapacitor is configured to operate at a temperature in a temperature range of about -40 degrees Celsius to about 150 degrees Celsius.

如此,并且如上所述,优于已知的能量储存装置的现有电解质的优点选自如下改进中的一项或更多项:总电阻降低;电阻的长期稳定性提高、总电容增加、电容的长期稳定性提高、能量密度增加、电压稳定性提高、蒸气压减小、单个电容器的温度范围性能更宽、单个电容器的温度耐久性提高、制造容易度提高以及成本效益改进。As such, and as described above, the advantages of existing electrolytes over known energy storage devices are selected from one or more of the following improvements: reduced overall resistance; increased long-term stability of resistance; increased overall capacitance; capacitance Improved long-term stability, increased energy density, improved voltage stability, reduced vapor pressure, wider temperature range performance of a single capacitor, improved temperature durability of a single capacitor, improved ease of manufacture, and improved cost-effectiveness.

在超级电容器的某些实施方案中,能量储存单元包括正电极和负电极。In certain embodiments of the supercapacitor, the energy storage unit includes a positive electrode and a negative electrode.

在超级电容器的某些实施方案中,电极中的至少之一包括含碳能量储存介质,例如,其中含碳能量储存介质包括碳纳米管。在特定实施方案中,含碳能量储存介质可以包括活性炭、碳纤维、人造纤维、石墨烯、气凝胶、碳布和碳纳米管中的至少之一。In certain embodiments of the supercapacitor, at least one of the electrodes includes a carbonaceous energy storage medium, eg, wherein the carbonaceous energy storage medium includes carbon nanotubes. In certain embodiments, the carbonaceous energy storage medium may include at least one of activated carbon, carbon fibers, rayon, graphene, aerogels, carbon cloth, and carbon nanotubes.

在超级电容器的某些实施方案中,每个电极包括集电器。In certain embodiments of the supercapacitor, each electrode includes a current collector.

在超级电容器的某些实施方案中,AES被纯化以降低杂质含量。在超级电容器的某些实施方案中,电解质中卤离子的含量低于约1000份/百万份,例如,低于约500份/百万份,例如,低于约100份/百万份,例如,低于约50份/百万份。在特定实施方案中,电解质中的卤离子选自从氯离子、溴离子、氟离子和碘离子中选择的卤离子中的一种或更多种。在特定实施方案中,电解质中杂质的总浓度低于约1000份/百万份。在某些实施方案中,杂质选自溴乙烷、氯乙烷、1-溴丁烷、1-氯丁烷、1-甲基咪唑、乙酸乙酯和二氯甲烷中的一种或更多种。In certain embodiments of the supercapacitor, the AES is purified to reduce impurity levels. In certain embodiments of the supercapacitor, the electrolyte contains less than about 1000 parts per million halide ions, eg, less than about 500 parts per million, eg, less than about 100 parts per million, For example, below about 50 parts per million. In certain embodiments, the halide ions in the electrolyte are selected from one or more halide ions selected from chloride, bromide, fluoride, and iodide. In certain embodiments, the total concentration of impurities in the electrolyte is less than about 1000 parts per million. In certain embodiments, the impurity is selected from one or more of bromoethane, chloroethane, 1-bromobutane, 1-chlorobutane, 1-methylimidazole, ethyl acetate, and dichloromethane kind.

在超级电容器的某些实施方案中,电解质中金属物质的总浓度低于约1000份/百万份。在特定实施方案中,金属物质选自从Cd、Co、Cr、Cu、Fe、K、Li、Mo、Na、Ni、Pb和Zn中选择的一种或更多种金属。在另一特定实施方案中,金属物质选自从Cd、Co、Cr、Cu、Fe、K、Li、Mo、Na、Ni、Pb和Zn中选择的金属的一种或更多种合金。在又一个特定实施方案中,金属物质选自从Cd、Co、Cr、Cu、Fe、K、Li、Mo、Na、Ni、Pb和Zn中选择的金属的一种或更多种的氧化物。In certain embodiments of the supercapacitor, the total concentration of metal species in the electrolyte is less than about 1000 parts per million. In certain embodiments, the metal species is selected from one or more metals selected from Cd, Co, Cr, Cu, Fe, K, Li, Mo, Na, Ni, Pb, and Zn. In another specific embodiment, the metal species is selected from one or more alloys of metals selected from Cd, Co, Cr, Cu, Fe, K, Li, Mo, Na, Ni, Pb, and Zn. In yet another specific embodiment, the metal species is selected from oxides of one or more metals selected from Cd, Co, Cr, Cu, Fe, K, Li, Mo, Na, Ni, Pb and Zn.

在超级电容器的某些实施方案中,电解质中总的水含量低于约500份/百万份,例如,低于约100份/百万份,例如,低于约50份/百万份,例如,低于约20份/百万份。In certain embodiments of the ultracapacitor, the total water content in the electrolyte is less than about 500 parts per million, eg, less than about 100 parts per million, eg, less than about 50 parts per million, For example, below about 20 parts per million.

在超级电容器的某些实施方案中,壳体包括设置在其内部表面的显著部分之上的阻隔物。在特定实施方案中,阻隔物包括聚四氟乙烯(PTFE)、全氟烷氧基树脂(PFA)、氟化乙烯丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)中的至少之一。在特定实施方案中,阻隔物包括陶瓷材料。阻隔物还可以包括表现出耐腐蚀性、期望的介电性质和低的电化学反应性的材料。在阻隔物的特定实施方案中,阻隔物包括多个材料层。In certain embodiments of the supercapacitor, the housing includes a barrier disposed over a substantial portion of its interior surface. In certain embodiments, the barrier comprises at least one of polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA), fluorinated ethylene propylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE) one. In certain embodiments, the barrier includes a ceramic material. Barriers may also include materials that exhibit corrosion resistance, desirable dielectric properties, and low electrochemical reactivity. In certain embodiments of the barrier, the barrier includes multiple layers of material.

在超级电容器的某些实施方案中,壳体包含多层材料,例如,其中多层材料包含包覆到第二材料上的第一材料。在特定实施方案中,多层材料包含钢、钽和铝中的至少之一。In certain embodiments of the supercapacitor, the housing comprises a multi-layer material, eg, wherein the multi-layer material comprises a first material coated on a second material. In certain embodiments, the multilayer material comprises at least one of steel, tantalum, and aluminum.

在超级电容器的某些实施方案中,壳体包含至少一个半球形密封件。In certain embodiments of the supercapacitor, the housing includes at least one hemispherical seal.

在超级电容器的某些实施方案中,壳体包含至少一个玻璃-金属密封件,例如,其中玻璃-金属密封件的引脚提供接触件之一。在特定实施方案中,玻璃-金属密封件包括由选自以下材料之一构成的馈通件:铁-镍-钴合金、镍铁合金、钽、钼、铌、钨以及一定形式的不锈钢和钛。在另一个特定实施方案中,玻璃-金属密封件包括由选自以下的至少一种材料构成的本体:镍、钼、铬、钴、铁、铜、锰、钛、锆、铝、碳和钨,以及其合金。In certain embodiments of the supercapacitor, the housing contains at least one glass-to-metal seal, eg, wherein a pin of the glass-to-metal seal provides one of the contacts. In certain embodiments, the glass-to-metal seal includes a feedthrough constructed of one of the following materials: iron-nickel-cobalt alloys, nickel-iron alloys, tantalum, molybdenum, niobium, tungsten, and some forms of stainless steel and titanium. In another specific embodiment, the glass-to-metal seal includes a body composed of at least one material selected from the group consisting of nickel, molybdenum, chromium, cobalt, iron, copper, manganese, titanium, zirconium, aluminum, carbon, and tungsten , and its alloys.

在超级电容器的某些实施方案中,能量储存单元包括隔离器以提供正电极和负电极之间的电隔离,例如,其中隔离器包含选自聚酰胺、聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)、氧化铝(Al2O3)、玻璃纤维、玻璃纤维增强塑料或其任意组合中的材料。在特定实施方案中,隔离器基本上不含水分。在另一特定实施方案中,隔离器包含基本上是疏水的。In certain embodiments of the supercapacitor, the energy storage unit includes a separator to provide electrical isolation between the positive and negative electrodes, eg, wherein the separator comprises a separator selected from the group consisting of polyamide, polytetrafluoroethylene (PTFE), polyether Materials in ether ketone (PEEK), alumina (Al 2 O 3 ), fiberglass, fiberglass reinforced plastic, or any combination thereof. In certain embodiments, the separator is substantially free of moisture. In another specific embodiment, the separator comprises substantially hydrophobic.

在超级电容器的某些实施方案中,气密密封件表现出如下泄漏速率:不大于约5.0×10-6atm-立方厘米/秒;例如,不大于约5.0×10-7atm-立方厘米/秒;例如,不大于约5.0×10-8atm-立方厘米/秒;例如,不大于约5.0×10-9atm-立方厘米/秒;例如,不大于约5.0×10-10 atm-立方厘米/秒。In certain embodiments of the ultracapacitor, the hermetic seal exhibits a leak rate of no greater than about 5.0 x 10-6 atm-cc/sec; eg, no greater than about 5.0 x 10-7 atm-cc/sec seconds; eg, no greater than about 5.0 x 10-8 atm-cc/sec; eg, no greater than about 5.0 x 10-9 atm-cc/sec; eg, no greater than about 5.0 x 10-10 atm-cc /second.

在超级电容器的某些实施方案中,至少一个接触件配置成匹配另一个超级电容器的另一个接触件。In certain embodiments of an ultracapacitor, at least one contact is configured to mate with another contact of another ultracapacitor.

在超级电容器的某些实施方案中,存储单元包括设置在其外部之上的包裹件,例如,其中该包裹件包含PTFE和聚酰亚胺中之一。In certain embodiments of the ultracapacitor, the memory cell includes a wrap disposed over its exterior, eg, wherein the wrap comprises one of PTFE and polyimide.

在超级电容器的某些实施方案中,体积漏电流在温度范围内为低于约10安培/升。In certain embodiments of the ultracapacitor, the volumetric leakage current is less than about 10 amps/liter over the temperature range.

在超级电容器的某些实施方案中,体积漏电流在特定电压范围内为低于约10安培/升,所述特定电压范围在约0伏特至约4伏特之间,例如,约0伏特至约3伏特之间,例如,约0伏特至约2伏特之间,例如,约0伏特至约1伏特之间。在超级电容器的某些实施方案中,壳体内的水分水平低于约1000份/百万份(ppm),例如,低于约500份/百万份(ppm),例如,低于约350份/百万份(ppm)。In certain embodiments of the ultracapacitor, the volumetric leakage current is less than about 10 amps/liter over a specified voltage range between about 0 volts to about 4 volts, eg, about 0 volts to about Between 3 volts, eg, between about 0 volts and about 2 volts, eg, between about 0 volts and about 1 volt. In certain embodiments of the ultracapacitor, the moisture level within the case is less than about 1000 parts per million (ppm), eg, less than about 500 parts per million (ppm), eg, less than about 350 parts per million (ppm) / parts per million (ppm).

在超级电容器的某些实施方案中,在超级电容器的电极中的水分含量低于约1000ppm,例如,低于约500ppm,例如,低于约350份/百万份(ppm)。In certain embodiments of the ultracapacitor, the moisture content in the electrodes of the ultracapacitor is less than about 1000 ppm, eg, less than about 500 ppm, eg, less than about 350 parts per million (ppm).

在超级电容器的某些实施方案中,在超级电容器的隔离器中的水分含量低于约1000ppm,例如,低于约500ppm,例如,低于约160份/百万份(ppm)。In certain embodiments of the ultracapacitor, the moisture content in the separator of the ultracapacitor is less than about 1000 ppm, eg, less than about 500 ppm, eg, less than about 160 parts per million (ppm).

在超级电容器的某些实施方案中,对于选自电极、电解质和隔离器的部件之一,氯离子含量低于约300ppm。In certain embodiments of the ultracapacitor, the chloride ion content is less than about 300 ppm for one of the components selected from the group consisting of electrodes, electrolytes, and separators.

在超级电容器的某些实施方案中,超级电容器的体积漏电流(mA/立方厘米)在保持基本恒定的温度时低于约10mA/立方厘米,例如,在特定实施方案中,在保持基本恒定的温度时低于约1mA/立方厘米。In certain embodiments of the ultracapacitor, the volumetric leakage current (mA/cm3) of the ultracapacitor is less than about 10 mA/cm3 when maintained at a substantially constant temperature, eg, in certain embodiments, when maintained at a substantially constant temperature Below about 1 mA/cm3 at temperature.

在超级电容器的某些实施方案中,超级电容器的体积漏电流在保持基本恒定的温度时大于约0.0001mA/立方厘米。In certain embodiments of the ultracapacitor, the volumetric leakage current of the ultracapacitor is greater than about 0.0001 mA/cm 3 when maintained at a substantially constant temperature.

在超级电容器的某些实施方案中,超级电容器的体积电容在约6F/立方厘米与约ImF/立方厘米之间;在约10F/立方厘米与约5F/立方厘米之间;或约50F/立方厘米与约8F/立方厘米之间。In certain embodiments of the ultracapacitor, the volumetric capacitance of the ultracapacitor is between about 6 F/cc and about 1 F/cc; between about 10 F/cc and about 5 F/cc; or about 50 F/cc Between centimeters and about 8F/cc.

在超级电容器的某些实施方案中,超级电容器的体积ESR在约20毫欧·立方厘米与200毫欧·立方厘米之间、约150毫欧·立方厘米与2欧姆·立方厘米之间、约1.5欧姆·立方厘米与200欧姆·立方厘米之间或约150欧姆·立方厘米与2000欧姆·立方厘米之间。In certain embodiments of the ultracapacitor, the volumetric ESR of the ultracapacitor is between about 20 milliohm·cc and 200 milliohm·cc, between about 150 milliohm·cc and 2 ohm·cc, about Between 1.5 ohm·cc and 200 ohm·cc or about 150 ohm·cc and 2000 ohm·cc.

在超级电容器的某些实施方案中,超级电容器在保持基本恒定的电压和操作温度时表现出低于约90%的电容下降。在特定实施方案中,超级电容器在基本恒定的电压和操作温度下保持至少1小时(例如,至少10小时;例如,至少50小时;例如,至少100小时;例如,至少200小时;例如,至少300小时;例如,至少400个小时;例如,至少500小时;例如,至少1000小时)时表现出低于约90%的电容下降。In certain embodiments of the ultracapacitor, the ultracapacitor exhibits a capacitance drop of less than about 90% while maintaining a substantially constant voltage and operating temperature. In certain embodiments, the ultracapacitor is maintained at a substantially constant voltage and operating temperature for at least 1 hour (eg, at least 10 hours; eg, at least 50 hours; eg, at least 100 hours; eg, at least 200 hours; eg, at least 300 hours) hours; eg, at least 400 hours; eg, at least 500 hours; eg, at least 1000 hours) exhibits a capacitance drop of less than about 90%.

在超级电容器的某些实施方案中,超级电容器在基本恒定的电压和操作温度下保持至少1小时时表现出低于约1000%的ESR升高,例如,至少10小时;例如,至少50小时;例如,至少100小时;例如,至少200小时;例如,至少300小时;例如,至少400个小时;例如,至少500小时;例如,至少1000小时。In certain embodiments of the ultracapacitor, the ultracapacitor exhibits an increase in ESR of less than about 1000% when maintained at a substantially constant voltage and operating temperature for at least 1 hour, eg, at least 10 hours; eg, at least 50 hours; eg, at least 100 hours; eg, at least 200 hours; eg, at least 300 hours; eg, at least 400 hours; eg, at least 500 hours; eg, at least 1000 hours.

例如,如图1所示,示出了电容器的示例性实施方案。在这种情况下,电容器是“超级电容器10”。示例性超级电容器10是双电层电容器(EDLC)。超级电容器10可以实施为若干不同形状因子(即,表现出某种外观)。潜在有用的形状因子的实例包括圆柱状单元、轮状或环状单元、扁平棱柱单元或包括盒状单元的扁平棱柱单元的堆叠体,以及适合于容纳特殊几何形状(例如弯曲空间)的扁平棱柱单元。圆柱状形状因子可以在结合圆柱状系统或者以圆柱状形状因子安装或具有圆柱状空腔的系统时最有用。轮状或环状单元形状因子可以在结合环状系统或者以环状形状因子安装或具有环状空腔的系统时最有用。扁平棱柱单元形状因子可以在结合矩形系统或者以矩形形状因子安装或具有矩形空腔的系统时最有用。For example, as shown in FIG. 1, an exemplary embodiment of a capacitor is shown. In this case, the capacitor is "Supercapacitor 10". An exemplary ultracapacitor 10 is an electric double layer capacitor (EDLC). The ultracapacitor 10 may be implemented in several different form factors (ie, exhibit a certain appearance). Examples of potentially useful form factors include cylindrical cells, wheel-shaped or ring-shaped cells, flat prismatic cells or stacks of flattened prismatic cells including box-shaped cells, and flat prisms adapted to accommodate special geometries such as curved spaces unit. Cylindrical form factors may be most useful when incorporating cylindrical systems or systems mounted in cylindrical form factors or with cylindrical cavities. A wheel or ring cell form factor may be most useful when incorporating a ring system or a system mounted in a ring form factor or having a ring cavity. The flat prismatic element form factor may be most useful when incorporating rectangular systems or systems that are mounted in a rectangular form factor or have a rectangular cavity.

虽然在本文中一般以“胶状卷”应用(即,存储单元12配置成圆柱形壳体7)的形状公开,但是卷制的存储单元23可以采取任意期望的形状。例如,相对于卷起存储单元12,可以进行存储单元12的折叠以提供卷制的存储单元23。可以使用其它类型的组合件。作为一个实例,存储单元12可以是扁平的单元,称为硬币型、袋型或棱柱型单元。因此,卷起只是卷制的存储单元23的组合件的一个选择。因此,虽然在本文中就“卷制的存储单元23”的方面进行讨论,但这并非是限制。可以认为术语“卷制的存储单元23”通常包括以良好适合于壳体7的给定设计的任意合适的形式封装或包装的存储单元12。Although disclosed herein generally in the shape of a "jelly roll" application (ie, storage unit 12 configured as cylindrical housing 7), rolled storage unit 23 may take any desired shape. For example, the folding of the storage unit 12 may be performed to provide the rolled storage unit 23 as opposed to rolling the storage unit 12 . Other types of assemblies can be used. As one example, the storage unit 12 may be a flat unit, known as a coin, pouch, or prismatic unit. Thus, rolling is only one option for the assembly of rolled storage units 23 . Thus, although discussed herein in terms of "rolled storage unit 23", this is not a limitation. The term "rolled storage unit 23" may be considered to generally include a storage unit 12 that is packaged or packaged in any suitable form that is well suited to the given design of the housing 7.

可以将多种形状的超级电容器10连接在一起。可以使用已知的技术例如焊接接触在一起、通过使用至少一种机械连接器、通过布置彼此电接触的接触件等来连接所述多种形状。多个超级电容器10可以以并联和串联形式中的至少之一电连接。Various shapes of supercapacitors 10 can be connected together. The various shapes may be connected using known techniques such as soldering contacted together, by using at least one mechanical connector, by arranging contacts in electrical contact with each other, and the like. The plurality of ultracapacitors 10 may be electrically connected in at least one of parallel and series.

出于本发明的目的,超级电容器10的体积可以为约0.05毫升至7.5升。For the purposes of the present invention, the volume of the ultracapacitor 10 may be about 0.05 milliliters to 7.5 liters.

可存在多种超级电容器10特别有用的环境。例如,在汽车应用中,可以实现105摄氏度的环境温度(其中电容器的实际寿命为约1年至20年)。在一些井下应用例如地热钻井中,可以达到300摄氏度或更高的环境温度(其中电容器的实际寿命为约1小时至10000小时)。There may be a variety of environments in which the ultracapacitor 10 is particularly useful. For example, in automotive applications, an ambient temperature of 105 degrees Celsius can be achieved (where the capacitor has a practical life of about 1 to 20 years). In some downhole applications such as geothermal drilling, ambient temperatures of 300 degrees Celsius or higher can be reached (where the capacitors have a practical life of about 1 hour to 10,000 hours).

现在将依次讨论本发明的超级电容器的部件。The components of the ultracapacitor of the present invention will now be discussed in turn.

A.本发明的先进的电解质体系 A. Advanced Electrolyte Systems of the Invention

本发明的先进的电解质体系提供本发明的超级电容器的电解质组成,并且在图1中被标记为“电解质6”。电解质6填充电极3与隔离器5之中和之间的空隙空间。一般而言,本发明的先进的电解质体系包括独特的电解质、纯化增强的电解质或其组合,其中,电解质6是解离成带电离子(例如,带正电的阳离子和带负电的阴离子)的物质(例如由一种或更多种盐或离子液体构成)并且可以包括溶剂。在本发明的先进的电解质体系中,基于某些性能和耐久性特性的增强来选择这样的电解质组成,并且该电解质组成可以与一种或更多种溶剂进行组合,所述一种或更多种溶剂溶解上述物质以产生具有新型和有用电化学稳定性和性能的组成。The advanced electrolyte system of the present invention provides the electrolyte composition of the supercapacitor of the present invention and is labeled "Electrolyte 6" in FIG. 1 . Electrolyte 6 fills the void spaces in and between electrode 3 and separator 5 . In general, the advanced electrolyte systems of the present invention include unique electrolytes, purification-enhanced electrolytes, or combinations thereof, wherein electrolyte 6 is a species that dissociates into charged ions (eg, positively charged cations and negatively charged anions) (eg consisting of one or more salts or ionic liquids) and may include a solvent. In the advanced electrolyte systems of the present invention, such electrolyte compositions are selected based on enhancement of certain performance and durability characteristics, and may be combined with one or more solvents, the one or more A solvent dissolves the above substances to yield compositions with novel and useful electrochemical stability and properties.

本发明的先进的电解质体系为本发明的超级电容器提供了优于现有能量储存装置(例如,包含在本文中没有公开的电解质的能量储存装置,或包含纯度不足的电解质的能量储存装置)的独特而鲜明的优点。这些优点包括在性能和耐久性两者上的改进,例如如下中的一项或更多项:总电阻降低;电阻的长期稳定性提高(例如,材料在给定温度下随时间电阻升高的减小);总电容增加;电容的长期稳定性提高(例如,电容器在给定温度下随时间电容降低的减小);能量密度增加(例如,通过提供更高的电压和/或通过产生更高的电容);电压稳定性提高,蒸气压减小,单个电容器的温度范围性能更宽(例如,当在两个温度之间转换时没有电容的显著降低和/或ESR的显著升高,例如,当从约+30℃至约-40℃转换时没有大于90%的电容降低和/或大于1000%的ESR升高),单个电容器的温度耐久性提高(例如,在给定温度下在给定时间后低于50%的电容降低和/或在给定温度下在给定时间后低于100%的ESR升高,和/或在给定温度下在给定时间后低于10A/L的漏电流,例如,低于40%的电容降低和/或低于75%的ESR升高,和/或低于5A/L的漏电流;例如,低于30%的电容降低和/或低于50%的ESR升高,和/或低于1A/L的漏电流),制造容易度提高(例如,通过具有减小的蒸气压,从而得到更好的产率和/或用电解质填充电容器的更有效的方法);以及成本效益改进(例如,通过用与其他材料相比成本较便宜的材料填充空隙空间)。为了清楚起见,性能特性涉及如下性质:这些性质涉及装置在给定用途下的实用性,该实用性适合对在使用的类似给定用途下的材料进行对比;同时耐久性涉及与随时间推移维持上述性质的能力有关的性质。以上性能和耐久性的实例应该用于为在本文中被认为是“在性能或耐久性上的显著变化”的内容提供背景支撑。The advanced electrolyte systems of the present invention provide supercapacitors of the present invention with advantages over existing energy storage devices (eg, energy storage devices comprising electrolytes not disclosed herein, or energy storage devices comprising electrolytes of insufficient purity) Unique and distinct advantages. These advantages include improvements in both performance and durability, such as one or more of the following: reduction in overall resistance; increased long-term stability of resistance (eg, increase in resistance of a material over time at a given temperature) increase in total capacitance; increase in long-term stability of capacitance (e.g., decrease in capacitance reduction over time for a capacitor at a given temperature); increase in energy density (e.g., by supplying higher voltages and/or by generating more higher capacitance); improved voltage stability, reduced vapor pressure, wider temperature range performance of a single capacitor (e.g. no significant reduction in capacitance and/or significant increase in ESR when switching between two temperatures, e.g. , no greater than 90% reduction in capacitance and/or greater than 1000% increase in ESR when transitioning from about +30°C to about -40°C), the temperature endurance of a single capacitor improves (eg, at a given temperature at a given temperature Less than 50% capacitance reduction after a given time and/or less than 100% ESR rise after a given time at a given temperature, and/or less than 10A/L after a given time at a given temperature leakage current, eg, less than 40% capacitance reduction and/or less than 75% ESR rise, and/or less than 5A/L leakage current; eg, less than 30% capacitance reduction and/or low 50% higher ESR, and/or less than 1 A/L leakage current), improved ease of manufacture (eg, by having reduced vapor pressure, resulting in better yields and/or filling capacitors with electrolytes) more efficient methods); and cost-effective improvements (eg, by filling void spaces with less expensive materials compared to other materials). For the sake of clarity, performance characteristics relate to properties that relate to the utility of a device for a given application, which is suitable for comparison of materials used for a similar given application; while durability relates to maintenance over time Properties related to the capabilities of the above properties. The above examples of performance and durability should be used to provide context for what is considered to be a "significant change in performance or durability" herein.

为了清楚起见,并且一般而言,如在本文中所使用的包含在本发明的能量储存装置中的“电解质6”的提及指的是本发明的先进的电解质体系。For the sake of clarity, and generally speaking, references to "electrolyte 6" included in the energy storage device of the present invention as used herein refers to the advanced electrolyte system of the present invention.

AES或电解质6的性质可以是选自如下的改进的结果:电容增加、等效串联电阻(ESR)降低、高热稳定性、低玻璃化转变温度(Tg)、改进的粘度、特定震凝(rhoepectic)或触变性质(例如取决于温度的性质)以及高传导性和在宽温度范围内表现良好的电性能。例如,电解质6可具有高流动性,或者相反,基本上为固体,使得确保了电极3的隔离。The properties of the AES or electrolyte 6 may be the result of improvements selected from: increased capacitance, reduced equivalent series resistance (ESR), high thermal stability, low glass transition temperature (Tg), improved viscosity, specific rhoepectic ) or thixotropic properties (eg temperature dependent properties) as well as high conductivity and good electrical properties over a wide temperature range. For example, the electrolyte 6 may have a high fluidity or, conversely, be substantially solid, so that the isolation of the electrodes 3 is ensured.

本发明的先进的电解质体系包括:在本文中所描述的用在高温超级电容器中的新型电解质;用于在高温超级电容器中的高度纯化的电解质;以及适合于在从-40摄氏度至210摄氏度的温度下使用的增强的电解质组合,在所有温度下性能或耐久性没有显著下降。The advanced electrolyte systems of the present invention include: the novel electrolytes described herein for use in high temperature supercapacitors; highly purified electrolytes for use in high temperature supercapacitors; and suitable for use in temperatures ranging from -40 degrees Celsius to 210 degrees Celsius The enhanced electrolyte combination is used at all temperatures without significant degradation in performance or durability.

虽然在本文中所呈现的公开内容应该关注将本文中所描述的先进的电解质体系应用于超级电容器,但是这些先进的电解质体系可应用于任何能量储存装置。Although the disclosure presented herein should focus on applying the advanced electrolyte systems described herein to supercapacitors, these advanced electrolyte systems can be applied to any energy storage device.

i.新型电解质实体(NEE)i. Novel Electrolyte Entity (NEE)

在一个实施方案中,本发明的先进的电解质体系(AES)包括在高温超级电容器中使用的某些新型电解质。在这方面,已经发现维持纯度和低水分涉及能量储存10的性能的等级;并且,使用包含疏水性材料的电解质以及已经发现表现出更高的纯度和更低的水分含量的电解质有利于获得改进的性能。这些电解质在约80摄氏度至约210摄氏度的温度范围内表现出良好的性能特性,例如,在约80摄氏度至约200摄氏度;例如,约80摄氏度至约190摄氏度;例如,约80摄氏度至约180摄氏度;例如,约80摄氏度至约170摄氏度;例如,约80摄氏度至约160摄氏度;例如,约80摄氏度至约150摄氏度,例如,约85摄氏度至约145摄氏度;例如,约90摄氏度至约140摄氏度;例如,约95摄氏度至约135摄氏度;例如,约100摄氏度至约130摄氏度;例如,约105摄氏度至约125摄氏度;例如,约110摄氏度至约120摄氏度。In one embodiment, the advanced electrolyte systems (AES) of the present invention include certain novel electrolytes used in high temperature supercapacitors. In this regard, it has been found that maintaining purity and low moisture relates to the level of performance of the energy storage 10; and, the use of electrolytes comprising hydrophobic materials and electrolytes that have been found to exhibit higher purity and lower moisture content is beneficial for obtaining improvements performance. These electrolytes exhibit good performance characteristics at temperatures ranging from about 80 degrees Celsius to about 210 degrees Celsius, eg, about 80 degrees Celsius to about 200 degrees Celsius; eg, about 80 degrees Celsius to about 190 degrees Celsius; eg, about 80 degrees Celsius to about 180 degrees Celsius Celsius; for example, about 80 degrees Celsius to about 170 degrees Celsius; for example, about 80 degrees Celsius to about 160 degrees Celsius; for example, about 80 degrees Celsius to about 150 degrees Celsius, for example, about 85 degrees Celsius to about 145 degrees Celsius; Celsius; eg, about 95 degrees Celsius to about 135 degrees Celsius; eg, about 100 degrees Celsius to about 130 degrees Celsius; eg, about 105 degrees Celsius to about 125 degrees Celsius; eg, about 110 degrees Celsius to about 120 degrees Celsius.

因此,可用作先进的电解质体系(AES)的新型电解质实体包括包含阳离子(例如,图8中所示的和本文中所描述的阳离子)和阴离子的物质或者这样物质的组合。在一些实施方案中,上述物质包括含氮阳离子、含氧阳离子、含磷阳离子和/或含硫阳离子,包含杂芳基阳离子和杂环基阳离子。在一组实施方案中,先进的电解质体系(AES)包括包含选自铵、咪唑 哌啶吡嗪吡唑哒嗪吡啶嘧啶锍、噻唑三唑异喹啉苯并三唑以及紫精类型阳离子的阳离子的物质,上述阳离子中的任意阳离子可以用本文所述的取代基取代。在一个实施方案中,用于本发明的先进的电解质体系(AES)的新型电解质实体包括图8中所示的阳离子,和选自四氟硼酸根、双(三氟甲基磺酰)亚胺、四氰基硼酸根和三氟甲磺酸根的阴离子的的任意组合,图8中所示的阳离子选自哌啶和铵,其中各个支链基团Rx(例如,R1、R2、R3...Rx)可以选自烷基、杂烷基、烯基、杂烯基、炔基、杂炔基、卤素、氨基、硝基、氰基、羟基、硫酸酯基、磺酸基和羰基,其中任意一者任选地被取代,并且其中至少两个Rx不是H(即,使得R基团的选择和取向产生图8中所示的阳离子物质)。Accordingly, novel electrolyte entities useful as advanced electrolyte systems (AES) include species comprising cations (eg, those shown in Figure 8 and described herein) and anions, or combinations of such species. In some embodiments, such species include nitrogen-containing cations, oxygen-containing cations, phosphorus-containing cations, and/or sulfur-containing cations, including heteroaryl cations and heterocyclyl cations. In one set of embodiments, the Advanced Electrolyte System (AES) comprises a compound comprising a compound selected from the group consisting of ammonium, imidazole azole piperidine Pyrazine Pyrazole Pyridazine Pyridine Pyrimidine Sulfonium, Thiazole triazole guanidine isoquinoline benzotriazole As well as cationic species of viologen type cations, any of the aforementioned cations may be substituted with the substituents described herein. In one embodiment, the novel electrolyte entity used in the advanced electrolyte system (AES) of the present invention comprises the cation shown in Figure 8, and is selected from the group consisting of tetrafluoroborate, bis(trifluoromethylsulfonyl)imide , any combination of anions of tetracyanoborate and triflate, the cations shown in Figure 8 are selected from piperidine and ammonium, where each branched group R x (eg, R 1 , R 2 , R 3 . . . R x ) can be selected from alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkyne group, halogen, amino, nitro, cyano, hydroxy, sulfate, sulfonic acid, and carbonyl, any of which are optionally substituted, and wherein at least two Rx are not H (ie, such that the R group's Selection and orientation resulted in the cationic species shown in Figure 8).

例如,给定上述阳离子和阴离子的组合,在特定实施方案中,AES可以选自三己基十四烷基双(三氟甲基磺酰基)亚胺、1-丁基-1-甲基哌啶双(三氟甲基磺酰基)亚胺和丁基三甲铵双(三氟甲基磺酰基)亚胺的组。在图44A和图44B、图45A和图45B以及图46A和图46B中提供了支持如随时间变化的电容和ESR测量结果所证明的在温度范围内增强的性能特性的数据,测量结果表明了高温实用性和长期耐久性。For example, given the combination of cations and anions described above, in certain embodiments, the AES may be selected from trihexyltetradecyl Bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpiperidine The group of bis(trifluoromethylsulfonyl)imide and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide. Data supporting the enhanced performance characteristics over temperature as evidenced by time-varying capacitance and ESR measurements are provided in Figures 44A and 44B, 45A and 45B, and 46A and 46B, which demonstrate that High temperature practicality and long term durability.

在某些实施方案中,AES是三己基十四烷基双(三氟甲基磺酰基)亚胺。In certain embodiments, AES is trihexyltetradecyl Bis(trifluoromethylsulfonyl)imide.

在某些实施方案中,AES是1-丁基-1-甲基哌啶双(三氟甲基磺酰基)亚胺。In certain embodiments, the AES is 1-butyl-1-methylpiperidine Bis(trifluoromethylsulfonyl)imide.

在某些实施方案中,AES是丁基三甲铵双(三氟甲基磺酰基)亚胺。In certain embodiments, the AES is butyltrimethylammonium bis(trifluoromethylsulfonyl)imide.

在另一个实施方案中,可用于本发明的先进的电解质体系(AES)的新型电解质实体包括图8中所示的阳离子,和选自四氟硼酸根、双(三氟甲基磺酰基)亚胺、四氰基硼酸根和三氟甲磺酸根的阴离子的任意组合,图8中所示的阳离子选自咪唑和吡咯烷其中各个支链基团Rx(例如,R1、R2、R3...Rx)可以选自烷基、杂烷基、烯基、杂烯基、炔基、杂炔基、卤素、氨基、硝基、氰基、羟基、硫酸酯基、磺酸酯和羰基的组,其中任意一者任选地被取代,并且其中至少两个Rx不是H(即,使得R基团的选择和取向产生图8中所示的阳离子物质)。在一个特定实施方案中,不是H的两个Rx是烷基。此外,所述阳离子表现出高的热稳定性以及高传导性并且表现出在宽温度范围内的良好的电化学性能。In another embodiment, novel electrolyte entities useful in the advanced electrolyte systems (AES) of the present invention include the cations shown in Figure 8, and are selected from the group consisting of tetrafluoroborate, bis(trifluoromethylsulfonyl)idene Any combination of anions of amine, tetracyanoborate and triflate, the cation shown in Figure 8 is selected from imidazole and pyrrolidine wherein each branched chain group Rx ( eg, R1, R2, R3 ... Rx ) can be selected from alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, halogen , amino, nitro, cyano, hydroxy, sulfate, sulfonate, and carbonyl groups, any of which are optionally substituted, and wherein at least two R x are not H (ie, such that the R group's Selection and orientation resulted in the cationic species shown in Figure 8). In a specific embodiment, the two Rx that are not H are alkyl. Furthermore, the cations exhibit high thermal stability as well as high conductivity and exhibit good electrochemical performance over a wide temperature range.

例如,给定以上阳离子和阴离子的组合,在特定实施方案中,AES可以选自1-丁基-3-甲基咪唑四氟硼酸盐;1-丁基-3-甲基咪唑双(三氟甲基磺酰基)亚胺,1-乙基-3-甲基咪唑四氟硼酸盐;1-乙基-3-甲基咪唑四氰基硼酸盐;1-己基-3-甲基咪唑四氰基硼酸盐;1-丁基-1-甲基吡咯烷双(三氟甲基磺酰基)亚胺;1-丁基-1-甲基吡咯烷三(五氟乙基)三氟磷酸盐;1-丁基-1-甲基吡咯烷四氰基硼酸盐和1-丁基-3-甲基咪唑三氟甲磺酸盐。For example, given the above combinations of cations and anions, in certain embodiments, the AES may be selected from 1-butyl-3-methylimidazole Tetrafluoroborate; 1-Butyl-3-methylimidazole Bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazole Tetrafluoroborate; 1-ethyl-3-methylimidazole Tetracyanoborate; 1-hexyl-3-methylimidazole Tetracyanoborate; 1-Butyl-1-methylpyrrolidine Bis(trifluoromethylsulfonyl)imide; 1-butyl-1-methylpyrrolidine Tris(pentafluoroethyl)trifluorophosphate; 1-butyl-1-methylpyrrolidine Tetracyanoborate and 1-butyl-3-methylimidazole Triflate.

在一个实施方案中,AES是1-丁基-3-甲基咪唑四氟硼酸盐。In one embodiment, the AES is 1-butyl-3-methylimidazole Tetrafluoroborate.

在一个实施方案中,AES是1-丁基-3-甲基咪唑双(三氟甲基磺酰基)亚胺。In one embodiment, the AES is 1-butyl-3-methylimidazole Bis(trifluoromethylsulfonyl)imide.

在一个实施方案中,AES是1-乙基-3-甲基咪唑四氟硼酸盐。In one embodiment, the AES is 1-ethyl-3-methylimidazole Tetrafluoroborate.

在一个实施方案中,AES是1-乙基-3-甲基咪唑四氰基硼酸盐。In one embodiment, the AES is 1-ethyl-3-methylimidazole Tetracyanoborate.

在一个实施方案中,AES是1-己基-3-甲基咪唑四氰基硼酸盐。In one embodiment, the AES is 1-hexyl-3-methylimidazole Tetracyanoborate.

在一个实施方案中,AES是1-丁基-1-甲基吡咯烷双(三氟甲基磺酰基)亚胺。In one embodiment, the AES is 1-butyl-1-methylpyrrolidine Bis(trifluoromethylsulfonyl)imide.

在一个实施方案中,AES是1-丁基-1-甲基吡咯烷三(五氟乙基)三氟磷酸盐。In one embodiment, the AES is 1-butyl-1-methylpyrrolidine Tris(pentafluoroethyl)trifluorophosphate.

在一个实施方案中,AES是1-丁基-1-甲基吡咯烷四氰基硼酸盐。In one embodiment, the AES is 1-butyl-1-methylpyrrolidine Tetracyanoborate.

在一个实施方案中,AES是1-丁基-3-甲基咪唑三氟甲磺酸盐。In one embodiment, the AES is 1-butyl-3-methylimidazole Triflate.

在另一个特定实施方案中,不是H的两个Rx之一是烷基,例如,甲基,而另一个是用烷氧基取代的烷基。此外,已经发现在分子中具有式(1)的N,O-缩醛骨架结构的阳离子具有高导电性,并且包括在这些阳离子中并且具有吡咯烷骨架和N,O-缩醛基团的铵阳离子在有机溶剂中的导电性和溶解度特别高,并且支持相对高的电压。如此,在一个实施方案中,先进的电解质体系包括下式的盐:In another specific embodiment, one of the two Rx that is not H is an alkyl group, eg, methyl, and the other is an alkyl group substituted with an alkoxy group. Furthermore, it has been found that cations having an N,O-acetal skeleton structure of the formula (1) in the molecule have high conductivity, and are included in these cations and have pyrrolidine The ammonium cations of the backbone and N,O-acetal groups are particularly conductive and soluble in organic solvents and support relatively high voltages. Thus, in one embodiment, the advanced electrolyte system includes a salt of the formula:

其中R1和R2可以相同或不同,且均为烷基,并且X-为阴离子。在一些实施方案中,R1是具有1至4个碳原子的直链烷基或支链烷基,R2是甲基或乙基,并且X-是含氰基硼酸根的阴离子11。在特定实施方案中,X-包括[B(CN)]4并且R2是甲基和乙基中之一。在另一特定实施方案中,R1和R2均为甲基。另外,在一个实施方案中,适合本发明的先进的电解质体系的氰基硼酸阴离子11,X-包括[B(CN)4]-或[BFn(CN)4-n]-,其中n=0、1、2或3。wherein R 1 and R 2 may be the same or different, and are both alkyl groups, and X- is an anion. In some embodiments, R 1 is a straight or branched chain alkyl group having 1 to 4 carbon atoms, R 2 is methyl or ethyl, and X is a cyanoborate-containing anion 11. In certain embodiments , X- includes [B(CN)] 4 and R2 is one of methyl and ethyl. In another specific embodiment, both R1 and R2 are methyl. Additionally, in one embodiment, suitable cyanoborate anions 11,X- for the advanced electrolyte systems of the present invention include [B(CN)4] - or [BFn(CN)4 -n]- , where n= 0, 1, 2 or 3.

本发明的包含式(1)的新型电解质实体并且由式(I)中所示的季铵阳离子和氰基硼酸阴离子构成的AES的阳离子的实例选自N-甲基-N-甲氧基甲基吡咯烷(N-甲氧基甲基-N-甲基吡咯烷)、N-乙基-N-甲氧基甲基吡咯烷N-甲氧基甲基-N-正丙基吡咯烷N-甲氧基甲基-N-异丙基吡咯烷N-正丁基-N-甲氧基甲基吡咯烷N-异丁基-N-甲氧基甲基吡咯烷N-叔丁基-N-甲氧基甲基吡咯烷N-乙氧基甲基-N-甲基吡咯烷N-乙基-N-乙氧基甲基吡咯烷(N-乙氧基甲基-N-乙基吡咯烷)、N-乙氧基甲基-N-正丙基吡咯烷N-乙氧基甲基-N-异丙基吡咯烷N-正丁基-N-乙氧基甲基吡咯烷N-异丁基-N-乙氧基甲基吡咯烷和N-叔丁基-N-乙氧基甲基吡咯烷其它实例包括N-甲基-N-甲氧基甲基吡咯烷(N-甲氧基甲基-N-甲基吡咯烷)、N-乙基-N-甲氧基甲基吡咯烷和N-乙氧基甲基-N-甲基吡咯烷 Examples of cations of the AES of the present invention comprising the novel electrolyte entity of formula (1) and consisting of quaternary ammonium cations shown in formula (I) and cyanoborate anions are selected from N-methyl-N-methoxymethyl pyrrolidine (N-Methoxymethyl-N-methylpyrrolidine ), N-ethyl-N-methoxymethylpyrrolidine N-Methoxymethyl-N-n-propylpyrrolidine N-Methoxymethyl-N-isopropylpyrrolidine N-n-Butyl-N-methoxymethylpyrrolidine N-isobutyl-N-methoxymethylpyrrolidine N-tert-Butyl-N-methoxymethylpyrrolidine N-Ethoxymethyl-N-methylpyrrolidine N-Ethyl-N-ethoxymethylpyrrolidine (N-Ethoxymethyl-N-ethylpyrrolidine ), N-ethoxymethyl-N-n-propylpyrrolidine N-Ethoxymethyl-N-isopropylpyrrolidine N-n-Butyl-N-ethoxymethylpyrrolidine N-isobutyl-N-ethoxymethylpyrrolidine and N-tert-butyl-N-ethoxymethylpyrrolidine Other examples include N-methyl-N-methoxymethylpyrrolidine (N-Methoxymethyl-N-methylpyrrolidine ), N-ethyl-N-methoxymethylpyrrolidine and N-ethoxymethyl-N-methylpyrrolidine

与另外的阴离子组合的式(1)的阳离子的另外实例可以选自N-甲基-N-甲氧基甲基吡咯烷四氰基硼酸盐(N-甲氧基甲基-N-甲基吡咯烷四氰基硼酸盐)、N-乙基-N-甲氧基甲基吡咯烷四氰基硼酸盐、N-乙氧基甲基-N-甲基吡咯烷四氰基硼酸盐、N-甲基-N-甲氧基甲基吡咯烷双三氟甲磺酰基亚胺、(N-甲氧基甲基-N-甲基吡咯烷双三氟甲磺酰基亚胺)、N-乙基-N-甲氧基甲基吡咯烷双三氟甲磺酰基亚胺、N-乙氧基甲基-N-甲基吡咯烷双三氟甲磺酰基亚胺、N-甲基-N-甲氧基甲基吡咯烷三氟甲磺酸盐(N-甲氧基甲基-N-甲基三氟甲磺酸盐)。Further examples of cations of formula (1) combined with further anions may be selected from N-methyl-N-methoxymethylpyrrolidine Tetracyanoborate (N-methoxymethyl-N-methylpyrrolidine tetracyanoborate), N-ethyl-N-methoxymethylpyrrolidine Tetracyanoborate, N-ethoxymethyl-N-methylpyrrolidine Tetracyanoborate, N-methyl-N-methoxymethylpyrrolidine Bistrifluoromethanesulfonylimide, (N-methoxymethyl-N-methylpyrrolidine bistrifluoromethanesulfonylimide), N-ethyl-N-methoxymethylpyrrolidine Bistrifluoromethanesulfonylimide, N-ethoxymethyl-N-methylpyrrolidine Bistrifluoromethanesulfonylimide, N-methyl-N-methoxymethylpyrrolidine Triflate (N-methoxymethyl-N-methyl triflate).

在用作电解质的情况下,可以使用季铵盐来与合适的有机溶剂的掺混。可用的溶剂包括环状碳酸酯、链状碳酸酯、磷酸酯、环状醚、链状醚、内酯化合物、链状酯、腈化合物、酰胺化合物和砜化合物。这类化合物的实例列举如下,不过所使用的溶剂不限于这些化合物。In the case of use as an electrolyte, a quaternary ammonium salt can be used in admixture with a suitable organic solvent. Usable solvents include cyclic carbonates, chain carbonates, phosphoric acid esters, cyclic ethers, chain ethers, lactone compounds, chain esters, nitrile compounds, amide compounds, and sulfone compounds. Examples of such compounds are listed below, but the solvent used is not limited to these compounds.

环状碳酸酯的实例为碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯等,其中,优选碳酸亚丙酯。Examples of the cyclic carbonate are ethylene carbonate, propylene carbonate, butylene carbonate and the like, among which propylene carbonate is preferred.

链状碳酸酯的实例是碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯等,其中,优选碳酸二甲酯和碳酸甲乙酯。Examples of the chain carbonate are dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like, among which dimethyl carbonate and ethyl methyl carbonate are preferred.

磷酸酯的实例是磷酸三甲酯、磷酸三乙酯、磷酸乙基二甲酯、磷酸二乙基甲酯等。环状醚的实例是四氢呋喃、2-甲基四氢呋喃等。链状醚的实例是乙二醇二甲醚等。内酯化合物的实例是γ-丁内酯等。链状酯的实例是丙酸甲酯、乙酸甲酯、乙酸乙酯、甲酸甲酯等。腈化合物的实例是乙腈等。酰胺化合物的实例是二甲基甲酰胺等。砜化合物的实例是环丁砜、甲基环丁砜等。在一些实施方案中,特别期望的是环状碳酸酯、链状碳酸酯、腈化合物和砜化合物。Examples of phosphate esters are trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate and the like. Examples of cyclic ethers are tetrahydrofuran, 2-methyltetrahydrofuran, and the like. Examples of chain ethers are ethylene glycol dimethyl ether and the like. Examples of the lactone compound are γ-butyrolactone and the like. Examples of chain esters are methyl propionate, methyl acetate, ethyl acetate, methyl formate, and the like. Examples of the nitrile compound are acetonitrile and the like. Examples of the amide compound are dimethylformamide and the like. Examples of sulfone compounds are sulfolane, methyl sulfolane, and the like. In some embodiments, cyclic carbonates, chain carbonates, nitrile compounds, and sulfone compounds are particularly desired.

这些溶剂可以单独使用,也可以以掺混物的形式使用至少两种溶剂。优选有机溶剂混合物的实例是:环状碳酸酯和链状碳酸酯的混合物,例如碳酸亚乙酯和碳酸二甲酯的混合物,碳酸亚乙酯和碳酸甲乙酯的混合物,碳酸亚乙酯和碳酸二乙酯的混合物,碳酸亚丙酯和碳酸二甲酯的混合物,碳酸亚丙酯和碳酸甲乙酯的混合物以及碳酸亚丙酯和碳酸二乙酯的混合物;链状碳酸酯的混合物例如碳酸二甲酯和碳酸甲乙酯的混合物;以及环丁砜化合物的混合物例如环丁砜和甲基环丁砜的混合物。较优选的是碳酸亚乙酯和碳酸甲乙酯的混合物、碳酸亚丙酯和碳酸甲乙酯的混合物以及碳酸二甲酯和碳酸甲乙酯的混合物。These solvents can be used alone, or at least two solvents can be used in admixture. Examples of preferred organic solvent mixtures are: mixtures of cyclic carbonates and chain carbonates, for example mixtures of ethylene carbonate and dimethyl carbonate, mixtures of ethylene carbonate and ethyl methyl carbonate, ethylene carbonate and Mixtures of diethyl carbonate, mixtures of propylene carbonate and dimethyl carbonate, mixtures of propylene carbonate and ethyl methyl carbonate and mixtures of propylene carbonate and diethyl carbonate; mixtures of chain carbonates such as Mixtures of dimethyl carbonate and ethyl methyl carbonate; and mixtures of sulfolane compounds such as mixtures of sulfolane and methyl sulfolane. More preferred are mixtures of ethylene carbonate and ethyl methyl carbonate, mixtures of propylene carbonate and ethyl methyl carbonate, and mixtures of dimethyl carbonate and ethyl methyl carbonate.

在一些实施方案中,在本发明的季铵盐用作电解质的情况下,电解质浓度为至少0.1M,在一些情况下为至少0.5M以及可以为至少1M。如果浓度低于0.1M,将会导致低导电率,产生性能削弱的电化学装置。在电解质在室温下为液态盐的情况下,上限浓度为分离浓度。在溶液不分离的情况下,极限浓度为100%。当盐在室温下为固体的情况下,极限浓度为溶液被盐饱和时的浓度。In some embodiments, where the quaternary ammonium salts of the present invention are used as electrolytes, the electrolyte concentration is at least 0.1M, in some cases at least 0.5M and may be at least 1M. Concentrations below 0.1 M will result in low electrical conductivity, resulting in a compromised electrochemical device. In the case where the electrolyte is a liquid salt at room temperature, the upper limit concentration is the isolated concentration. In the case where the solution does not separate, the limiting concentration is 100%. When the salt is solid at room temperature, the limiting concentration is the concentration at which the solution is saturated with the salt.

在某些实施方案中,先进的电解质体系(AES)可以被掺混有除了本文中所公开那些电解质之外的电解质,只要这样的组合不显著影响使用先进的电解质体系所实现的优点即可,例如,改变性能或耐久性特性超过10%。可以适合于与AES掺混的电解质的实例是碱金属盐、季铵盐、季盐等。与在本文中所公开的AES掺混时,这些电解质可以单独使用,或者这些电解质中的至少两种可组合使用。可使用的碱金属盐包括锂盐、钠盐和钾盐。这种锂盐的实例是六氟磷酸锂、氟硼酸锂、高氯酸锂、三氟甲磺酸锂、磺酰亚胺锂、甲磺酰锂等,然而这不是限制性的。可使用的钠盐的实例是六氟磷酸钠、氟硼酸钠、高氯酸钠、三氟甲磺酸钠、磺酰亚胺钠、甲磺酰钠等。可使用的钾盐的实例是六氟磷酸钾、氟硼酸钾、高氯酸钾、三氟甲磺酸钾、磺酰亚胺钾,甲磺酰钾等,然而这些不是限制性的。In certain embodiments, the advanced electrolyte system (AES) may be blended with electrolytes other than those disclosed herein, so long as such a combination does not significantly affect the advantages achieved using the advanced electrolyte system, For example, changing performance or durability characteristics by more than 10%. Examples of electrolytes that may be suitable for blending with AES are alkali metal salts, quaternary ammonium salts, quaternary salt etc. When blended with the AES disclosed herein, these electrolytes can be used alone, or at least two of these electrolytes can be used in combination. Useful alkali metal salts include lithium, sodium and potassium salts. Examples of such lithium salts are lithium hexafluorophosphate, lithium fluoroborate, lithium perchlorate, lithium trifluoromethanesulfonate, lithium sulfonimide, lithium methanesulfonyl, and the like, although this is not limiting. Examples of sodium salts that can be used are sodium hexafluorophosphate, sodium fluoroborate, sodium perchlorate, sodium triflate, sodium sulfonimide, sodium methanesulfonyl, and the like. Examples of potassium salts that can be used are potassium hexafluorophosphate, potassium fluoroborate, potassium perchlorate, potassium triflate, potassium sulfonimide, potassium methanesulfonyl, and the like, although these are not limiting.

以上所述的可以组合使用的可使用的季铵盐(即,不显著影响使用先进的电解质体系所实现的优点)包括四烷基铵盐、咪唑盐、吡唑盐、吡啶盐、三唑盐、哒嗪盐等,这不是限制性的。可使用的四烷基铵盐的实例是四乙铵四氰基硼酸盐、四甲铵四氰基硼酸盐、四丙铵四氰基硼酸盐、四丁铵四氰基硼酸盐、三乙基甲铵四氰基硼酸盐、三甲基乙铵四氰基硼酸盐、二甲基二乙铵四氰基硼酸盐、三甲基丙铵四氰基硼酸盐、三甲基丁铵四氰基硼酸盐、二甲基乙基丙铵四氰基硼酸盐、甲基乙基丙基丁铵四氰基硼酸盐、N,N-二甲基吡咯烷四氰基硼酸盐、N-乙基-N-甲基吡咯烷四氰基硼酸盐、N-甲基-N-丙基吡咯烷四氰基硼酸盐、N-乙基-N-丙基吡咯烷四氰基硼酸盐、N,N-二甲基哌啶四氰基硼酸盐、N-甲基-N-乙基哌啶四氰基硼酸盐、N-甲基-N-丙基哌啶四氰基硼酸盐、N-乙基-N-丙基哌啶四氰基硼酸盐、N,N-二甲基吗啉四氰基硼酸盐、N-甲基-N-乙基吗啉四氰基硼酸盐、N-甲基-N-丙基吗啉四氰基硼酸盐、N-乙基-N-丙基吗啉四氰基硼酸盐等,然而这些实例并非限制性的。Useful quaternary ammonium salts described above that can be used in combination (ie, do not significantly affect the advantages achieved using advanced electrolyte systems) include tetraalkylammonium salts, imidazoles salt, pyrazole salt, pyridine salt, triazole salt, pyridazine Salt, etc, this is not limiting. Examples of tetraalkylammonium salts that can be used are tetraethylammonium tetracyanoborate, tetramethylammonium tetracyanoborate, tetrapropylammonium tetracyanoborate, tetrabutylammonium tetracyanoborate , triethylmethylammonium tetracyanoborate, trimethylethylammonium tetracyanoborate, dimethyldiethylammonium tetracyanoborate, trimethylpropylammonium tetracyanoborate, Trimethylbutylammonium tetracyanoborate, dimethylethylpropylammonium tetracyanoborate, methylethylpropylbutylammonium tetracyanoborate, N,N-dimethylpyrrolidine Tetracyanoborate, N-ethyl-N-methylpyrrolidine Tetracyanoborate, N-methyl-N-propylpyrrolidine Tetracyanoborate, N-ethyl-N-propylpyrrolidine Tetracyanoborate, N,N-Dimethylpiperidine Tetracyanoborate, N-methyl-N-ethylpiperidine Tetracyanoborate, N-methyl-N-propylpiperidine Tetracyanoborate, N-ethyl-N-propylpiperidine Tetracyanoborate, N,N-Dimethylmorpholine Tetracyanoborate, N-methyl-N-ethylmorpholine Tetracyanoborate, N-methyl-N-propylmorpholine Tetracyanoborate, N-ethyl-N-propylmorpholine Tetracyanoborate and the like, however these examples are not limiting.

以上所述的可以组合使用(即,不显著影响使用先进的电解质体系所实现的优点)的咪唑盐的实例包括1,3-二甲基咪唑四氰基硼酸盐、1-乙基-3-甲基咪唑四氰基硼酸盐、1,3-二乙基咪唑四氰基硼酸盐、1,2-二甲基-3-乙基咪唑四氰基硼酸盐和1,2-二甲基-3-丙基咪唑四氰基硼酸盐,但不限于这些。吡唑盐的实例是1,2-二甲基吡唑四氰基硼酸盐、1-甲基-2-乙基吡唑四氰基硼酸盐、1-丙基-2-甲基吡唑四氰基硼酸盐和1-甲基-2-丁基吡唑四氰基硼酸盐,但不限于这些。吡啶盐的实例是N-甲基吡啶四氰基硼酸盐、N-乙基吡啶四氰基硼酸盐、N-丙基吡啶四氰基硼酸盐和N-丁基吡啶四氰基硼酸盐,但不限于这些。三唑盐的实例是1-甲基三唑四氰基硼酸盐、1-乙基三唑四氰基硼酸盐、1-丙基三唑四氰基硼酸盐和1-丁基三唑四氰基硼酸盐,但不限于这些。哒嗪盐的实例是1-甲基哒嗪四氰基硼酸盐、1-乙基哒嗪四氰基硼酸盐、1-丙基哒嗪四氰基硼酸盐和1-丁基哒嗪四氰基硼酸盐,但不限于这些。季盐的实例是四乙基四氰基硼酸盐、四甲基四氰基硼酸盐、四丙基四氰基硼酸盐、四丁基四氰基硼酸盐、三乙基甲基四氰基硼酸盐、三甲基乙基四氰基硼酸盐、二甲基二乙基四氰基硼酸盐、三甲基丙基四氰基硼酸盐、三甲基丁基四氰基硼酸盐、二甲基乙基丙基四氰基硼酸盐、甲基乙基丙基丁基四氰基硼酸盐,但不限于这些。The imidazoles described above can be used in combination (ie, without significantly affecting the advantages achieved using advanced electrolyte systems) Examples of salts include 1,3-dimethylimidazole Tetracyanoborate, 1-ethyl-3-methylimidazole Tetracyanoborate, 1,3-diethylimidazole Tetracyanoborate, 1,2-Dimethyl-3-ethylimidazole Tetracyanoborate and 1,2-Dimethyl-3-propylimidazole Tetracyanoborate, but not limited to these. Pyrazole An example of a salt is 1,2-dimethylpyrazole Tetracyanoborate, 1-Methyl-2-ethylpyrazole Tetracyanoborate, 1-propyl-2-methylpyrazole Tetracyanoborate and 1-methyl-2-butylpyrazole Tetracyanoborate, but not limited to these. Pyridine An example of a salt is N-picoline Tetracyanoborate, N-ethylpyridine Tetracyanoborate, N-propylpyridine Tetracyanoborate and N-butylpyridine Tetracyanoborate, but not limited to these. triazole An example of a salt is 1-methyltriazole Tetracyanoborate, 1-ethyltriazole Tetracyanoborate, 1-propyltriazole Tetracyanoborate and 1-Butyltriazole Tetracyanoborate, but not limited to these. Pyridazine An example of a salt is 1-methylpyridazine Tetracyanoborate, 1-ethylpyridazine Tetracyanoborate, 1-propylpyridazine Tetracyanoborate and 1-butylpyridazine Tetracyanoborate, but not limited to these. season An example of a salt is tetraethyl Tetracyanoborate, Tetramethyl Tetracyanoborate, Tetrapropyl Tetracyanoborate, Tetrabutyl tetracyanoborate, triethylmethyl Tetracyanoborate, Trimethylethyl Tetracyanoborate, Dimethyldiethyl Tetracyanoborate, Trimethylpropyl Tetracyanoborate, Trimethylbutyl Tetracyanoborate, Dimethylethylpropyl Tetracyanoborate, methylethylpropylbutyl Tetracyanoborate, but not limited to these.

在某些实施方案中,本文中所选择的用于先进的电解质体系的新型电解质也可以被纯化。这样的纯化可以使用本领域公知的技术或本文中所提供的技术执行。该纯化可以进一步改进本文中所描述的新型电解质实体的特性。In certain embodiments, the novel electrolytes selected herein for advanced electrolyte systems can also be purified. Such purification can be performed using techniques known in the art or provided herein. This purification can further improve the properties of the novel electrolyte entities described herein.

ii.高度纯化的电解质ii. Highly purified electrolyte

在一个实施方案中,本发明的先进的电解质体系包括在高温超级电容器中使用的某些高度纯化的电解质。在某些实施方案中,构成本发明的AES的高度纯化的电解质是通过本文中所述的纯化方法纯化的以下所述的那些电解质以及以上所述的那些新型电解质。本文中所提供的纯化方法产生能够提供先进的电解质体系的杂质水平,所述先进的电解质体系在高温应用(例如,高温超级电容器)中使用的具有增强的性能,例如,在约80摄氏度至约210摄氏度的温度范围内,例如,约80摄氏度至约200摄氏度;例如,约80摄氏度至约190摄氏度;例如,约80摄氏度至约180摄氏度;例如,约80摄氏度至约170摄氏度;例如,约80摄氏度至约160摄氏度;例如,约80摄氏度至约150摄氏度;例如,约85摄氏度至约145摄氏度;例如,约90摄氏度至约140摄氏度;例如,约95摄氏度至约135摄氏度;例如,约100摄氏度至约130摄氏度;例如,约105摄氏度至约125摄氏度;例如,约110摄氏度至约120摄氏度。In one embodiment, the advanced electrolyte systems of the present invention include certain highly purified electrolytes used in high temperature supercapacitors. In certain embodiments, the highly purified electrolytes that make up the AES of the present invention are those electrolytes described below and those novel electrolytes described above purified by the purification methods described herein. The purification methods provided herein result in impurity levels capable of providing advanced electrolyte systems with enhanced performance for use in high temperature applications (eg, high temperature supercapacitors), eg, at about 80 degrees Celsius to about In the temperature range of 210 degrees Celsius, for example, about 80 degrees Celsius to about 200 degrees Celsius; for example, about 80 degrees Celsius to about 190 degrees Celsius; for example, about 80 degrees Celsius to about 180 degrees Celsius; for example, about 80 degrees Celsius to about 170 degrees Celsius; 80 degrees Celsius to about 160 degrees Celsius; for example, about 80 degrees Celsius to about 150 degrees Celsius; for example, about 85 degrees Celsius to about 145 degrees Celsius; for example, about 90 degrees Celsius to about 140 degrees Celsius; 100 degrees Celsius to about 130 degrees Celsius; eg, about 105 degrees Celsius to about 125 degrees Celsius; eg, about 110 degrees Celsius to about 120 degrees Celsius.

获得超级电容器10的改进的性质导致需求比现有的可获得的电解质系统更好的电解质系统。例如,已经发现增大操作温度范围可通过从已知电解质的某些形式显著减少/去除杂质来实现。特别值得关注的杂质包括水、卤离子(氯离子、溴离子、氟离子和碘离子)、游离胺(氨)、硫酸根和金属阳离子(Ag、Al、Ba、Ca、Cd、Co、Cr、Cu、Fe、K、Li、Mg、Mn、Mo、Na、Ni、Pb、Sr、Ti、Zn)。这样纯化的经高度纯化的电解质产品提供了出乎意料的远优于未经纯化的电解质的电解质,并且因此,属于本发明的先进的电解质体系。Obtaining the improved properties of the supercapacitor 10 has led to a need for a better electrolyte system than currently available. For example, it has been found that increasing the operating temperature range can be achieved by significantly reducing/removing impurities from certain forms of known electrolytes. Impurities of particular concern include water, halides (chloride, bromide, fluoride and iodide), free amines (ammonia), sulfate and metal cations (Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, Ti, Zn). The highly purified electrolyte product thus purified provides an electrolyte that is unexpectedly far superior to the unpurified electrolyte, and thus, is an advanced electrolyte system of the present invention.

在特定实施方案中,本发明提供了可以用作本发明的AES的经纯化的阳离子9和阴离子11的混合物以及在一些情况下的溶剂,上述本发明的AES包括低于约5000份/百万份(ppm)的氯离子;低于约1000ppm的氟离子;和/或低于约1000ppm的水(例如,低于约2000ppm的氯离子;低于约200ppm的氟离子;和/或低于约200ppm的水,例如,低于约1000ppm的氯离子;低于约100ppm的氟离子;和/或低于约100ppm的水,例如,低于约500ppm的氯离子,低于约50ppm的氟离子;和/或低于约50ppm的水,例如,低于约780份/百万份的氯离子;低于约11份/百万份的氟离子;和低于约20份/百万份的水。)In certain embodiments, the present invention provides purified mixtures of cations 9 and anions 11, and in some cases solvents, that can be used as AES of the present invention comprising less than about 5000 parts per million parts (ppm) chloride ions; less than about 1000 ppm fluoride ions; and/or less than about 1000 ppm water (e.g., less than about 2000 ppm chloride ions; less than about 200 ppm fluoride ions; and/or less than about 2000 ppm chloride ions; 200 ppm water, eg, less than about 1000 ppm chloride ion; less than about 100 ppm fluoride ion; and/or less than about 100 ppm water, eg, less than about 500 ppm chloride ion, less than about 50 ppm fluoride ion; and/or less than about 50 ppm water, for example, less than about 780 parts per million chloride ions; less than about 11 parts per million fluoride ions; and less than about 20 parts per million water .)

一般而言,使用本文中所述的纯化方法来除去被纯化的电解质中的杂质。例如,在一些实施方案中,卤离子(氯离子、溴离子、氟离子和碘离子)的总浓度可以减小至低于约1000ppm。金属物质(例如,Cd、Co、Cr、Cu、Fe、K、Li、Mo、Na、Ni、Pb、Zn,包括其合金和氧化物中至少一种)的总浓度可以减小至低于约1000ppm。此外,来自合成过程中使用的溶剂和前体的杂质可以减小至低于约1000ppm,并且可以包括例如溴乙烷、氯乙烷、1-溴丁烷、1-氯丁烷、1-甲基咪唑、乙酸乙酯、二氯甲烷等。In general, the purification methods described herein are used to remove impurities from the electrolyte being purified. For example, in some embodiments, the total concentration of halide ions (chloride, bromide, fluoride, and iodide) can be reduced to less than about 1000 ppm. The total concentration of metal species (eg, Cd, Co, Cr, Cu, Fe, K, Li, Mo, Na, Ni, Pb, Zn, including at least one of alloys and oxides thereof) can be reduced to less than about 1000ppm. In addition, impurities from solvents and precursors used in the synthesis process can be reduced to less than about 1000 ppm and can include, for example, bromoethane, chloroethane, 1-bromobutane, 1-chlorobutane, 1-methylmethane imidazole, ethyl acetate, dichloromethane, etc.

在一些实施方案中,使用已应用于超级电容器10的电解质6的离子选择电极和卡尔·费歇尔(Karl Fischer)滴定法测量了超级电容器10的杂质含量。在某些实施方案中,发现根据本文教导的超级电容器10的总卤离子含量为低于约200ppm的卤离子(Cl-和F-),水含量为低于约100ppm。In some embodiments, the impurity content of the supercapacitor 10 is measured using ion selective electrodes and Karl Fischer titration methods that have been applied to the electrolyte 6 of the supercapacitor 10 . In certain embodiments, ultracapacitors 10 according to the teachings herein have been found to have a total halide ion content of less than about 200 ppm of halide ions (Cl and F ) and a water content of less than about 100 ppm.

可以使用各种技术例如原子吸收光谱仪(AAS)、电感耦合等离子体质谱(ICPMS)或简化增溶和电化学感测痕量重金属氧化物颗粒来测量杂质。AAS是用于采用通过气态的自由原子的光辐射(光)的吸收来定性和定量地测定化学元素的光谱分析方法。该技术用于确定待分析的样品中特定元素(被分析物)的浓度。AAS可用于测定溶液中或直接在固体样品中的超过70种不同的元素。ICPMS是一种质谱法,其高度灵敏并且能够测定金属和若干非金属的低于1012分之一(万亿分之一)的浓度的范围。该技术是基于将作为生成离子(离子化)的方法的电感耦合等离子体与作为分离和检测离子的方法的质谱结合在一起。ICPMS还能够监测所选离子的同位素形态。Impurities can be measured using various techniques such as atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICPMS) or simplified solubilization and electrochemical sensing of trace heavy metal oxide particles. AAS is a spectroscopic analysis method for qualitatively and quantitatively determining chemical elements using absorption of optical radiation (light) by gaseous free atoms. This technique is used to determine the concentration of a specific element (analyte) in a sample to be analyzed. AAS can be used to determine over 70 different elements in solution or directly in solid samples. ICPMS is a mass spectrometry method that is highly sensitive and capable of determining concentrations of metals and several non-metals in the sub-10 12 (part-per-trillion) range. The technique is based on combining inductively coupled plasma as a method of generating ions (ionization) with mass spectrometry as a method of separating and detecting ions. ICPMS is also capable of monitoring the isotopic species of selected ions.

可以使用另外的技术来分析杂质。这些技术中的一些对分析固体样品中的杂质特别有利。可以使用离子色谱(IC)来测定电解质6(例如,离子液体)中痕量水平的卤化物杂质。离子色谱的一个优点是可以以单色谱分析来测量相关的卤化物。使用包含20mM NaOH和10%(v/v)乙腈的洗脱剂的Dionex AS9-HC柱是可用于定量化来自离子液体的卤化物的设备的一个实例。另外一个技术是X射线荧光光谱。Additional techniques can be used to analyze impurities. Some of these techniques are particularly beneficial for analyzing impurities in solid samples. Ion chromatography (IC) can be used to determine trace levels of halide impurities in electrolyte 6 (eg, an ionic liquid). An advantage of ion chromatography is that the related halides can be measured in a single chromatographic analysis. A Dionex AS9-HC column using an eluent containing 20 mM NaOH and 10% (v/v) acetonitrile is an example of a device that can be used to quantify halides from ionic liquids. Another technique is X-ray fluorescence spectroscopy.

可以使用X射线荧光(XRF)仪来测量固体样品中的卤素含量。在该技术中,将待分析样品放在样品杯中,然后将样品杯放在用特定波长的X射线来辐照的分析仪中。样品中的任意卤素原子吸收一部分X射线,然后反射作为给定卤素的特征波长的辐射。然后该仪器中的检测器对从卤素原子回来的辐射的量进行定量,并测量辐射强度。通过了解暴露的表面积,可以确定样品中卤素的浓度。用于评定固体样品中的杂质的另外的技术是热解技术。Halogen content in solid samples can be measured using an X-ray fluorescence (XRF) instrument. In this technique, the sample to be analyzed is placed in a sample cup, which is then placed in an analyzer that is irradiated with X-rays of a specific wavelength. Any halogen atom in the sample absorbs a portion of the X-rays and then reflects the radiation at wavelengths characteristic of a given halogen. A detector in the instrument then quantifies the amount of radiation coming back from the halogen atoms and measures the intensity of the radiation. By knowing the exposed surface area, the concentration of halogen in the sample can be determined. Another technique for assessing impurities in solid samples is pyrolysis.

可以通过使用热解和微库仑计(microcoulometer)来有效测量杂质的吸附。微库伦计能够测试几乎任意类型的材料的总氯含量。作为一个示例,将少量样品(小于10毫克)注入或放入石英燃烧管中,石英燃烧管中的温度为从约600摄氏度至约1000摄氏度。使纯氧通过石英管,并且完全燃烧任意含氯成分。将所得燃烧产物吹扫进滴定单元,其中氯离子截留在电解质溶液中。电解质溶液包含银离子,银离子立即与任意氯离子结合并且作为不溶的氯化银从溶液中脱离(drop out)。滴定单元中的银电极电取代所用尽的银离子,直至银离子的浓度回到滴定开始之前的浓度。通过跟踪产生所需量的银所需的电流的量,仪器能够测定初始样品中存在多少氯。存在的氯的总量除以样品的重量给出实际上在样品中的氯的浓度。可以使用用于评定杂质的其他技术。The adsorption of impurities can be effectively measured by using pyrolysis and a microcoulometer. Microcoulometers are capable of testing the total chlorine content of almost any type of material. As an example, a small amount of sample (less than 10 mg) is injected or placed into a quartz burner tube where the temperature is from about 600 degrees Celsius to about 1000 degrees Celsius. Pure oxygen is passed through the quartz tube and any chlorine-containing components are completely burned. The resulting combustion products are purged into a titration cell where chloride ions are trapped in the electrolyte solution. The electrolyte solution contains silver ions, which immediately combine with any chloride ions and drop out of solution as insoluble silver chloride. The silver electrodes in the titration unit electrically displace the spent silver ions until the concentration of silver ions returns to the concentration before the titration started. By tracking the amount of current required to produce the desired amount of silver, the instrument was able to determine how much chlorine was present in the initial sample. The total amount of chlorine present divided by the weight of the sample gives the concentration of chlorine actually in the sample. Other techniques for assessing impurities can be used.

例如,可以通过红外光谱技术来检测电极3中的表面特征和水含量。在大约1130cm-1、1560cm-1、3250cm-1和2300cm-1处的四个主要吸收带分别对应于vC=O、芳基中vC=C、vO-H和vC-N。通过测量强度和峰位置,可以定量地确定电极3中的表面杂质。Surface features and water content in the electrode 3 can be detected, for example, by infrared spectroscopy techniques. The four main absorption bands at approximately 1130 cm -1 , 1560 cm -1 , 3250 cm -1 and 2300 cm -1 correspond to vC=O, vC=C, vO-H and vC-N in aryl groups, respectively. By measuring the intensities and peak positions, the surface impurities in the electrode 3 can be determined quantitatively.

另一种用于确定电解质6和超级电容器10中的杂质的技术是拉曼光谱。该光谱技术依赖于单色光的非弹性散射或拉曼散射,所描述单色光通常来自可见光、近红外光或近紫外光范围的激光。激光与体系中的分子振动、声子或其他激励相互作用,导致激光光子的能量上下变化。因此,该技术可用于表征超级电容器10中的原子和分子。采用了拉曼光谱的许多变化形式,并且可证实其可用于表征超级电容器10的内容物。Another technique for determining impurities in electrolyte 6 and supercapacitor 10 is Raman spectroscopy. This spectroscopic technique relies on inelastic or Raman scattering of monochromatic light, typically from lasers in the visible, near-infrared, or near-ultraviolet range. The laser interacts with molecular vibrations, phonons, or other excitations in the system, causing the energy of the laser photons to vary up and down. Therefore, this technique can be used to characterize the atoms and molecules in the supercapacitor 10 . Many variations of Raman spectroscopy are employed and may prove useful for characterizing the contents of supercapacitor 10 .

iii.增强的电解质组合iii. Enhanced Electrolyte Combination

在一个实施方案中,本发明的先进的电解质体系包括适合在如下温度范围下使用的某些增强的电解质组合,而在性能或耐久性上没有显著下降,所述温度范围为-40摄氏度至210摄氏度;例如,-40摄氏度至150摄氏度;例如,-30摄氏度至150摄氏度;例如,-30摄氏度至140摄氏度;例如,-20摄氏度至140摄氏度;例如,-20摄氏度至130摄氏度;例如,-10摄氏度至130摄氏度;例如,-10摄氏度至120摄氏度;例如,0摄氏度至120摄氏度;例如,0摄氏度至110摄氏度,例如,0摄氏度至100摄氏度;例如,0摄氏度至90摄氏度;例如,0摄氏度至80摄氏度;例如,0摄氏度至70摄氏度。In one embodiment, the advanced electrolyte systems of the present invention include certain enhanced electrolyte combinations suitable for use at temperatures ranging from -40 degrees Celsius to 210 degrees Celsius without significant degradation in performance or durability Celsius; eg, -40 Celsius to 150 Celsius; eg, -30 Celsius to 150 Celsius; eg, -30 Celsius to 140 Celsius; eg, -20 Celsius to 140 Celsius; eg, -20 Celsius to 130 Celsius; eg, - 10 degrees Celsius to 130 degrees Celsius; e.g., -10 degrees Celsius to 120 degrees Celsius; e.g., 0 degrees Celsius to 120 degrees Celsius; e.g., 0 degrees Celsius to 110 degrees Celsius, for example, 0 degrees Celsius to 100 degrees Celsius; Celsius to 80 degrees Celsius; for example, 0 degrees Celsius to 70 degrees Celsius.

一般而言,在给定温度下较高程度的耐久性可以与在较低温度下较高程度的电压稳定性一致。因此,对利用增强的电解质组合的高温耐久性AES的开发通常会导致同时开发的高电压但较低温度的AES,使得本文中所述的这些增强的电解质组合也可以在较高的电压下使用,并因此有更高的能量密度,但较低的温度。In general, a higher degree of durability at a given temperature can be consistent with a higher degree of voltage stability at lower temperatures. Thus, the development of high temperature durable AES utilizing enhanced electrolyte combinations often leads to concurrent development of high voltage but lower temperature AES such that these enhanced electrolyte combinations described herein can also be used at higher voltages , and thus a higher energy density, but a lower temperature.

在一个实施方案中,本发明提供了适合在能量储存单元(例如,超级电容器)中使用的增强的电解质组合,该增强的电解质组合包括新型电解质混合物,所述新型电解质混合物选自:混合有第二离子液体的离子液体、混合有有机溶剂的离子液体以及混合有第二离子液体和有机溶剂的离子液体。In one embodiment, the present invention provides an enhanced electrolyte combination suitable for use in an energy storage unit (eg, a supercapacitor), the enhanced electrolyte combination comprising a novel electrolyte mixture selected from the group consisting of: An ionic liquid of a diionic liquid, an ionic liquid mixed with an organic solvent, and an ionic liquid mixed with a second ionic liquid and an organic solvent.

其中,每种离子液体选自如下阳离子和阴离子的任意组合的盐,其中,阳离子选自:1-丁基-3-甲基咪唑1-乙基-3-甲基咪唑1-己基-3-甲基咪唑1-丁基-1-甲基哌啶丁基三甲铵、1-丁基-1-甲基吡咯烷三己基十四烷基和1-丁基-3-甲基咪唑并且阴离子选自:四氟硼酸根、双(三氟甲基磺酰基)亚胺、四氰基硼酸根和三氟甲磺酸根;以及wherein each ionic liquid is selected from the following salts of any combination of cations and anions, wherein the cation is selected from: 1-butyl-3-methylimidazole 1-Ethyl-3-methylimidazole 1-hexyl-3-methylimidazole 1-Butyl-1-methylpiperidine Butyltrimethylammonium, 1-butyl-1-methylpyrrolidine trihexyltetradecyl and 1-butyl-3-methylimidazole and the anion is selected from the group consisting of: tetrafluoroborate, bis(trifluoromethylsulfonyl)imide, tetracyanoborate, and triflate; and

其中,有机溶剂选自直链砜(例如,乙基异丙砜、乙基异丁砜、乙基甲砜、甲基异丙砜、异丙基异丁砜、异丙基仲丁砜、丁基异丁砜和二甲砜)、直链碳酸酯(例如,碳酸亚乙酯、碳酸亚丙酯和碳酸二甲酯)和乙腈。wherein the organic solvent is selected from linear sulfone (eg, ethyl isopropyl sulfone, ethyl isobutyl sulfone, ethyl methyl sulfone, methyl isopropyl sulfone, isopropyl isobutyl sulfone, isopropyl sec-butyl sulfone, butyl isopropyl sulfone, sulfone and dimethyl sulfone), linear carbonates (eg, ethylene carbonate, propylene carbonate, and dimethyl carbonate), and acetonitrile.

例如,给定以上阳离子和阴离子的组合,每种离子液体可以选自:1-丁基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑双(三氟甲基磺酰基)亚胺、1-乙基-3-甲基咪唑四氟硼酸盐、1-乙基-3-甲基咪唑四氰基硼酸盐、1-己基-3-甲基咪唑四氰基硼酸盐、1-丁基-1-甲基吡咯烷双(三氟甲基磺酰基)亚胺、1-丁基-1-甲基吡咯烷三(五氟乙基)三氟磷酸盐、1-丁基-1-甲基吡咯烷四氰基硼酸盐、三己基十四烷基双(三氟甲基磺酰基)亚胺、1-丁基-1-甲基哌啶双(三氟甲基磺酰基)亚胺、丁基三甲铵双(三氟甲基磺酰基)亚胺以及1-丁基-3-甲基咪唑三氟甲磺酸盐。For example, given the above combinations of cations and anions, each ionic liquid can be selected from: 1-butyl-3-methylimidazole Tetrafluoroborate, 1-butyl-3-methylimidazole Bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazole Tetrafluoroborate, 1-ethyl-3-methylimidazole Tetracyanoborate, 1-hexyl-3-methylimidazole Tetracyanoborate, 1-butyl-1-methylpyrrolidine Bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidine Tris(pentafluoroethyl)trifluorophosphate, 1-butyl-1-methylpyrrolidine Tetracyanoborate, Trihexyltetradecyl Bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpiperidine Bis(trifluoromethylsulfonyl)imide, butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, and 1-butyl-3-methylimidazole Triflate.

在某些实施方案中,离子液体是1-丁基-3-甲基咪唑四氟硼酸盐。In certain embodiments, the ionic liquid is 1-butyl-3-methylimidazole Tetrafluoroborate.

在某些实施方案中,离子液体是1-丁基-3-甲基咪唑双(三氟甲基磺酰基)亚胺。In certain embodiments, the ionic liquid is 1-butyl-3-methylimidazole Bis(trifluoromethylsulfonyl)imide.

在某些实施方案中,离子液体是1-乙基-3-甲基咪唑四氟硼酸盐。In certain embodiments, the ionic liquid is 1-ethyl-3-methylimidazole Tetrafluoroborate.

在某些实施方案中,离子液体是1-乙基-3-甲基咪唑四氰基硼酸盐。In certain embodiments, the ionic liquid is 1-ethyl-3-methylimidazole Tetracyanoborate.

在某些实施方案中,离子液体是1-己基-3-甲基咪唑四氰基硼酸盐。In certain embodiments, the ionic liquid is 1-hexyl-3-methylimidazole Tetracyanoborate.

在某些实施方案中,离子液体是1-丁基-1-甲基吡咯烷双(三氟甲基磺酰基)亚胺。In certain embodiments, the ionic liquid is 1-butyl-1-methylpyrrolidine Bis(trifluoromethylsulfonyl)imide.

在一个实施方案中,离子液体是1-丁基-1-甲基吡咯烷三(五氟乙基)三氟磷酸盐。In one embodiment, the ionic liquid is 1-butyl-1-methylpyrrolidine Tris(pentafluoroethyl)trifluorophosphate.

在某些实施方案中,离子液体是1-丁基-1-甲基吡咯烷四氰基硼酸盐。In certain embodiments, the ionic liquid is 1-butyl-1-methylpyrrolidine Tetracyanoborate.

在某些实施方案中,离子液体是三己基十四烷基双(三氟甲基磺酰基)亚胺。In certain embodiments, the ionic liquid is trihexyltetradecyl Bis(trifluoromethylsulfonyl)imide.

在某些实施方案中,离子液体是1-丁基-1-甲基哌啶双(三氟甲基磺酰基)亚胺。In certain embodiments, the ionic liquid is 1-butyl-1-methylpiperidine Bis(trifluoromethylsulfonyl)imide.

在某些实施方案中,离子液体是丁基三甲铵双(三氟甲基磺酰基)亚胺。In certain embodiments, the ionic liquid is butyltrimethylammonium bis(trifluoromethylsulfonyl)imide.

在某些实施方案中,离子液体是1-丁基-3-甲基咪唑三氟甲磺酸盐。In certain embodiments, the ionic liquid is 1-butyl-3-methylimidazole Triflate.

在某些实施方案中,有机溶剂选自乙基异丙砜、乙基异丁砜、乙基甲砜、甲基异丙砜、异丙基异丁砜、异丙基仲丁砜、丁基异丁砜、或二甲砜、直链砜。In certain embodiments, the organic solvent is selected from the group consisting of ethyl isopropyl sulfone, ethyl isobutyl sulfone, ethyl methyl sulfone, methyl isopropyl sulfone, isopropyl isobutyl sulfone, isopropyl sec-butyl sulfone, butyl isobutyl sulfone sulfone, or dimethyl sulfone, straight chain sulfone.

在某些实施方案中,有机溶剂选自聚碳酸亚丙酯、碳酸亚丙酯、碳酸二甲酯、碳酸亚乙酯。In certain embodiments, the organic solvent is selected from the group consisting of polypropylene carbonate, propylene carbonate, dimethyl carbonate, ethylene carbonate.

在某些实施方案中,有机溶剂是乙腈。In certain embodiments, the organic solvent is acetonitrile.

在某些实施方案中,增强的电解质组合物是具有有机溶剂的离子液体,其中,有机溶剂按组合物的体积计为55%至90%,例如,37.5%。In certain embodiments, the enhanced electrolyte composition is an ionic liquid with an organic solvent, wherein the organic solvent is 55% to 90% by volume of the composition, eg, 37.5%.

在某些实施方案中,增强的电解质组合物是具有第二离子液体的离子液体,其中,一种离子液体按组合物的体积计为5%至90%,例如,60%。In certain embodiments, the enhanced electrolyte composition is an ionic liquid with a second ionic liquid, wherein one ionic liquid is 5% to 90%, eg, 60%, by volume of the composition.

本发明的增强的电解质组合为单个电容器提供了更宽的温度范围性能(例如当在两个温度之间转换时没有电容的显著降低和/或ESR的显著升高,例如,当从约+30℃转换至约-40℃时没有大于90%的电容降低和/或大于1000%的ESR升高)、以及单个电容器的温度耐久性提高(例如,在给定温度下在给定时间后低于50%的电容降低和/或在给定温度下在给定时间后低于100%的ESR升高,和/或在给定温度下在给定时间后低于10A/L的漏电流;例如,低于40%的电容降低和/或低于75%的ESR升高,和/或低于5A/L的漏电流;例如,低于30%的电容降低和/或低于50%的ESR升高,和/或低于1A/L的漏电流)。图47A和图47B、图48A和图48B以及图49分别示出了来自上述离子液体的离子液体在125摄氏度下、37.5%的有机溶剂-离子液体(相同)v/v在125摄氏度下以及相同的组合物在-40摄氏度下的行为。The enhanced electrolyte combination of the present invention provides a wider temperature range performance for a single capacitor (eg, no significant reduction in capacitance and/or significant increase in ESR when switching between two temperatures, eg, when switching from about +30 No greater than 90% capacitance reduction and/or greater than 1000% ESR increase when transitioning from °C to about -40°C), as well as improved temperature endurance of individual capacitors (e.g., less than after a given time at a given temperature 50% decrease in capacitance and/or less than 100% increase in ESR after a given time at a given temperature, and/or less than 10A/L leakage current after a given time at a given temperature; e.g. , below 40% capacitance reduction and/or below 75% ESR rise, and/or below 5A/L leakage current; eg, below 30% capacitance reduction and/or below 50% ESR rise, and/or leakage current below 1A/L). Figures 47A and 47B, Figures 48A and 48B, and Figure 49 show ionic liquids from the above ionic liquids at 125 degrees Celsius, 37.5% organic solvent-ionic liquid (same) v/v at 125 degrees Celsius and the same, respectively The behavior of the composition at -40 degrees Celsius.

在不希望受理论束缚的情况下,上述的组合提供了影响先进的电解质体系的凝固点的增强的共晶特性以使得超级电容器能够在低至-40摄氏度的温度下在性能和耐久性标准内操作。Without wishing to be bound by theory, the above combination provides enhanced eutectic properties that affect the freezing point of advanced electrolyte systems to enable supercapacitors to operate within performance and durability standards at temperatures as low as -40 degrees Celsius .

如上对于本发明的新型电解质所述,在某些实施方案中,先进的电解质体系(AES)可以掺混有电解质,只要这样的组合不显著影响使用先进的电解质体系所实现的优点。As described above for the novel electrolytes of the present invention, in certain embodiments, advanced electrolyte systems (AES) may be blended with electrolytes, so long as such combinations do not significantly affect the advantages achieved using advanced electrolyte systems.

在某些实施方案中,本文中所选的用于先进的电解质体系的增强的电解质也可以被纯化。这样的纯化可以使用本领域公知的技术或本文中所提供的技术执行。In certain embodiments, the enhanced electrolytes selected herein for advanced electrolyte systems may also be purified. Such purification can be performed using techniques known in the art or provided herein.

B.电极 B. Electrodes

EDLC包括至少一对电极3(其中,可将电极3称为负电极3和正电极3,仅仅为了在本文中引用的目的)。当组装成超级电容器10时,各个电极3在电解质界面处呈现双电荷层。在一些实施方案中,包括多个电极3(例如,在一些实施方案中,包括至少两对电极3)。然而,为了讨论的目的,仅示出一对电极3。在本文中作为惯例,电极3中的至少之一使用碳基能量储存介质1(如本文中进一步讨论的)以提供能量存储。但是,为了本文讨论的目的,一般假设电极中的每一个均包括碳基能量储存介质1。The EDLC includes at least one pair of electrodes 3 (wherein electrodes 3 may be referred to as negative electrode 3 and positive electrode 3 for purposes of reference herein only). When assembled into a supercapacitor 10, each electrode 3 exhibits an electric double layer at the electrolyte interface. In some embodiments, a plurality of electrodes 3 are included (eg, in some embodiments, at least two pairs of electrodes 3 are included). However, for discussion purposes only one pair of electrodes 3 is shown. As is customary herein, at least one of the electrodes 3 uses a carbon-based energy storage medium 1 (as discussed further herein) to provide energy storage. However, for the purposes of this discussion, it is generally assumed that each of the electrodes includes a carbon-based energy storage medium 1 .

i集电器i current collectors

电极3中的每一个均包括各自的集电器2(也被称为“电荷收集器”)。在一些实施方案中,通过隔离器5将电极3分开。一般而言,隔离器5为用来将负电极3与正电极3分开的薄的结构材料(通常为片)。隔离器5还可以用来分离多对电极3。注意,在一些实施方案中,电极3之一或二者上可以不包括碳基能量储存介质1。也就是说,在一些实施方案中,相应的电极3可以仅由集电器2组成。用于提供集电器2的材料可以是粗糙化的,经过阳极化处理的等以增加其表面积。在这些实施方案中,单独的集电器2可以充当电极3。然而,出于这种考虑,本文所使用的术语“电极3”一般指能量储存介质1与集电器2的组合(但是出于至少前述原因,这并非限制性的)。Each of the electrodes 3 includes a respective current collector 2 (also referred to as a "charge collector"). In some embodiments, electrodes 3 are separated by separators 5 . In general, the separator 5 is a thin structural material (usually a sheet) used to separate the negative electrode 3 from the positive electrode 3 . Separator 5 can also be used to separate pairs of electrodes 3 . Note that in some embodiments, the carbon-based energy storage medium 1 may not be included on one or both of the electrodes 3 . That is, in some embodiments, the respective electrode 3 may consist of the current collector 2 only. The material used to provide the current collector 2 may be roughened, anodized, etc. to increase its surface area. In these embodiments, a separate current collector 2 may serve as electrode 3 . In this regard, however, the term "electrode 3" as used herein generally refers to the combination of energy storage medium 1 and current collector 2 (although this is not limiting for at least the foregoing reasons).

ii.能量储存介质ii. Energy storage medium

在示例性超级电容器10中,能量储存介质1由碳纳米管形成。能量储存介质1可以包括其他含碳材料,包括例如活性炭、碳纤维、人造纤维、石墨烯、气凝胶、碳布以及多种形式的碳纳米管。活性炭电极可以通过例如如下步骤制造:对通过碳化合物的碳化所获得的碳材料执行第一活化处理来生产碳基材料;通过向该碳基材料添加粘合剂来制造形成体;碳化该形成体;以及最终通过对该碳化的形成体执行第二活化处理来制造活性炭电极。碳纤维电极可以例如通过使用具有高表面积的碳纤维的纸或布预成型来制造。In the exemplary supercapacitor 10, the energy storage medium 1 is formed from carbon nanotubes. The energy storage medium 1 may include other carbonaceous materials including, for example, activated carbon, carbon fibers, rayon, graphene, aerogels, carbon cloth, and various forms of carbon nanotubes. The activated carbon electrode can be manufactured by, for example, performing a first activation treatment on a carbon material obtained by carbonization of a carbon compound to produce a carbon-based material; manufacturing a formed body by adding a binder to the carbon-based material; carbonizing the formed body ; and finally by performing a second activation treatment on the carbonized former to manufacture an activated carbon electrode. Carbon fiber electrodes can be fabricated, for example, by using paper or cloth preforms of carbon fibers with high surface area.

在一种用于制造碳纳米管的示例性方法中,用于生产定向碳纳米管聚集体(aligned carbon-nanotube aggregate)的设备包括用于在其表面上具有催化剂的基材上合成定向碳纳米管聚集体的设备。该设备包括:形成单元,该形成单元执行使催化剂周围的环境成为还原性气体环境并且加热至少催化剂或还原气体的形成步骤;生长单元,该生长单元执行通过使催化剂周围的环境成为原料气体的环境和通过加热至少催化剂或原料气体来合成定向碳纳米管聚集体的生长步骤;和转移单元,所述转移单元至少将基材从形成单元转移至生长单元。可以使用多种其他方法和设备来提供定向碳纳米管聚集体。In an exemplary method for making carbon nanotubes, an apparatus for producing aligned carbon-nanotube aggregates includes for synthesizing aligned carbon nanotubes on a substrate having a catalyst on its surface Device for tube aggregates. The apparatus includes: a forming unit that performs the forming step of making the environment around the catalyst a reducing gas environment and heating at least the catalyst or the reducing gas; and a growing unit that performs the forming step by making the environment around the catalyst a raw material gas environment and a growth step of synthesizing aligned carbon nanotube aggregates by heating at least a catalyst or a raw material gas; and a transfer unit that transfers at least the substrate from the formation unit to the growth unit. A variety of other methods and apparatus can be used to provide oriented carbon nanotube aggregates.

在一些实施方案中,用于形成能量储存介质1的材料可以包括除了纯碳(和目前可能存在的或之后将发明的多种形式的碳)之外的材料。也就是说,能量储存介质1中可包括其他材料的各种制剂。更具体地,并且作为非限制性的实例,能量储存介质1中可以使用至少一种粘合剂材料,但是,这并不是建议或要求添加其他材料(例如,粘合剂材料)。然而,一般而言,能量储存介质1基本上由碳形成,并且因此在本文中可以称为“含碳材料”、“含碳层”以及其他类似术语。简言之,尽管主要由碳形成,但是能量储存介质1可以包括任何形式的碳(以及被认为适当的或可接受的任何添加剂或杂质)以提供作为能量储存介质1的期望的功能性。In some embodiments, the materials used to form the energy storage medium 1 may include materials other than pure carbon (and various forms of carbon that may currently exist or will be invented later). That is, various formulations of other materials may be included in the energy storage medium 1 . More specifically, and by way of non-limiting example, at least one binder material may be used in the energy storage medium 1, however, it is not suggested or required to add other materials (eg, binder materials). In general, however, the energy storage medium 1 is formed essentially of carbon, and thus may be referred to herein as "carbon-containing material", "carbon-containing layer", and other similar terms. In short, although formed primarily of carbon, the energy storage medium 1 may include carbon in any form (and any additives or impurities deemed appropriate or acceptable) to provide the desired functionality as the energy storage medium 1 .

在一组实施方案中,含碳材料包括按质量计至少约60%的元素碳,而在另一些实施方案中,按质量计至少约75%、85%、90%、95%或98%的元素碳。In one set of embodiments, the carbonaceous material includes at least about 60% by mass elemental carbon, and in other embodiments, at least about 75%, 85%, 90%, 95%, or 98% by mass Elemental carbon.

含碳材料可以包括多种形式的碳,包括炭黑、石墨烯等。所述含碳材料可以包括碳颗粒(包括纳米颗粒,例如纳米管、纳米棒、片形式的石墨烯片)和/或形成为锥、棒、球(巴基球(buckyball))等。Carbonaceous materials can include carbon in various forms, including carbon black, graphene, and the like. The carbonaceous material may include carbon particles (including nanoparticles, eg, nanotubes, nanorods, graphene sheets in sheet form) and/or be formed as cones, rods, balls (buckyballs), and the like.

本文中提供了适用于能量储存介质1的多种形成的含碳材料的一些实施方案作为实施例。这些实施方案提供稳健的能量储存并且良好地适用于电极3中。应注意,这些实施例是说明性的,而并不限于适用于能量储存介质1的含碳材料的实施方案。Some embodiments of various formed carbonaceous materials suitable for use in the energy storage medium 1 are provided herein as examples. These embodiments provide robust energy storage and are well suited for use in electrode 3 . It should be noted that these examples are illustrative and not limited to embodiments of carbonaceous materials suitable for use in the energy storage medium 1 .

在某些实施方案中,可以基于各个电解质的尺寸选择各电极的能量储存介质1的孔隙率以提高电容器的性能。In certain embodiments, the porosity of the energy storage medium 1 of each electrode can be selected based on the size of each electrolyte to enhance the performance of the capacitor.

现在提供了用于为能量储存介质1配置(compliment)集电器2以设置电极3的示例性方法。现在参照图2,示出了作为碳纳米管聚集体(CNT)形式的含碳材料的基质的衬底14。在所示的实施方案中,衬底14包括其上设置有催化剂18薄层的基材17。An exemplary method for complimenting a current collector 2 for an energy storage medium 1 to provide electrodes 3 is now provided. Referring now to FIG. 2, the substrate 14 is shown as a matrix of carbonaceous material in the form of carbon nanotube aggregates (CNTs). In the embodiment shown, the substrate 14 includes a substrate 17 having a thin layer of catalyst 18 disposed thereon.

一般而言,衬底14是至少有些挠性的(即,衬底14不易碎),并且由可以承受能量储存介质1(例如,CNT)沉积的环境的部件制成。例如,衬底14可以承受约400摄氏度至约1100摄氏度之间的高温环境。只要确定合适,多种材料可用于衬底14。In general, the substrate 14 is at least somewhat flexible (ie, the substrate 14 is not fragile) and is made of components that can withstand the environment in which the energy storage medium 1 (eg, CNTs) is deposited. For example, the substrate 14 may withstand a high temperature environment between about 400 degrees Celsius and about 1100 degrees Celsius. A variety of materials may be used for substrate 14 as deemed appropriate.

现在参照图3。一旦能量储存介质1(例如,CNT)已经被制造在衬底14上,即可在其上设置集电器2。在一些实施方案中,集电器2为约0.5微米(μm)至约25微米(μm)厚。在一些实施方案中,集电器2为约20微米(μm)至约40微米(μm)厚。集电器2可表现为薄层,例如通过化学气相沉积(CVD)、溅射、电子束、热蒸发或者通过另外的合适的技术施加的层。一般而言,集电器2针对其性质例如传导性、电化学惰性以及与能量储存介质1(例如,CNT)的相容性来选择。一些示例性材料包括铝、铂、金、钽、钛,并且可包括其他材料以及多种合金。Referring now to FIG. 3 . Once the energy storage medium 1 (eg, CNTs) has been fabricated on the substrate 14, the current collector 2 can be provided thereon. In some embodiments, the current collector 2 is about 0.5 micrometers (μm) to about 25 micrometers (μm) thick. In some embodiments, the current collector 2 is about 20 micrometers (μm) to about 40 micrometers (μm) thick. The current collector 2 may represent a thin layer, eg a layer applied by chemical vapor deposition (CVD), sputtering, electron beam, thermal evaporation, or by another suitable technique. In general, the current collector 2 is selected for its properties such as conductivity, electrochemical inertness, and compatibility with the energy storage medium 1 (eg, CNTs). Some exemplary materials include aluminum, platinum, gold, tantalum, titanium, and may include other materials and various alloys.

一旦将集电器2设置在能量储存介质1(例如,CNT)上,即实现了电极元件15。每个电极元件15可以单独使用作为电极3,或者可以耦接至至少另外一个电极元件15以提供电极3。Once the current collector 2 is disposed on the energy storage medium 1 (eg, CNTs), the electrode element 15 is realized. Each electrode element 15 may be used alone as electrode 3 or may be coupled to at least one other electrode element 15 to provide electrode 3 .

一旦根据期望的标准制造了集电器2,即可以着手后加工处理。示例性后处理包括在轻微氧化的环境中加热和冷却能量储存介质1(例如,CNT)。制造(以及任选的后处理)之后,可以将转移工具施用于集电器2。可以参照图4。Once the current collector 2 has been manufactured according to the desired standard, post-processing can be undertaken. Exemplary post-treatments include heating and cooling the energy storage medium 1 (eg, CNTs) in a slightly oxidizing environment. After fabrication (and optional post-treatment), a transfer tool can be applied to the current collector 2 . Refer to Figure 4.

图4示出了将转移工具13施用于集电器2。在该实施例中,转移工具13是在“干”转移法中使用的热剥离带(thermal release tape)。示例性热剥离带由加利福尼亚的弗里蒙特(Fremont)和日本的大阪(Osaka)的NITTO DENKO CORPORATION制造。一种合适的转移带作为REVALPHA销售。该剥离带的特征在于在室温下牢固粘合的粘合带,并且可以通过加热剥离。该带以及热剥离带的其他合适的实施方案将在预定的温度下剥离。有利地,该剥离带不在电极元件15上留下化学活性残留物。FIG. 4 shows the application of the transfer tool 13 to the current collector 2 . In this embodiment, the transfer tool 13 is a thermal release tape used in a "dry" transfer process. Exemplary thermal release tapes are manufactured by NITTO DENKO CORPORATION of Fremont, California and Osaka, Japan. A suitable transfer tape is sold as REVALPHA. The release tape is characterized by an adhesive tape that adheres strongly at room temperature and can be peeled off by heating. This tape, as well as other suitable embodiments of thermal release tapes, will be peeled at a predetermined temperature. Advantageously, the stripping tape does not leave chemically active residues on the electrode element 15 .

在另一种称为“湿”转移法的过程中,可以使用为化学剥离而设计的带。一旦施用后,之后通过将该带浸入溶剂中来将该带去除。设计所述溶剂以溶解粘合剂。In another process called "wet" transfer, tapes designed for chemical peels can be used. Once applied, the tape is then removed by dipping the tape in a solvent. The solvent is designed to dissolve the adhesive.

在另外一些实施方案中,转移工具13采用“气动”法,例如通过向集电器2施加吸力。吸力可以例如通过具有多个用于分布吸力的穿孔的尺寸略大的叶片(paddle)来施加。在另一个实施例中,通过具有多个用于分布吸力的穿孔的辊来施加吸力。吸力驱动的实施方案提供电控的优点和经济的优点,因为耗材没有用作转移过程的一部分。可以使用转移工具13的其他实施方案。In other embodiments, the transfer tool 13 employs a "pneumatic" method, such as by applying suction to the current collector 2 . Suction can be applied, for example, by slightly oversized paddles with a plurality of perforations for distributing the suction. In another embodiment, the suction is applied by a roller having a plurality of perforations for distributing the suction. The suction-driven embodiment provides both the advantages of electronic control and the advantage of economy since no consumables are used as part of the transfer process. Other embodiments of transfer tool 13 may be used.

一旦将转移工具13暂时耦接至集电器2,即从衬底14轻柔地去除电极元件15(参见图4和图5)。该去除一般涉及从衬底14与能量储存介质1(例如,CNT)的一个边缘开始从衬底14剥离能量储存介质1(例如,CNT)。Once the transfer tool 13 is temporarily coupled to the current collector 2, the electrode elements 15 are gently removed from the substrate 14 (see Figures 4 and 5). The removal generally involves stripping the energy storage medium 1 (eg, CNTs) from the substrate 14 starting from one edge of the substrate 14 and the energy storage medium 1 (eg, CNTs).

然后,可以将转移工具13与电极元件15分离(参见图6)。在一些实施方案中,使用转移工具13来安装电极元件15。例如,可以使用转移工具13来将电极元件15布置到隔离器5上。一般而言,一旦从衬底14去除,电极元件15即可供使用。Then, the transfer tool 13 can be separated from the electrode element 15 (see Fig. 6). In some embodiments, transfer tool 13 is used to mount electrode element 15 . For example, the transfer tool 13 can be used to arrange the electrode elements 15 onto the separator 5 . Generally speaking, once removed from the substrate 14, the electrode elements 15 are ready for use.

在期望大的电极3的情况下,可以匹配多个电极元件15。可参照图7。如图7所示,可以通过例如使耦接件52与多个电极元件15的每个电极元件15相耦接来使多个电极元件15匹配。经匹配的电极元件15提供了电极3的实施方案。In cases where a large electrode 3 is desired, a plurality of electrode elements 15 can be matched. Refer to Figure 7. As shown in FIG. 7 , the plurality of electrode elements 15 may be matched by, for example, coupling a coupling 52 with each electrode element 15 of the plurality of electrode elements 15 . The matched electrode elements 15 provide an embodiment of the electrode 3 .

在一些实施方案中,耦接件22在焊接件21处耦接至每个电极元件15。每个焊接件21可以设置为超声焊接件21。已发现超声焊接技术特别良好地适合于提供每个焊接件21。也就是说,一般而言,能量储存介质1(例如,CNT)的聚集体与焊接不相容,其中只使用例如本文中公开的标称集电器。因此,许多用于连接电极元件15的技术是破坏性的,并且损坏所述元件15。然而,在其他的实施方案中,使用了其他形式的耦接,并且耦接件22并非焊接件21。In some embodiments, couplings 22 are coupled to each electrode element 15 at welds 21 . Each weld 21 may be configured as an ultrasonic weld 21 . Ultrasonic welding techniques have been found to be particularly well suited for providing each weld 21 . That is, in general, aggregates of energy storage medium 1 (eg, CNTs) are incompatible with welding, where only nominal current collectors such as those disclosed herein are used. Therefore, many techniques for connecting electrode elements 15 are destructive and damage said elements 15 . However, in other embodiments, other forms of coupling are used and the coupling 22 is not the weld 21 .

耦接件22可以是箔、网、多根导线或其他形式。一般而言,耦接件22针对特性例如传导性和电化学惰性来选择。在一些实施方案中,耦接件22由与集电器2中所存在的材料相同的材料制成。The coupling 22 may be in the form of foil, mesh, multiple wires, or other forms. In general, coupling 22 is selected for properties such as conductivity and electrochemical inertness. In some embodiments, coupling member 22 is made of the same material that is present in current collector 2 .

在一些实施方案中,耦接件22通过去除其上的氧化层来制造。可以例如通过在提供焊接件21之前蚀刻耦接件22来去除氧化物。蚀刻可以例如用氢氧化钾(KOH)来实现。电极3可用在超级电容器10的各种实施方案中。例如,可以将电极3卷起成为“胶状卷(jellyroll)”型的能量储存器。In some embodiments, coupling 22 is fabricated by removing the oxide layer thereon. The oxide can be removed, for example, by etching the coupling 22 before the solder 21 is provided. Etching can be accomplished, for example, with potassium hydroxide (KOH). Electrode 3 may be used in various embodiments of supercapacitor 10 . For example, the electrode 3 can be rolled up into a "jellyroll" type of energy storage.

C.隔离器 c. isolator

隔离器5可以由各种材料制造。在一些实施方案中,隔离器5是非织造玻璃。隔离器5还可以由玻璃纤维、陶瓷和含氟聚合物来制造,所述含氟聚合物例如通常由特拉华州威明顿(Wilmington,DE)的DuPont Chemicals以TEFLONTM销售的聚四氟乙烯(PTEE)。例如,使用非织造玻璃,隔离器5可以包括主纤维和粘合剂纤维,每根粘合剂纤维的纤维直径小于每根主纤维的纤维直径,并且使得主纤维能够粘合在一起。The isolator 5 can be made of various materials. In some embodiments, separator 5 is nonwoven glass. Separator 5 may also be fabricated from fiberglass, ceramics, and fluoropolymers such as polytetrafluoroethylene commonly sold as TEFLON™ by DuPont Chemicals of Wilmington, DE (PTFE). For example, using nonwoven glass, the separator 5 may include main fibers and binder fibers, each binder fiber having a fiber diameter smaller than the fiber diameter of each main fiber and enabling the main fibers to bond together.

为了超级电容器10的长寿命以及为了确保在高温下的性能,隔离器5应具有降低的量的杂质,并且特别是包含于其中的非常有限的量的水分。特别地,已发现期望约200ppm的水分限制以减少化学反应和延长超级电容器10的寿命,以及提供在高温应用中的良好性能。用于隔离器5中的材料的一些实施方案包括聚酰胺、聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)、氧化铝(Al2O3)、玻璃纤维以及玻璃增强塑料(GRP)。For the long life of the supercapacitor 10 and to ensure performance at high temperatures, the isolator 5 should have a reduced amount of impurities, and in particular a very limited amount of moisture contained therein. In particular, it has been found that a moisture limit of about 200 ppm is desirable to reduce chemical reactions and extend the life of the supercapacitor 10, as well as to provide good performance in high temperature applications. Some embodiments of materials used in isolator 5 include polyamide, polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), alumina ( Al2O3 ) , fiberglass, and glass reinforced plastic (GRP) .

一般而言,用于隔离器5的材料根据水分含量、孔隙率、熔点、杂质含量、所得的电性能、厚度、成本、可利用性等来选择。在一些实施方案中,隔离器5由疏水性材料形成。In general, the materials used for the separator 5 are selected based on moisture content, porosity, melting point, impurity content, resulting electrical properties, thickness, cost, availability, and the like. In some embodiments, the separator 5 is formed of a hydrophobic material.

因此,可以采用一些方法来确保从每个隔离器5除去过量的水分。可以采用真空干燥方法以及其他技术。表1中提供了用于隔离器5的材料的选择。表2中提供了一些相关的性能数据。Therefore, methods can be employed to ensure that excess moisture is removed from each isolator 5 . Vacuum drying methods can be employed as well as other techniques. A selection of materials for isolator 5 is provided in Table 1 . Some relevant performance data are provided in Table 2.

表1Table 1

隔离器材料isolator material

表2Table 2

隔离器性能数据Isolator Performance Data

为了收集表2的数据,提供了基于含碳材料的两个电极3。将两个电极3相对设置并且彼此面对。将每个隔离器5布置在电极3之间以防止短路。然后用电解质6润湿三个部件并压在一起。使用两个铝棒和PTFE材料作为外部结构来封入所得超级电容器10。To collect the data of Table 2, two electrodes 3 based on carbonaceous materials are provided. The two electrodes 3 are placed opposite and facing each other. Each separator 5 is arranged between the electrodes 3 to prevent short circuits. The three parts are then wetted with electrolyte 6 and pressed together. The resulting supercapacitor 10 was encapsulated using two aluminum rods and a PTFE material as the outer structure.

以相同的配置一个接一个地进行ESR第一测试和ESR第二测试。第二测试在第一测试之后5分钟运行,为电解质6留下进一步渗透入部件中的时间。The ESR first test and the ESR second test are performed one after the other in the same configuration. The second test was run 5 minutes after the first test, leaving time for the electrolyte 6 to penetrate further into the part.

在某些实施方案中,超级电容器10不包括隔离器5。例如,在具体实施方案中,例如在电极3由结构的几何形状确保物理隔离的实施方案中,满足电极3之间只具有电解质6。更具体地,以及作为物理隔离的一个实例,一种这样的超级电容器10可以包括设置在壳体内使得在连续的基础上确保隔离的电极3。一种台式(bench-top)实例将包括设置在烧杯(beaker)中的超级电容器10。In certain embodiments, the ultracapacitor 10 does not include the isolator 5 . For example, in specific embodiments, such as those in which the electrodes 3 are physically separated by the geometry of the structure, it is sufficient to have only the electrolyte 6 between the electrodes 3 . More specifically, and as an example of physical isolation, one such ultracapacitor 10 may include electrodes 3 disposed within the housing such that isolation is ensured on a continuous basis. A bench-top example would include an ultracapacitor 10 disposed in a beaker.

D.存储单元 D. storage unit

一旦组装,电极3和隔离器5就提供了存储单元12。一般而言,储存单元12形成为卷绕形式或棱柱形式之一,然后将其封装到圆柱状或棱柱状壳体7中。一旦已容纳入电解质6,壳体7即可气密地密封。在各种实施例中,封装是通过利用激光、超声的技术和/或焊接技术来气密地密封。除了为储存单元12提供坚固的物理保护以外,壳体7还配置有外部接触件以提供与壳体7内的各端子8的电连通。每个端子8进而提供对储存在能量储存介质1中的能量的电连接(electrical a立方厘米ess),所述电连接一般通过耦接至能量储存介质1的电引线实现。Once assembled, electrodes 3 and separators 5 provide storage cells 12 . In general, the storage unit 12 is formed in one of a coiled or prismatic form and then enclosed in a cylindrical or prismatic housing 7 . Once the electrolyte 6 has been accommodated, the housing 7 can be hermetically sealed. In various embodiments, the package is hermetically sealed by techniques utilizing laser, ultrasonic, and/or welding techniques. In addition to providing solid physical protection for the storage unit 12 , the housing 7 is also configured with external contacts to provide electrical communication with the various terminals 8 within the housing 7 . Each terminal 8 in turn provides an electrical connection to the energy stored in the energy storage medium 1 , which electrical connection is typically achieved through electrical leads coupled to the energy storage medium 1 .

一般而言,本文中公开的超级电容器10能够提供泄漏速率不大于约5.0×10- 6atm·立方厘米/秒的气密密封,并且可以表现出不高于约5.0×10-10 atm-立方厘米/秒的泄漏速率。还认为成功的气密密封的性能由使用者、设计者或制造者酌情判断,并且“气密”最终表示由使用者、设计者、制造者或其他利益相关方定义的标准。In general, the ultracapacitors 10 disclosed herein are capable of providing a hermetic seal with a leak rate of no greater than about 5.0×10 −6 atm·cc / sec, and may exhibit no greater than about 5.0×10 −10 atm-cubic Leak rate in cm/sec. It is also believed that the performance of a successful hermetic seal is at the discretion of the user, designer or manufacturer, and that "hermetic" ultimately means a standard defined by the user, designer, manufacturer or other interested party.

可以例如通过使用示踪气体来实现检漏。使用示踪气体例如氦用于泄漏测试是有利的,因为它是干燥、快速、准确并且非破坏性的方法。在该技术的一个实施例中,将超级电容器10放入氦环境中。使超级电容器10经受加压的氦气。然后,将超级电容器10放在与能够监测氦存在的检测器(例如,原子吸收单元)连接的真空室中。利用已知的加压时间、压力和内部容积,可以确定超级电容器10的泄漏速率。Leak detection can be achieved, for example, by using a tracer gas. The use of a tracer gas such as helium for leak testing is advantageous because it is a dry, fast, accurate and non-destructive method. In one embodiment of the technique, the ultracapacitor 10 is placed in a helium environment. The ultracapacitor 10 is subjected to pressurized helium gas. The ultracapacitor 10 is then placed in a vacuum chamber connected to a detector capable of monitoring the presence of helium (eg, an atomic absorption cell). Using the known pressurization time, pressure and internal volume, the leakage rate of the ultracapacitor 10 can be determined.

在一些实施方案中,将至少一根引线(其在本文中也可称为“接片(tab)”)电耦接至相应的那个集电器2。多根引线(对应于超级电容器10的极性)可以组合在一起并耦接至相应的端子8。进而,端子8可以耦接为电连接,称为“接触件”(例如,壳体7和外部电极(在本文中也按照惯例称为“馈通件(feed-through)”或“引脚(pin)”)之一)。可参照图28和图32至图34。In some embodiments, at least one lead (which may also be referred to herein as a "tab") is electrically coupled to the corresponding one of the current collectors 2 . Multiple leads (corresponding to the polarities of the supercapacitors 10 ) may be grouped together and coupled to respective terminals 8 . In turn, the terminals 8 may be coupled in electrical connections referred to as "contacts" (eg, the housing 7 and external electrodes (also conventionally referred to herein as "feed-throughs" or "pins"). pin)”) one). Refer to FIG. 28 and FIGS. 32 to 34 .

E.壳体E. Shell

图11描绘了示例性壳体7的一些方面。壳体7尤其为超级电容器10提供结构和物理保护等。在该实施例中,壳体7包括环形圆柱状形状的本体20和补充(complimentary)的盖24。在该实施方案中,盖24包括已被移去并且填充有电绝缘体26的中央部分。盖馈通件19贯穿电绝缘体26从而为使用者提供所储存的能量。此外,壳体还包括内部阻隔物30。FIG. 11 depicts some aspects of an exemplary housing 7 . The housing 7 provides, among other things, structural and physical protection for the supercapacitor 10 . In this embodiment, the housing 7 comprises a body 20 of annular cylindrical shape and a complementary cover 24 . In this embodiment, cover 24 includes a central portion that has been removed and filled with electrical insulator 26 . The cover feedthrough 19 penetrates the electrical insulator 26 to provide the stored energy to the user. In addition, the housing also includes an internal barrier 30 .

虽然该实施例描述了盖24上的仅一个馈通件19,但是应认识到,壳体7的构造不限于本文所讨论的实施方案。例如,盖24可以包括多个馈通件19。在一些实施方案中,本体20包括环形圆柱体相对端的第二类似的盖24。此外,还应认识到,壳体7不限于具有环形圆柱状形状的本体20的实施方案。例如,壳体7可以为蛤壳设计、棱柱状设计、袋或任何适合于设计者、制造者或使用者之需要的其他设计。While this embodiment depicts only one feedthrough 19 on cover 24, it should be appreciated that the configuration of housing 7 is not limited to the embodiments discussed herein. For example, cover 24 may include multiple feedthroughs 19 . In some embodiments, the body 20 includes a second similar cover 24 at the opposite end of the annular cylinder. Furthermore, it should also be appreciated that the housing 7 is not limited to embodiments of the body 20 having an annular cylindrical shape. For example, the housing 7 may be of a clamshell design, a prismatic design, a bag or any other design suitable to the needs of the designer, manufacturer or user.

现在参照图12,其示出了示例性能量储存单元12。在该实施例中,能量储存单元12是“胶状卷”型能量储存器。在这些实施方案中,能量储存材料卷起成为紧密封装件。多根引线一般地形成每个端子8,并且提供能量储存单元12的合适的层的电连接。一般而言,在组装时,每个端子8电耦接至壳体7(例如,电耦接至各馈通件19和/或直接电耦接至壳体7)。能量储存单元12可采取多种形式。一般有至少两组多根引线(例如,端子8),每个集电器2使用一组。为了简单起见,图12、图15和图17中只示出端子8之一。Referring now to FIG. 12 , an exemplary energy storage unit 12 is shown. In this embodiment, the energy storage unit 12 is a "jelly roll" type of energy storage. In these embodiments, the energy storage material is rolled up into a tight package. A plurality of leads generally form each terminal 8 and provide electrical connection to the appropriate layers of the energy storage cell 12 . Generally, when assembled, each terminal 8 is electrically coupled to the housing 7 (eg, to each feedthrough 19 and/or directly to the housing 7). The energy storage unit 12 may take a variety of forms. There are typically at least two sets of multiple leads (eg, terminals 8 ), one set for each current collector 2 . For simplicity, only one of the terminals 8 is shown in FIGS. 12 , 15 and 17 .

期望壳体7的高效密封。也就是说,防止外部环境(例如,空气、水分等)的侵入有助于维持能量储存单元12的部件的纯净。此外,其防止电解质6从能量储存单元12泄漏。Efficient sealing of the housing 7 is desired. That is, preventing the intrusion of the external environment (eg, air, moisture, etc.) helps maintain the purity of the components of the energy storage unit 12 . Furthermore, it prevents leakage of the electrolyte 6 from the energy storage unit 12 .

在该实施例中,盖24制造有设计为与本体20的内径紧密地配合的外径。在组装时,可以将盖24焊接入本体20,从而为使用者提供气密密封。示例性的焊接技术包括激光焊接和TIG焊接,并且可以包括只要认为合适的其他形式的焊接。In this embodiment, the cover 24 is manufactured with an outer diameter designed to fit closely with the inner diameter of the body 20 . When assembled, the cover 24 may be welded into the body 20 to provide a hermetic seal for the user. Exemplary welding techniques include laser welding and TIG welding, and may include other forms of welding as deemed appropriate.

用于壳体7的常见材料包括不锈钢、铝、钽、钛、镍、铜、锡、各种合金、层合材料等。结构材料例如一些基于聚合物的材料可用在壳体7(一般与至少一些金属成分组合)中。Common materials for housing 7 include stainless steel, aluminum, tantalum, titanium, nickel, copper, tin, various alloys, laminates, and the like. Structural materials such as some polymer based materials may be used in the housing 7 (generally in combination with at least some metallic components).

在一些实施方案中,用于构造本体20的材料包括铝,其可包括设计者或制造者认为合适的任何类型的铝或铝合金(其全部在本文中广义地简单称为“铝”)。可以将各种合金、层合材料等设置在铝(暴露于本体20之内部的铝)的上方(例如,熔覆)。可以使用其他材料(例如,结构材料或电绝缘材料,例如一些基于聚合物的材料)来补充本体和/或壳体7。设置在铝上方的材料同样可以通过设计者或制造者认为合适的来选择。In some embodiments, the material used to construct the body 20 includes aluminum, which may include any type of aluminum or aluminum alloy deemed suitable by the designer or manufacturer (all of which are referred to broadly herein simply as "aluminum"). Various alloys, laminates, etc. may be disposed over (eg, cladding) the aluminum (the aluminum exposed to the interior of the body 20). The body and/or housing 7 may be supplemented with other materials (eg, structural materials or electrically insulating materials, such as some polymer-based materials). The material placed over the aluminium can likewise be chosen as the designer or manufacturer sees fit.

在一些实施方案中,多层材料用于内部部件。例如,铝可以包覆有不锈钢以提供至少一个端子8中的多层材料。在这些实施方案的一些中,可以去除一部分铝以露出不锈钢。然后露出的不锈钢可用于通过使用简单的焊接方法来将端子8附接至馈通件19。In some embodiments, multiple layers of material are used for interior components. For example, aluminum can be clad with stainless steel to provide multiple layers of material in at least one terminal 8 . In some of these embodiments, a portion of the aluminum may be removed to expose the stainless steel. The exposed stainless steel can then be used to attach the terminal 8 to the feedthrough 19 by using a simple welding method.

使用用于内部部件的包覆材料可要求包覆材料的特定实施方案。例如,可能有益的是使用包括铝(底层)、不锈钢和/或钽(中间层)和铝(顶层)的包覆材料,从而其限制不锈钢暴露于超级电容器10的内部环境。这些实施方案可以通过例如利用聚合材料(例如,PTFE)的额外的涂覆来改进。The use of cladding materials for internal components may require specific embodiments of cladding materials. For example, it may be beneficial to use a cladding material comprising aluminum (bottom layer), stainless steel and/or tantalum (intermediate layer) and aluminum (top layer) so that it limits the exposure of the stainless steel to the internal environment of the supercapacitor 10 . These embodiments can be improved by, for example, additional coating with a polymeric material (eg, PTFE).

因此,提供利用多层材料的壳体7设置了能量储存器,所述能量储存器表现出与现有技术相比具有相对低的初始值的漏电流并且漏电流随时间明显较慢地升高。显著地,在超级电容器10暴露于环境温度时,能量储存器的漏电流仍然在可用(即,期望地低)水平,现有技术电容器在所述环境温度下将表现出过大的初始漏电流值和/或漏电流随时间过快增加。Therefore, providing a housing 7 with a multilayer material provides an energy storage which exhibits a leakage current with a relatively low initial value compared to the prior art and which increases significantly more slowly over time . Significantly, the leakage current of the energy storage remains at a usable (ie, desirably low) level when the supercapacitor 10 is exposed to ambient temperatures at which prior art capacitors would exhibit excessive initial leakage current value and/or leakage current increases too quickly over time.

此外,超级电容器10可表现出由壳体7与能量储存单元12之间减少的反应导致的其他益处。例如,能量储存器的有效串联电阻(ESR)可表现出随时间相对较低的值。此外,发生在现有技术电容器中的非期望的化学反应常产生非期望的结果(例如,放气或在气密地密封壳体的情况下壳体7的鼓胀)。在两种情况下,这导致壳体7的结构完整性和/或能量储存器的气密密封受损。最终,这可导致现有技术电容器的泄漏或灾难性故障。这些影响可通过所公开阻隔物的施用而显著降低或消除。In addition, the ultracapacitor 10 may exhibit other benefits resulting from the reduced reaction between the housing 7 and the energy storage unit 12 . For example, the effective series resistance (ESR) of an energy storage may exhibit relatively low values over time. Furthermore, the undesired chemical reactions that occur in prior art capacitors often produce undesired results (eg, outgassing or bulging of the case 7 if the case is hermetically sealed). In both cases, this results in a compromise of the structural integrity of the housing 7 and/or the gas-tight seal of the energy storage. Ultimately, this can lead to leakage or catastrophic failure of prior art capacitors. These effects can be significantly reduced or eliminated by application of the disclosed barriers.

通过使用多层材料(例如,包覆材料),可以将不锈钢结合到壳体7中,因此可以使用具有玻璃-金属密封件的部件。所述部件可以使用技术例如激光或电阻焊接来焊接至包覆材料的不锈钢侧,而包覆材料的铝侧可焊接至其他铝部件(例如,本体20)。By using multiple layers of material (eg, cladding material), stainless steel can be incorporated into the housing 7 so that components with glass-to-metal seals can be used. The components may be welded to the stainless steel side of the cladding material using techniques such as laser or resistance welding, while the aluminum side of the cladding material may be welded to other aluminum components (eg, body 20).

在一些实施方案中,绝缘聚合物可用于壳体7的涂覆部分。以该方式,可以确保能量储存器的部件只暴露于可接受类型的金属(例如,铝)。示例性绝缘聚合物包括PFA、FEP、TFE和PTFE。合适的聚合物(或其他材料)仅受系统设计者或制造者的需要以及各材料的性质的限制。可以参照图23,其中包括少量的绝缘材料39以限制电解质6暴露至套筒51和馈通件19的不锈钢。在该实施例中,端子8耦接至馈通件19,例如通过焊接,然后用绝缘材料39涂覆。In some embodiments, an insulating polymer may be used for the coated portion of the housing 7 . In this way, it can be ensured that components of the energy storage are only exposed to acceptable types of metals (eg, aluminum). Exemplary insulating polymers include PFA, FEP, TFE, and PTFE. Suitable polymers (or other materials) are limited only by the needs of the system designer or manufacturer and the properties of each material. Referring to FIG. 23 , a small amount of insulating material 39 is included to limit the exposure of electrolyte 6 to the stainless steel of sleeve 51 and feedthrough 19 . In this embodiment, the terminal 8 is coupled to the feedthrough 19 , eg by soldering, and then coated with an insulating material 39 .

i壳体盖iCase Cover

虽然该实施例描述了盖24上的仅一个馈通件19,但是应认识到,壳体7的构造不限于本文所讨论的实施方案。例如,盖24可以包括多个馈通件19。在一些实施方案中,本体20包括环形圆柱体相反端的第二类似的盖24。此外,还应认识到,壳体7不限于具有环形圆柱状形状的本体20的实施方案。例如,壳体7可以为翻盖设计、棱柱状设计、袋或任何适合于设计者、制造者或使用者的需要的其他设计。While this embodiment depicts only one feedthrough 19 on cover 24, it should be appreciated that the configuration of housing 7 is not limited to the embodiments discussed herein. For example, cover 24 may include multiple feedthroughs 19 . In some embodiments, the body 20 includes a second similar cover 24 at the opposite end of the annular cylinder. Furthermore, it should also be appreciated that the housing 7 is not limited to embodiments of the body 20 having an annular cylindrical shape. For example, the housing 7 may be of a clamshell design, a prismatic design, a pouch or any other design suitable to the needs of the designer, manufacturer or user.

现在参照图18,示出了盖24的坯件34的实施方案的各方面。在图18A中,坯件34包括多层材料。第一材料层41是铝。第二材料层42是不锈钢。在图18的实施方案中,不锈钢包覆到铝上,从而提供表现出期望的冶金性能组合的材料。也就是说,在本文提供的一些实施方案中,铝暴露于能量储存单元(即,壳体)的内部,而不锈钢暴露于外部。以这种方式,享有铝的有利电性质,同时依赖不锈钢的结构性质(以及冶金学性质,即,可焊接性)来构造。只要认为合适,多层材料可以包括额外的层。Referring now to FIG. 18 , aspects of an embodiment of the blank 34 of the cover 24 are shown. In Figure 18A, blank 34 includes multiple layers of material. The first material layer 41 is aluminum. The second material layer 42 is stainless steel. In the embodiment of Figure 18, stainless steel is clad to aluminum, thereby providing a material that exhibits the desired combination of metallurgical properties. That is, in some embodiments provided herein, the aluminum is exposed to the interior of the energy storage unit (ie, the housing), while the stainless steel is exposed to the exterior. In this way, the advantageous electrical properties of aluminum are enjoyed while relying on the structural properties (and metallurgical properties, ie, weldability) of stainless steel for construction. The multilayer material may include additional layers as deemed appropriate.

如上文所提到的,第一材料层41包覆到第二材料层42上(或第一材料层41包覆有第二材料层42)。仍参照图18A,在一个实施方案中,使用扁平材料(如所示)的片来提供坯件34以生产扁平的盖24。可以去除第二材料层42的一部分(例如,围绕盖24的周围)以有助于盖24附接至本体20。在图18B中,示出了坯件34的另一个实施方案。在该实施例中,坯件34具有形成为凹构造的包覆材料片。在图18C中,坯件34具有形成为凸构造的包覆材料片。由坯件34(例如,图18中示出的那些)的各种实施方案制造的盖24构造成支承焊接至壳体7的本体20。更具体地,图18B的实施方案适合于装配在本体20的内径中,而图18C的实施方案适合于装配在本体20外径的上方。在许多个替选实施方案中,片中包覆材料的层可以颠倒。As mentioned above, the first material layer 41 is clad on the second material layer 42 (or the first material layer 41 is clad with the second material layer 42). Still referring to FIG. 18A , in one embodiment, a sheet of flat material (as shown) is used to provide the blank 34 to produce the flat cover 24 . A portion of the second material layer 42 may be removed (eg, around the perimeter of the cover 24 ) to facilitate attachment of the cover 24 to the body 20 . In Figure 18B, another embodiment of the blank 34 is shown. In this embodiment, the blank 34 has a sheet of cladding material formed in a concave configuration. In Figure 18C, the blank 34 has a sheet of cladding material formed into a convex configuration. Cover 24 fabricated from various embodiments of blanks 34 (eg, those shown in FIG. 18 ) is configured to support body 20 welded to housing 7 . More specifically, the embodiment of FIG. 18B is adapted to fit within the inner diameter of the body 20 , while the embodiment of FIG. 18C is adapted to fit over the outer diameter of the body 20 . In a number of alternative embodiments, the layers of cover material in the sheet may be reversed.

现在参照图19,示出了电极组合件50的实施方案。电极组合件50设计为安装在坯件34中,并且提供从能量储存介质到使用者的电连通。一般而言,电极组合件50包括套筒(sleeve)51。套筒51围绕绝缘体26,绝缘体26进而围绕馈通件19。在该实施例中,套筒51是具有带凸缘顶部的环状圆柱体。Referring now to FIG. 19, an embodiment of an electrode assembly 50 is shown. Electrode assembly 50 is designed to fit within blank 34 and provide electrical communication from the energy storage medium to the user. Generally speaking, the electrode assembly 50 includes a sleeve 51 . The sleeve 51 surrounds the insulator 26 which in turn surrounds the feedthrough 19 . In this embodiment, the sleeve 51 is an annular cylinder with a flanged top.

为了组装盖24,在坯件34中制造穿孔(未示出)。穿孔具有大小匹配电极组合件50的几何形状。因此,电极组合件50插入坯件34的穿孔中。一旦插入电极组合件50,电极组合件50即可通过技术(例如,焊接)贴至坯件34。焊接可以是激光焊接,其围绕焊接套筒51的凸缘的周围焊接。参照图20,示出了进行焊接的点61。在该实施方案中,点61提供用于焊接不锈钢至不锈钢的合适位置这种相对简单的焊接工艺。因此,本文中的教导提供将电极组合件50牢固地焊接至坯件34上的位置。To assemble the cover 24, perforations (not shown) are made in the blank 34. The perforations are sized to match the geometry of the electrode assembly 50 . Thus, the electrode assembly 50 is inserted into the perforation of the blank 34 . Once the electrode assembly 50 is inserted, the electrode assembly 50 can be attached to the blank 34 by techniques (eg, welding). The welding may be laser welding, which is welded around the circumference of the flange of the welding sleeve 51 . Referring to Fig. 20, the point 61 at which the welding is made is shown. In this embodiment, point 61 provides a relatively simple welding process for welding stainless steel to a suitable location for stainless steel. Accordingly, the teachings herein provide a location for securely welding electrode assembly 50 to blank 34 .

用于构造套筒51的材料可以包括各种类型的金属或金属合金。一般而言,用于套筒51的材料根据例如结构完整性和可接合性(至坯件34)来选择。用于套筒51的示例性材料包括304不锈钢或316不锈钢。用于构造馈通件19的材料可包括各种类型的金属或金属合金。一般而言,用于馈通件19的材料根据例如结构完整性和电导率来选择。用于电极的示例性材料包括446不锈钢或52合金。Materials used to construct sleeve 51 may include various types of metals or metal alloys. In general, the material for sleeve 51 is selected based on, for example, structural integrity and engageability (to blank 34). Exemplary materials for sleeve 51 include 304 stainless steel or 316 stainless steel. Materials used to construct feedthrough 19 may include various types of metals or metal alloys. In general, the material used for the feedthrough 19 is selected based on, for example, structural integrity and electrical conductivity. Exemplary materials for the electrodes include 446 stainless steel or 52 alloy.

一般而言,绝缘体26通过已知技术(即,玻璃-金属接合)接合至套筒51和馈通件19。用于构造绝缘体26的材料可包括但不限于各种类型的玻璃,包括高温玻璃、陶瓷玻璃或陶瓷材料。一般而言,用于绝缘体的材料根据例如结构完整性和电阻(即,电绝缘特性)来选择。In general, insulator 26 is bonded to sleeve 51 and feedthrough 19 by known techniques (ie, glass-to-metal bonding). Materials used to construct insulator 26 may include, but are not limited to, various types of glass, including high temperature glass, ceramic glass, or ceramic materials. In general, materials for insulators are selected based on, for example, structural integrity and electrical resistance (ie, electrical insulating properties).

依赖于玻璃-金属接合的部件(例如,电极组合件50的前述实施方案)的使用以及各种焊接技术的使用提供能量储存器的气密密封。还可使用其他部件来提供气密密封。本文中使用的术语“气密密封”一般是指表现出泄漏速率不大于本文所定义的泄漏速率的密封。然而,认为实际密封效率可以优于该标准进行。The use of components that rely on glass-to-metal bonding (eg, the foregoing embodiments of electrode assembly 50 ) and the use of various welding techniques provide hermetic sealing of the energy storage. Other components may also be used to provide a hermetic seal. The term "hermetic seal" as used herein generally refers to a seal that exhibits a leak rate no greater than the leak rate as defined herein. However, it is believed that actual sealing efficiency can be performed better than this standard.

用于将电极组合件50耦接至坯件34的额外的或其他的技术包括在认为这样的技术适当时在套筒51的凸缘下方(凸缘与第二材料层42之间)使用接合剂。Additional or other techniques for coupling the electrode assembly 50 to the blank 34 include the use of a joint under the flange of the sleeve 51 (between the flange and the second material layer 42 ) when such techniques are deemed appropriate. mixture.

现在参照图21,能量储存单元12设置在本体20内。合适地耦接至少一个端子8(例如,至馈通件19),并且盖24与本体20匹配以设置超级电容器10。Referring now to FIG. 21 , the energy storage unit 12 is disposed within the body 20 . At least one terminal 8 is suitably coupled (eg, to the feedthrough 19 ), and the cover 24 mates with the body 20 to provide the ultracapacitor 10 .

一旦组装,盖24与本体20即可密封。图22描绘了经组装的能量储存器(在这种情况下,超级电容器10)的各种实施方案。在图22A中,使用扁平的坯件34(参见图18A)来生产扁平的盖24。一旦盖24设置在本体20上,即焊接盖24与本体20以生产密封件62。在这种情况下,因为本体20是环状圆柱体,所以焊接在本体20与盖24的周围进行以提供密封件62。在第二实施方案中,如图22B所示,使用凹坯件34(参见图18B)来产生凹盖24。一旦将盖24设置在本体20上,即焊接盖24和本体20以生产密封件62。在第三实施方案中,如图22C所示,使用凸坯件34(参见图18C)来生产凸盖24。一旦将盖24设置在本体20上,即可焊接盖24与本体20以生产密封件62。Once assembled, the lid 24 and the body 20 can be sealed. Figure 22 depicts various embodiments of an assembled energy storage (in this case, ultracapacitor 10). In Figure 22A, a flat blank 34 (see Figure 18A) is used to produce a flat cover 24. Once the cover 24 is placed on the body 20 , the cover 24 and the body 20 are welded to produce the seal 62 . In this case, since the body 20 is an annular cylinder, welding is performed around the body 20 and the cover 24 to provide the seal 62 . In a second embodiment, as shown in FIG. 22B , a concave blank 34 (see FIG. 18B ) is used to create the concave cover 24 . Once the cover 24 is placed on the body 20 , the cover 24 and the body 20 are welded to produce the seal 62 . In a third embodiment, as shown in Figure 22C, a male blank 34 (see Figure 18C) is used to produce the male cap 24. Once the cover 24 is positioned on the body 20 , the cover 24 and the body 20 can be welded to produce the seal 62 .

在适当时,可以去除包覆材料(通过技术例如,加工或蚀刻等)以暴露多层材料中的其他金属。因此,在一些实施方案中,密封件62可以包括铝-铝焊接件。铝-铝焊接件可以在适当时辅以其他紧固件。When appropriate, the cladding material may be removed (by techniques such as machining or etching, etc.) to expose other metals in the multilayer material. Thus, in some embodiments, seal 62 may comprise an aluminum-aluminum weld. Aluminum-aluminum weldments may be supplemented with other fasteners as appropriate.

可以使用其他技术来密封壳体7。例如,可以使用激光焊接、TIG焊接、电阻焊接、超声焊接和其他形式的机械密封。然而,应注意,一般而言,单独的传统形式的机械密封不足以提供超级电容器10中提供的坚固的气密密封。Other techniques may be used to seal the housing 7 . For example, laser welding, TIG welding, resistance welding, ultrasonic welding, and other forms of mechanical sealing may be used. However, it should be noted that, in general, conventional forms of mechanical seal alone are not sufficient to provide the robust hermetic seal provided in ultracapacitor 10 .

现在参照图24,其中描绘了组装盖24的另一个实施方案的各方面。图24A描绘了用于提供盖24的本体的模板(即,坯件34)。该模板的大小一般匹配适当类型的能量储存单元(例如,超级电容器10)的壳体7。盖24可以通过以下步骤来形成:最初提供模板形成模板,其包括模板中的圆顶37(示于图24B中);然后对圆顶37进行穿孔以提供通道32(示于图24C)。当然,可以压制或通过其他方法制造坯件34(例如,环形储存件)使得同时提供前述特征。Referring now to FIG. 24, aspects of another embodiment of an assembled cover 24 are depicted. FIG. 24A depicts a template (ie, blank 34 ) for providing the body of cover 24 . The size of the template generally matches the housing 7 of the appropriate type of energy storage unit (eg, supercapacitor 10). Cover 24 may be formed by initially providing a template to form a template that includes domes 37 in the template (shown in Figure 24B); then perforating domes 37 to provide channels 32 (shown in Figure 24C). Of course, the blank 34 (eg, an annular stocker) may be pressed or otherwise fabricated so as to provide the aforementioned features at the same time.

一般而言并且考虑到这些实施方案,盖可以由铝或其合金形成。然而,盖可以由制造者、使用者、设计者等认为合适的任意材料形成。例如,盖24可以由钢制成并钝化(即,涂覆有惰性涂料)或者通过其他方法制备用于壳体7。In general and with regard to these embodiments, the lid may be formed of aluminum or an alloy thereof. However, the cover may be formed of any material deemed appropriate by the manufacturer, user, designer, etc. For example, the cover 24 may be made of steel and passivated (ie, coated with an inert paint) or prepared for the housing 7 by other methods.

现在参照图25,示出了电极组合件50的另一个实施方案。在这些实施方案中,电极组合件50包括馈通件19和设置在馈通件19周围的半球形状的材料。所述半球形状的材料用作绝缘体26,并且一般成形为符合圆顶37。半球形绝缘体26可以由任何合适的材料制成以提供气密密封同时耐受电解质6的化学影响。示例性材料包括PFA(全氟烷氧基树脂)、FEP(氟化乙烯丙烯共聚物)、PVF(聚氟乙烯)、TFE(四氟乙烯)、CTFE(三氟氯乙烯)、PCTFE(聚三氟氯乙烯)、ETFE(聚乙烯四氟乙烯)、ECTFE(聚乙烯-三氟氯乙烯)、PTFE(聚四氟乙烯)、另一种基于含氟聚合物的材料以及任何其他可以显示出类似性质(以不同程度)和提供令人满意的性能(例如,在高温、低成本等条件下,尤其,表现出高耐溶解性、耐酸性)的材料。Referring now to FIG. 25, another embodiment of an electrode assembly 50 is shown. In these embodiments, electrode assembly 50 includes feedthrough 19 and a hemispherical shaped material disposed around feedthrough 19 . The hemispherical shaped material acts as insulator 26 and is generally shaped to conform to dome 37 . The hemispherical insulator 26 may be made of any suitable material to provide a hermetic seal while resisting the chemical effects of the electrolyte 6 . Exemplary materials include PFA (perfluoroalkoxy resin), FEP (fluorinated ethylene propylene copolymer), PVF (polyvinyl fluoride), TFE (tetrafluoroethylene), CTFE (chlorotrifluoroethylene), PCTFE (polytrifluoroethylene) Fluorochloroethylene), ETFE (polyethylene tetrafluoroethylene), ECTFE (polyethylene-chlorotrifluoroethylene), PTFE (polytetrafluoroethylene), another fluoropolymer based material, and any others that can show similar Materials that characterize (to varying degrees) and provide satisfactory performance (eg, exhibit high resistance to dissolution, acid, etc., under conditions of high temperature, low cost, etc., among others).

馈通件19可以由铝或其合金形成。然而,馈通件19可以由制造者、使用者、设计者等认为合适的任意材料形成。例如,馈通件19可以由钢制成并钝化(即,涂覆有例如硅的惰性涂料)或者通过其他方法制备用在电极组合件50中。用于钝化的示例性技术包括将氢化的无定形硅涂料沉积在衬底的表面上并且通过在压力和升高的温度下将衬底暴露于具有至少一个不饱和烃基的粘合剂一段有效的时间长度来功能化所涂覆的衬底。通过在压力和升高的温度下将衬底暴露于氢化硅气体一段有效的时间长度来沉积氢化的无定形硅涂料。Feedthrough 19 may be formed of aluminum or alloys thereof. However, the feedthrough 19 may be formed of any material deemed appropriate by the manufacturer, user, designer, or the like. For example, feedthrough 19 may be made of steel and passivated (ie, coated with an inert coating such as silicon) or prepared for use in electrode assembly 50 by other methods. Exemplary techniques for passivation include depositing a hydrogenated amorphous silicon coating on the surface of a substrate and effectively by exposing the substrate to a binder having at least one unsaturated hydrocarbon group under pressure and elevated temperature for a period of time length of time to functionalize the coated substrate. The hydrogenated amorphous silicon coating is deposited by exposing the substrate to silicon hydride gas under pressure and elevated temperature for an effective length of time.

半球形绝缘体26的大小可以相对于圆顶37设计为使得在组装进盖24时实现紧密贴合(即,气密密封)。半球形绝缘体26无需完美地对称或者具有经典的半球比例。也就是说,半球形绝缘体26基本上是半球形的,并且可以在认为适当时包括例如比例、适中的凸缘(例如,底座处)以及其他特征的微调。半球形绝缘体26一般由均一的材料形成,但是,这不是必要条件。例如,半球形绝缘体26可以包括填充在其中的圆环面(未示出)中的空气或气体,以提供期望的膨胀或可压缩性。The hemispherical insulator 26 may be sized relative to the dome 37 to achieve a snug fit (ie, a hermetic seal) when assembled into the cover 24 . The hemispherical insulator 26 need not be perfectly symmetrical or have classical hemispherical proportions. That is, the hemispherical insulator 26 is substantially hemispherical and may include, for example, fine-tuning of proportions, moderate flanges (eg, at the base), and other features as deemed appropriate. The hemispherical insulator 26 is generally formed of a uniform material, however, this is not a requirement. For example, hemispherical insulator 26 may include air or gas in a torus (not shown) filled therein to provide the desired expansion or compressibility.

如图26所示,电极组合件50可以插入模板(即,所形成的坯件34)中以提供包括半球形气密密封件的盖24的一个实施方案。As shown in FIG. 26, the electrode assembly 50 may be inserted into a template (ie, the formed blank 34) to provide one embodiment of the cover 24 that includes a hemispherical hermetic seal.

如图27所示,在许多个实施方案中,保持件43可以接合或者通过其他方法匹配盖24的底部(即,盖24面向壳体7的内部并且面向能量储存单元12的部分)。保持件43可以通过多种技术例如铝焊接(例如,激光、超声等)接合至盖24。其他技术可用于接合,包括例如冲压(即,机械接合)和钎焊。接合可以例如沿着保持件43的周长发生。一般而言,对至少一个接合点提供接合以产生期望的密封件71。可以使用至少一个紧固件(例如,多个铆钉)来将绝缘体26密封在保持件43中。As shown in Figure 27, in many embodiments, retainer 43 may engage or otherwise mate with the bottom of cover 24 (ie, the portion of cover 24 that faces the interior of housing 7 and faces energy storage unit 12). Retainer 43 may be joined to cover 24 by various techniques such as aluminum welding (eg, laser, ultrasonic, etc.). Other techniques may be used for bonding, including, for example, stamping (ie, mechanical bonding) and brazing. Engagement may occur, for example, along the circumference of the retainer 43 . Generally speaking, at least one joint is provided to produce the desired seal 71 . At least one fastener (eg, a plurality of rivets) may be used to seal insulator 26 in retainer 43 .

在图27的实施例中,盖24为凹设计(参见图18B)。然而,也可以使用其他设计。例如,可以提供凸盖24(图18C),还可使用上方盖24(图18C的实施方案的变化方案,其配置为按照图22C所描绘的安装)。In the embodiment of Figure 27, the cover 24 is of concave design (see Figure 18B). However, other designs can also be used. For example, a raised cover 24 (FIG. 18C) may be provided, and an upper cover 24 may also be used (a variation of the embodiment of FIG. 18C configured for installation as depicted in FIG. 22C).

用于盖以及馈通件19的材料可以考虑半球形绝缘体26的热膨胀来选择。此外,还可以设计制造技术以考虑热膨胀。例如,在组装盖24时,制造者可以向半球形绝缘体26施加压力,从而至少在某种程度上压缩半球形绝缘体26。以这种方式,为盖24的至少一些热膨胀的存在作了准备而不损害气密密封的效果。Materials for the cover and feedthrough 19 may be selected taking into account the thermal expansion of the hemispherical insulator 26 . In addition, manufacturing techniques can also be designed to account for thermal expansion. For example, when assembling cover 24, a manufacturer may apply pressure to hemispherical insulator 26, thereby compressing hemispherical insulator 26 at least to some extent. In this manner, provision is made for the presence of at least some thermal expansion of the cover 24 without compromising the effectiveness of the hermetic seal.

为了进一步说明组装的超级电容器,参照图28,其中提供了超级电容器10的剖视图。在该实施例中,储存单元12插入并包含在本体20中。每组多根引线绑在一起并且耦接至壳体7作为端子8之一。在一些实施方案中,多根引线耦接至本体20的底部(在内部),从而将本体20变成负极接触件55。同样,另一组多根引线绑在一起并耦接至馈通件19,以提供正极接触件56。通过电绝缘体26来保持负极接触件55与正极接触件56之间的电隔离。一般而言,引线的耦接通过焊接来实现,例如激光和超声焊接中的至少之一。当然,可以在认为适当时使用其他技术。To further illustrate the assembled ultracapacitor, reference is made to FIG. 28, wherein a cross-sectional view of the ultracapacitor 10 is provided. In this embodiment, the storage unit 12 is inserted into and contained in the body 20 . Each set of multiple leads are tied together and coupled to the housing 7 as one of the terminals 8 . In some embodiments, multiple leads are coupled to the bottom (inside) of the body 20 , thereby turning the body 20 into the negative contact 55 . Likewise, another set of multiple leads are tied together and coupled to feedthrough 19 to provide positive contact 56 . Electrical isolation between negative contact 55 and positive contact 56 is maintained by electrical insulator 26 . Generally, the coupling of the leads is accomplished by welding, such as at least one of laser and ultrasonic welding. Of course, other techniques may be used as deemed appropriate.

ii.内部阻隔物ii. Internal Barriers

现在参照图13,壳体7可以包括内部阻隔物30。在一些实施方案中,阻隔物30是涂料。在该实施例中,阻隔物30由聚四氟乙烯(PTFE)形成。聚四氟乙烯(PTFE)表现出各种使该组成良好地适合于阻隔物30的性质。PTFE的熔点为约327摄氏度,具有优异的介电性质,摩擦系数为约0.05至0.10(这是任何已知固体材料中的第三低),具有高耐蚀性以及其他有益的性质。一般而言,盖24的内部部分可以包括设置于其上的阻隔物30。Referring now to FIG. 13 , the housing 7 may include an internal barrier 30 . In some embodiments, barrier 30 is a coating. In this embodiment, the barrier 30 is formed of polytetrafluoroethylene (PTFE). Polytetrafluoroethylene (PTFE) exhibits various properties that make this composition well suited for barrier 30 . PTFE has a melting point of about 327 degrees Celsius, excellent dielectric properties, a coefficient of friction of about 0.05 to 0.10 (the third lowest of any known solid material), high corrosion resistance, and other beneficial properties. In general, the interior portion of the cover 24 may include a barrier 30 disposed thereon.

其他材料也可用于阻隔物30。这些其他材料由陶瓷(任何可适合于应用并满足性能标准的陶瓷类型)、其他聚合物(优选高温聚合物)等形成。示例性的其他聚合物包括全氟烷氧基树脂(PFA)和氟化乙烯丙烯共聚物(FEP)以及乙烯-四氟乙烯共聚物(ETFE)。Other materials may also be used for barrier 30 . These other materials are formed from ceramics (any type of ceramic that may be suitable for the application and meet performance criteria), other polymers (preferably high temperature polymers), and the like. Exemplary other polymers include perfluoroalkoxy resins (PFA) and fluorinated ethylene propylene copolymers (FEP) and ethylene-tetrafluoroethylene copolymers (ETFE).

阻隔物30可以包括提供减少能量储存单元12与壳体7或壳体7的部件之间的电化学类型或其他类型的反应的任意材料或材料的组合。在一些实施方案中,该组合体现为单层中不同材料的均匀分散体。在另外的实施方案中,组合体现为多个层中的不同材料。可以使用其他组合。简言之,阻隔物30可视为电绝缘体和化学惰性(即表现出低反应性)中的至少之一,并因此,显著抵抗或阻止储存单元12与壳体7之间的电相互作用和化学相互作用中的至少之一。在一些实施方案中,术语“低反应性”和“低化学反应性”一般指低于相关方的关注水平的化学相互作用速率。Barrier 30 may comprise any material or combination of materials that provides a reduction in electrochemical or other types of reactions between energy storage unit 12 and housing 7 or components of housing 7 . In some embodiments, the combination is embodied as a uniform dispersion of the different materials in a single layer. In further embodiments, the combination is embodied as different materials in multiple layers. Other combinations can be used. In short, the barrier 30 can be considered to be at least one of an electrical insulator and chemically inert (ie, exhibits low reactivity), and thus, significantly resists or prevents electrical interactions between the storage unit 12 and the housing 7 and at least one of chemical interactions. In some embodiments, the terms "low reactivity" and "low chemical reactivity" generally refer to chemical interaction rates below the level of interest of the parties involved.

一般而言,壳体7的内部可以容纳阻隔物30,使得覆盖壳体7的暴露于内部的所有表面。至少一个未经处理区域31可包括在本体20中并且在盖24的外表面36上(参见图14A)。在一些实施方案中,可以包括未经处理的区域31(参见图14B)以满足组装需求,例如将被密封或连接(例如通过焊接)的区域。In general, the interior of the housing 7 can accommodate the barrier 30 so as to cover all surfaces of the housing 7 exposed to the interior. At least one untreated region 31 may be included in the body 20 and on the outer surface 36 of the cover 24 (see Figure 14A). In some embodiments, untreated areas 31 (see FIG. 14B ) may be included to meet assembly requirements, such as areas to be sealed or joined (eg, by welding).

阻隔物30可以使用常规技术施用于内部部分。例如,在PTFE的情况下,可以通过将阻隔物30作为涂料涂或喷到内部表面上来施用阻隔物30。可以使用掩模作为确保未经处理区域31保留期望完整性的方法的一部分。简言之,可以采用多种技术来提供阻隔物30。Barrier 30 may be applied to the interior portion using conventional techniques. For example, in the case of PTFE, the barrier 30 may be applied by painting or spraying the barrier 30 as a paint on the interior surface. A mask may be used as part of a method to ensure that the untreated area 31 retains the desired integrity. Briefly, the barrier 30 can be provided using a variety of techniques.

在一个示例性实施方案中,阻隔物30的厚度为约3密耳至约5密耳,而用于阻隔物30的材料为基于PFA的材料。在该实施例中,用于接受构成阻隔物30的材料的表面例如用氧化铝以喷砂处理来制备。一旦将表面清洁,首先作为液体然后作为粉末来施用材料。通过热处理工艺来固化该材料。在一些实施方案中,加热循环为在约370摄氏度的温度下约10分钟至约15分钟的持续时间。这导致基本不包含针孔大小或更小的缺陷的阻隔物30的连续抛光。图15描绘了根据本文教导的超级电容器10的实施方案的组装。在该实施方案中,超级电容器10包括:包含设置在其中的阻隔物30的本体20;具有设置于其中的阻隔物30的盖24;以及能量储存单元12。在组装期间,将盖24设置在本体20之上。第一个端子8电耦接至盖馈通件19,同时将第二个端子8通常在盖24的底部、侧部或之上电耦接至壳体7。在一些实施方案中,第二个端子8耦接至另一个馈通件19(例如,相对的盖24)。In an exemplary embodiment, the thickness of the barrier 30 is from about 3 mils to about 5 mils, and the material used for the barrier 30 is a PFA-based material. In this example, the surface for receiving the material making up the barrier 30 is prepared by sandblasting, for example, with alumina. Once the surface is cleaned, the material is applied first as a liquid and then as a powder. The material is cured by a heat treatment process. In some embodiments, the heating cycle is at a temperature of about 370 degrees Celsius for a duration of about 10 minutes to about 15 minutes. This results in continuous polishing of the barrier 30 that is substantially free of defects of pinhole size or smaller. FIG. 15 depicts the assembly of an embodiment of the ultracapacitor 10 in accordance with the teachings herein. In this embodiment, the ultracapacitor 10 includes: a body 20 including a barrier 30 disposed therein; a lid 24 having the barrier 30 disposed therein; and an energy storage unit 12 . During assembly, the cover 24 is placed over the body 20 . The first terminal 8 is electrically coupled to the cover feedthrough 19 while the second terminal 8 is electrically coupled to the housing 7 , typically at the bottom, side or on the cover 24 . In some embodiments, the second terminal 8 is coupled to another feedthrough 19 (eg, the opposite cover 24).

利用设置在壳体7的内部表面上的阻隔物30,壳体7与电解质之间的电化学反应以及其他反应大大减少或基本消除。这在化学反应以及其他反应的速率通常升高的较高温度下特别明显。With the barrier 30 disposed on the interior surface of the casing 7, electrochemical and other reactions between the casing 7 and the electrolyte are greatly reduced or substantially eliminated. This is particularly evident at higher temperatures where the rates of chemical and other reactions generally increase.

现在参照图16,示出了相比于其他等同超级电容器的超级电容器10的相对性能。在图16A中,示出了超级电容器10的现有技术实施方案的漏电流。在图16B中,示出了包括阻隔物30的等同超级电容器10的漏电流。在图16B中,超级电容器10与漏电流示于图16A中的超级电容器电等同。在两种情况下,壳体7是不锈钢,并且施加到所述单元的电压为1.75伏,并且电解质未经纯化。温度保持恒定的150摄氏度。特别地,图16B中的漏电流示出较低的初始值并且未随时间显著升高,而图16A中的漏电流示出相对较高的初始值以及随时间显著升高。Referring now to FIG. 16, the relative performance of the ultracapacitor 10 compared to other equivalent ultracapacitors is shown. In Figure 16A, the leakage current of a prior art embodiment of the supercapacitor 10 is shown. In Figure 16B, the leakage current of the equivalent supercapacitor 10 including the barrier 30 is shown. In Figure 16B, the supercapacitor 10 is electrically equivalent to the supercapacitor whose leakage current is shown in Figure 16A. In both cases, the housing 7 was stainless steel, the voltage applied to the cell was 1.75 volts, and the electrolyte was not purified. The temperature was kept constant at 150 degrees Celsius. In particular, the leakage current in FIG. 16B shows a low initial value and does not increase significantly over time, while the leakage current in FIG. 16A shows a relatively high initial value and increases significantly over time.

一般而言,阻隔物30在能量储存单元12与壳体7之间提供合适厚度的合适材料。阻隔物30可包括均匀混合物、不均匀混合物和/或至少一层材料。阻隔物30可以提供完全覆盖(即,提供壳体除电极接触件外的内部表面积的覆盖)或部分覆盖。在一些实施方案中,阻隔物30由多种成分形成。例如,考虑下文示出和图8中所示的实施方案。In general, the barrier 30 provides a suitable material of suitable thickness between the energy storage unit 12 and the housing 7 . Barrier 30 may comprise a homogeneous mixture, a heterogeneous mixture, and/or at least one layer of material. The barrier 30 may provide full coverage (ie, provide coverage of the interior surface area of the housing excluding the electrode contacts) or partial coverage. In some embodiments, barrier 30 is formed from multiple components. For example, consider the embodiment shown below and shown in FIG. 8 .

参照图17,示出了其他实施方案的各方面。在一些实施方案中,能量储存单元12设置在包封物(envelope)73中。也就是说,能量储存单元12具有设置在其上,包装在其上方,或者一旦组装即通过其他方法施用以将能量储存单元12与壳体7隔开的阻隔物30。包封物73可以在将能量储存单元12封装入壳体7中之前良好地施用。因此,包封物73的使用可存在某些优点,例如对于制造者。(应注意,包封物73出于说明的目的示出为松散地设置在能量储存单元12上)。17, aspects of other embodiments are shown. In some embodiments, the energy storage unit 12 is disposed in an envelope 73 . That is, the energy storage unit 12 has a barrier 30 disposed thereon, packaged over it, or otherwise applied once assembled to isolate the energy storage unit 12 from the housing 7 . The encapsulant 73 can be applied well before the energy storage unit 12 is encapsulated in the housing 7 . Therefore, the use of the encapsulant 73 may present certain advantages, eg, for the manufacturer. (It should be noted that the encapsulant 73 is shown loosely disposed on the energy storage unit 12 for illustration purposes).

在一些实施方案中,包封物73与涂料联合使用,其中涂料设置在内部表面的至少一部分上。例如,在一个实施方案中,涂料只设置在壳体7内部的包封物73可至少部分地受损(例如,为突起端子8)的区域中。包封物73与涂料一起形成高效的阻隔物30。In some embodiments, the encapsulant 73 is used in conjunction with a coating, wherein the coating is disposed on at least a portion of the interior surface. For example, in one embodiment, the paint is provided only in areas inside the housing 7 where the encapsulant 73 may be at least partially damaged (eg, the protruding terminals 8). The encapsulant 73 forms an efficient barrier 30 together with the coating.

因此,阻隔物30的结合可提供表现出与现有技术相比具有较低的初始值的漏电流并且漏电流随时间基本上较缓慢增加的超级电容器。显著地,当超级电容器暴露于这样的环境温度时超级电容器的漏电流仍然在实用(即,期望地低)水平,现有技术的电容器在该环境温度下将表现过于大的初始漏电流值和/或漏电流随时间过于快速的升高。Thus, the incorporation of barrier 30 may provide an ultracapacitor exhibiting a lower initial value of leakage current and a substantially slower increase in leakage current over time than in the prior art. Significantly, the leakage current of supercapacitors remains at practical (ie, desirably low) levels when exposed to ambient temperatures at which prior art capacitors would exhibit excessively large initial leakage current values and /or the leakage current increases too rapidly over time.

由此描述了阻隔物30的实施方案及其许多个方面,应认识到,超级电容器10可表现出由壳体7与能量储存介质1之间减少的反应导致的其他益处。例如,超级电容器10的有效串联电阻(ESR)可随时间表现相对较低的值。此外,在现有技术电容器中发生非期望的化学反应常常产生非期望的效果例如放气,或者在气密地密封壳体的情况下壳体的鼓胀。在两种情况下,这导致壳体的结构完整性和/或电容器的气密密封受损。最终,这可导致现有技术电容器的泄漏或灾难性故障。在一些实施方案中,这些结果可以通过所公开的阻隔物30的使用来显著降低或消除。Having thus described the embodiment of the barrier 30 and its many aspects, it should be appreciated that the ultracapacitor 10 may exhibit other benefits resulting from the reduced reaction between the housing 7 and the energy storage medium 1 . For example, the effective series resistance (ESR) of ultracapacitor 10 may exhibit relatively low values over time. Furthermore, undesired chemical reactions that occur in prior art capacitors often produce undesired effects such as outgassing, or bulging of the case where the case is hermetically sealed. In both cases, this results in compromise of the structural integrity of the case and/or the hermetic seal of the capacitor. Ultimately, this can lead to leakage or catastrophic failure of prior art capacitors. In some embodiments, these results can be significantly reduced or eliminated by the use of the disclosed barrier 30 .

应认识到,术语“阻隔物”和“涂料”不限于本文的教导。也就是说,可以使用任意用于将合适的材料施用于壳体7、本体20和/或盖24的内部的技术。例如,在其他实施方案中,将阻隔物30实际上制造到构成壳体本体20的材料之内或之上,然后在适当时对该材料进行加工或成形以形成壳体7的各个部件。当考虑用于施加阻隔物30的许多可能技术中的一些时,可以等同合适地通过滚上(roll on)、溅射、烧结、层合、印刷或者通过其他方法施加所述材料。简言之,阻隔物30可以采用制造者、设计者和/或使用者认为合适的任何技术来施加。It should be appreciated that the terms "barrier" and "coating" are not limited to the teachings herein. That is, any technique for applying a suitable material to the interior of housing 7, body 20 and/or cover 24 may be used. For example, in other embodiments, the barrier 30 is actually fabricated into or onto the material that makes up the housing body 20 , which is then machined or shaped as appropriate to form the various components of the housing 7 . When considering some of the many possible techniques for applying the barrier 30, the material may be applied by roll on, sputtering, sintering, lamination, printing, or by other methods as appropriate. In short, barrier 30 may be applied using any technique deemed appropriate by the manufacturer, designer, and/or user.

用在阻隔物30中的材料可以根据例如以下性质来选择:反应性、介电值、熔点、与壳体7的材料的粘附、摩擦系数、成本以及其他这样的因素。可以使用材料的组合(例如,分层的、混合的、或者通过其他方式组合的)来提供期望的性质。The material used in barrier 30 may be selected based on properties such as reactivity, dielectric value, melting point, adhesion to the material of housing 7, coefficient of friction, cost, and other such factors. Combinations of materials (eg, layered, mixed, or otherwise combined) can be used to provide the desired properties.

在一些实施方案中,使用增强的壳体7(例如,具有阻隔物30的壳体7)可以限制电解质6的劣化。虽然阻隔物30示出一种用于提供增强的壳体7的技术,但是也可以采用其他技术。例如,由于在电解质6的存在下铝的电化学性质,所以使用由铝制造的壳体7是有利的。但是,考虑到铝的制造上的困难,一直未能(迄今为止)构造利用铝的壳体7的实施方案。In some embodiments, the use of a reinforced casing 7 (eg, casing 7 with barrier 30 ) can limit degradation of electrolyte 6 . While the barrier 30 illustrates one technique for providing a reinforced shell 7, other techniques may be employed. For example, the use of a housing 7 made of aluminium is advantageous due to the electrochemical properties of aluminium in the presence of the electrolyte 6 . However, in view of the difficulties in the manufacture of aluminum, it has not been possible (so far) to construct an embodiment of the housing 7 using aluminum.

壳体7的另外的实施方案包括铝存在于所有可暴露于电解质的内部表面的那些实施方案,同时为使用者提供焊接和气密密封壳体的能力。超级电容器10的改善的性能可以通过减少的内部腐蚀、与传导介质中不同金属的使用相关的问题的减少以及其他原因来实现。有利地,壳体7利用现有技术,这样可得的包括玻璃-金属密封件的电极插件(并且可以包括由不锈钢、钽或其他有利材料和成分制造的那些),因此可以经济地制造。Additional embodiments of the housing 7 include those in which aluminum is present on all interior surfaces exposed to the electrolyte, while providing the user with the ability to weld and hermetically seal the housing. The improved performance of the ultracapacitor 10 may be achieved through reduced internal corrosion, reduced problems associated with the use of dissimilar metals in the conductive medium, and other reasons. Advantageously, the housing 7 utilizes prior art such available electrode inserts including glass-metal seals (and may include those fabricated from stainless steel, tantalum or other advantageous materials and compositions) and thus can be manufactured economically.

虽然在本文中作为适合于超级电容器10的壳体7的实施方案公开,但是这些实施方案(如具有阻隔物30的情况)可与任何类型的认为合适的能量储存器一起使用,并且可以包括任意类型的可行技术。例如,可以使用其他形式的能量储存器,包括电化学电池,特别是锂基电池。Although disclosed herein as suitable embodiments for the housing 7 of the supercapacitor 10, these embodiments (as with the barrier 30) may be used with any type of energy storage deemed suitable, and may include any types of available technologies. For example, other forms of energy storage may be used, including electrochemical cells, particularly lithium-based cells.

一般而言,暴露到壳体7内部的材料在暴露于电解质6(即,本发明的先进的电解质体系)时表现出足够低的反应性,因此仅仅是说明性的一些实施方案而不限制本文的教导。In general, materials exposed to the interior of housing 7 exhibit sufficiently low reactivity when exposed to electrolyte 6 (ie, the advanced electrolyte system of the present invention) and are thus merely illustrative of some embodiments and not limiting herein. 's teaching.

F.电容器一般构造的因素 F. Factors in the general construction of capacitors

在超级电容器10的构造中考虑的一个重要方面是维持良好的化学卫生。为了确保部件的纯净,在许多个实施方案中,在真空环境中在升高的温度下干燥构成两个电极3的能量储存介质1的活性炭、碳纤维、人造纤维、碳布和/或纳米管。隔离器5也在真空环境中在升高的温度下干燥。一旦电极3和隔离器5在真空下干燥后,即将它们封装在壳体7中而无需在低于50份/百万份(ppm)水的气氛中最终密封或加盖。例如,可以在整个约100摄氏度至约300摄氏度的温度范围内在真空下干燥未加盖的超级电容器10。一旦该最终干燥完成,即可添加电解质6,并在相对干燥的气氛(例如,水分低于约50ppm的气氛)中密封壳体7。当然,可以使用其他组装方法,并且前述仅提供超级电容器10的组合件的一些示例性方面。An important aspect to consider in the construction of ultracapacitor 10 is maintaining good chemical hygiene. To ensure the purity of the components, in many embodiments, the activated carbon, carbon fibers, rayon, carbon cloth and/or nanotubes that make up the energy storage medium 1 of the two electrodes 3 are dried in a vacuum environment at elevated temperatures. The isolator 5 is also dried at elevated temperature in a vacuum environment. Once the electrodes 3 and separators 5 are dried under vacuum, they are encapsulated in a housing 7 without final sealing or capping in an atmosphere of less than 50 parts per million (ppm) water. For example, the uncovered supercapacitor 10 may be dried under vacuum throughout the temperature range of about 100 degrees Celsius to about 300 degrees Celsius. Once this final drying is complete, the electrolyte 6 can be added and the case 7 sealed in a relatively dry atmosphere (eg, an atmosphere with less than about 50 ppm moisture). Of course, other methods of assembly may be used, and the foregoing merely provides some exemplary aspects of the assembly of ultracapacitor 10 .

III.本发明的方法III. Methods of the Invention

本文下面描述本发明的用于减少杂质或制造本发明的装置的某些方法。这样的纯化的方法另外还可应用于本发明的任意先进的电解质体系。Certain methods of the present invention for reducing impurities or making devices of the present invention are described herein below. Such purification methods are additionally applicable to any of the advanced electrolyte systems of the present invention.

A.减少杂质的方法 A. Methods to reduce impurities

i.AES污染物i.AES contamination

在某些实施方案中,对本发明的先进的电解质体系(AES)进行纯化以去除污染物并且提供本文中所述的期望的增强的性能特性。因此,本公开内容提供了一种纯化AES的方法,该方法包括:将水混合到先进的电解质体系中以提供第一混合物;分离第一混合物;从第一混合物收集先进的电解质体系;向所收集的液体添加溶剂以提供第二混合物;将碳混合到第二混合物中以提供第三混合物;从第三混合物分离先进的电解质体系以获得经纯化的先进的电解质体系。一般而言,该方法要求在受控制的条件下选择电解质、添加去离子化水和活性炭。随后去除去离子水和活性炭,得到经基本纯化的电解质。经纯化的电解质尤其适合用在超级电容器。In certain embodiments, the advanced electrolyte systems (AES) of the present invention are purified to remove contaminants and provide the desired enhanced performance characteristics described herein. Accordingly, the present disclosure provides a method of purifying AES, the method comprising: mixing water into an advanced electrolyte system to provide a first mixture; separating the first mixture; collecting the advanced electrolyte system from the first mixture; The collected liquid is added with solvent to provide a second mixture; carbon is mixed into the second mixture to provide a third mixture; and the advanced electrolyte system is separated from the third mixture to obtain a purified advanced electrolyte system. In general, the method requires electrolyte selection, addition of deionized water, and activated carbon under controlled conditions. Subsequent removal of deionized water and activated carbon resulted in a substantially purified electrolyte. Purified electrolytes are especially suitable for use in supercapacitors.

该方法可以用来确保本发明的先进的电解质体系(AES)的高的纯净度。应注意的是,虽然该方法以特定参数(例如量、配方、时间等)表示,但是该表示只是用于纯化电解质的方法的示例和说明,并不对其进行限制。This method can be used to ensure high purity of the Advanced Electrolyte System (AES) of the present invention. It should be noted that although the method is expressed in terms of specific parameters (eg, amount, formulation, time, etc.), this expression is merely an example and illustration of a method for purifying electrolytes, and is not limiting.

例如,该方法还可以包括以下步骤或特征中的一个或更多个:加热第一混合物;其中,分离包括使第一混合物不受干扰地放置直到水和AES被基本分离为止;其中,添加溶剂包括添加乙醚、异戊烯炔(pentone)、环异戊烯炔(cyclopentone)、己烷、环己烷、苯、甲苯、1-4-二氧杂环己烷以及氯仿中的至少之一;其中,混合碳包括混合碳粉;其中,混合碳包括基本不断地搅拌第三混合物;其中,分离AES包括使碳从第三混合物滤出和使溶剂从第三混合物蒸发中的至少之一。For example, the method may further comprise one or more of the following steps or features: heating the first mixture; wherein separating comprises allowing the first mixture to stand undisturbed until the water and AES are substantially separated; wherein adding a solvent Including adding at least one of ether, isopentenyne (pentone), cyclopentone (cyclopentone), hexane, cyclohexane, benzene, toluene, 1-4-dioxane and chloroform; wherein the mixed carbon comprises mixed carbon powder; wherein mixing the carbon comprises substantially continuously stirring the third mixture; wherein separating the AES comprises at least one of leaching the carbon from the third mixture and evaporating the solvent from the third mixture.

在用于纯化电解质的方法的第一步骤中,将电解质6(在一些实施方案中为离子液体)与去离子化水混合,然后升高至适中的温度,保持一段时间。在概念验证中,将五十(50)毫升(ml)的离子液体与八百五十(850)毫升(m1)的去离子水混合。将该混合物升高至六十(60)摄氏度的恒定温度,保持约十二(12)小时,并进行持续的搅拌(约一百二十(120)转份钟(rpm))。In the first step of the method for purifying the electrolyte, the electrolyte 6 (in some embodiments, an ionic liquid) is mixed with deionized water and then raised to a moderate temperature for a period of time. In the proof-of-concept, fifty (50) milliliters (ml) of ionic liquid was mixed with eight hundred fifty (850) milliliters (ml) of deionized water. The mixture was raised to a constant temperature of sixty (60) degrees Celsius for about twelve (12) hours with constant stirring (about one hundred twenty (120) parts per minute (rpm)).

在第二步骤中,使得离子液体与去离子水的混合物分离。在该实施例中,通过漏斗转移该混合物,然后使该混合物放置约四(4)小时。In the second step, the mixture of ionic liquid and deionized water is allowed to separate. In this example, the mixture was transferred via a funnel and then allowed to sit for approximately four (4) hours.

在第三步骤中,收集离子液体。在该实施例中,混合物的水相位于底部,离子液体相位于顶部。将离子液体相转移到另一个烧杯中。In the third step, the ionic liquid is collected. In this example, the aqueous phase of the mixture is at the bottom and the ionic liquid phase is at the top. Transfer the ionic liquid phase to another beaker.

在第四步骤中,将溶剂与离子液体混合。在该实施例中,将体积为约二十五(25)毫升(ml)的乙酸乙酯与离子液体混合。再将该混合物升高至适中的温度并搅拌一段时间。In the fourth step, the solvent is mixed with the ionic liquid. In this example, a volume of about twenty-five (25) milliliters (ml) of ethyl acetate was mixed with the ionic liquid. The mixture was then brought to moderate temperature and stirred for some time.

虽然使用乙酸乙酯作为溶剂,但是溶剂可以是以下物质中的至少之一:乙醚、异戊烯炔(pentone)、环异戊烯炔(cyclopentone)、己烷、环己烷、苯、甲苯、1-4-二氧杂环己烷、氯仿或其任意组合以及表现出适当性能特性的其他材料。一些期望的性能特性包括非极性溶剂的那些以及高度挥发性。Although ethyl acetate is used as the solvent, the solvent may be at least one of the following: diethyl ether, pentone, cyclopentone, hexane, cyclohexane, benzene, toluene, 1-4-Dioxane, chloroform, or any combination thereof, and other materials exhibiting appropriate performance characteristics. Some desirable performance characteristics include those of non-polar solvents and high volatility.

在第五步骤中,向离子液体与溶剂的混合物中添加碳粉。在该实施例中,向混合物中添加约二十(20)重量百分比(wt%)的碳(约0.45微米直径)。In the fifth step, carbon powder is added to the mixture of ionic liquid and solvent. In this example, about twenty (20) weight percent (wt%) carbon (about 0.45 micron diameter) was added to the mixture.

在第六步骤中,再次混合离子液体。在该实施例中,然后在约七十(70)摄氏度对具有碳粉的混合物进行恒定搅拌(120rpm)过夜。In the sixth step, the ionic liquid is mixed again. In this example, the mixture with carbon powder was then subjected to constant stirring (120 rpm) overnight at about seventy (70) degrees Celsius.

在第七步骤中,使碳和乙酸乙酯分离于离子液体。在该实施例中,采用具有玻璃微纤维过滤器的布氏漏斗来分离碳。进行多次过滤(3次)。然后,使所收集的离子液体通过0.2微米注射器式过滤器以基本上除去所有碳颗粒。在该实施例中,然后通过采用旋转蒸发来将溶剂与离子液体分离。具体地,搅拌离子液体的样品,同时将温度从七十(70)摄氏度升高至八十(80)摄氏度,并且最终为一百(100)摄氏度。在各个温度中的每个温度下,将蒸发进行约十五(15)分钟。In the seventh step, the carbon and ethyl acetate were separated in the ionic liquid. In this example, a Buchner funnel with a glass microfiber filter was used to separate the carbon. Multiple filtrations (3 times) were performed. The collected ionic liquid was then passed through a 0.2 micron syringe filter to remove substantially all carbon particles. In this example, the solvent is then separated from the ionic liquid by employing rotary evaporation. Specifically, a sample of the ionic liquid was stirred while increasing the temperature from seventy (70) degrees Celsius to eighty (80) degrees Celsius, and finally one hundred (100) degrees Celsius. At each of the various temperatures, evaporation is performed for approximately fifteen (15) minutes.

已证实用于纯化电解质的方法非常有效。对于样品离子液体,用由俄亥俄州哥伦布市(Columbus,Ohio)的Mettler-Toledo Inc.提供的滴定仪(型号:AQC22),通过滴定来测量水含量。用由罗德岛州(Rhode Island)的Hanna Instruments of Woonsocket提供的ISE仪(型号:AQC22)测量卤素含量。用于ISE仪的标准溶液得自Hanna,并且包括HI 4007-03(1000ppm氯标准)、HI 4010-03(1000ppm氟标准)、HI 4000-00(用于卤素电极的ISA)以及HI4010-00(仅用于氟电极的TISAB溶液)。在进行测量之前,用与去离子水中混合的使用0.1、10、100和1000份/百万份(ppm)的标准品的标准溶液校正ISE仪。以1∶50的比例向标准品中添加ISA缓冲剂以测量Cl-离子。结果示于表3中。The method used to purify the electrolyte has proven to be very effective. For the sample ionic liquid, the water content was measured by titration using a titrator (Model: AQC22) supplied by Mettler-Toledo Inc. of Columbus, Ohio. Halogen content was measured with an ISE instrument (Model: AQC22) supplied by Hanna Instruments of Woonsocket, Rhode Island. Standard solutions for the ISE instrument were obtained from Hanna and included HI 4007-03 (1000 ppm chlorine standard), HI 4010-03 (1000 ppm fluorine standard), HI 4000-00 (ISA for halogen electrodes) and HI4010-00 ( TISAB solution for fluorine electrodes only). The ISE meter was calibrated with standard solutions using 0.1, 10, 100 and 1000 parts per million (ppm) standards mixed with deionized water prior to taking measurements. ISA buffer was added to the standard at a ratio of 1:50 to measure Cl- ions. The results are shown in Table 3.

表3table 3

含1-丁基-1-甲基吡咯烷和四氰基硼酸盐的电解质的纯化数据Contains 1-butyl-1-methylpyrrolidine Purification data for electrolytes with tetracyanoborate

杂质impurities 之前(ppm)Before (ppm) 之后(ppm)After (ppm) 去离子水(ppm)Deionized water (ppm) Cl<sup>-</sup>Cl<sup>-</sup> 5,300.905,300.90 769769 9.23E-19.23E-1 F-F- 75.6175.61 10.6110.61 1.10E-11.10E-1 H<sub>2</sub>OH<sub>2</sub>O 10801080 2020 ----

采用四步法工艺来测量卤离子。首先,在去离子水中测量Cl-离子和F-离子。接着,用去离子水制备0.01M的离子液体溶液。然后,在溶液中测量Cl-离子和F-离子。然后,通过用溶液中离子的量减去水中离子的量来确定卤素含量的评估。A four-step process is used to measure halide ions. First, Cl- and F- ions are measured in deionized water. Next, a 0.01 M ionic liquid solution was prepared with deionized water. Then, Cl- ions and F- ions are measured in the solution. An estimate of the halogen content is then determined by subtracting the amount of ions in the water from the amount of ions in the solution.

还通过对漏电流的分析来检验关于电解质污染物组成的纯化标准。图9描绘了超级电容器10中未经纯化的电解质的漏电流。图10描绘了类似结构的超级电容器10中经纯化电解质的漏电流。如可见的,初始漏电流显著降低,并且测量间隔的后面部分的漏电流适当降低。基于表4中每个实施方案的结构提供了更多信息。Purification criteria regarding the composition of electrolyte contaminants were also checked by analysis of leakage currents. FIG. 9 depicts the leakage current of the unpurified electrolyte in supercapacitor 10 . FIG. 10 depicts the leakage current of purified electrolyte in a similarly constructed supercapacitor 10 . As can be seen, the initial leakage current is significantly reduced, and the leakage current in the latter part of the measurement interval is moderately reduced. More information is provided based on the structure of each embodiment in Table 4.

表4Table 4

测试超级电容器的构造Test the construction of supercapacitors

参数parameter 图9Figure 9 图10Figure 10 单元大小:Cell size: 打开Sub COpen Sub C 打开Sub COpen Sub C 套筒:Sleeve: 涂覆P870Coated with P870 涂覆P870Coated with P870 电极材料:Electrode material: 双面活性炭(150/40)Double-sided activated carbon (150/40) 双面活性炭(150/40)Double-sided activated carbon (150/40) 隔离器:Isolator: 玻璃纤维glass fiber 玻璃纤维glass fiber 电极大小:Electrode size: IE:233×34mm OE:256×34mmIE: 233×34mm OE: 256×34mm IE:233×34mm OE:256×34mmIE: 233×34mm OE: 256×34mm 接片:Splicing: 0.005”铝(3个接片)0.005" Aluminum (3 Tabs) 0.005”铝(3个接片)0.005" Aluminum (3 Tabs) 温度:temperature: 150℃150℃ 150℃150℃ 电解质:Electrolyte: 未经纯化AESUnpurified AES 经纯化AESPurified AES

还实现了其他益处,包括超级电容器10的电阻和电容的稳定性的提高。Other benefits are also realized, including improved stability of the resistance and capacitance of the ultracapacitor 10 .

漏电流可以以多种方式来确定。定性地,一旦装置达到了平衡状态,即可认为漏电流为引入装置中的电流。实际上,总是或几乎总是需要估计作为一般仅可渐进地接近的平衡态的实际漏电流。因此,可以通过测量引入超级电容器10的电流来估计给定测量中的漏电流,同时超级电容器10保持在基本固定的电压并且暴露于基本固定的环境温度,保持相对长的一段时间。在一些情况下,相对长的时间段可以通过估计作为指数函数的电流时间函数,然后使得通过若干(例如,约3至5个)特性时间常数来确定。往往对于许多超级电容器技术而言,这样的持续时间为从约50小时至约100小时。或者,如果这样的长时间段出于任何原因不可行,则可能可以通过估计作为指数函数的电流时间函数或认为合适的任何近似函数来简单地再次推算漏电流。值得注意的是,漏电流将一般地取决于环境温度。因此,为了表征装置在一定温度下或在一定温度范围中的性能,通常重要的是在测量漏电流时将装置暴露于目的环境温度。Leakage current can be determined in a number of ways. Qualitatively, once the device has reached equilibrium, leakage current can be considered to be the current introduced into the device. In practice, it is always or almost always necessary to estimate the actual leakage current as an equilibrium state which is generally only asymptotically approachable. Thus, leakage current in a given measurement can be estimated by measuring the current drawn into the ultracapacitor 10 while the ultracapacitor 10 is maintained at a substantially fixed voltage and exposed to a substantially fixed ambient temperature for a relatively long period of time. In some cases, a relatively long period of time may be determined by estimating the current time function as an exponential function and then passing through several (eg, about 3 to 5) characteristic time constants. Often for many ultracapacitor technologies, such durations are from about 50 hours to about 100 hours. Alternatively, if such long periods of time are not feasible for any reason, it may be possible to simply re-calculate the leakage current by estimating the current-time function as an exponential function, or any approximation function deemed appropriate. It is worth noting that the leakage current will generally depend on the ambient temperature. Therefore, in order to characterize the performance of a device at a certain temperature or within a certain temperature range, it is often important to expose the device to the intended ambient temperature when measuring the leakage current.

注意一种降低在特定温度下的体积漏电流的方法是降低在该温度下的操作电压。另一种降低在特定温度下的体积漏电流的方法是提高超级电容器的空隙体积。而又一种降低漏电流的方法是降低电极3上的能量储存介质1的载荷。Note that one way to reduce the volumetric leakage current at a particular temperature is to reduce the operating voltage at that temperature. Another way to reduce the volumetric leakage current at a specific temperature is to increase the void volume of the supercapacitor. Yet another way to reduce leakage current is to reduce the load on the energy storage medium 1 on the electrode 3 .

已公开了用于纯化电解质和离子液体的实施方案的各方面,应认识到的是,可以实现各种实施方案。此外,可以实施各种技术。例如,可以调整步骤、步骤的顺序等。Having disclosed various aspects of embodiments for purifying electrolytes and ionic liquids, it should be appreciated that various embodiments may be implemented. Additionally, various techniques may be implemented. For example, steps, order of steps, etc. may be adjusted.

ii.水/水分含量和去除ii. Water/Moisture Content and Removal

可以将密封的超级电容器10的壳体7打开,并且对储存单元12取样以检测杂质。使用卡尔·费歇尔法来测量来自单元12的电极、隔离器和电解质的水含量。进行三次测量并取平均值。The case 7 of the sealed ultracapacitor 10 can be opened and the storage unit 12 sampled to detect impurities. The Karl Fischer method was used to measure the water content from the electrodes, separator and electrolyte of the cell 12 . Three measurements were taken and averaged.

一般而言,用于表征超级电容器中污染物的方法包括对壳体7开口以获得其内容物,对内容物取样并分析样品。在本文中其他地方公开的技术可用于支持所述表征。In general, a method for characterizing contaminants in an ultracapacitor involves opening the case 7 to obtain its contents, sampling the contents and analyzing the sample. Techniques disclosed elsewhere herein can be used to support the characterization.

应注意,为了确保超级电容器及其部件(包括电极、电解质和隔离器)中杂质的准确测量,可以在合适的环境(例如,手套箱中的惰性环境)中进行组装和拆卸。It should be noted that to ensure accurate measurement of impurities in supercapacitors and their components, including electrodes, electrolytes, and separators, assembly and disassembly can be performed in a suitable environment (eg, an inert environment in a glove box).

通过降低超级电容器10中的水分含量(例如,降低至相对于电解质和杂质的质量和体积低于500份/百万份(ppm)至低于1000ppm),超级电容器10可以在整个温度范围内更高效地运行,在该温度和电压范围内具有小于10安培/升的漏电流(I/L)。By reducing the moisture content in the supercapacitor 10 (eg, to below 500 parts per million (ppm) to below 1000 ppm by mass and volume relative to the electrolyte and impurities), the supercapacitor 10 may be more durable over the entire temperature range. Operates efficiently with less than 10 amps/liter of leakage current (I/L) over this temperature and voltage range.

在一个实施方案中,通过使超级电容器10的电压保持恒定在额定电压(即,最大额定工作电压)下七十二(72)小时来测量在特定温度下的漏电流(I/L)。在此期间,温度保持在特定温度下相对恒定。在测量区间结束时测量超级电容器10的漏电流。In one embodiment, leakage current (I/L) at a particular temperature is measured by holding the voltage of the ultracapacitor 10 constant at the rated voltage (ie, the maximum rated operating voltage) for seventy-two (72) hours. During this time, the temperature remains relatively constant at a certain temperature. The leakage current of the supercapacitor 10 is measured at the end of the measurement interval.

在一些实施方案中,在室温下超级电容器10的最大电压额定值为约4V。在升高的温度下(例如,超过210摄氏度)确保超级电容器10的性能的方法为降低(即,减小)超级电容器10的电压额定值。例如,电压额定值可以调整为低至约0.5V,以使在较高温度下可以获得延长的操作持续时间。In some embodiments, the maximum voltage rating of the ultracapacitor 10 is about 4V at room temperature. One way to ensure the performance of the ultracapacitor 10 at elevated temperatures (eg, in excess of 210 degrees Celsius) is to derate (ie, reduce) the voltage rating of the ultracapacitor 10 . For example, the voltage rating can be adjusted as low as about 0.5V so that extended durations of operation can be obtained at higher temperatures.

B.超级电容器的制造方法 B. Manufacturing method of supercapacitor

在另一个实施方案中,本发明提供了一种用于制造超级电容器的方法,该方法包括如下步骤:将包含能量储存介质的能量储存单元设置在壳体内;和用先进的电解质体系(AES)填充壳体,使得超级电容器被制造成在约-40摄氏度至约210摄氏度的温度范围内操作。In another embodiment, the present invention provides a method for fabricating a supercapacitor, the method comprising the steps of: disposing an energy storage unit comprising an energy storage medium within a housing; and using an Advanced Electrolyte System (AES) The case is filled so that the supercapacitor is fabricated to operate in a temperature range of about -40 degrees Celsius to about 210 degrees Celsius.

例如,在一个具体实施方案中,AES包括新型电解质实体(NEE),其中NEE适合于在高温超级电容器中使用。在某些实施方案中,超级电容器配置成在约80摄氏度至约210摄氏度的温度范围(例如,在约80摄氏度至约150摄氏度的温度范围)内的温度下操作。For example, in one specific embodiment, the AES includes a Novel Electrolyte Entity (NEE), wherein the NEE is suitable for use in high temperature supercapacitors. In certain embodiments, the ultracapacitor is configured to operate at a temperature within a temperature range of about 80 degrees Celsius to about 210 degrees Celsius (eg, in a temperature range of about 80 degrees Celsius to about 150 degrees Celsius).

在一个特定实施方案中,AES包括高度纯化的电解质,例如,其中该高度纯化的电解质适合于在高温电容器中使用。在某些实施方案中,超级电容器配置成在约80摄氏度至约210摄氏度的温度范围内的温度下操作,例如,在约80摄氏度至约150摄氏度的温度范围。In a particular embodiment, the AES includes a highly purified electrolyte, eg, wherein the highly purified electrolyte is suitable for use in high temperature capacitors. In certain embodiments, the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 210 degrees Celsius, eg, in a temperature range of about 80 degrees Celsius to about 150 degrees Celsius.

在一个特定实施方案中,AES包括增强的电解质组合,例如,其中增强的电解质组合适合于在高温超级电容器和低温超级电容器两者中使用。在某些实施方案中,超级电容器配置成在约-40摄氏度至约150摄氏度的温度范围内的温度下操作,例如,在约-30摄氏度至约125摄氏度的温度范围。In a particular embodiment, the AES includes an enhanced electrolyte combination, eg, wherein the enhanced electrolyte combination is suitable for use in both high temperature and low temperature supercapacitors. In certain embodiments, the ultracapacitor is configured to operate at a temperature in a temperature range of about -40 degrees Celsius to about 150 degrees Celsius, eg, in a temperature range of about -30 degrees Celsius to about 125 degrees Celsius.

在一个实施方案中,所制造的超级电容器是本文上面第II部分中描述的超级电容器。因此,并且如上所述,优于已知的能量存储装置的现有电解质的优点选自如下改进中的一项或更多项:总电阻降低、电阻的长期稳定性提高、总电容增加、电容的长期稳定性提高、能量密度增加、电压稳定性提高、蒸气压减小、单个电容器的温度范围性能更宽、单个电容器的温度耐久性提高、制造容易度提高以及成本效益改进。In one embodiment, the fabricated ultracapacitor is the ultracapacitor described herein above in Section II. Accordingly, and as described above, the advantages over existing electrolytes of known energy storage devices are selected from one or more of the following improvements: reduced overall resistance, increased long-term stability of resistance, increased overall capacitance, capacitance Improved long-term stability, increased energy density, improved voltage stability, reduced vapor pressure, wider temperature range performance of a single capacitor, improved temperature durability of a single capacitor, improved ease of manufacture, and improved cost-effectiveness.

在某些实施方案中,设置步骤还包括预处理超级电容器的部件以减少其中的水分,超级电容器的部件包括:电极、隔离器、引线、经组装的能量储存单元和壳体中的至少之一。在特定实施方案中,预处理包括基本上在真空下在约100摄氏度至约150摄氏度的温度范围内加热所选部件。预处理可以包括基本上在真空下在约150摄氏度至约300摄氏度的温度范围内加热所选部件。In certain embodiments, the disposing step further comprises pretreating the components of the supercapacitor to reduce moisture therein, the components of the supercapacitor comprising: at least one of an electrode, a separator, a lead, an assembled energy storage unit, and a housing . In certain embodiments, the pretreatment includes heating the selected components substantially under vacuum at a temperature ranging from about 100 degrees Celsius to about 150 degrees Celsius. The pretreatment may include heating the selected components substantially under vacuum at a temperature ranging from about 150 degrees Celsius to about 300 degrees Celsius.

在某些实施方案中,在基本上惰性的环境中进行所述设置。In certain embodiments, the setting is performed in a substantially inert environment.

在某些实施方案中,构造步骤包括为壳体选择相对电解质表现出低化学反应性的内部表面材料,其还可以包括在壳体的内部的显著部分中包含内部表面材料。内部表面材料可以选自铝、聚四氟乙烯(PTFE)、全氟烷氧基树脂(PFA)、氟化乙烯丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)和陶瓷材料中的至少之一作为内部表面材料。In certain embodiments, the constructing step includes selecting an interior surface material for the casing that exhibits low chemical reactivity with the electrolyte, which may also include including the interior surface material in a substantial portion of the interior of the casing. The inner surface material can be selected from aluminum, polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA), fluorinated ethylene propylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE) and ceramic materials at least one of them is used as the internal surface material.

在某些实施方案中,构造步骤包括由多层材料形成所述壳体,例如,其中由多层材料形成壳体包括将可焊接材料设置在壳体的外部上。In certain embodiments, the constructing step includes forming the housing from multiple layers of material, eg, wherein forming the housing from multiple layers of material includes disposing a weldable material on the exterior of the housing.

在某些实施方案中,构造步骤包括为壳体制造盖和本体中至少之一。制造步骤可以包括将包含绝缘体和绝缘于壳体的电极的密封件设置在壳体中。此外,设置密封件可包括设置玻璃-金属密封件,例如,焊接玻璃-金属密封件至壳体的外表面。在具体实施方案中,设置密封件包括设置半球形密封件。In certain embodiments, the constructing step includes fabricating at least one of a cover and a body for the housing. The manufacturing step may include disposing a seal including an insulator and an electrode insulated from the housing in the housing. Additionally, providing the seal may include providing a glass-to-metal seal, eg, welding the glass-to-metal seal to an outer surface of the housing. In particular embodiments, disposing the seal includes disposing a hemispherical seal.

在某些实施方案中,构造步骤包括将填充端口设置在壳体中以用于填充。In certain embodiments, the constructing step includes disposing a fill port in the housing for filling.

在某些实施方案中,制造方法还可以包括制造能量储存单元,例如,通过连接能量储存介质与集电器来获得电极;例如,将至少一根引线连接至电极。在某些实施方案中,将至少一根引线连接至所述电极包括将至少一个参考标记布置到电极上。在某些实施方案中,将至少一根引线连接至电极包括将每根引线定位于各参考标记。在某些实施方案中,连接至少一根引线包括从集电器清除能量储存介质。在某些实施方案中,连接至少一根引线包括将引线超声焊接至集电器。In certain embodiments, the fabrication method may further include fabricating an energy storage unit, eg, by connecting an energy storage medium and a current collector to obtain an electrode; eg, connecting at least one lead to the electrode. In certain embodiments, connecting at least one lead to the electrode includes disposing at least one reference mark on the electrode. In certain embodiments, connecting the at least one lead to the electrode includes positioning each lead at a respective reference mark. In certain embodiments, connecting the at least one lead includes scavenging the energy storage medium from the current collector. In certain embodiments, connecting the at least one lead includes ultrasonically welding the lead to the current collector.

电极也可以通过连接多个由连接能量储存介质与集电器制造的电极元件来获得。多个电极元件可以通过将连接元件超声焊接至一个电极元件的集电器和另一个电极元件的集电器来连接。The electrodes can also be obtained by connecting a plurality of electrode elements made by connecting the energy storage medium and the current collector. A plurality of electrode elements may be connected by ultrasonically welding connecting elements to the current collector of one electrode element and the current collector of the other electrode element.

在某些实施方案中,制造能量存储单元包括将隔离器设置在至少两个电极之间。并且还可以包括将电极中的每一个与隔离器对齐。In certain embodiments, fabricating the energy storage cell includes disposing a separator between at least two electrodes. And can also include aligning each of the electrodes with the separator.

在某些实施方案中,制造能量储存单元包括封装至少两个电极与设置于其间的隔离器,例如,其中所述封装包括将储存单元卷成卷制的储存单元。In certain embodiments, fabricating the energy storage unit includes encapsulating at least two electrodes with a separator disposed therebetween, eg, wherein the encapsulation includes rolling the storage unit into a rolled storage unit.

在某些实施方案中,制造能量存储单元包括将包裹件设置在储存单元上。In certain embodiments, manufacturing the energy storage unit includes disposing a wrap over the storage unit.

在某些实施方案中,设置能量储存单元包括将多根引线集合在一起以提供端子,例如,其中将多根引线集合在一起包括将引线一起对齐成为一组经对齐的引线以形成端子。在特定实施方案中,该方法还包括将包裹件布置在一组经对齐的引线的周围;对一组经对齐的引线进行折叠,或者耦接一组经对齐的引线至壳体的接触件。此外,耦接可以包括焊接一组经对齐的引线至接触件,或者焊接一组经对齐的引线至跨接线和桥接器之一用于耦接至壳体的接触件。In certain embodiments, disposing the energy storage cell includes bringing together a plurality of leads to provide a terminal, eg, wherein bringing the plurality of leads together includes aligning the leads together into a set of aligned leads to form a terminal. In certain embodiments, the method further includes disposing a wrapper around the set of aligned leads; folding the set of aligned leads, or coupling the set of aligned leads to contacts of the housing. Additionally, coupling may include soldering a set of aligned leads to the contacts, or soldering a set of aligned leads to one of a jumper and a bridge for coupling to the contacts of the housing.

在某些实施方案中,制造方法还可以包括电耦接跨接线与桥接器中至少之一至壳体的接触件。在具体实施方案中,其还可以包括基本上将绝缘材料设置在壳体内部上的接触件上。In certain embodiments, the manufacturing method may further include electrically coupling at least one of the jumper wire and the bridge to the contacts of the housing. In particular embodiments, it may also include substantially disposing insulating material on the contacts on the interior of the housing.

在某些实施方案中,制造方法还可以包括将能量储存单元气密地密封在壳体内,例如,其中气密地密封包括将壳体的部件脉冲焊接、激光焊接、电阻焊接以及TIG焊接在一起中的至少之一。In certain embodiments, the manufacturing method may further include hermetically sealing the energy storage unit within the housing, for example, wherein the hermetically sealing includes pulse welding, laser welding, resistance welding, and TIG welding together components of the housing at least one of them.

在某些实施方案中,制造方法还可以包括将至少一个盖与本体匹配以提供壳体,例如,其中盖包括凹盖、凸盖以及平盖中之一。在具体实施方案中,该方法还可以包括去除所述壳体内多层材料的至少一部分以提供匹配。In certain embodiments, the manufacturing method may further include mating at least one cover with the body to provide a housing, eg, wherein the cover includes one of a female cover, a male cover, and a flat cover. In particular embodiments, the method may further include removing at least a portion of the multilayer material within the housing to provide a match.

在某些实施方案中,制造方法还可以包括纯化AES。In certain embodiments, the method of manufacture may further comprise purifying the AES.

在某些实施方案中,制造方法还可以包括将填充端口设置在壳体内以用于填充,例如,其中填充包括将AES经填充端口设置在壳体中。在具体实施方案中,该方法还包括在完成填充之后密封填充端口,例如,将可相容的材料配合到填充端口中。在另一步骤中,可以接着将这样的材料焊接至壳体。In certain embodiments, the method of manufacture may further include disposing a fill port within the housing for filling, eg, wherein filling includes disposing an AES via fill port in the housing. In particular embodiments, the method further includes sealing the fill port after completing the filling, eg, fitting a compatible material into the fill port. In another step, such material may then be welded to the housing.

在某些实施方案中,填充步骤包括在填充端口上对壳体抽真空,例如,其中真空低于约150毫托,例如,其中真空低于约40毫托。In certain embodiments, the filling step includes evacuating the housing at the filling port, eg, wherein the vacuum is less than about 150 mTorr, eg, wherein the vacuum is less than about 40 mTorr.

在某些实施方案中,在基本上惰性的环境中进行填充步骤。In certain embodiments, the packing step is performed in a substantially inert environment.

i.制造技术i. Manufacturing Technology

此外,应认识到,可能需要某些牢固的组装技术来提供高效的能量储存器。因此,现在讨论了用于组装的一些技术。Furthermore, it should be recognized that certain robust assembly techniques may be required to provide efficient energy storage. Therefore, some techniques for assembly are now discussed.

一旦制造了超级电容器10,即可将其用于具有很少漏电流或没有漏电流和电阻很少升高的高温应用中。本文所述的超级电容器10可以高效地在约-40摄氏度至约210摄氏度的温度下操作,其中漏电流在整个工作电压和温度范围下在装置的低于10安培/升(A/L)体积的装置体积中归一化。在某些实施方案中,电容器可在跨-40摄氏度至210摄氏度的温度下操作。Once the ultracapacitor 10 is fabricated, it can be used in high temperature applications with little or no leakage current and little resistance rise. The ultracapacitors 10 described herein can operate efficiently at temperatures from about -40 degrees Celsius to about 210 degrees Celsius with leakage currents below 10 ampere per liter (A/L) volume of the device over the entire operating voltage and temperature range normalized to the device volume. In certain embodiments, the capacitors may operate at temperatures ranging from -40 degrees Celsius to 210 degrees Celsius.

作为概述,提供了组装圆柱形状的超级电容器10的方法。以电极3开始,一旦将能量储存介质1与集电器2相连,即制造了每个电极3。然后在适当的位置处将多根引线耦接至每个电极3。然后定向多个电极3并用合适数目的隔离器5组装于其间以形成储存单元12。然后,可将储存单元12卷成圆柱,并用包裹件固定。一般而言,然后捆绑引线中相应的引线以形成各端子8。As an overview, a method of assembling a cylindrically shaped supercapacitor 10 is provided. Starting with electrodes 3, each electrode 3 is fabricated once the energy storage medium 1 is connected to the current collector 2. Multiple leads are then coupled to each electrode 3 at appropriate locations. The plurality of electrodes 3 are then oriented and assembled therebetween with an appropriate number of spacers 5 to form the storage cell 12 . The storage unit 12 can then be rolled into a cylinder and secured with wraps. In general, corresponding ones of the leads are then bundled to form each terminal 8 .

在将电解质6(即,本发明的先进的电解质体系)结合到超级电容器10之前(例如,在组装储存单元12之前或之后),可以干燥超级电容器10的各个部件以除去水分。这可以对未组装的部件(即,空壳体7以及每个电极3和每个隔离器5)进行,然后对经组装的部件(例如储存单元12)进行。Before incorporating the electrolyte 6 (ie, the advanced electrolyte system of the present invention) into the ultracapacitor 10 (eg, before or after assembling the storage cell 12 ), the various components of the ultracapacitor 10 may be dried to remove moisture. This can be done on the unassembled parts (ie the empty casing 7 and each electrode 3 and each separator 5) and then on the assembled parts (eg the storage unit 12).

干燥可以例如在真空环境中在升高的温度下进行。一旦进行了干燥,然后即可将储存单元12封装在壳体7中,而不最终密封或加盖。在一些实施方案中,封装在具有低于50份/百万份(ppm)的水的气氛中进行。然后可再次干燥未加盖的超级电容器10。例如,可以在约100摄氏度至约300摄氏度的温度范围在真空下干燥超级电容器10。一旦完成该最终干燥,即可随后将壳体7密封在例如具有低于50ppm的水分的气氛中。Drying can be carried out, for example, in a vacuum environment at elevated temperature. Once dried, the storage unit 12 can then be enclosed in the housing 7 without final sealing or capping. In some embodiments, the encapsulation is performed in an atmosphere having less than 50 parts per million (ppm) water. The uncovered supercapacitor 10 can then be dried again. For example, the ultracapacitor 10 may be dried under vacuum at a temperature ranging from about 100 degrees Celsius to about 300 degrees Celsius. Once this final drying has been completed, the housing 7 can then be sealed in an atmosphere having, for example, less than 50 ppm moisture.

在一些实施方案中,一旦完成了干燥过程(也可将其称为“烘烤”过程),即可用惰性气体填充部件周围的环境。示例性气体包括氩、氮、氦以及表现出类似性质的其他气体(及其组合)。In some embodiments, once the drying process (which may also be referred to as a "baking" process) is complete, the environment surrounding the part may be filled with an inert gas. Exemplary gases include argon, nitrogen, helium, and other gases (and combinations thereof) that exhibit similar properties.

一般而言,填充端口(壳体7表面中的穿孔)包括在壳体7中,或者可以后来添加。一旦超级电容器10已填充有电解质6(即,本发明的先进的电解质体系),填充端口即可闭合。闭合填充端口可以例如通过将材料(例如,与壳体7可相容的金属)焊接入填充端口或焊接在填充端口之上来完成。在一些实施方案中,填充端口可以在填充之前暂时闭合,使得可以将超级电容器10移到另一环境中,用于后续再开放、填充和闭合。但是,如本文所讨论的,认为在相同的环境中干燥和填充超级电容器10。Generally, fill ports (perforations in the surface of the housing 7) are included in the housing 7 or can be added later. Once the ultracapacitor 10 has been filled with the electrolyte 6 (ie, the advanced electrolyte system of the present invention), the fill port can be closed. Closing the fill port can be accomplished, for example, by welding a material (eg, a metal compatible with the housing 7) into or over the fill port. In some embodiments, the fill port can be temporarily closed prior to filling, so that the ultracapacitor 10 can be moved to another environment for subsequent reopening, filling, and closing. However, as discussed herein, it is believed that the supercapacitor 10 is dried and filled in the same environment.

可以使用许多方法来用期望量的先进的电解质体系的填充壳体7。一般而言,对填充工艺的控制可以提供电容的提高、等效串联电阻(ESR)的降低、以及电解质的有限浪费等。提供了真空填充方法作为用于用电解质6填充壳体7和润湿储存单元12的技术的一个非限制性实例。A number of methods can be used to fill the housing 7 with the desired amount of advanced electrolyte system. In general, control of the filling process can provide increased capacitance, reduced equivalent series resistance (ESR), limited waste of electrolyte, and the like. The vacuum filling method is provided as one non-limiting example of a technique for filling the housing 7 and wetting the storage cell 12 with electrolyte 6 .

然而,首先应注意可以进行测量以确保可能污染超级电容器10的部件的任何材料都是干净的、可相容的和干燥的。作为惯例,可以认为实行“良好的卫生”以确保组装过程和部件不向超级电容器10中引入污染物。However, it should first be noted that measurements can be made to ensure that any materials that may contaminate components of the ultracapacitor 10 are clean, compatible and dry. As a general rule, "good hygiene" can be considered to be practiced to ensure that the assembly process and components do not introduce contaminants into the ultracapacitor 10 .

在“真空法”下,将容器布置在壳体7上填充端口周围。然后将一定量的电解质6(即,本发明的先进的电解质体系)在基本上不含氧和水(即,水分)的环境中放置在容器中。然后在该环境中抽真空,从而从壳体抽出任何空气,并从而同时将电解质6抽入壳体7中。然后如果需要的话,可以用惰性气体(例如氩、氮等,或惰性气体的一些组合)再填充周围环境。可以检查超级电容器10以查看是否抽入了期望量的电解质6。可以根据需要重复该过程,直至在超级电容器10中有期望量的电解质6。Under the "vacuum method", the container is arranged on the housing 7 around the filling port. A quantity of electrolyte 6 (ie, the advanced electrolyte system of the present invention) is then placed in the container in an environment substantially free of oxygen and water (ie, moisture). A vacuum is then drawn in this environment, drawing out any air from the casing and thereby drawing the electrolyte 6 into the casing 7 at the same time. The surrounding environment can then be refilled with an inert gas (eg, argon, nitrogen, etc., or some combination of inert gases) if desired. The ultracapacitor 10 can be checked to see if the desired amount of electrolyte 6 has been drawn in. This process can be repeated as needed until the desired amount of electrolyte 6 is in the supercapacitor 10 .

在一些实施方案中,在填充电解质6(即,本发明的先进的电解质体系)之后,可以使材料配合至填充端口以密封超级电容器10。例如,该材料可以是与壳体7和电解质6可相容的金属。在一个实施例中,将材料压配合(force fit)入填充端口,在填充端口中主要进行塞子的“冷焊”。在具体实施方案中,如本文中进一步讨论的,压配合可以辅以其他焊接技术。In some embodiments, after filling the electrolyte 6 (ie, the advanced electrolyte system of the present invention), the material may be fitted to the fill port to seal the supercapacitor 10 . For example, the material may be a metal compatible with the casing 7 and the electrolyte 6 . In one embodiment, the material is force fit into the fill port in which "cold welding" of the plug is primarily performed. In specific embodiments, as discussed further herein, the press fit may be supplemented by other welding techniques.

一般而言,壳体的组装常涉及将储存单元12布置在本体20内并用先进的电解质体系填充本体20。可以进行另一干燥过程。示例性干燥包括通常在减压(例如,真空)下,加热具有储存单元12和其中的先进的电解质体系的本体20。一旦进行了充分(任选的)干燥,即可进行最终组装步骤。在最终步骤中,制造内部电连接,安装盖24,并且通过例如将盖24焊接至本体20来利用盖24气密地密封本体20。In general, assembly of the housing often involves disposing the storage unit 12 within the body 20 and filling the body 20 with an advanced electrolyte system. Another drying process can be performed. Exemplary drying includes heating the body 20 with the storage unit 12 and the advanced electrolyte system therein, typically under reduced pressure (eg, vacuum). Once sufficient (optional) drying has taken place, the final assembly step can be performed. In a final step, the internal electrical connections are made, the cover 24 is installed, and the body 20 is hermetically sealed with the cover 24 , eg by welding the cover 24 to the body 20 .

在一些实施方案中,壳体7和盖24中至少之一制造成包括含有多个层的材料。例如,第一材料层可包括铝,第二材料层为不锈钢。在该实施例中,不锈钢包覆到铝上,从而提供表现出期望的冶金性质的组合的材料。也就是说,在本文所提供的实施方案中,铝暴露于能量储存单元(即,壳体)的内部,而不锈钢暴露于外部。以这种方式,享有铝的有利电性质,同时依赖于不锈钢的结构性质(和冶金性质,即可焊接性)来构造。在认为适当时,多层材料可包括额外的层。有利地,这提供将不锈钢焊接至不锈钢这种相对简单的焊接工艺。In some embodiments, at least one of housing 7 and cover 24 is fabricated to include a material that includes multiple layers. For example, the first material layer may comprise aluminum and the second material layer is stainless steel. In this example, stainless steel is clad to aluminum to provide a material that exhibits the desired combination of metallurgical properties. That is, in the embodiments provided herein, the aluminum is exposed to the interior of the energy storage unit (ie, the housing), while the stainless steel is exposed to the exterior. In this way, the advantageous electrical properties of aluminum are enjoyed while relying on the structural properties (and metallurgical properties, ie weldability) of stainless steel for construction. The multilayer material may include additional layers as deemed appropriate. Advantageously, this provides a relatively simple welding process for welding stainless steel to stainless steel.

当用于构造本体20的材料包括铝时、设计者或制造者认为任意类型的铝或铝合金都是合适的(其全部在本文中广义地简称为“铝”)。可以将各种合金、层合体等设置(例如,包覆)在铝(暴露于本体20内部的铝)之上。可以使用额外的材料(例如结构材料或电绝缘材料,例如一些基于聚合物的材料)来补充本体和/或壳体7。设置在铝之上的材料同样可通过设计者或制造者认为合适的来选择。When the material used to construct the body 20 includes aluminum, any type of aluminum or aluminum alloy deemed suitable by the designer or manufacturer (all of which are broadly referred to herein as "aluminum") is suitable. Various alloys, laminates, etc. may be provided (eg, clad) over the aluminum (the aluminum exposed inside the body 20). The body and/or housing 7 may be supplemented with additional materials such as structural materials or electrically insulating materials such as some polymer based materials. The material provided over the aluminium can likewise be chosen as the designer or manufacturer sees fit.

铝的使用不是必然的或必需的。简言之,可以提供材料的选择以使用设计者、制造者或使用者等认为合适的任何材料。可以考虑多种因素,例如与电解质6的电化学相互作用的减少、结构性质、成本等。The use of aluminum is not necessary or required. In short, a choice of materials can be provided to use any material deemed appropriate by the designer, manufacturer, user, or the like. Various factors can be considered, such as reduction of electrochemical interaction with electrolyte 6, structural properties, cost, etc.

表现较小体积的超级电容器10的实施方案可以以棱柱状形式因子制造,使得超级电容器10的电极3彼此相对,至少一个电极3与玻璃-金属密封件内部接触,另一个电极与外壳或玻璃-金属密封件内部接触。Embodiments of the supercapacitor 10 exhibiting a smaller volume can be fabricated in a prismatic form factor such that the electrodes 3 of the supercapacitor 10 face each other, at least one electrode 3 is in contact with the interior of the glass-to-metal seal, and the other electrode is in contact with the housing or glass- Internal contact of metal seals.

可以通过将若干储存单元(例如将若干胶状卷焊接在一起)组合在一个壳体7中使得其电并联或串联来扩大特定超级电容器10的体积。The volume of a particular ultracapacitor 10 can be enlarged by combining several storage units (eg, several jelly rolls welded together) in one housing 7 so that they are electrically parallel or connected in series.

在许多个实施方案中,有用的是一起使用多个超级电容器10来提供电源。为了提供可靠的操作,可以在使用之前对各个超级电容器10进行测试。为了进行各种类型的测试,每个超级电容器10可作为单一的单元、与所附接的多个超级电容器10串联或并联测试。使用通过多种技术(例如通过焊接)连接的不同金属可降低连接的ESR以及提高连接的强度。现在介绍超级电容器10之间的连接的各方面。In many embodiments, it is useful to use multiple ultracapacitors 10 together to provide power. To provide reliable operation, individual ultracapacitors 10 may be tested prior to use. To perform various types of testing, each ultracapacitor 10 may be tested as a single unit, in series or in parallel with multiple ultracapacitors 10 attached. The use of dissimilar metals joined by various techniques, such as by welding, can reduce the ESR of the join and increase the strength of the join. Aspects of the connection between ultracapacitors 10 are now described.

在一些实施方案中,超级电容器10包括两个接触件。这两个接触件是玻璃-金属密封件引脚(即,馈通件19)和壳体7的整个剩余部分。当串联连接多个超级电容器10时,常常期望耦接壳体7底部之间的互连体(在圆柱形壳体7的情况下),使得到内部引线的距离最小化,因此具有最小电阻。在这些实施方案中,互连体的相对端常常耦接至玻璃-金属密封件的引脚。In some embodiments, the ultracapacitor 10 includes two contacts. These two contacts are the glass-to-metal seal pins (ie, the feedthrough 19 ) and the entire remainder of the housing 7 . When connecting multiple ultracapacitors 10 in series, it is often desirable to couple the interconnect between the bottoms of the casing 7 (in the case of the cylindrical casing 7 ) so that the distance to the inner leads is minimized, and therefore the resistance. In these embodiments, the opposite ends of the interconnect are often coupled to the pins of the glass-to-metal seal.

就互连体而言,常见的焊接类型涉及使用并联的尖端电阻焊机。焊接可以通过对齐引脚之上互连体的末端和直接焊接互连体至引脚来制造。使用多个焊接件将提高互连体与引脚之间的强度和连接。一般而言,当焊接至引脚时,设定互连体的末端形状以良好地匹配引脚,以确保基本上没有交叠在引脚的会导致短路的过量材料。For interconnects, a common type of welding involves the use of parallel tip resistance welders. Soldering can be made by aligning the ends of the interconnects over the pins and soldering the interconnects directly to the pins. Using multiple solder joints will improve the strength and connection between the interconnect and the pin. In general, when soldering to the pins, the ends of the interconnects are shaped to match the pins well to ensure that there is substantially no excess material overlying the pins that could cause a short circuit.

可以使用相对的尖端电阻焊机来将互连件焊接至引脚,同时可以使用超声焊机来焊接互连件与壳体7的底部。当所包含金属可相容时,可以使用钎焊技术。An opposing tip resistance welder can be used to weld the interconnect to the pins, while an ultrasonic welder can be used to weld the interconnect to the bottom of the housing 7 . Brazing techniques can be used when the included metals are compatible.

就互连体中使用的材料而言,用于互连体的常见类型的材料是镍。由于镍与不锈钢焊接良好并具有坚固的界面,所以可以使用镍。可以使用其他金属和合金来代替镍,例如以降低互连体中的电阻。In terms of materials used in interconnects, a common type of material for interconnects is nickel. Nickel can be used because it welds well to stainless steel and has a strong interface. Other metals and alloys can be used in place of nickel, for example, to reduce resistance in interconnects.

一般而言,所选用于互连体的材料因其与引脚中的材料以及壳体7中的材料的相容性来选择。示例性的材料包括铜、镍、钽、铝和镍铜包层。可以使用的其他金属包括银、金、黄铜、铂和锡。In general, the material chosen for the interconnect is chosen for its compatibility with the material in the pins and with the material in the housing 7 . Exemplary materials include copper, nickel, tantalum, aluminum, and nickel copper cladding. Other metals that can be used include silver, gold, brass, platinum and tin.

在一些实施方案中,例如其中引脚(即,馈通件19)由钽制成的情况中,互连体可利用中间金属,例如通过采用短桥接器连接。一种示例性桥接器连接包括钽条,其已通过使用相对的尖端电阻焊机来焊接铝/铜/镍条至桥接器来改进。然后,使用并联电阻焊机来焊接钽条至钽引脚。In some embodiments, such as where the pins (ie, feedthroughs 19 ) are made of tantalum, the interconnects may be connected using an intermediate metal, such as by employing short bridges. An exemplary bridge connection includes tantalum strips, which have been improved by welding aluminum/copper/nickel strips to the bridge using an opposing tip resistance welder. Then, use a parallel resistance welder to solder the tantalum bars to the tantalum pins.

该桥接器还可用在壳体7的接触件上。例如,可以将一片镍电阻焊接至壳体7的底部。然后可以将铜条超声焊接至镍桥接器。该技术有助于降低单元互连体的电阻。使用不同金属用于每个连接可降低串联单元之间互连体的ESR。The bridge can also be used on the contacts of the housing 7 . For example, a piece of nickel can be resistance welded to the bottom of the housing 7 . The copper bars can then be ultrasonically welded to the nickel bridges. This technique helps reduce the resistance of cell interconnects. Using a different metal for each connection can reduce the ESR of the interconnect between series cells.

由此已描述了可用于高温环境(即,高至约210摄氏度)的稳健的超级电容器10的各个方面,现在提供和/或定义一些其他方面。Having thus described various aspects of a robust ultracapacitor 10 useful in high temperature environments (ie, up to about 210 degrees Celsius), some additional aspects are now provided and/or defined.

许多种材料可用于构建超级电容器10。如果要排出氧和水分并且要防止电解质6逸出,则超级电容器10的完整性是必要的。为了实现这一点,缝焊和任何其他密封点应满足在用于操作的预期温度范围下的气密性标准。此外,所选材料应与其他材料相容,所述材料例如可用于配制先进的电解质体系的离子液体和溶剂。A wide variety of materials can be used to construct supercapacitors 10 . The integrity of the supercapacitor 10 is necessary if oxygen and moisture are to be vented and the electrolyte 6 is to be prevented from escaping. To achieve this, seam welds and any other sealing points should meet air tightness standards over the expected temperature range for operation. Furthermore, the selected materials should be compatible with other materials such as ionic liquids and solvents that can be used to formulate advanced electrolyte systems.

在一些实施方案中,馈通件19由金属形成,所述金属例如以下材料中的至少之一:KOVARTM(Carpenter Technology Corporation of Reading,Pennsylvania的一个商标,其中KOVAR是真空熔融的、铁-镍-钴、低膨胀合金,其化学组成控制在窄界限中以确保精确均一的热膨胀性质)、合金52(适用于将玻璃和陶瓷密封至金属的镍铁合金)、钽、钼、铌、钨、不锈钢446(对高温腐蚀和氧化提供良好耐受的铁素体、不可热处理的不锈钢)以及钛。In some embodiments, the feedthrough 19 is formed of a metal, such as at least one of the following materials: KOVAR (a trademark of the Carpenter Technology Corporation of Reading, Pennsylvania, where KOVAR is a vacuum-fused, iron-nickel - Cobalt, low expansion alloy whose chemical composition is controlled within narrow boundaries to ensure precise and uniform thermal expansion properties), Alloy 52 (a nickel-iron alloy suitable for sealing glass and ceramics to metal), tantalum, molybdenum, niobium, tungsten, stainless steel 446 (ferritic, non-heat treatable stainless steel that provides good resistance to high temperature corrosion and oxidation) and titanium.

利用前述的玻璃-金属密封件本体可由300系列不锈钢(例如304、304L、316以及316合金)制成。所述本体还可由金属例如以下中的至少之一制成:多种镍合金,例如因科内尔铬镍铁合金(Inconel)(奥氏体镍铬基超合金家族,其为良好适用于经历压力和热的极端环境的耐氧化和耐腐蚀的材料)和哈氏合金(Hastelloy)(高度耐腐蚀的金属合金,其包括镍和不同百分比的钼、铬、钴、铁、铜、锰、钛、锆、铝、碳和钨)。The body can be made of 300 series stainless steel (eg, 304, 304L, 316, and 316 alloys) using the aforementioned glass-to-metal seal. The body may also be made of metals such as at least one of various nickel alloys, such as Inconel (a family of austenitic nickel-chromium-based superalloys, which are well suited for experiencing stress) Oxidation and corrosion resistant materials for extreme environments of heat and heat) and Hastelloy (highly corrosion resistant metal alloys consisting of nickel and varying percentages of molybdenum, chromium, cobalt, iron, copper, manganese, titanium, zirconium, aluminium, carbon and tungsten).

处于玻璃-金属密封件中的馈通件19与周围本体之间的绝缘材料通常是玻璃,其组成为密封件的各制造商所有,并且取决于密封件是否在加压下或者是否匹配。其他绝缘材料可用在玻璃-金属密封件中。例如,多种聚合物可用在密封件中。因此,术语“玻璃-金属”密封件只是密封类型的描述,并无意于暗示密封件必须包括玻璃。The insulating material between the feedthrough 19 in the glass-to-metal seal and the surrounding body is typically glass, the composition of which is owned by each manufacturer of the seal and depends on whether the seal is under pressure or matched. Other insulating materials can be used in glass-to-metal seals. For example, a variety of polymers can be used in seals. Thus, the term "glass-to-metal" seal is merely a description of the type of seal and is not intended to imply that the seal must include glass.

超级电容器10的壳体7可由例如类型304、304L、316以及316L不锈钢制成。它们还可以构造自一些铝合金,例如1100、3003、5052、4043和6061,但不限于此。可以使用多种多层材料,并且可包括例如包覆至不锈钢的铝。可使用的其他非限制性可相容的金属包括铂、金、铑、钌以及银。The housing 7 of the ultracapacitor 10 may be made of, for example, types 304, 304L, 316 and 316L stainless steel. They can also be constructed from some aluminum alloys such as, but not limited to, 1100, 3003, 5052, 4043, and 6061. A variety of multilayer materials can be used, and can include, for example, aluminum clad to stainless steel. Other non-limiting compatible metals that can be used include platinum, gold, rhodium, ruthenium, and silver.

已用在超级电容器10中的玻璃-金属密封件的特定实施例包括两种不同类型的玻璃-金属密封件。第一种来自US位于美国纽约州埃尔姆斯福德(Elmsford,NY)的SCHOTT。该实施方案使用不锈钢引脚、玻璃绝缘体以及不锈钢本体。第二玻璃-金属密封件来自俄亥俄州辛辛那提(Cincinnatti,OH)的HERMETIC SEAL TECHNOLOGY。该第二实施方案采用钽引脚、玻璃绝缘体和不锈钢本体。可以提供不同大小的许多个实施方案。Particular embodiments of glass-to-metal seals that have been used in supercapacitors 10 include two different types of glass-to-metal seals. The first is from US SCHOTT in Elmsford, NY, USA. This embodiment uses stainless steel pins, glass insulators, and stainless steel bodies. The second glass-to-metal seal was from HERMETIC SEAL TECHNOLOGY of Cincinnatti, OH. This second embodiment employs tantalum leads, glass insulators, and stainless steel bodies. Numerous embodiments of different sizes may be provided.

玻璃-金属密封件的另外的实施方案包括使用铝密封件和铝本体的实施方案。而玻璃-金属密封件的另一个实施方案包括使用环氧化物或其他绝缘材料(例如陶瓷或硅)的铝密封件。Additional embodiments of glass-to-metal seals include embodiments using an aluminum seal and an aluminum body. Yet another embodiment of the glass-to-metal seal includes aluminum seals using epoxy or other insulating materials such as ceramic or silicon.

玻璃-金属密封件的许多个方面可以根据需要来配置。例如,壳体和引脚的尺寸、引脚和壳体的材料可以根据需要而改变。该引脚还可以是管或实心引脚,以及在一个覆盖物中具有多个引脚。虽然用于引脚的最常见类型的材料是不锈钢合金、铜芯不锈钢、钼、铂-铱、各种镍-铁合金、钽和其他金属,但可以使用一些非常规材料(例如铝)。壳体通常由不锈钢、钛和/或各种其他材料形成。Many aspects of the glass-to-metal seal can be configured as desired. For example, the dimensions of the housing and pins, and the materials of the pins and housing can vary as desired. The pin can also be a tube or solid pin, as well as having multiple pins in one cover. While the most common types of materials used for pins are stainless steel alloys, copper core stainless steel, molybdenum, platinum-iridium, various nickel-iron alloys, tantalum, and other metals, some unconventional materials such as aluminum can be used. Housings are typically formed from stainless steel, titanium, and/or various other materials.

各种紧固技术可用于超级电容器10的组合中。例如,就焊接而言,可以使用多种焊接技术。下述是焊接类型的示例性列表并且可以使用每种类型的焊接的多种目的。Various fastening techniques may be used in the combination of ultracapacitors 10 . For example, in the case of welding, a variety of welding techniques can be used. The following is an exemplary list of weld types and the various purposes for which each type of weld can be used.

超声焊接可用于:焊接铝接片至集电器;焊接接片至底部包覆覆盖物;焊接跨接线接片至连接至玻璃-金属密封件引脚的包覆桥接器;以及将胶装卷条焊接在一起等。脉冲或电阻焊接可用于:焊接引线至容器的底部或者至引脚;焊接引线至集电器;焊接跨接线至包覆桥接器;焊接包覆桥接器至端子8;焊接引线至底部覆盖物等。激光焊接可用于:焊接不锈钢覆盖物至不锈钢容器;焊接不锈钢桥接器至不锈钢玻璃-金属密封件引脚;以及焊接塞子至填充端口等。TIG焊接可用于:密封铝覆盖物至铝容器;和焊接铝密封件进入位置等。冷焊接(用很高的力将金属压在一起)可用于通过将铝球/钉力压配合入填充端口来密封填充端口等。Ultrasonic welding can be used to: solder aluminum tabs to current collectors; solder tabs to bottom cladding; solder jumper tabs to cladding bridges connected to glass-to-metal seal pins; Welded together etc. Pulse or resistance welding can be used to: solder leads to the bottom of the vessel or to pins; solder leads to current collectors; solder jumpers to clad bridges; solder clad bridges to terminal 8; solder leads to bottom cover, etc. Laser welding can be used to: weld stainless steel covers to stainless steel vessels; weld stainless steel bridges to stainless steel glass-to-metal seal pins; and weld stoppers to fill ports, etc. TIG welding can be used to: seal aluminum covers to aluminum containers; and weld aluminum seals into locations, etc. Cold welding (pressing metals together with very high force) can be used to seal fill ports etc. by force-fitting an aluminum ball/pin into the fill port.

ii.制造的某些有利实施方案ii. Certain advantageous embodiments of manufacture

本文下面提供某些有利实施方案,其并非旨在进行限制。Certain advantageous embodiments are provided herein below, which are not intended to be limiting.

在一个具体实施方案中,并且参照图29,示出了示例性电极3的部件。在该实施例中,电极3将用作负电极3(但是,该指定是任意的并且只用于参考)。In a specific embodiment, and referring to Figure 29, the components of an exemplary electrode 3 are shown. In this embodiment, electrode 3 will be used as negative electrode 3 (however, this designation is arbitrary and for reference only).

如从说明中可注意到的,至少在该实施方案中,隔离器5一般比能量储存介质1(和集电器2)的长度更长并且宽度更宽。通过使用较大的隔离器5,提供了防止负电极3与正电极3的短路的保护。隔离器5中附加材料的使用还为引线和端子8提供了更好的电保护。As can be noted from the description, at least in this embodiment, the isolator 5 is generally longer in length and wider in width than the energy storage medium 1 (and current collector 2). By using the larger separator 5, protection against short circuit of the negative electrode 3 and the positive electrode 3 is provided. The use of additional material in isolator 5 also provides better electrical protection for leads and terminals 8 .

现在参照图30,其提供储存单元12的一个实施方案的侧视图。在该实施例中,分层堆叠的能量储存介质1包括第一隔离器5和第二隔离器5,使得电极3在储存单元12组装成卷制的储存单元23时电隔离。应注意,就电极3和超级电容器10的组合件而言,术语“正”和“负”只是任意的,并且在配置在超级电容器10中并且在其中存储电荷时参考了功能性。通常适用于本领域的该惯例并不意味着在组装之前电荷已储存,或者意味着除提供不同电极的物理上的辨识以外的任何其他方面。Referring now to FIG. 30 , a side view of one embodiment of storage unit 12 is provided. In this embodiment, the layered stacked energy storage medium 1 includes a first separator 5 and a second separator 5 such that the electrodes 3 are electrically isolated when the storage unit 12 is assembled into a rolled storage unit 23 . It should be noted that the terms "positive" and "negative" are merely arbitrary with respect to the assembly of electrode 3 and ultracapacitor 10 and refer to functionality when configured in ultracapacitor 10 and storing charge therein. This convention, as generally applicable in the art, does not imply that charge is stored prior to assembly, or anything other than providing physical identification of the different electrodes.

在卷绕储存单元12之前,将负电极3和正电极3相对于彼此对齐。电极3的对齐为超级电容器10提供了更佳性能,这是因为在具有最高对齐程度时,用于离子传输的路径长度一般最小。此外,通过提供高的对齐程度,不将过大的隔离器5包括在内,并因此超级电容器10的效率不受损。Before winding the storage cell 12, the negative electrode 3 and the positive electrode 3 are aligned relative to each other. The alignment of the electrodes 3 provides better performance for the supercapacitor 10 because the path length for ion transport is generally the smallest with the highest degree of alignment. Furthermore, by providing a high degree of alignment, an oversized isolator 5 is not included, and thus the efficiency of the supercapacitor 10 is not compromised.

现在参照图31,示出了储存单元12的一个实施方案,其中电极3卷成卷制的储存单元23。隔离器5之一作为储存单元12的最外层存在并且将能量储存介质1与壳体7的内部分隔开。Referring now to FIG. 31 , one embodiment of the storage unit 12 is shown in which the electrodes 3 are rolled into a rolled storage unit 23 . One of the separators 5 is present as the outermost layer of the storage unit 12 and separates the energy storage medium 1 from the interior of the housing 7 .

可以采用“极性匹配”来匹配卷制的储存单元23中最外部电极的极性与本体20的极性。例如,在一些实施方案中,负电极3在提供卷制的储存单元23的紧密封装的封装件的最外侧上。在这些实施方案中,提供了预防短路的另一保障程度。也就是说,在负电极3耦接至本体20时,负电极3作为最外部电极布置在卷制的储存单元23中。因此,如果隔离器5失效(例如通过在使用期间由超级电容器10的振动引起的机械磨损引起),则超级电容器10将不会因卷制的储存单元23中的最外部电极与本体20之间的短路而失效。"Polarity matching" may be employed to match the polarity of the outermost electrodes in the rolled storage cell 23 with the polarity of the body 20 . For example, in some embodiments, the negative electrode 3 is on the outermost side of the tightly packed package that provides the rolled storage cell 23 . In these embodiments, another degree of assurance against short circuits is provided. That is, when the negative electrode 3 is coupled to the body 20 , the negative electrode 3 is arranged in the rolled storage unit 23 as the outermost electrode. Thus, if the isolator 5 fails (eg, caused by mechanical wear caused by vibration of the supercapacitor 10 during use), the supercapacitor 10 will not be damaged between the outermost electrodes in the rolled storage cell 23 and the body 20 short-circuit and fail.

对于卷制的储存单元23的每个实施方案,参考标记72至少可以在隔离器5中。参考标记72将用于提供将引线定位在每个电极3上。在一些实施方案中,通过计算提供了引线的定位。例如,通过考虑了胶状卷的内径和组合的隔离器5与电极3的总厚度,可以评估每根引线的放置位置。然而,实践显示,使用参考标记72更高效且更有效。参考标记72可包括例如隔离器5的边缘中的狭缝。For each embodiment of the rolled storage unit 23 , reference numeral 72 may be in at least the isolator 5 . Reference numeral 72 will be used to provide for the positioning of the leads on each electrode 3 . In some embodiments, the location of the leads is provided by calculation. For example, by taking into account the inner diameter of the jelly roll and the total thickness of the separator 5 and electrode 3 combined, the placement position of each lead can be evaluated. However, practice has shown that using the reference sign 72 is more efficient and effective. The reference mark 72 may comprise, for example, a slit in the edge of the isolator 5 .

一般而言,对储存单元12的每个新规格使用参考标记72。也就是说,因为储存单元12的新规格可能要求其中至少一个层的不同厚度(在现有实施方案中),所以现有参考标记的使用可能至少有些不准确。In general, reference numeral 72 is used for each new specification of storage unit 12 . That is, because new specifications for storage cell 12 may require a different thickness of at least one of the layers (in existing embodiments), the use of existing reference numerals may be at least somewhat inaccurate.

一般而言,参考标记72体现为从其中央穿过卷到达其周围的单一径向线。因此,当引线沿着参考标记72安装时,每根引线将与其余引线对齐(如图10所示)。然而,当储存单元12未卷制(其中储存单元12是卷或者将变成卷的实施方案)时,可认为参考标记72是多个标记(如图32所示)。作为惯例,不管储存单元12的标记的实施方案或外观为何,认为用于结合引线的位置的识别涉及“参考标记72”或“一组参考标记72”的确定。In general, reference numeral 72 is embodied as a single radial line from its center through the roll to its periphery. Thus, when the leads are mounted along reference mark 72, each lead will be aligned with the remaining leads (as shown in Figure 10). However, when the storage unit 12 is not rolled (an embodiment in which the storage unit 12 is a roll or will become a roll), the reference numeral 72 may be considered a plurality of marks (as shown in Figure 32). As a convention, regardless of the implementation or appearance of the markings of the storage unit 12, the identification of the locations for bonding leads is considered to involve the determination of a "reference mark 72" or a "set of reference marks 72."

现在参照图32,一旦建立了参考标记72(例如通过标记卷起的储存单元12),即提供了用于安装每根引线的安装位点(即,由参考标记72所描绘)。一旦确定了每个安装位点,对于储存单元12的任何给定的构造规格,每个安装位点的相对位置对于储存单元12的特定构造的另外的示例而言可重复。Referring now to FIG. 32, once reference numerals 72 are established (eg, by marking the rolled-up storage unit 12), mounting sites (ie, depicted by reference numerals 72) are provided for mounting each lead. Once each mounting site is determined, for any given construction specification of storage unit 12, the relative position of each mounting site may be repeated for additional instances of the particular construction of storage unit 12.

一般而言,每根引线耦接至储存单元12中的各集电器2。在一些实施方案中,集电器2和引线二者由铝制成。一般而言,引线耦接至集电器2跨越宽度W,然而引线可耦接宽度W的仅一部分。耦接可以通过例如将引线超声焊接至集电器2来实现。为了实现耦接,可以去除至少一些能量储存介质1(在适当时),使得每根引线适当地与集电器2相连。在认为适当时,可以进行其他准备和调整以提供耦接。In general, each lead is coupled to a respective current collector 2 in the storage unit 12 . In some embodiments, both the current collector 2 and the leads are made of aluminum. Generally, the leads are coupled to the current collector 2 across the width W, however the leads may be coupled to only a portion of the width W. Coupling can be achieved, for example, by ultrasonically welding the leads to the current collector 2 . To achieve the coupling, at least some of the energy storage medium 1 may be removed (where appropriate) so that each lead is properly connected to the current collector 2 . Other preparations and adjustments can be made to provide coupling as deemed appropriate.

在某些实施方案中,可以包括相对的参考标记73。也就是说,以与参考标记72相同的方式提供,可以制作一组相对的参考标记73以考虑用于相反极性的引线的安装。也就是说,参考标记72可用于安装引线至第一电极3,例如负电极3,同时相对的参考标记73可用于安装引线至正电极3。在其中卷制的储存单元23为圆柱形的实施方案中,相对的参考标记73设置在能量储存介质1的相对侧,并且从参考标记72纵向偏移(如所描绘的)。In certain embodiments, opposing reference numerals 73 may be included. That is, provided in the same manner as reference numerals 72, a set of opposing reference numerals 73 can be made to allow for installation of leads of opposite polarity. That is, the reference mark 72 may be used for attaching the lead to the first electrode 3 , eg, the negative electrode 3 , while the opposite reference mark 73 may be used for attaching the lead to the positive electrode 3 . In embodiments in which the rolled storage unit 23 is cylindrical, opposing reference marks 73 are provided on opposite sides of the energy storage medium 1 and are longitudinally offset from reference marks 72 (as depicted).

注意在图32中,参考标记72和相对的参考标记73二者都示出为设置在单电极3上。也就是说,图29描绘了只用于说明参考标记72与相对的参考标记73的空间(即,直线)关系的实施方案。这并非暗示正电极3与负电极3共有能量储存介质1。然而,应注意,在其中参考标记72和相对的参考标记73通过卷起储存单元12布置然后标记隔离器5的情况下,参考标记72和相对的参考标记73确实可提供在单一隔离器5上。然而,实际上,参考标记72和相对的参考标记73中只有一组可用于安装用于给定电极3的引线。也就是说,应认识到,图32所描绘的实施方案待利用另一个电极3(其将具有相反极性)的能量储存介质1的另一层来补充。Note that in FIG. 32 , both the reference numeral 72 and the opposite reference numeral 73 are shown as being provided on the single electrode 3 . That is, FIG. 29 depicts an embodiment only for illustrating the spatial (ie, linear) relationship of reference numeral 72 to opposing reference numeral 73 . This does not imply that the positive electrode 3 shares the energy storage medium 1 with the negative electrode 3 . However, it should be noted that in the case where the reference mark 72 and the opposite reference mark 73 are arranged by rolling up the storage unit 12 and then the isolator 5 is marked, the reference mark 72 and the opposite reference mark 73 may indeed be provided on a single isolator 5 . In practice, however, only one set of reference numerals 72 and opposite reference numerals 73 can be used to mount leads for a given electrode 3 . That is, it should be appreciated that the embodiment depicted in Figure 32 is to be supplemented with another layer of the energy storage medium 1 with another electrode 3 (which would have the opposite polarity).

如图33所示,前述组装技术得到包括至少一组对齐引线的储存单元12。当将卷制的储存单元23耦接至负极接触件55与正极接触件56之一时,第一组对齐的引线91是特别有用的,而一组相对的对齐引线92提供将能量储存介质1耦接至相对的接触件(55、56)。As shown in Figure 33, the aforementioned assembly techniques result in a memory cell 12 comprising at least one set of aligned leads. The first set of aligned leads 91 is particularly useful when coupling the rolled storage cell 23 to one of the negative contact 55 and the positive contact 56 , while the opposite set of aligned leads 92 provide for coupling the energy storage medium 1 Connected to opposite contacts (55, 56).

卷制的储存单元23可以由包裹件93包围。包裹件93可以在许多个实施方案中实现。例如,包裹件93可以提供为KAPTONTM带(其为由特拉华州威明顿的DuPont开发的聚酰亚胺膜)或PTFE带。在该实施例中,KAPTONTM带围绕并且粘附至卷制的储存单元23。包裹件93可提供为不含粘合剂,例如滑到卷制的储存单元23上的紧密配合的包裹件93。包裹件93可以更多地表现为袋,例如一般地卷入卷制的储存单元23(例如,上文中讨论的包封件73)的袋。在这些实施方案中的一些中,包裹件93可以包括用作收缩膜包装(shrink-wrap)的材料,从而提供卷制的储存单元23的高效的物理(在一些实施方案中,化学)包封。一般而言,包裹件93由不干扰超级电容器10之电化学功能的材料形成。例如,包裹件93还可以根据需要提供部分的覆盖,以有助于插入卷制的储存单元23。The rolled storage unit 23 may be surrounded by a wrap 93 . Wrapper 93 can be implemented in a number of embodiments. For example, wrap 93 may be provided as KAPTON tape (which is a polyimide film developed by DuPont of Wilmington, Delaware) or PTFE tape. In this embodiment, the KAPTON tape is wrapped around and adhered to the rolled storage unit 23 . The wrap 93 may be provided as an adhesive free, such as a snug fit wrap 93 that is slid onto the rolled storage unit 23 . The wrap 93 may be more represented as a bag, such as a bag generally rolled into a rolled storage unit 23 (eg, the envelope 73 discussed above). In some of these embodiments, the wrapper 93 may include a material for use as a shrink-wrap, thereby providing efficient physical (in some embodiments, chemical) encapsulation of the rolled storage unit 23 . Generally, the wrap 93 is formed from a material that does not interfere with the electrochemical function of the ultracapacitor 10 . For example, the wrap 93 may also provide partial coverage as desired to facilitate insertion of the rolled storage unit 23 .

在一些实施方案中,负极引线和正极引线位于卷制的储存单元23的相对侧(在胶状卷型卷制的储存单元23的情况下,负极性的引线和正极性的引线可以完全相对)。一般而言,进行将负极性的引线和正极性的引线布置在卷制的储存单元23的相对侧以有助于构造卷制的储存单元23以及提供改进的电隔离。In some embodiments, the negative and positive leads are located on opposite sides of the rolled storage unit 23 (in the case of a jelly roll type of rolled storage unit 23, the negative and positive leads may be diametrically opposed) . In general, arranging the negative and positive leads on opposite sides of the rolled storage cell 23 is done to facilitate construction of the rolled storage cell 23 and to provide improved electrical isolation.

在一些实施方案中,一旦组装了对齐的引线91、92,即将多个对齐的引线91、92中的每一个绑在一起(原位),使得收缩膜包装(未示出)可设置在多个对齐的引线91、92的周围。一般而言,收缩膜包装由PTFE形成,但是可以使用任意可相容的材料。In some embodiments, once the aligned leads 91 , 92 are assembled, each of the plurality of aligned leads 91 , 92 is tied together (in situ) so that shrink wrap (not shown) can be placed in multiple around each of the aligned leads 91 , 92 . Generally, shrink wrap is formed from PTFE, but any compatible material can be used.

在一些实施方案中,一旦将收缩膜包裹件布置在对齐的引线91周围,即将对齐的引线91折叠为组装超级电容器10时假定的形状。也就是说,参照图34,可见对齐的引线假设为“Z”形。在为对齐的引线91、92赋予“Z-折叠”并且应用收缩膜包装之后,可以加热收缩膜包装或者通过其他方法活化,以使收缩膜包装收缩入对齐的引线91、92周围的位置。因此,在一些实施方案中,可以通过包裹件来强化并保护对齐的引线91、92。当将能量储存介质1耦接至设置在盖24中的馈通件19时,Z-折叠的使用特别有用。In some embodiments, once the shrink wrap is placed around the aligned leads 91, the aligned leads 91 are folded into the shape assumed when the ultracapacitor 10 is assembled. That is, referring to FIG. 34, it can be seen that the aligned leads are assumed to be "Z" shaped. After imparting a "Z-fold" to the aligned leads 91 , 92 and applying the shrink wrap, the shrink wrap may be heated or otherwise activated to shrink the shrink wrap into position around the aligned leads 91 , 92 . Thus, in some embodiments, the aligned leads 91, 92 may be strengthened and protected by the wrap. The use of Z-folds is particularly useful when coupling the energy storage medium 1 to the feedthrough 19 provided in the cover 24 .

另外,可以实施用于将每组对齐的引线91、92(即,每个端子8)耦接至各接触件55、56的其他实施方案。例如,在一个实施方案中,将中间引线耦接至馈通件19与壳体7之一,使得有助于与各组对齐的引线91、92耦接。Additionally, other embodiments for coupling each set of aligned leads 91 , 92 (ie, each terminal 8 ) to each contact 55 , 56 may be implemented. For example, in one embodiment, an intermediate lead is coupled to one of the feedthrough 19 and the housing 7 such that coupling with leads 91 , 92 in alignment with each set is facilitated.

此外,所用材料可根据例如以下性质来选择:反应性、介电值、熔点、与其他材料的粘附性、可焊接性、摩擦系数、成本以及其他这样的因素。可以使用材料的组合(例如分层的、混合的或通过其他方式组合的)来提供期望的性质。Furthermore, the materials used can be selected based on properties such as reactivity, dielectric value, melting point, adhesion to other materials, weldability, coefficient of friction, cost, and other such factors. Combinations of materials (eg, layered, mixed or otherwise combined) can be used to provide the desired properties.

iii.特定超级电容器实施方案iii. Specific Ultracapacitor Embodiments

下面示出了本发明的示例性超级电容器10的一些物理方面。应注意,在下表中,术语“接片”一般是指如上所讨论的“引线”;术语“桥接器”和“跨接线”还涉及引线的一些方面(例如,桥接器可耦接至馈通件,或“引脚”,同时跨接线可用于连接桥接器至接片或引线)。使用多种连接可有助于组装工艺,并且利用某些组装技术。例如,桥接器可以激光焊接或电阻焊接至引脚,并且用超声焊接耦接至跨接线。Some physical aspects of the exemplary ultracapacitor 10 of the present invention are shown below. It should be noted that in the following table, the term "tab" generally refers to a "lead" as discussed above; the terms "bridge" and "jumper" also refer to aspects of a lead (eg, a bridge may be coupled to a feedthrough pieces, or "pins," while jumper wires can be used to connect bridges to tabs or leads). The use of multiple connections may facilitate the assembly process, and certain assembly techniques are utilized. For example, the bridges may be laser welded or resistance welded to the pins and coupled to the jumpers by ultrasonic welding.

表5table 5

表6Table 6

表7Table 7

表8Table 8

图35至图38是描绘这些示例性超级电容器10的性能的图。图35和图36描绘了超级电容器10在1.75伏和125摄氏度的性能。图37和图38描绘了超级电容器10在1.5伏和150摄氏度的性能。35-38 are graphs depicting the performance of these exemplary ultracapacitors 10 . 35 and 36 depict the performance of ultracapacitor 10 at 1.75 volts and 125 degrees Celsius. 37 and 38 depict the performance of ultracapacitor 10 at 1.5 volts and 150 degrees Celsius.

一般而言,超级电容器10可以在多种环境条件和需求下使用。例如,端电压可以为约100mV至10V。环境温度可以为约-40摄氏度至+210摄氏度。典型的高温环境温度为+60摄氏度至+210摄氏度。In general, the ultracapacitor 10 can be used under a variety of environmental conditions and requirements. For example, the terminal voltage may be about 100mV to 10V. The ambient temperature may be about -40 degrees Celsius to +210 degrees Celsius. Typical high temperature ambient temperatures are +60°C to +210°C.

图39至图43是描绘示例性超级电容器10的性能的另外的图。在这些实施例中,超级电容器10是闭合的单元(即,壳体)。将超级电容器循环10次,充电和放电为100mA,充电至0.5伏,测量电阻,放电至10mV,静置10秒,然后再次循环。39-43 are additional graphs depicting the performance of the exemplary ultracapacitor 10 . In these embodiments, the ultracapacitor 10 is a closed cell (ie, a case). Cycle the supercapacitor 10 times, charge and discharge to 100 mA, charge to 0.5 volts, measure resistance, discharge to 10 mV, let stand for 10 seconds, and cycle again.

表11和12提供了超级电容器10的实施方案的比较性能数据。如所示收集了多个操作条件下的性能数据。Tables 11 and 12 provide comparative performance data for embodiments of ultracapacitor 10 . Performance data was collected under multiple operating conditions as indicated.

表9Table 9

比较性能数据Compare performance data

表10Table 10

比较性能数据Compare performance data

因此,表9和表10中提供的数据表明本文中的教导使得能够实现超级电容器在极端条件下的性能。因此,所制造的超级电容器可以例如表现低于约1mA/毫升的单元体积的漏电流,和在500小时内低于约100%的ESR升高(其保持在低于约2V的电压和低于约150摄氏度的温度下)。因为可以在超级电容器的多种要求(例如,电压和温度)之间进行取舍,所以可以管理超级电容器的额定性能(例如,电容、ESR的增加率等),可以调整以适应特定需要。注意参照前述,给出了“额定性能”的一般常规定义,其考虑到描述操作条件的参数的值。Accordingly, the data presented in Tables 9 and 10 demonstrate that the teachings herein enable the performance of ultracapacitors under extreme conditions. Thus, the fabricated supercapacitors can, for example, exhibit leakage currents of less than about 1 mA/ml of cell volume, and less than about 100% ESR rise over 500 hours (which remain at voltages below about 2V and below at a temperature of about 150 degrees Celsius). Because trade-offs can be made between the various requirements of the supercapacitor (eg, voltage and temperature), the supercapacitor's rated performance (eg, capacitance, rate of increase in ESR, etc.) can be managed and can be adjusted to suit specific needs. Note that with reference to the foregoing, a general conventional definition of "rated performance" is given that takes into account the values of parameters describing operating conditions.

图35至图43描绘了具有包含1-丁基-1-甲基吡咯烷和四氰基硼酸盐的AES的示例性超级电容器在125摄氏度至210摄氏度的范围内的温度下的性能。Figures 35 to 43 depict 1-butyl-1-methylpyrrolidine containing 1-butyl-1-methylpyrrolidine Performance of an exemplary supercapacitor of AES with tetracyanoborate at temperatures ranging from 125 degrees Celsius to 210 degrees Celsius.

图44A和44B描绘了具有包含1-丁基-1-甲基哌啶双(三氟甲基磺酰基)亚胺的AES的示例性超级电容器的性能数据。Figures 44A and 44B depict 1-butyl-1-methylpiperidine containing 1-butyl-1-methylpiperidine Performance data of exemplary supercapacitors for AES of bis(trifluoromethylsulfonyl)imide.

图45A和45B描绘了具有包含三己基十四烷基双(三氟甲基磺酰基)亚胺的AES的示例性超级电容器的性能数据。Figures 45A and 45B depict tetradecyl containing trihexyl Performance data of exemplary supercapacitors for AES of bis(trifluoromethylsulfonyl)imide.

图46A和46B描绘了具有包含丁基三甲铵双(三氟甲基磺酰基)亚胺的AES的示例性超级电容器的性能数据。46A and 46B depict performance data for exemplary ultracapacitors with AES comprising butyltrimethylammonium bis(trifluoromethylsulfonyl)imide.

图47A和47B描绘了具有包含1-丁基-1-甲基吡咯烷和四氰基硼酸盐的AES的示例性超级电容器在125摄氏度下的性能数据。Figures 47A and 47B depict 1-butyl-1-methylpyrrolidine containing 1-butyl-1-methylpyrrolidine Exemplary supercapacitor performance data at 125 degrees Celsius for AES with tetracyanoborate.

图48A和48B以及图49描绘了具有包含碳酸亚丙酯和1-丁基-1-甲基吡咯烷和四氰基硼酸盐的混合物的AES的示例性超级电容器的性能数据,该混合物的碳酸亚丙酯按体积计为约37.5%;电容器在125摄氏度(图48A和48B)下和在-40摄氏度(图49)下操作。所测试的另一示例性超级电容器包括含有1-丁基-3-甲基咪唑四氟硼酸盐的AES。FIGS. 48A and 48B and FIG. 49 depict a graph containing propylene carbonate and 1-butyl-1-methylpyrrolidine Performance data for an exemplary supercapacitor of AES with a mixture of tetracyanoborate and about 37.5% propylene carbonate by volume; capacitor at 125 degrees Celsius (FIGS. 48A and 48B) and at -40 operate in degrees Celsius (Figure 49). Another exemplary supercapacitor tested included 1-butyl-3-methylimidazole containing AES with tetrafluoroborate.

所测试的另一示例性超级电容器包括含有1-丁基-3-甲基咪唑双(三氟甲基磺酰基)亚胺的AES。Another exemplary supercapacitor tested included 1-butyl-3-methylimidazole containing AES of bis(trifluoromethylsulfonyl)imide.

所测试的另一示例性超级电容器包括含有1-乙基-3-甲基咪唑四氟硼酸盐的AES。Another exemplary supercapacitor tested included 1-ethyl-3-methylimidazole containing AES with tetrafluoroborate.

所测试的另一示例性超级电容器包括含有1-乙基-3-甲基咪唑四氰基硼酸盐的AES。Another exemplary supercapacitor tested included 1-ethyl-3-methylimidazole containing AES of tetracyanoborate.

所测试的另一示例性超级电容器包括含有1-己基-3-甲基咪唑四氰基硼酸盐的AES。Another exemplary supercapacitor tested included 1-hexyl-3-methylimidazole containing AES of tetracyanoborate.

所测试的另一示例性超级电容器包括含有1-丁基-1-甲基吡咯烷双(三氟甲基磺酰基)亚胺的AES。Another exemplary supercapacitor tested included 1-butyl-1-methylpyrrolidine AES of bis(trifluoromethylsulfonyl)imide.

所测试的另一示例性超级电容器包括含有1-丁基-1-甲基吡咯烷三(五氟乙基)三氟磷酸盐的AES。Another exemplary supercapacitor tested included 1-butyl-1-methylpyrrolidine AES of tris(pentafluoroethyl)trifluorophosphate.

所测试的另一示例性超级电容器包括含有1-丁基-1-甲基吡咯烷四氰基硼酸盐的AES。Another exemplary supercapacitor tested included 1-butyl-1-methylpyrrolidine AES of tetracyanoborate.

所测试的另一示例性超级电容器包括含有1-丁基-3-甲基咪唑三氟甲磺酸盐的AES。Another exemplary supercapacitor tested included 1-butyl-3-methylimidazole containing AES of triflate.

所测试的另一示例性超级电容器包括含有1-乙基-3-甲基咪唑四氰基硼酸盐的AES。Another exemplary supercapacitor tested included 1-ethyl-3-methylimidazole containing AES of tetracyanoborate.

所测试的另一示例性超级电容器包括含有1-乙基-3-甲基咪唑和1-丁基-1-甲基吡咯烷和四氰基硼酸盐的AES。Another exemplary supercapacitor tested included 1-ethyl-3-methylimidazole containing and 1-butyl-1-methylpyrrolidine and AES of tetracyanoborate.

所测试的另一示例性超级电容器包括含有1-丁基-1-甲基吡咯烷和四氰基硼酸盐和乙基异丙基砜的AES。Another exemplary supercapacitor tested included 1-butyl-1-methylpyrrolidine and AES with tetracyanoborate and ethyl isopropyl sulfone.

应注意电容以及ESR(如本文中表9以及其他地方所示)的测量遵循一般已知的方法。首先考虑用于测量电容的技术。It should be noted that the measurements of capacitance and ESR (as shown in Table 9 and elsewhere herein) follow generally known methods. Consider first the technique used to measure capacitance.

电容可以以多种方式测量。一种方法涉及监测电容器端子所示电压,同时从超级电容器提取(在“放电”期间)已知电流或将已知电流供应至(在“充电”期间)超级电容器。更具体地,可以利用理想的电容器遵循以下方程式的事实:Capacitance can be measured in a number of ways. One method involves monitoring the voltage shown at the capacitor terminals while drawing (during "discharging") a known current from the ultracapacitor or supplying (during "charging") a known current to the ultracapacitor. More specifically, one can take advantage of the fact that an ideal capacitor follows the equation:

I=C*dV/dt,I=C*dV/dt,

其中I表示充电电流,C表示电容,dV/dt表示理想电容器电压V的时间导数。理想电容器是这样的电容器,其内阻为零,并且其电容是不依赖于电压等。当充电电流I恒定时,电压V与时间呈线性关系,因此dV/dt可以计算为该线的斜率或者作为ΔV/ΔT。但是,该方法一般是由电容器的有效的串联电阻提供的近似和电压差(ESR降低),其应在计算或测量电容时考虑。有效串联电阻(ESR)一般可以是与电容器中的消耗或其他效果近似的集总元件(1umped element)。电容器行为常常来源于与电阻值等于ESR的电阻器串联的理想电容器的电路模型。一般而言,这得到了与实际电容器行为的良好近似。where I is the charging current, C is the capacitance, and dV/dt is the time derivative of the ideal capacitor voltage V. An ideal capacitor is one whose internal resistance is zero and whose capacitance is independent of voltage, etc. When the charging current I is constant, the voltage V is linear with time, so dV/dt can be calculated as the slope of the line or as ΔV/ΔT. However, this method is generally an approximation provided by the capacitor's effective series resistance and the voltage difference (ESR reduction), which should be taken into account when calculating or measuring capacitance. The effective series resistance (ESR) can generally be a lumped element that approximates dissipation or other effects in a capacitor. Capacitor behavior is often derived from a circuit model of an ideal capacitor in series with a resistor whose resistance value is equal to the ESR. In general, this gives a good approximation to actual capacitor behavior.

在一种测量电容的方法中,在内阻基本是不依赖电压的并且充电或放电基本上是固定的情况下,可很大程度上忽略ESR降低的影响。在这种情况下,ESR降低可以近似为常数,并且从所述恒定电流充电或放电期间电压变化的计算中自然地减去。然后,电压变化基本上反映电容器上所储存电荷的变化。因此,电压的变化通过计算可作为电容的指示。In one method of measuring capacitance, where the internal resistance is substantially voltage-independent and charging or discharging is substantially constant, the effect of ESR reduction can be largely ignored. In this case, the ESR reduction can be approximated as a constant and naturally subtracted from the calculation of the voltage change during the constant current charge or discharge. The voltage change then basically reflects the change in the charge stored on the capacitor. Therefore, the change in voltage can be calculated as an indication of capacitance.

例如,在恒电流放电期间,已知恒电流I。测量放电期间的电压变化,ΔV,在所测量时间间隔ΔT,通过电流值I除以ΔV/ΔT比,得到电容的近似值。当I的单位是安培,ΔV的单位是伏特,ΔT的单位是秒时,电容结果将以法拉为单位。For example, during a constant current discharge, the constant current I is known. Measuring the voltage change during discharge, ΔV, over the measured time interval ΔT, by dividing the current value I by the ΔV/ΔT ratio, an approximation of the capacitance is obtained. When I is in amperes, ΔV is in volts, and ΔT is in seconds, the capacitance result will be in farads.

至于ESR的评估,超级电容器的有效串联电阻(ESR)也可以以多种方式来测量。一种方法涉及监测在电容器端子处示出的电压,而从超级电容器提取(在“放电”期间)已知电流,或者将已知电流供应至(在“充电”期间)超级电容器。更具体地,可以利用ESR遵循以下方程式的事实:As for the evaluation of ESR, the effective series resistance (ESR) of a supercapacitor can also be measured in various ways. One approach involves monitoring the voltage shown at the capacitor terminals while drawing (during "discharging") a known current from the ultracapacitor or supplying (during "charging") a known current to the ultracapacitor. More specifically, the fact that ESR follows the following equation can be exploited:

V=I*R,V=I*R,

其中I表示有效地通过ESR的电流,R表示ESR的电阻值,并且V表示由ESR提供的电压差(ESR降低)。ESR一般可以是与超级电容器中的消耗或其他效果近似的集总元件。超级电容器行为常常来源于与电阻值等于ESR的电阻器串联的理想电容器的电路模型。一般而言,这得到了与实际电容器行为的良好近似。where I represents the current effectively through the ESR, R represents the resistance value of the ESR, and V represents the voltage difference (ESR reduction) provided by the ESR. The ESR can generally be a lumped element that approximates dissipation or other effects in a supercapacitor. Supercapacitor behavior is often derived from a circuit model of an ideal capacitor in series with a resistor whose resistance value is equal to the ESR. In general, this gives a good approximation to actual capacitor behavior.

在一种测量ESR的方法中,可以开始从处于静态的电容器(未经大电流充电或放电的电容器)提取放电电流。在其中电容器所表现出的因电容器上所储存电荷的变化而导致的电压变化小于所测量的电压变化的时间间隔期间,所测量的电压变化基本上反映电容器的ESR。在这些条件下,电容器所表现的瞬时电压变化通过计算可以作为ESR的指示。In one method of measuring ESR, discharge current can be drawn from capacitors that are in static state (capacitors that have not been charged or discharged with high currents). During time intervals in which the voltage change exhibited by the capacitor due to the change in the stored charge on the capacitor is less than the measured voltage change, the measured voltage change substantially reflects the capacitor's ESR. Under these conditions, the instantaneous voltage change exhibited by the capacitor can be calculated as an indication of ESR.

例如,一旦开始从电容器提取放电电流,可以在测量间隔ΔT的期间表现瞬时电压变化ΔV。只要电容器的电容C,通过已知电流I放电,在测量间隔ΔT期间得到小于所测量电压变化ΔV的电压变化,就可以将在时间间隔ΔT期间的ΔV除以放电电流I,以得到ESR的近似。当I的单位是安培并且ΔV的单位是伏特时,ESR结果将以欧姆为单位。For example, once the discharge current has been drawn from the capacitor, an instantaneous voltage change ΔV may be exhibited during the measurement interval ΔT. As long as the capacitance C of the capacitor, discharged by a known current I, results in a voltage change during the measurement interval ΔT that is less than the measured voltage change ΔV, the ΔV during the time interval ΔT can be divided by the discharge current I to obtain an approximation of the ESR . When I is in amperes and ΔV is in volts, the ESR result will be in ohms.

ESR和电容二者可取决于环境温度。因此,相关测量可需要使用者将超级电容器10在测量期间经历特定的目的环境温度。Both ESR and capacitance may depend on ambient temperature. Accordingly, relevant measurements may require the user to subject the ultracapacitor 10 to a specific intended ambient temperature during the measurement.

对漏电流的性能要求一般由特定应用中的普遍环境条件来限定。例如,对于体积为20mL的电容器,漏电流的实际限制可降至低于100mA。The performance requirements for leakage current are generally defined by the prevailing environmental conditions in a particular application. For example, for a capacitor with a volume of 20mL, the practical limit for leakage current can be reduced to less than 100mA.

归一化参数的标称值可通过归一化参数(例如,体积漏电流)乘以或除以归一化特征(例如,体积)来获得。例如,体积漏电流为10mA/立方厘米并且体积为50立方厘米的超级电容器的标称漏电流是体积漏电流和体积的乘积500mA。同时,体积ESR为20毫欧·立方厘米并且体积为50立方厘米的超级电容器的标称ESR为体积ESR与体积的商0.4毫欧。The nominal value of the normalization parameter may be obtained by multiplying or dividing the normalization parameter (eg, volume leakage current) by the normalization characteristic (eg, volume). For example, the nominal leakage current of a supercapacitor with a volume leakage current of 10 mA/cm3 and a volume of 50 cm3 is the product of the volume leakage current and the volume, 500 mA. Meanwhile, the nominal ESR of a supercapacitor with a volumetric ESR of 20 milliohm-cubic centimeters and a volume of 50 cubic centimeters is the quotient of the volumetric ESR and the volume of 0.4 milliohms.

iv.对包括AES的超级电容器的填充效果的检验iv. Examination of filling effect of supercapacitors including AES

此外,为了示出填充方法如何影响超级电容器10,构建了超级电容器10的两个类似的实施方案。一个是在非真空下填充,另一个是在真空下填充。表11中提供了两个实施方案的电性能。通过重复进行这样的测量,注意到了通过施加真空来填充超级电容器10实现了改进的性能。已确定,一般而言,期望壳体7内的压力降低至低于约150毫托,更特别地降低至低于约40毫托。Furthermore, to show how the filling method affects the ultracapacitor 10, two similar embodiments of the ultracapacitor 10 were constructed. One is filled under non-vacuum and the other is filled under vacuum. The electrical properties of the two embodiments are provided in Table 11. By repeating such measurements, it was noted that filling the supercapacitor 10 by applying a vacuum achieved improved performance. It has been determined that, in general, it is desirable to reduce the pressure within the housing 7 to below about 150 mTorr, and more particularly to below about 40 mTorr.

表11Table 11

填充方法的比较性能Comparing performance of padding methods

参数(在0.1V)Parameters (at 0.1V) 在非真空下under non-vacuum 在真空下under vacuum 偏差deviation ESR@45°ΦESR@45°Φ 3.569欧姆3.569 ohms 2.568欧姆2.568 ohms (-28%)(-28%) 电容@12mHzCapacitance@12mHz 155.87mF155.87mF 182.3mF182.3mF (+14.49%)(+14.49%) 相@12mHzPhase @12mHz 79.19度79.19 degrees 83度83 degrees (+4.59%)(+4.59%)

为了评价真空填充技术的功效,对两种不同的袋装单元(pouch cell)进行测试。所述袋装单元包括两个电极3,每个电极3基于含碳材料。每个电极3相对布置并且面对彼此。隔离器5设置在所述电极3之间以防止短路,并且将所有都浸入电解质6中。使用两个外部接片来提供四个测量点。所用隔离器5是聚乙烯隔离器5,所述单元的总体积为约0.468ml。To evaluate the efficacy of the vacuum filling technique, two different pouch cells were tested. The bagged unit comprises two electrodes 3, each based on a carbonaceous material. Each electrode 3 is arranged opposite and facing each other. Separator 5 is placed between said electrodes 3 to prevent short circuits and all are immersed in electrolyte 6 . Four measurement points are provided using two external tabs. The separator 5 used was a polyethylene separator 5 and the total volume of the unit was about 0.468 ml.

C.使用超级电容器的方法 C. Methods of using supercapacitors

本发明还旨在包括本文中所述的能量存储装置(例如,超级电容器)的任何用法和全部用法。这包括直接使用超级电容器,或在用于任何应用的其他装置中使用超级电容器。这样的使用旨在包括制造、出售、或向使用者提供超级电容器。The present invention is also intended to include any and all uses of the energy storage devices (eg, ultracapacitors) described herein. This includes the direct use of supercapacitors, or the use of supercapacitors in other devices for any application. Such uses are intended to include the manufacture, sale, or provision of ultracapacitors to users.

例如,在一个实施方案中,本发明提供了一种使用高温可再充电能量储存装置(HTRESD)(例如,超级电容器)的方法,该方法包括如下步骤:获得包括先进的电解质体系(AES)的HTRESD;通过对HTRESD交替充电和放电至少两次来循环HTRESD,同时维持HTRESD两端的电压,使得HTRESD表现出0.01W/升至150kW/升的初始峰值功率密度,使得HTRESD在约-40摄氏度至约210摄氏度的温度范围内的环境温度下操作。在某些实施方案中,温度范围在约-40摄氏度至约150摄氏度之间;在约-40摄氏度至约125摄氏度之间;在约80摄氏度至约210摄氏度之间;在约80摄氏度至约175摄氏度之间;在约80摄氏度至约150摄氏度之间;或在-40摄氏度至约80摄氏度之间。在某些实施方案中,HTRESD表现出约0.01W/升至约10kW/升的初始峰值功率密度,例如,在约0.01W/升至约5kW/升之间,例如,在约0.01W/升至约2kW/升之间。For example, in one embodiment, the present invention provides a method of using a high temperature rechargeable energy storage device (HTRESD) (eg, a supercapacitor), the method comprising the steps of: obtaining an advanced electrolyte system (AES) comprising a HTRESD; cycling the HTRESD by alternately charging and discharging the HTRESD at least twice while maintaining the voltage across the HTRESD such that the HTRESD exhibits an initial peak power density of 0.01W/liter up to 150kW/liter, such that the HTRESD operates at about -40 degrees Celsius to about Operates at ambient temperatures in the temperature range of 210 degrees Celsius. In certain embodiments, the temperature ranges between about -40 degrees Celsius to about 150 degrees Celsius; between about -40 degrees Celsius to about 125 degrees Celsius; between about 80 degrees Celsius to about 210 degrees Celsius; between about 80 degrees Celsius to about Between 175 degrees Celsius; between about 80 degrees Celsius and about 150 degrees Celsius; or between -40 degrees Celsius and about 80 degrees Celsius. In certain embodiments, the HTRESD exhibits an initial peak power density of from about 0.01 W/liter to about 10 kW/liter, eg, between about 0.01 W/liter to about 5 kW/liter, eg, at about 0.01 W/liter to about 2kW/liter.

在另一个实施方案中,本发明提供了一种使用超级电容器的方法,该方法包括:获得根据权利要求1至85中任一项所述的超级电容器,其中,所述超级电容器表现出保持在约100摄氏度至约150摄氏度之间的范围内的基本恒定的温度下时低于约10mA/立方厘米的体积漏电流(mA/立方厘米);和通过对超级电容器交替充电和放电至少两次来循环超级电容器,同时维持超级电容器两端的电压,使得超级电容器在约-40摄氏度至约210摄氏度之间的范围内的基本恒定的温度下保持时使用20小时之后表现出低于约300%的ESR升高。在某些实施方案中,温度范围在约-40摄氏度和约150摄氏度之间;在约-40摄氏度和约125摄氏度之间;在约80摄氏度和约210摄氏度之间;在约80摄氏度和约175摄氏度之间;在约80摄氏度和约150摄氏度之间;或在约-40摄氏度和约80摄氏度之间。In another embodiment, the present invention provides a method of using an ultracapacitor, the method comprising: obtaining an ultracapacitor according to any one of claims 1 to 85, wherein the ultracapacitor exhibits retention at A volumetric leakage current (mA/cm3) of less than about 10 mA/cm3 at a substantially constant temperature in the range between about 100 degrees Celsius and about 150 degrees Celsius; and by alternately charging and discharging the supercapacitor at least twice Cycling the supercapacitor while maintaining the voltage across the supercapacitor such that the supercapacitor exhibits an ESR of less than about 300% after 20 hours of use when held at a substantially constant temperature in the range of about -40 degrees Celsius to about 210 degrees Celsius rise. In certain embodiments, the temperature ranges between about -40 degrees Celsius and about 150 degrees Celsius; between about -40 degrees Celsius and about 125 degrees Celsius; between about 80 degrees Celsius and about 210 degrees Celsius; between about 80 degrees Celsius and about 175 degrees Celsius ; between about 80 degrees Celsius and about 150 degrees Celsius; or between about -40 degrees Celsius and about 80 degrees Celsius.

在另一个实施方案中,本发明提供了一种给使用者提供高温可再充电能量存储装置的方法,该方法包括:选择包括先进的电解质体系(AES)的高温可再充电能量存储装置(HTRESD),所述高温可再充电能量存储装置在暴露于约-40摄氏度至约210摄氏度的温度范围内的环境温度时表现出0.01W/升至100kW/升的初始峰值功率密度和至少1小时、例如至少10小时、例如至少50小时、例如至少100小时、例如至少200小时、例如至少300小时、例如至少400小时、例如至少500小时、例如至少1000小时的耐久期;和交付储存装置,使得给使用者提供HTRESD。In another embodiment, the present invention provides a method of providing a high temperature rechargeable energy storage device to a user, the method comprising: selecting a high temperature rechargeable energy storage device (HTRESD) comprising an advanced electrolyte system (AES) ), the high temperature rechargeable energy storage device exhibits an initial peak power density of 0.01 W/liter to 100 kW/liter and at least 1 hour, when exposed to ambient temperatures ranging from about -40 degrees Celsius to about 210 degrees Celsius, Durability, such as at least 10 hours, such as at least 50 hours, such as at least 100 hours, such as at least 200 hours, such as at least 300 hours, such as at least 400 hours, such as at least 500 hours, such as at least 1000 hours; and delivering the storage device such that the The user provides HTRESD.

在另一实施方案中,本发明提供了一种给使用者提供高温可再充电能量存储装置的方法,该方法包括:获得根据权利要求1至85中任一项所述的在约-40摄氏度至约210摄氏度之间的范围内的基本恒定的温度下保持时表现出低于约10mA/立方厘米的体积漏电流(mA/立方厘米)的超级电容器;和交付存储装置,使得给使用者提供HTRESD。In another embodiment, the present invention provides a method of providing a high temperature rechargeable energy storage device to a user, the method comprising: obtaining a temperature of about -40 degrees Celsius according to any one of claims 1 to 85 an ultracapacitor exhibiting a volumetric leakage current (mA/cm3) of less than about 10 mA/cm3 when maintained at a substantially constant temperature in the range between about 210 degrees Celsius; and delivering the storage device such that the user is provided with HTRESD.

通过引用并入incorporated by reference

通过引用将本文中引用的所有专利、公布的专利申请和其他参考的全部内容都明确地在此全部并入本文。All patents, published patent applications, and other references cited herein are expressly incorporated herein by reference in their entirety.

等同物equivalent

本领域技术人员将认识到或能够仅仅使用常规实验来确定本文中所述的具体制程的许多等同物。这样的等同物被认为在本发明的范围内且被所附权利要求所涵盖。此外,本文中所提供的任何数值或字母的范围意欲包括那些范围的上限值和下限值。另外,至少在一个实施方案中,任何列表或分组旨在表示所列独立实施方案的简写或方便方式;因而,应认为列表的每个部分为单独的实施方案。Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the appended claims. Furthermore, any numerical or alphabetical ranges provided herein are intended to include the upper and lower limits of those ranges. Additionally, in at least one embodiment, any listing or grouping is intended to represent a shorthand or convenient way of representing the listed separate embodiments; thus, each portion of the list should be considered a separate embodiment.

应该认识到,本文中的教导仅为示例性的并且不对本发明进行限制。此外,本领域技术人员将认识到,在保持在本发明的范围之内的同时可以实现另外的部件、构造、布置等。例如,层、电极、引线、端子、接触件、馈通件、盖等的配制可与本文所公开的实施方案不同。一般而言,超级电容器的部件和利用电极的超级电容器的设计和/或应用仅受系统设计者、制造者、操作者和/或使用者的需要以及出现在任意具体情形中的需求限制。It should be appreciated that the teachings herein are exemplary only and not limiting of the invention. Furthermore, those skilled in the art will recognize that additional components, configurations, arrangements, etc. may be implemented while remaining within the scope of the present invention. For example, the formulation of layers, electrodes, leads, terminals, contacts, feedthroughs, caps, etc. may vary from the embodiments disclosed herein. In general, the components of an ultracapacitor and the design and/or application of an ultracapacitor utilizing electrodes are limited only by the needs of the system designer, manufacturer, operator, and/or user, and requirements that arise in any particular situation.

此外,可以包括并采用各种其他部件用于提供在本文中的教导的方面。例如,可以使用额外的材料、材料的组合和/或材料的冗余来提供在本文教导的范围内的另外的实施方案。In addition, various other components may be included and employed for providing aspects of the teachings herein. For example, additional materials, combinations of materials, and/or redundancy of materials may be used to provide additional embodiments within the scope of the teachings herein.

虽然已经参照示例性实施方案描述了本发明,但是应该理解,在不脱离本发明的范围的条件下可以作出各种变型并且等同物可以替代其元件。另外,许多修改将理解为在不脱离本发明的实质范围的条件下适应根据本发明的教导的特定仪器、情形或材料。因此,其意图是本发明不限于所公开的特定实施方案作为设想执行本发明的最佳方式而是通过本文中所附的权利要求解释。While the invention has been described with reference to exemplary embodiments, it should be understood that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications will be understood to adapt to a particular instrument, situation or material in accordance with the teachings of the present invention without departing from the essential scope of the invention. Therefore, it is intended that this invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out the invention but rather be interpreted by the claims appended hereto.

本发明至少提供以下方案:The present invention provides at least the following solutions:

方案1.一种超级电容器,包括:Scheme 1. A supercapacitor, comprising:

气密密封壳体内的先进的电解质体系(AES)和能量储存单元,所述单元电耦接至正极接触件和负极接触件,其中所述超级电容器配置成在约-40摄氏度至约210摄氏度的温度范围内的温度下操作。An advanced electrolyte system (AES) and energy storage unit within a hermetically sealed housing, the unit electrically coupled to positive and negative contacts, wherein the ultracapacitor is configured to operate at a temperature of about -40 degrees Celsius to about 210 degrees Celsius operate at temperatures within the temperature range.

方案2.根据方案1所述的超级电容器,其中所述AES包括新型电解质实体(NEE)。Scheme 2. The supercapacitor of scheme 1, wherein the AES comprises a Novel Electrolyte Entity (NEE).

方案3.根据方案1或2所述的超级电容器,其中所述NEE适合于在高温超级电容器中使用。Option 3. The supercapacitor of option 1 or 2, wherein the NEE is suitable for use in a high temperature supercapacitor.

方案4.根据方案1至3中任一项所述的超级电容器,其中所述超级电容器配置成在约80摄氏度至约210摄氏度的温度范围内的温度下操作。Aspect 4. The ultracapacitor of any one of aspects 1 to 3, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 210 degrees Celsius.

方案5.根据方案4所述的超级电容器,其中所述超级电容器配置成在约80摄氏度至约150摄氏度的温度范围内的温度下操作。Embodiment 5. The ultracapacitor of embodiment 4, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 150 degrees Celsius.

方案6.根据方案1所述的超级电容器,其中所述AES包括高度纯化的电解质。Scheme 6. The supercapacitor of scheme 1, wherein the AES comprises a highly purified electrolyte.

方案7.根据方案1或6所述的超级电容器,其中所述高度纯化的电解质适合于在高温超级电容器中使用。Scheme 7. The supercapacitor of scheme 1 or 6, wherein the highly purified electrolyte is suitable for use in a high temperature supercapacitor.

方案8.根据方案1、6或7中任一项所述的超级电容器,其中所述超级电容器配置成在约80摄氏度至约210摄氏度的温度范围内的温度下操作。Aspect 8. The ultracapacitor of any one of aspects 1, 6, or 7, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 210 degrees Celsius.

方案9.根据方案8所述的超级电容器,其中所述超级电容器配置成在约80摄氏度至约150摄氏度的温度范围内的温度下操作。Aspect 9. The ultracapacitor of aspect 8, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 150 degrees Celsius.

方案10.根据方案1所述的超级电容器,其中所述AES包括增强的电解质组合。Embodiment 10. The ultracapacitor of embodiment 1, wherein the AES comprises an enhanced electrolyte combination.

方案11.根据方案1或10所述的超级电容器,其中所述增强的电解质组合适合于在高温超级电容器和低温超级电容器两者中使用。Scheme 11. The supercapacitor of scheme 1 or 10, wherein the enhanced electrolyte combination is suitable for use in both high temperature and low temperature supercapacitors.

方案12.根据方案1、10或11中任一项所述的超级电容器,其中所述超级电容器配置成在约-40摄氏度至约150摄氏度的温度范围内的温度下操作。Aspect 12. The ultracapacitor of any one of aspects 1, 10, or 11, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about -40 degrees Celsius to about 150 degrees Celsius.

方案13.根据方案12所述的超级电容器,其中所述超级电容器配置成在约-30摄氏度至约125摄氏度的温度范围内的温度下操作。Embodiment 13. The ultracapacitor of embodiment 12, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about -30 degrees Celsius to about 125 degrees Celsius.

方案14.根据方案1至13中任一项所述的超级电容器,其中优于已知的能量储存装置的现有电解质的优点选自如下改进中的一项或更多项:总电阻降低、电阻的长期稳定性提高、总电容增加、电容的长期稳定性提高、能量密度增加、电压稳定性提高、蒸气压减小、单个电容器的温度范围性能更宽、单个电容器的温度耐久性提高、制造容易度提高以及成本效益改进。Scheme 14. The supercapacitor of any one of schemes 1 to 13, wherein the advantages over existing electrolytes of known energy storage devices are selected from one or more of the following improvements: reduced total resistance, Improved long-term stability of resistors, increased total capacitance, improved long-term stability of capacitors, increased energy density, improved voltage stability, reduced vapor pressure, wider temperature range performance of individual capacitors, improved temperature durability of individual capacitors, manufacturing Ease of access and improved cost-effectiveness.

方案15.根据方案1至14中任一项所述的超级电容器,其中所述能量储存单元包括正电极和负电极。Embodiment 15. The supercapacitor of any one of Embodiments 1 to 14, wherein the energy storage unit includes a positive electrode and a negative electrode.

方案16.根据方案1至15中任一项所述的超级电容器,其中所述电极中的至少之一包括含碳能量储存介质。Embodiment 16. The supercapacitor of any one of Embodiments 1 to 15, wherein at least one of the electrodes comprises a carbon-containing energy storage medium.

方案17.根据方案16中所述的超级电容器,其中所述含碳能量储存介质包括碳纳米管。Embodiment 17. The supercapacitor of embodiment 16, wherein the carbon-containing energy storage medium comprises carbon nanotubes.

方案18.根据方案16中所述的超级电容器,其中所述含碳能量储存介质包括活性碳、碳纤维、人造纤维、石墨烯、气凝胶、碳布和多种形式的碳纳米管中的至少之一。Scheme 18. The supercapacitor of scheme 16, wherein the carbon-containing energy storage medium comprises at least one of activated carbon, carbon fiber, rayon, graphene, aerogel, carbon cloth, and various forms of carbon nanotubes. one.

方案19.根据方案1至18中任一项所述的超级电容器,其中各个电极包括集电器。Item 19. The ultracapacitor of any of Items 1 to 18, wherein each electrode comprises a current collector.

方案20.根据方案2或10中所述的超级电容器,其中将所述AES进一步纯化以降低杂质含量。Scheme 20. The supercapacitor of Scheme 2 or 10, wherein the AES is further purified to reduce impurity content.

方案21.根据方案1至20中任一项所述的超级电容器,其中所述电解质中卤离子的含量低于约1000份/百万份。Embodiment 21. The supercapacitor of any one of Embodiments 1 to 20, wherein the content of halide ions in the electrolyte is less than about 1000 parts per million.

方案22.根据方案21所述的超级电容器,其中所述电解质中卤离子的含量低于约500份/百万份。Embodiment 22. The ultracapacitor of Embodiment 21, wherein the electrolyte has a halide ion content of less than about 500 parts per million.

方案23.根据方案21所述的超级电容器,其中所述电解质中卤离子的含量低于约100份/百万份。Embodiment 23. The supercapacitor of Embodiment 21, wherein the electrolyte has a content of halide ions of less than about 100 parts per million.

方案24.根据方案21所述的超级电容器,其中所述电解质中卤离子的含量低于约50份/百万份。Embodiment 24. The ultracapacitor of Embodiment 21, wherein the electrolyte has a halide ion content of less than about 50 parts per million.

方案25.根据方案21至24中任一项所述的超级电容器,所述电解质中的所述卤离子选自从氯离子、溴离子、氟离子和碘离子中选择的所述卤离子中的一种或更多种。Scheme 25. The supercapacitor of any one of schemes 21 to 24, wherein the halide ion in the electrolyte is selected from one of the halide ions selected from chloride ion, bromide ion, fluoride ion, and iodide ion species or more.

方案26.根据方案1至25中任一项中所述的超级电容器,其中所述电解质中金属物质的总浓度低于约1000份/百万份。Embodiment 26. The supercapacitor of any one of Embodiments 1 to 25, wherein the total concentration of metal species in the electrolyte is less than about 1000 parts per million.

方案27.根据方案26中所述的超级电容器,其中所述金属物质选自从Cd、Co、Cr、Cu、Fe、K、Li、Mo、Na、Ni、Pb和Zn中选择的一种或更多种金属。Scheme 27. The supercapacitor according to scheme 26, wherein the metal species is selected from one or more selected from Cd, Co, Cr, Cu, Fe, K, Li, Mo, Na, Ni, Pb and Zn Various metals.

方案28.根据方案26中所述的超级电容器,其中所述金属物质选自从Cd、Co、Cr、Cu、Fe、K、Li、Mo、Na、Ni、Pb和Zn中选择的金属的一种或更多种合金。Scheme 28. The supercapacitor according to scheme 26, wherein the metal species is selected from one of the metals selected from Cd, Co, Cr, Cu, Fe, K, Li, Mo, Na, Ni, Pb and Zn or more alloys.

方案29.根据方案26中所述的超级电容器,其中所述金属物质选自从Cd、Co、Cr、Cu、Fe、K、Li、Mo、Na、Ni、Pb和Zn中选择的金属的一种或更多种氧化物。Scheme 29. The supercapacitor according to scheme 26, wherein the metal species is selected from one of the metals selected from Cd, Co, Cr, Cu, Fe, K, Li, Mo, Na, Ni, Pb and Zn or more oxides.

方案30.根据方案20至29中任一项所述的超级电容器,其中所述电解质中杂质的总浓度低于约1000份/百万份。Embodiment 30. The ultracapacitor of any one of Embodiments 20 to 29, wherein the total concentration of impurities in the electrolyte is less than about 1000 parts per million.

方案31.根据方案20至30中任一项所述的超级电容器,其中所述杂质选自溴乙烷、氯乙烷、1-溴丁烷、1-氯丁烷、1-甲基咪唑、乙酸乙酯和二氯甲烷中的一种或更多种。Scheme 31. The supercapacitor according to any one of schemes 20 to 30, wherein the impurities are selected from the group consisting of bromoethane, chloroethane, 1-bromobutane, 1-chlorobutane, 1-methylimidazole, One or more of ethyl acetate and dichloromethane.

方案32.根据方案20至31中任一项所述的超级电容器,其中所述电解质中总的水含量低于约500份/百万份。Embodiment 32. The ultracapacitor of any one of Embodiments 20 to 31, wherein the total water content in the electrolyte is less than about 500 parts per million.

方案33.根据方案32所述的超级电容器,其中所述电解质中总的水含量低于约100份/百万份。Embodiment 33. The ultracapacitor of Embodiment 32, wherein the total water content in the electrolyte is less than about 100 parts per million.

方案34.根据方案32所述的超级电容器,其中所述电解质中总的水含量低于约50份/百万份。Embodiment 34. The ultracapacitor of Embodiment 32, wherein the total water content in the electrolyte is less than about 50 parts per million.

方案35.根据方案32所述的超级电容器,其中所述电解质中总的水含量低于约20份/百万份。Embodiment 35. The ultracapacitor of Embodiment 32, wherein the total water content in the electrolyte is less than about 20 parts per million.

方案36.根据方案1至35中任一项所述的超级电容器,其中所述壳体包括设置在其内部表面的显著部分之上的阻隔物。Embodiment 36. The ultracapacitor of any one of Embodiments 1 to 35, wherein the housing includes a barrier disposed over a substantial portion of its interior surface.

方案37.根据方案36所述的超级电容器,其中所述阻隔物包括聚四氟乙烯(PTFE)、全氟烷氧基树脂(PFA)、氟化乙烯丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)中的至少之一。Embodiment 37. The ultracapacitor of embodiment 36, wherein the barrier comprises polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA), fluorinated ethylene propylene copolymer (FEP), ethylene-tetrafluoroethylene At least one of ethylene copolymers (ETFE).

方案38.根据方案36中所述的超级电容器,其中所述阻隔物包括陶瓷材料。Embodiment 38. The ultracapacitor of embodiment 36, wherein the barrier comprises a ceramic material.

方案39.根据方案36中所述的超级电容器,其中所述阻隔物包括表现出耐腐蚀性、期望的介电性质和低电化学反应性的材料。Embodiment 39. The ultracapacitor of embodiment 36, wherein the barrier comprises a material that exhibits corrosion resistance, desirable dielectric properties, and low electrochemical reactivity.

方案40.根据方案36中所述的超级电容器,其中所述阻隔物包括多个材料层。Embodiment 40. The ultracapacitor of embodiment 36, wherein the barrier comprises a plurality of layers of material.

方案41.根据方案1至40中任一项所述的超级电容器,其中所述壳体包含多层材料。Aspect 41. The ultracapacitor of any one of aspects 1 to 40, wherein the housing comprises multiple layers of material.

方案42.根据方案41中所述的超级电容器,其中所述多层材料包含覆盖到第二材料上的第一材料。Embodiment 42. The supercapacitor of embodiment 41, wherein the multilayer material comprises a first material overlying a second material.

方案43.根据方案41中所述的超级电容器,其中所述多层材料包含钢、钽和铝中的至少之一。Embodiment 43. The ultracapacitor of embodiment 41, wherein the multilayer material comprises at least one of steel, tantalum, and aluminum.

方案44.根据方案1至43中任一项所述的超级电容器,其中所述壳体包含至少一个半球形密封件。Aspect 44. The ultracapacitor of any one of aspects 1 to 43, wherein the housing comprises at least one hemispherical seal.

方案45.根据方案1至44中任一项所述的超级电容器,其中所述壳体包含至少一个玻璃-金属密封件。Embodiment 45. The ultracapacitor of any one of Embodiments 1 to 44, wherein the case comprises at least one glass-to-metal seal.

方案46.根据方案45中所述的超级电容器,其中所述玻璃-金属密封件的引脚提供所述接触件之一。Embodiment 46. The ultracapacitor of embodiment 45, wherein a pin of the glass-to-metal seal provides one of the contacts.

方案47.根据方案45中所述的超级电容器,其中所述玻璃-金属密封件包括由选自以下的材料构成的馈通件:铁-镍-钴合金、镍铁合金、钽、钼、铌、钨以及一定形式的不锈钢和钛。Embodiment 47. The ultracapacitor of embodiment 45, wherein the glass-to-metal seal comprises a feedthrough composed of a material selected from the group consisting of iron-nickel-cobalt alloys, nickel-iron alloys, tantalum, molybdenum, niobium, Tungsten and some forms of stainless steel and titanium.

方案48.根据方案45中所述的超级电容器,其中所述玻璃-金属密封件包括由选自以下的至少一种材料构成的本体:镍、钼、铬、钴、铁、铜、锰、钛、锆、铝、碳和钨,以及其合金。Embodiment 48. The ultracapacitor of embodiment 45, wherein the glass-to-metal seal comprises a body composed of at least one material selected from the group consisting of nickel, molybdenum, chromium, cobalt, iron, copper, manganese, titanium , zirconium, aluminum, carbon and tungsten, and their alloys.

方案49.根据方案1至48中任一项所述的超级电容器,其中所述能量储存单元包括隔离器以提供正电极与负电极之间的电隔离。Embodiment 49. The ultracapacitor of any one of Embodiments 1 to 48, wherein the energy storage unit includes a separator to provide electrical isolation between the positive electrode and the negative electrode.

方案50.根据方案49中所述的超级电容器,其中所述隔离器包含选自聚酰胺、聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)、氧化铝(Al2O3)、玻璃纤维、玻璃纤维增强塑料或其任意组合中的材料。Scheme 50. The ultracapacitor of scheme 49, wherein the isolator comprises a material selected from the group consisting of polyamide, polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), alumina ( Al2O3 ) , glass Fibers, fiberglass reinforced plastics, or any combination of materials.

方案51.根据方案49或50所述的超级电容器,其中所述隔离器基本上不含水分。Embodiment 51. The ultracapacitor of embodiment 49 or 50, wherein the isolator is substantially free of moisture.

方案52.根据方案49所述的超级电容器,其中所述隔离器基本上是疏水的。Embodiment 52. The ultracapacitor of embodiment 49, wherein the isolator is substantially hydrophobic.

方案53.根据方案1至52中任一项所述的超级电容器,所述气密密封件表现出不大于约5.0×10-6atm-立方厘米/秒的泄漏速率。Embodiment 53. The ultracapacitor of any one of Embodiments 1 to 52, the hermetic seal exhibiting a leak rate of no greater than about 5.0×10 −6 atm-cubic centimeters per second.

方案54.根据方案1至52中任一项所述的超级电容器,所述气密密封件表现出不大于约5.0×10-7atm-立方厘米/秒的泄漏速率。Embodiment 54. The ultracapacitor of any one of Embodiments 1 to 52, the hermetic seal exhibiting a leak rate of no greater than about 5.0×10 −7 atm-cc/sec.

方案55.根据方案1至52中任一项所述的超级电容器,所述气密密封件表现出不大于约5.0×10-8atm-立方厘米/秒的泄漏速率。Embodiment 55. The ultracapacitor of any one of Embodiments 1 to 52, the hermetic seal exhibiting a leak rate of no greater than about 5.0×10 −8 atm-cubic centimeters per second.

方案56.根据方案1至52中任一项所述的超级电容器,所述气密密封件表现出不大于约5.0×10-9atm-立方厘米/秒的泄漏速率。Embodiment 56. The ultracapacitor of any one of Embodiments 1 to 52, the hermetic seal exhibiting a leak rate of no greater than about 5.0×10 −9 atm-cc/sec.

方案57.根据方案1至52中任一项所述的超级电容器,所述气密密封件表现出不大于约5.0×10-10atm-立方厘米/秒的泄漏速率。Embodiment 57. The ultracapacitor of any one of Embodiments 1 to 52, the hermetic seal exhibiting a leak rate of no greater than about 5.0×10 −10 atm-cc/sec.

方案58.根据方案1至57中任一项所述的超级电容器,其中至少一个接触件配置成匹配另一个超级电容器的另一个接触件。Embodiment 58. The ultracapacitor of any one of aspects 1 to 57, wherein at least one contact is configured to mate with another contact of another ultracapacitor.

方案59.根据方案1至59中任一项所述的超级电容器,其中所述储存单元包括设置在其外部之上的包裹件。Embodiment 59. The ultracapacitor of any one of Embodiments 1 to 59, wherein the storage unit includes a wrapper disposed over an exterior thereof.

方案60.根据方案59中所述的超级电容器,其中所述包裹件包含PTFE和聚酰亚胺中之一。Embodiment 60. The ultracapacitor of embodiment 59, wherein the wrapper comprises one of PTFE and polyimide.

方案61.根据方案1至60中任一项所述的超级电容器,其中体积漏电流在所述温度范围内为低于约1000毫安/升。Embodiment 61. The ultracapacitor of any one of Embodiments 1 to 60, wherein the volumetric leakage current is less than about 1000 milliamps/liter in the temperature range.

方案62.根据方案1至61中任一项所述的超级电容器,其中体积漏电流在特定电压范围内为低于约1000毫安/升。Embodiment 62. The ultracapacitor of any one of Embodiments 1 to 61, wherein the volumetric leakage current is less than about 1000 milliamps/liter over the specified voltage range.

方案63.根据方案1至62中任一项所述的超级电容器,其中所述壳体内的水分水平低于约1000份/百万份(ppm)。Embodiment 63. The ultracapacitor of any one of Embodiments 1 to 62, wherein the moisture level within the case is less than about 1000 parts per million (ppm).

方案64.根据方案63所述的超级电容器,其中所述壳体内的所述水分水平低于约500份/百万份(ppm)。Embodiment 64. The ultracapacitor of embodiment 63, wherein the moisture level within the housing is less than about 500 parts per million (ppm).

方案65.根据方案63所述的超级电容器,其中所述壳体内的所述水分水平低于约350份/百万份(ppm)。Embodiment 65. The ultracapacitor of embodiment 63, wherein the moisture level within the housing is less than about 350 parts per million (ppm).

方案66.根据方案1至65中任一项所述的超级电容器,包含在所述超级电容器的电极中的低于约1000ppm的水分含量。Embodiment 66. The supercapacitor of any one of Embodiments 1 to 65, comprising a moisture content of less than about 1000 ppm in electrodes of the supercapacitor.

方案67.根据方案66所述的超级电容器,包含在所述超级电容器的电极中的低于约500ppm的水分含量。Embodiment 67. The ultracapacitor of embodiment 66, comprising a moisture content of less than about 500 ppm in electrodes of the ultracapacitor.

方案68.根据方案66所述的超级电容器,其中所述超级电容器的所述电极中的水分水平低于约350份/百万份(ppm)。Embodiment 68. The ultracapacitor of embodiment 66, wherein the moisture level in the electrodes of the ultracapacitor is less than about 350 parts per million (ppm).

方案69.根据方案1至68中任一项所述的超级电容器,包含在所述超级电容器的隔离器中的低于约1000ppm的水分含量。Embodiment 69. The ultracapacitor of any one of Embodiments 1 to 68, comprising a moisture content of less than about 1000 ppm in the separator of the ultracapacitor.

方案70.根据方案69所述的超级电容器,包含在所述超级电容器的隔离器中的低于约500ppm的水分含量。Embodiment 70. The ultracapacitor of embodiment 69, comprising a moisture content of less than about 500 ppm in the isolator of the ultracapacitor.

方案71.根据方案69所述的超级电容器,所述超级电容器的所述隔离器中的水分水平低于约160份/百万份(ppm)。Embodiment 71. The ultracapacitor of Embodiment 69, wherein the moisture level in the isolator of the ultracapacitor is less than about 160 parts per million (ppm).

方案72.根据方案1至71中任一项所述的超级电容器,其中对于选自电极、电解质和隔离器中的部件之一,氯离子含量低于约300ppm。Embodiment 72. The ultracapacitor of any one of Embodiments 1 to 71, wherein the chloride ion content is less than about 300 ppm for one of the components selected from the group consisting of electrodes, electrolytes, and separators.

方案73.根据方案1至72中任一项所述的超级电容器,其中所述超级电容器的体积漏电流(mA/立方厘米)在保持基本恒定的温度下时低于约10mA/立方厘米。Embodiment 73. The ultracapacitor of any one of Embodiments 1 to 72, wherein the ultracapacitor has a volumetric leakage current (mA/cm3) of less than about 10 mA/cm3 when maintained at a substantially constant temperature.

方案74.根据方案73所述的超级电容器,其中所述超级电容器的体积漏电流在保持基本恒定的温度下时低于约1mA/立方厘米。Embodiment 74. The ultracapacitor of embodiment 73, wherein the ultracapacitor has a volumetric leakage current of less than about 1 mA/cm 3 when maintained at a substantially constant temperature.

方案75.根据方案73所述的超级电容器,其中所述超级电容器的体积漏电流在保持基本恒定的温度下时大于约0.0001mA/立方厘米。Embodiment 75. The ultracapacitor of embodiment 73, wherein the ultracapacitor has a volumetric leakage current greater than about 0.0001 mA/cm 3 when maintained at a substantially constant temperature.

方案76.根据方案73所述的超级电容器,其中所述超级电容器的体积电容为约6F/立方厘米与约1mF/立方厘米之间。Embodiment 76. The ultracapacitor of embodiment 73, wherein the ultracapacitor has a volumetric capacitance of between about 6 F/cm 3 and about 1 mF/cm 3 .

方案77.根据方案73所述的超级电容器,其中所述超级电容器的体积电容为约10F/立方厘米与约5F/立方厘米之间。Embodiment 77. The ultracapacitor of embodiment 73, wherein the ultracapacitor has a volumetric capacitance of between about 10 F/cm 3 and about 5 F/cm 3 .

方案78.根据方案73所述的超级电容器,其中所述超级电容器的体积电容为约50F/立方厘米与约8F/立方厘米之间。Embodiment 78. The ultracapacitor of embodiment 73, wherein the ultracapacitor has a volumetric capacitance of between about 50 F/cm 3 and about 8 F/cm 3 .

方案79.根据方案73所述的超级电容器,其中所述超级电容器的体积ESR为约20毫欧·立方厘米与200毫欧·立方厘米之间。Embodiment 79. The ultracapacitor of embodiment 73, wherein the ultracapacitor has a volumetric ESR of between about 20 milliohm·cubic centimeters and 200 milliohm·cubic centimeters.

方案80.根据方案73所述的超级电容器,其中所述超级电容器的体积ESR为约150毫欧·立方厘米与2欧姆·立方厘米之间。Embodiment 80. The ultracapacitor of embodiment 73, wherein the ultracapacitor has a volumetric ESR of between about 150 milliohm-cubic centimeters and 2 ohm-cubic centimeters.

方案81.根据方案73所述的超级电容器,其还表现出约1.5欧姆·立方厘米与200欧姆·立方厘米之间的所述超级电容器的体积ESR。Scheme 81. The ultracapacitor of Scheme 73, further exhibiting a volumetric ESR of the ultracapacitor of between about 1.5 ohm·cc and 200 ohm·cc.

方案82.根据方案73所述的超级电容器,其还表现出约150欧姆·立方厘米与2000欧姆·立方厘米之间的所述超级电容器的体积ESR。Scheme 82. The ultracapacitor of Scheme 73, further exhibiting a volumetric ESR of the ultracapacitor of between about 150 ohm-cubic centimeters and 2000 ohm-cubic centimeters.

方案83.根据方案73所述的超级电容器,其中所述超级电容器在恒定电压下保持至少20小时时表现出小于约60%的电容降低。Embodiment 83. The ultracapacitor of Embodiment 73, wherein the ultracapacitor exhibits less than about a 60% reduction in capacitance when held at a constant voltage for at least 20 hours.

方案84.根据方案73所述的超级电容器,其中所述超级电容器在恒定电压下保持至少20小时时表现出小于约300%的ESR升高。Embodiment 84. The ultracapacitor of Embodiment 73, wherein the ultracapacitor exhibits an increase in ESR of less than about 300% when held at a constant voltage for at least 20 hours.

方案85.根据方案73中所述的方法,其中所述超级电容器在保持在恒定电压时表现出小于约60%的电容降低。Embodiment 85. The method of embodiment 73, wherein the ultracapacitor exhibits a reduction in capacitance of less than about 60% when held at a constant voltage.

方案86.一种用于制造超级电容器的方法,包括如下步骤:Scheme 86. A method for making a supercapacitor, comprising the steps of:

将包含能量储存介质的能量储存单元设置在壳体内;和disposing an energy storage unit containing an energy storage medium within the housing; and

用先进的电解质体系(AES)填充所述壳体,以使得将超级电容器制造成在约-40摄氏度至约210摄氏度的温度范围内操作。The case is filled with an Advanced Electrolyte System (AES) such that the supercapacitor is fabricated to operate in a temperature range of about -40 degrees Celsius to about 210 degrees Celsius.

方案87.根据方案86所述的方法,其中所述AES包括新型电解质实体(NEE)。Scheme 87. The method of Scheme 86, wherein the AES comprises a Novel Electrolyte Entity (NEE).

方案88.根据方案86或87所述的方法,其中所述NEE适合于在高温超级电容器中使用。Embodiment 88. The method of embodiment 86 or 87, wherein the NEE is suitable for use in a high temperature supercapacitor.

方案89.根据方案86至88中任一项所述的方法,其中所述超级电容器配置成在约80摄氏度至约210摄氏度的温度范围内的温度下操作。Embodiment 89. The method of any one of Embodiments 86 to 88, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 210 degrees Celsius.

方案90.根据方案89所述的方法,其中所述超级电容器配置成在约80摄氏度至约150摄氏度的温度范围内的温度下操作。Embodiment 90. The method of embodiment 89, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 150 degrees Celsius.

方案91.根据方案86所述的方法,其中所述AES包括高度纯化的电解质。Scheme 91. The method of Scheme 86, wherein the AES comprises a highly purified electrolyte.

方案92.根据方案86或91所述的方法,其中所述高度纯化的电解质适合于在高温超级电容器中使用。Scheme 92. The method of Scheme 86 or 91, wherein the highly purified electrolyte is suitable for use in high temperature supercapacitors.

方案93.根据方案86、91或92中任一项所述的方法,其中所述超级电容器配置成在约80摄氏度至约210摄氏度的温度范围内的温度下操作。Embodiment 93. The method of any of Embodiments 86, 91, or 92, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 210 degrees Celsius.

方案94.根据方案93所述的方法,其中所述超级电容器配置成在约80摄氏度至约150摄氏度的温度范围内的温度下操作。Embodiment 94. The method of embodiment 93, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about 80 degrees Celsius to about 150 degrees Celsius.

方案95.根据方案86所述的方法,其中所述AES包括增强的电解质组合。Embodiment 95. The method of embodiment 86, wherein the AES comprises an enhanced electrolyte combination.

方案96.根据方案86或95所述的方法,其中所述增强的电解质组合适合于在高温超级电容器和低温超级电容器两者中使用。Embodiment 96. The method of embodiment 86 or 95, wherein the enhanced electrolyte combination is suitable for use in both high temperature supercapacitors and low temperature supercapacitors.

方案97.根据方案86、95或96中任一项所述的方法,其中所述超级电容器配置成在约-40摄氏度至约150摄氏度的温度范围内的温度下操作。Embodiment 97. The method of any one of Embodiments 86, 95, or 96, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about -40 degrees Celsius to about 150 degrees Celsius.

方案98.根据方案97所述的方法,其中所述超级电容器配置成在约-30摄氏度至约125摄氏度的温度范围内的温度下操作。Embodiment 98. The method of embodiment 97, wherein the ultracapacitor is configured to operate at a temperature in a temperature range of about -30 degrees Celsius to about 125 degrees Celsius.

方案99.根据方案86至98中任一项所述的方法,其中优于已知的能量储存装置的现有电解质的优点选自如下改进中的一项或更多项:总电阻降低、电阻的长期稳定性提高、总电容增加、电容的长期稳定性提高、能量密度增加、电压稳定性提高、蒸气压减小、单个电容器的温度范围性能更宽、单个电容器的温度耐久性提高、制造容易度提高以及成本效益改进。Embodiment 99. The method of any one of Embodiments 86 to 98, wherein the advantages of existing electrolytes over known energy storage devices are selected from one or more of the following improvements: reduction in overall resistance, reduction in resistance Increased long-term stability of the capacitors, increased total capacitance, improved long-term stability of capacitors, increased energy density, improved voltage stability, reduced vapor pressure, wider temperature range performance of individual capacitors, improved temperature durability of individual capacitors, ease of manufacture increased efficiency and improved cost-effectiveness.

方案100.根据方案72所述的方法,其中所制造的超级电容器是根据方案1至85中任一项所述的超级电容器。Embodiment 100. The method of embodiment 72, wherein the fabricated ultracapacitor is the ultracapacitor of any one of embodiments 1-85.

方案101.根据方案86至100中任一项所述的方法,其中所述设置还包括预处理所述超级电容器的部件以减少其中的水分,所述超级电容器的部件包括:电极、隔离器、引线、经组装的能量储存单元和所述壳体中的至少之一。Clause 101. The method of any one of clauses 86 to 100, wherein the disposing further comprises pre-treating components of the ultracapacitor to reduce moisture therein, the components of the ultracapacitor comprising: electrodes, separators, At least one of a lead, an assembled energy storage unit, and the housing.

方案102.根据方案101所述的方法,其中所述预处理包括基本上在真空下在约100摄氏度至约150摄氏度的温度范围内加热所选部件。Embodiment 102. The method of embodiment 101, wherein the pre-treating comprises heating the selected component substantially under vacuum at a temperature ranging from about 100 degrees Celsius to about 150 degrees Celsius.

方案103.根据方案101所述的方法,其中所述预处理包括基本上在真空下在约150摄氏度至约300摄氏度的温度范围内加热所选部件。Embodiment 103. The method of embodiment 101, wherein the pre-treatment comprises heating the selected component substantially under vacuum at a temperature ranging from about 150 degrees Celsius to about 300 degrees Celsius.

方案104.根据方案86至103中任一项所述的方法,其中在基本上惰性的环境中进行所述设置。Embodiment 104. The method of any one of Embodiments 86 to 103, wherein the setting is performed in a substantially inert environment.

方案105.根据方案86至104中任一项所述的方法,其中所述构建包括为所述壳体选择相对电解质表现出低化学反应性的内部表面材料。Embodiment 105. The method of any one of Embodiments 86 to 104, wherein the constructing includes selecting an interior surface material for the shell that exhibits low chemical reactivity with respect to the electrolyte.

方案106.根据方案105所述的方法,还包括在所述壳体的内部的显著部分中引入所述内部表面材料。Embodiment 106. The method of embodiment 105, further comprising introducing the interior surface material in a substantial portion of the interior of the housing.

方案107.根据方案105或106所述的方法,其中所述构建包括选择铝、聚四氟乙烯(PTFE)、全氟烷氧基树脂(PFA)、氟化乙烯丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)和陶瓷材料中的至少之一作为所述内部表面材料。Scheme 107. The method of scheme 105 or 106, wherein the constructing comprises selecting aluminum, polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA), fluorinated ethylene propylene copolymer (FEP), ethylene - At least one of a tetrafluoroethylene copolymer (ETFE) and a ceramic material as the inner surface material.

方案108.根据方案86至104中任一项所述的方法,其中所述构建包括由多层材料形成所述壳体。Clause 108. The method of any one of clauses 86 to 104, wherein the constructing comprises forming the housing from multiple layers of material.

方案109.根据方案108所述的方法,其中所述由多层材料形成所述壳体包括将可焊接材料设置在所述壳体的外部上。Clause 109. The method of Clause 108, wherein the forming the housing from multiple layers of material comprises disposing a weldable material on an exterior of the housing.

方案110.根据方案86至109中任一项所述的方法,其中所述构建包括为所述壳体制造盖和本体中至少之一。Clause 110. The method of any one of clauses 86 to 109, wherein the constructing comprises fabricating at least one of a cover and a body for the housing.

方案111.根据方案86至110中任一项所述的方法,其中所述构建包括将填充端口设置在所述壳体中以实现所述填充。Clause 111. The method of any one of clauses 86 to 110, wherein the constructing comprises disposing a filling port in the housing to effect the filling.

方案112.根据方案110所述的方法,其中所述制造包括将包含绝缘体和绝缘于所述壳体的电极的密封件设置在所述壳体中。Embodiment 112. The method of embodiment 110, wherein the fabricating comprises disposing a seal including an insulator and an electrode insulated from the housing in the housing.

方案113.根据方案112所述的方法,其中设置所述密封件包括设置玻璃-金属密封件。Embodiment 113. The method of embodiment 112, wherein disposing the seal comprises disposing a glass-to-metal seal.

方案114.根据方案112所述的方法,其中设置所述密封件包括设置半球形密封件。Embodiment 114. The method of embodiment 112, wherein disposing the seal comprises disposing a hemispherical seal.

方案115.根据方案113所述的方法,其中设置所述玻璃-金属密封件包括将所述玻璃-金属密封件焊接至所述壳体的外表面。Embodiment 115. The method of embodiment 113, wherein providing the glass-to-metal seal comprises welding the glass-to-metal seal to an outer surface of the housing.

方案116.根据方案86至115中任一项所述的方法,还包括制造所述能量储存单元。Embodiment 116. The method of any one of Embodiments 86 to 115, further comprising fabricating the energy storage unit.

方案117.根据方案116所述的方法,其中制造所述能量储存单元包括通过连接能量储存介质与集电器来获得电极。Embodiment 117. The method of embodiment 116, wherein fabricating the energy storage unit comprises obtaining electrodes by connecting an energy storage medium and a current collector.

方案118.根据方案117所述的方法,其中获得所述电极包括连接多个通过连接能量储存介质与集电器而制造的电极元件。Embodiment 118. The method of embodiment 117, wherein obtaining the electrode comprises connecting a plurality of electrode elements fabricated by connecting an energy storage medium and a current collector.

方案119.根据方案118所述的方法,其中连接所述多个电极元件包括将连接元件超声焊接至一个电极元件的集电器并超声焊接至另一个电极元件的集电器。Embodiment 119. The method of embodiment 118, wherein connecting the plurality of electrode elements comprises ultrasonically welding a connecting element to a current collector of one electrode element and to a current collector of another electrode element.

方案120.根据方案116所述的方法,其中制造所述能量储存单元包括将至少一根引线连接至电极。Embodiment 120. The method of embodiment 116, wherein fabricating the energy storage cell comprises connecting at least one lead to an electrode.

方案121.根据方案120所述的方法,其中将至少一根引线连接至所述电极包括将至少一个参考标记布置到所述电极上。Embodiment 121. The method of embodiment 120, wherein connecting at least one lead to the electrode comprises disposing at least one reference mark on the electrode.

方案122.根据方案120所述的方法,其中将至少一根引线连接至所述电极包括将各根引线布置在相应的参考标记处。Embodiment 122. The method of embodiment 120, wherein connecting at least one lead to the electrode comprises arranging each lead at a corresponding reference mark.

方案123.根据方案120所述的方法,其中连接至少一根引线包括从所述集电器清除能量储存介质。Embodiment 123. The method of embodiment 120, wherein connecting at least one lead comprises scavenging the energy storage medium from the current collector.

方案124.根据方案120所述的方法,其中连接至少一根引线包括将所述引线超声焊接至所述集电器。Embodiment 124. The method of embodiment 120, wherein connecting at least one lead comprises ultrasonically welding the lead to the current collector.

方案125.根据方案116所述的方法,其中制造所述能量储存单元包括将隔离器设置在至少两个电极之间。Embodiment 125. The method of embodiment 116, wherein fabricating the energy storage cell comprises disposing a separator between at least two electrodes.

方案126.根据方案125所述的方法,还包括将所述电极中的每一个与所述隔离器对齐。Embodiment 126. The method of embodiment 125, further comprising aligning each of the electrodes with the separator.

方案127.根据方案116所述的方法,其中制造所述能量储存单元包括包裹至少两个电极与设置于其间的隔离器。Embodiment 127. The method of embodiment 116, wherein fabricating the energy storage cell comprises wrapping at least two electrodes with a separator disposed therebetween.

方案128.根据方案127所述的方法,其中所述包裹包括将所述储存单元卷成卷制的储存单元。Embodiment 128. The method of embodiment 127, wherein the wrapping comprises rolling the storage unit into a rolled storage unit.

方案129.根据方案116所述的方法,其中制造所述能量储存单元包括将包裹件设置在所述储存单元上。Embodiment 129. The method of embodiment 116, wherein fabricating the energy storage unit comprises disposing a wrapper on the storage unit.

方案130.根据方案86至129中任一项所述的方法,其中设置所述能量储存单元包括将多根引线集合在一起以提供端子。Clause 130. The method of any one of clauses 86 to 129, wherein disposing the energy storage unit comprises bringing together a plurality of leads to provide terminals.

方案131.根据方案130所述的方法,其中所述将多根引线集合在一起包括将所述引线一起对齐成为一组经对齐的引线以形成端子。Embodiment 131. The method of embodiment 130, wherein the bringing together the plurality of leads comprises aligning the leads together into a set of aligned leads to form a terminal.

方案132.根据方案131所述的方法,还包括将包裹件布置在所述一组经对齐的引线的周围。Embodiment 132. The method of embodiment 131, further comprising disposing a wrapper around the set of aligned leads.

方案133.根据方案131所述的方法,还包括对所述一组经对齐的引线进行折叠。Embodiment 133. The method of embodiment 131, further comprising folding the set of aligned leads.

方案134.根据方案131所述的方法,还包括耦接所述一组经对齐的引线至所述壳体的接触件。Embodiment 134. The method of embodiment 131, further comprising coupling the set of aligned leads to contacts of the housing.

方案135.根据方案134中所述的方法,其中所述耦接包括将所述一组经对齐的引线焊接至所述接触件。Clause 135. The method of clause 134, wherein the coupling comprises soldering the set of aligned leads to the contacts.

方案136.根据方案134所述的方法,其中所述耦接包括将所述一组经对齐的引线焊接至跨接线和桥接器之一以用于耦接至所述壳体的接触件。Clause 136. The method of clause 134, wherein the coupling comprises soldering the set of aligned leads to one of a jumper and a bridge for coupling to contacts of the housing.

方案137.根据方案86至115中任一项所述的方法,还包括电耦接跨接线与桥接器中至少之一至所述壳体的接触件。Clause 137. The method of any one of clauses 86 to 115, further comprising electrically coupling at least one of a jumper wire and a bridge to a contact of the housing.

方案138.根据方案137所述的方法,还包括基本上将绝缘材料设置在所述壳体内部上的所述接触件之上。Embodiment 138. The method of embodiment 137, further comprising disposing an insulating material substantially over the contacts on the interior of the housing.

方案139.根据方案86至138中任一项所述的方法,还包括将所述能量储存单元气密地密封在所述壳体内。Clause 139. The method of any one of clauses 86 to 138, further comprising hermetically sealing the energy storage unit within the housing.

方案140.根据方案86至139中任一项所述的方法,还包括将至少一个盖与本体匹配以提供所述壳体。Clause 140. The method of any one of clauses 86 to 139, further comprising mating at least one cover with the body to provide the housing.

方案141.根据方案140所述的方法,其中所述盖包括凹盖、凸盖以及平盖中之一。Embodiment 141. The method of embodiment 140, wherein the cover comprises one of a concave cover, a convex cover, and a flat cover.

方案142.根据方案140所述的方法,还包括去除所述壳体内多层材料的至少一部分以提供所述匹配。Embodiment 142. The method of embodiment 140, further comprising removing at least a portion of the multiple layers of material within the housing to provide the matching.

方案143.根据方案140所述的方法,其中气密地密封包括将所述壳体的部件通过脉冲焊接、激光焊接、电阻焊接以及TIG焊接中的至少之一焊接在一起。Embodiment 143. The method of embodiment 140, wherein hermetically sealing comprises welding the components of the housing together by at least one of pulse welding, laser welding, resistance welding, and TIG welding.

方案144.根据方案86至143中任一项所述的方法,还包括纯化所述AES。Scheme 144. The method of any one of Schemes 86 to 143, further comprising purifying the AES.

方案145.根据方案86至144中任一项所述的方法,还包括将填充端口设置在所述壳体内以提供所述填充。Clause 145. The method of any one of clauses 86 to 144, further comprising disposing a filling port within the housing to provide the filling.

方案146.根据方案145所述的方法,还包括在完成所述填充之后密封所述填充端口。Embodiment 146. The method of embodiment 145, further comprising sealing the fill port after completing the filling.

方案147.根据方案146中所述的方法,其中所述密封包括将可相容的材料安装到所述填充端口中。Embodiment 147. The method of embodiment 146, wherein the sealing comprises installing a compatible material into the fill port.

方案148.根据方案147中所述的方法,还包括将安装到所述填充端口的所述材料焊接至所述壳体。Embodiment 148. The method of embodiment 147, further comprising welding the material mounted to the fill port to the housing.

方案149.根据方案145所述的方法,其中所述填充包括将所述AES设置在所述壳体中的填充端口之上。Clause 149. The method of clause 145, wherein the filling comprises disposing the AES over a filling port in the housing.

方案150.根据方案149中所述的方法,所述填充包括对所述壳体中的所述填充端口抽真空。Embodiment 150. The method of embodiment 149, the filling comprising evacuating the filling port in the housing.

方案151.根据方案150中所述的方法,其中所述真空低于约150毫托。Scheme 151. The method of Scheme 150, wherein the vacuum is less than about 150 mTorr.

方案152.根据方案150中所述的方法,其中所述真空低于约40毫托。Scheme 152. The method of Scheme 150, wherein the vacuum is less than about 40 mTorr.

方案153.根据方案145所述的方法,其中在基本上惰性的环境中进行所述填充。Embodiment 153. The method of embodiment 145, wherein the filling is performed in a substantially inert environment.

方案154.一种使用高温可再充电能量储存装置(HTRESD)的方法,所述方法包括:Scheme 154. A method of using a high temperature rechargeable energy storage device (HTRESD), the method comprising:

获得包括先进的电解质体系(AES)的HTRESD;和Obtain HTRESD including Advanced Electrolyte System (AES); and

通过在20小时的持续时间内对所述HTRESD交替充电和放电至少两次来循环所述HTRESD,同时维持所述HTRESD两端的电压,使得所述HTRESD表现出0.01W/升至150kW/升的初始峰值功率密度,使得所述HTRESD在约-40摄氏度至约210摄氏度的温度范围内的环境温度下操作时使用至少20小时。The HTRESD was cycled by alternately charging and discharging the HTRESD at least twice for a duration of 20 hours while maintaining the voltage across the HTRESD such that the HTRESD exhibited an initial rise of 0.01 W/liter to 150 kW/liter Peak power density such that the HTRESD is used for at least 20 hours when operating at ambient temperature in a temperature range of about -40 degrees Celsius to about 210 degrees Celsius.

方案155.根据方案154所述的方法,其中所述HTRESD是超级电容器。Embodiment 155. The method of embodiment 154, wherein the HTRESD is a supercapacitor.

方案156.根据方案154或155所述的方法,其中所述温度范围为约-40摄氏度至约150摄氏度。Scheme 156. The method of scheme 154 or 155, wherein the temperature ranges from about -40 degrees Celsius to about 150 degrees Celsius.

方案157.根据方案154或155所述的方法,其中所述温度范围为约-40摄氏度至约125摄氏度。Scheme 157. The method of scheme 154 or 155, wherein the temperature ranges from about -40 degrees Celsius to about 125 degrees Celsius.

方案158.根据方案154或155所述的方法,其中所述温度范围为约80摄氏度至约210摄氏度。Embodiment 158. The method of embodiment 154 or 155, wherein the temperature ranges from about 80 degrees Celsius to about 210 degrees Celsius.

方案159.根据方案154或155所述的方法,其中所述温度范围为约80摄氏度至约175摄氏度。Embodiment 159. The method of embodiment 154 or 155, wherein the temperature ranges from about 80 degrees Celsius to about 175 degrees Celsius.

方案160.根据方案154或155所述的方法,其中所述温度范围为约80摄氏度至约150摄氏度。Embodiment 160. The method of embodiment 154 or 155, wherein the temperature ranges from about 80 degrees Celsius to about 150 degrees Celsius.

方案161.根据方案154或155所述的方法,其中所述温度范围为约-40摄氏度至约80摄氏度。Embodiment 161. The method of embodiment 154 or 155, wherein the temperature ranges from about -40 degrees Celsius to about 80 degrees Celsius.

方案162.根据方案154所述的方法,其中所述HTRESD表现出约0.01W/升至约10kW/升的初始峰值功率密度。Embodiment 162. The method of embodiment 154, wherein the HTRESD exhibits an initial peak power density of about 0.01 W/liter to about 10 kW/liter.

方案163.根据方案154至162中任一项所述的方法,其中所述HTRESD表现出约0.01W/升至约5kW/升的初始峰值功率密度。Scheme 163. The method of any one of schemes 154 to 162, wherein the HTRESD exhibits an initial peak power density of about 0.01 W/liter to about 5 kW/liter.

方案164.根据方案163所述的方法,其中所述HTRESD表现出约0.01W/升至约2kW/升的初始峰值功率密度。Embodiment 164. The method of embodiment 163, wherein the HTRESD exhibits an initial peak power density of about 0.01 W/liter to about 2 kW/liter.

方案165.一种使用超级电容器的方法,所述方法包括:Scheme 165. A method of using an ultracapacitor, the method comprising:

获得根据方案1至85中任一项所述的超级电容器,其中,所述超级电容器表现出在保持在约100摄氏度和约150摄氏度之间的范围内的基本恒定的温度下时低于约10mA/立方厘米的体积漏电流(mA/立方厘米);和Obtaining the ultracapacitor of any one of schemes 1 to 85, wherein the ultracapacitor exhibits less than about 10 mA/ Cubic centimeter volume leakage current (mA/cubic centimeter); and

通过在20小时的持续时间内对所述超级电容器交替充电和放电至少两次来循环所述超级电容器,同时将所述超级电容器两端的电压维持20小时,使得所述超级电容器在保持在约-40摄氏度至约210摄氏度之间的范围内的基本恒定的温度下时使用20小时之后表现出低于约300%的ESR升高。The ultracapacitors were cycled by alternately charging and discharging the ultracapacitors at least twice over a 20 hour duration while maintaining the voltage across the ultracapacitors for 20 hours such that the ultracapacitors were maintained at about - A substantially constant temperature in the range between 40 degrees Celsius to about 210 degrees Celsius exhibited an ESR increase of less than about 300% after 20 hours of use.

方案166.根据方案165所述的方法,其中所述温度范围为约-40摄氏度和约150摄氏度之间。Embodiment 166. The method of embodiment 165, wherein the temperature range is between about -40 degrees Celsius and about 150 degrees Celsius.

方案167.根据方案165所述的方法,其中所述温度范围为约-40摄氏度和约125摄氏度之间。Embodiment 167. The method of embodiment 165, wherein the temperature range is between about -40 degrees Celsius and about 125 degrees Celsius.

方案168.根据方案165所述的方法,其中所述温度范围为约80摄氏度和约210摄氏度之间。Embodiment 168. The method of embodiment 165, wherein the temperature range is between about 80 degrees Celsius and about 210 degrees Celsius.

方案169.根据方案165所述的方法,其中所述温度范围为约80摄氏度和约175摄氏度之间。Embodiment 169. The method of embodiment 165, wherein the temperature range is between about 80 degrees Celsius and about 175 degrees Celsius.

方案170.根据方案165所述的方法,其中所述温度范围为约80摄氏度和约150摄氏度之间。Embodiment 170. The method of embodiment 165, wherein the temperature range is between about 80 degrees Celsius and about 150 degrees Celsius.

方案171.根据方案165所述的方法,其中所述温度范围为约-40摄氏度和约80摄氏度之间。Embodiment 171. The method of embodiment 165, wherein the temperature range is between about -40 degrees Celsius and about 80 degrees Celsius.

方案172.一种向使用者提供高温可再充电能量储存装置的方法,所述方法包括:Scheme 172. A method of providing a high temperature rechargeable energy storage device to a user, the method comprising:

选择包括先进的电解质体系(AES)的高温可再充电能量储存装置(HTRESD),所述高温可再充电能量储存装置(HTRESD)在暴露于约-40摄氏度至约210摄氏度的温度范围内的环境温度时表现出0.01W/升和100kW/升之间的初始峰值功率密度和至少20小时的耐久期;和A high temperature rechargeable energy storage device (HTRESD) including an advanced electrolyte system (AES) selected for exposure to an environment in a temperature range of about -40 degrees Celsius to about 210 degrees Celsius exhibit an initial peak power density of between 0.01 W/L and 100 kW/L and an endurance period of at least 20 hours at temperature; and

交付所述储存装置,使得向使用者提供所述HTRESD。The storage device is delivered such that the HTRESD is provided to the user.

方案173.一种向使用者提供高温可再充电能量储存装置的方法,所述方法包括:Scheme 173. A method of providing a high temperature rechargeable energy storage device to a user, the method comprising:

获得根据方案1至85中任一项所述的超级电容器,所述超级电容器在保持在约-40摄氏度和约210摄氏度之间的范围内的基本恒定的温度下时表现出低于约10mA/立方厘米的体积漏电流(mA/立方厘米);和交付所述储存装置,使得向使用者提供所述HTRESD。Obtaining the ultracapacitor of any one of schemes 1 to 85, the ultracapacitor exhibiting less than about 10 mA/cubic when maintained at a substantially constant temperature in a range between about -40 degrees Celsius and about 210 degrees Celsius centimeter volume leakage current (mA/cm 3 ); and delivering the storage device such that the HTRESD is provided to the user.

Claims (10)

1. a kind of supercapacitor, comprising:
The intracorporal advanced electrolyte system (AES) of gas-tight seal shell and energy storage unit, the unit are electrically coupled to anode Contact and cathode contact part, wherein Cheng Yue -40 degrees Celsius to about 210 degrees Celsius of the ultracapacitor configurations of temperature model It is operated at a temperature of in enclosing.
2. supercapacitor according to claim 1, wherein the AES includes novel electrolytes entity (NEE).
3. supercapacitor according to claim 1 or 2, wherein the NEE is suitable for making in high temperature ultracapacitor With.
4. supercapacitor according to any one of claim 1 to 3, wherein the ultracapacitor configurations Cheng Yue 80 It degree Celsius is operated at a temperature of within the temperature range of about 210 degrees Celsius.
5. supercapacitor according to claim 4, wherein 80 degrees Celsius of the ultracapacitor configurations Cheng Yue is to about It is operated at a temperature of within the temperature range of 150 degrees Celsius.
6. supercapacitor according to claim 1, wherein the AES includes highly purified electrolyte.
7. supercapacitor according to claim 1 or 6, wherein the highly purified electrolyte is suitable for surpassing in high temperature It is used in grade capacitor.
8. according to claim 1, supercapacitor described in any one of 6 or 7, wherein the ultracapacitor configurations Cheng Yue It is operated at a temperature of within the temperature range of 80 degrees Celsius to about 210 degrees Celsius.
9. supercapacitor according to claim 8, wherein 80 degrees Celsius of the ultracapacitor configurations Cheng Yue is to about It is operated at a temperature of within the temperature range of 150 degrees Celsius.
10. supercapacitor according to claim 1, wherein the AES includes the electrolyte combination of enhancing.
CN201910288116.2A 2012-02-24 2013-02-25 Advanced electrolyte system and use thereof in energy storage devices Active CN110233063B (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201261602713P 2012-02-24 2012-02-24
US61/602,713 2012-02-24
US201261619203P 2012-04-02 2012-04-02
US61/619,203 2012-04-02
PCT/US2012/045994 WO2013009720A2 (en) 2011-07-08 2012-07-09 High temperature energy storage device
USPCT/US2012/045994 2012-07-09
US13/553,716 2012-07-19
US13/553,716 US20130026978A1 (en) 2011-07-27 2012-07-19 Power supply for downhole instruments
US201261724775P 2012-11-09 2012-11-09
US61/724,775 2012-11-09
CN201380022019.XA CN104246942B (en) 2012-02-24 2013-02-25 Advanced electrolyte systems and their use in energy storage devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201380022019.XA Division CN104246942B (en) 2012-02-24 2013-02-25 Advanced electrolyte systems and their use in energy storage devices

Publications (2)

Publication Number Publication Date
CN110233063A true CN110233063A (en) 2019-09-13
CN110233063B CN110233063B (en) 2022-01-04

Family

ID=49006312

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910288116.2A Active CN110233063B (en) 2012-02-24 2013-02-25 Advanced electrolyte system and use thereof in energy storage devices
CN201380022019.XA Active CN104246942B (en) 2012-02-24 2013-02-25 Advanced electrolyte systems and their use in energy storage devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201380022019.XA Active CN104246942B (en) 2012-02-24 2013-02-25 Advanced electrolyte systems and their use in energy storage devices

Country Status (8)

Country Link
EP (1) EP2817810A4 (en)
JP (1) JP2015515741A (en)
KR (4) KR102284300B1 (en)
CN (2) CN110233063B (en)
AU (1) AU2013222120A1 (en)
CA (1) CA2865230A1 (en)
IL (3) IL316198A (en)
WO (1) WO2013126915A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012282799A1 (en) 2011-07-08 2014-02-27 Fastcap Systems Corporation High temperature energy storage device
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
WO2013067540A1 (en) 2011-11-03 2013-05-10 Fastcap Systems Corporation Production logging instrument
US20190218894A9 (en) 2013-03-15 2019-07-18 Fastcap Systems Corporation Power system for downhole toolstring
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
EA038707B1 (en) 2013-12-20 2021-10-07 Фасткэп Системз Корпорейшн Electromagnetic telemetry device
US9972447B2 (en) * 2014-11-07 2018-05-15 Bing R. Hsieh Printed supercapacitors based on graphene
US9818552B2 (en) * 2015-01-26 2017-11-14 Ioxus, Inc. Additives for reducing ESR gain in electrochemical double layer capacitors
KR102668693B1 (en) * 2015-01-27 2024-05-27 패스트캡 시스템즈 코포레이션 Wide temperature range ultracapacitor
WO2016204820A2 (en) 2015-01-27 2016-12-22 Fastcap Systems Corporation Wide temperature range ultracapacitor
US20160268064A1 (en) * 2015-03-09 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
KR102377313B1 (en) * 2016-01-26 2022-03-21 엘에스머트리얼즈 주식회사 Ultra Capacitor Module
GB2548128B (en) * 2016-03-09 2021-12-15 Zapgo Ltd Method of reducing outgassing
EP3459094B1 (en) 2016-05-20 2022-08-17 KYOCERA AVX Components Corporation Ultracapacitor for use at high temperatures
WO2017201173A1 (en) 2016-05-20 2017-11-23 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
JP2020522113A (en) * 2017-04-10 2020-07-27 エービー システムス,インコーポレーテッド(ユーエス) Secondary battery with long cycle life
WO2019005537A1 (en) * 2017-06-30 2019-01-03 Avx Corporation Heat dissipation from a balancing circuit for an ultracapacitor module
US11133133B2 (en) 2017-09-07 2021-09-28 Avx Corporation Supercapacitor module having matched supercapacitors
KR20230170825A (en) 2017-10-03 2023-12-19 패스트캡 시스템즈 코포레이션 Chip form ultracapacitor
CN109088031B (en) * 2018-08-20 2021-08-27 湖南烁普新材料有限公司 Ceramic coating diaphragm slurry, ceramic composite diaphragm and preparation method and application thereof
DE102022132405A1 (en) * 2021-12-23 2024-06-06 Skeleton Technologies GmbH Process for producing a supercapacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759497A (en) * 2003-03-13 2006-04-12 联邦科学及工业研究组织 Energy storage devices
CN101765939A (en) * 2007-07-23 2010-06-30 赢创德固赛有限责任公司 Electrolyte preparations for energy stores based on ionic liquids
US20110194231A1 (en) * 2008-09-09 2011-08-11 Cap-Xx Limited Charge Storage Device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621607A (en) * 1994-10-07 1997-04-15 Maxwell Laboratories, Inc. High performance double layer capacitors including aluminum carbon composite electrodes
US6449139B1 (en) * 1999-08-18 2002-09-10 Maxwell Electronic Components Group, Inc. Multi-electrode double layer capacitor having hermetic electrolyte seal
KR100487069B1 (en) * 2000-04-12 2005-05-03 일진나노텍 주식회사 Supercapacitor using electrode of new material and manufacturing method the same
JP3941917B2 (en) * 2001-10-19 2007-07-11 Necトーキン株式会社 Electric double layer capacitor manufacturing method and electric double layer capacitor
KR100578873B1 (en) * 2004-01-29 2006-05-11 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7800886B2 (en) * 2005-04-12 2010-09-21 Sumitomo Chemical Company, Limited Electric double layer capacitor
US7388362B2 (en) * 2005-07-27 2008-06-17 Gm Global Technology Operations, Inc. Bi-modal voltage limit control to maximize ultra-capacitor performance
JP4616132B2 (en) * 2005-09-13 2011-01-19 日本板硝子株式会社 Electric double layer capacitor separator and electric double layer capacitor
WO2007055392A1 (en) * 2005-11-11 2007-05-18 Nippon Shokubai Co., Ltd. Ionic compound
JP2007250994A (en) * 2006-03-17 2007-09-27 Kaneka Corp Conductive polymer redox type electrochemical element used as polar device
KR100816592B1 (en) * 2006-03-24 2008-03-24 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
WO2008013095A1 (en) * 2006-07-27 2008-01-31 Nichicon Corporation Ionic compound
GB2453907B (en) * 2006-08-02 2011-11-02 Ada Technologies Inc High performance ultracapacitors with carbon nanomaterials and ionic liquids
EP2202764A4 (en) * 2007-10-18 2018-03-28 Kuraray Co., Ltd. Laminate, separator for capacitor, and capacitor
JP4413276B2 (en) * 2008-03-28 2010-02-10 パナソニック株式会社 Electrode active material for power storage device, power storage device, electronic equipment and transport equipment
JP4427629B2 (en) * 2008-04-11 2010-03-10 パナソニック株式会社 Energy storage device, method for manufacturing the same, and apparatus equipped with the same
GB2472554B (en) * 2008-05-05 2012-12-05 Ada Technologies Inc High performance carbon nanocomposites for ultracapacitors
KR101138036B1 (en) * 2008-12-16 2012-04-19 도요타지도샤가부시키가이샤 Sealed battery
US20110080689A1 (en) * 2009-09-04 2011-04-07 Bielawski Christopher W Ionic Liquids for Use in Ultracapacitor and Graphene-Based Ultracapacitor
US8373971B2 (en) * 2010-01-13 2013-02-12 Karl S. YOUNG Supercapacitors using nanotube fibers and methods of making the same
JP5531977B2 (en) * 2011-02-07 2014-06-25 大日本印刷株式会社 Battery case sheet and battery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759497A (en) * 2003-03-13 2006-04-12 联邦科学及工业研究组织 Energy storage devices
CN101765939A (en) * 2007-07-23 2010-06-30 赢创德固赛有限责任公司 Electrolyte preparations for energy stores based on ionic liquids
US20110194231A1 (en) * 2008-09-09 2011-08-11 Cap-Xx Limited Charge Storage Device

Also Published As

Publication number Publication date
IL298172A (en) 2023-01-01
IL316198A (en) 2024-12-01
IL234232B (en) 2022-12-01
IL298172B1 (en) 2025-02-01
CN104246942A (en) 2014-12-24
CA2865230A1 (en) 2013-08-29
CN110233063B (en) 2022-01-04
CN104246942B (en) 2019-05-10
WO2013126915A1 (en) 2013-08-29
KR20250022231A (en) 2025-02-14
AU2013222120A1 (en) 2014-10-02
IL234232A (en) 2014-10-30
JP2015515741A (en) 2015-05-28
EP2817810A1 (en) 2014-12-31
EP2817810A4 (en) 2015-10-21
KR20210097812A (en) 2021-08-09
KR20220149761A (en) 2022-11-08
IL234232B2 (en) 2023-04-01
KR20140129283A (en) 2014-11-06
KR102461542B1 (en) 2022-11-01
KR102284300B1 (en) 2021-08-03
KR102762495B1 (en) 2025-02-05

Similar Documents

Publication Publication Date Title
US12165806B2 (en) Advanced electrolyte systems and their use in energy storage devices
US11901123B2 (en) High temperature energy storage device
CN110233063B (en) Advanced electrolyte system and use thereof in energy storage devices
US11488787B2 (en) Advanced electrolytes for high temperature energy storage device
WO2015102716A2 (en) Advanced electrolytes for high temperature energy storage device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: Massachusetts, USA

Patentee after: Nano Ramic Corp.

Country or region after: U.S.A.

Address before: Massachusetts, USA

Patentee before: FASTCAP SYSTEMS Corp.

Country or region before: U.S.A.