CN110227826A - A method of preparing high-purity nm molybdenum powder - Google Patents
A method of preparing high-purity nm molybdenum powder Download PDFInfo
- Publication number
- CN110227826A CN110227826A CN201810826127.7A CN201810826127A CN110227826A CN 110227826 A CN110227826 A CN 110227826A CN 201810826127 A CN201810826127 A CN 201810826127A CN 110227826 A CN110227826 A CN 110227826A
- Authority
- CN
- China
- Prior art keywords
- molybdenum
- nano
- purity
- powder
- carbon black
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 21
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 claims abstract description 44
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims abstract description 34
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000006229 carbon black Substances 0.000 claims abstract description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 19
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 13
- 239000011733 molybdenum Substances 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims abstract description 6
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims abstract description 5
- 229940010552 ammonium molybdate Drugs 0.000 claims abstract description 5
- 235000018660 ammonium molybdate Nutrition 0.000 claims abstract description 5
- 239000011609 ammonium molybdate Substances 0.000 claims abstract description 5
- 230000002829 reductive effect Effects 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000009776 industrial production Methods 0.000 abstract description 3
- 239000003638 chemical reducing agent Substances 0.000 abstract description 2
- 239000002105 nanoparticle Substances 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
- B22F9/22—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一种制备高纯纳米钼粉的方法。以三氧化钼或钼酸铵为钼源,将三氧化钼和碳黑按摩尔比1:0.5‑1:2.0配料混匀,制备出碳含量极低的含一定量纳米钼核心的二氧化钼,然后用氢气将含有纳米钼核心的二氧化钼进行还原,即可得到碳含量极低的高纯纳米钼粉。本发明解决了传统使用氢气还原三氧化钼制备二氧化钼和钼粉的过程中难以制备出纳米钼粉的问题。在本发明中,使用较细的炭黑为还原剂,在二氧化钼中生成一定量的分散的纳米钼核心,这些分散的细小的纳米钼核心可以辅助氢气还原二氧化钼生成钼纳米颗粒。本发明制备出的纳米钼粉平均粒度在40‑200nm,碳含量可小于0.01%。本发明原料成本低,产品纯度高,粒度小,工艺简单,生产效率高,适合大规模工业化生产高纯纳米钼粉。A method for preparing high-purity nano molybdenum powder. Using molybdenum trioxide or ammonium molybdate as the molybdenum source, mix molybdenum trioxide and carbon black in a molar ratio of 1:0.5-1:2.0 to prepare molybdenum dioxide with a certain amount of nano-molybdenum core with extremely low carbon content , and then reduce the molybdenum dioxide containing nano-molybdenum core with hydrogen to obtain high-purity nano-molybdenum powder with extremely low carbon content. The invention solves the problem that it is difficult to prepare nano molybdenum powder in the traditional process of reducing molybdenum trioxide with hydrogen to prepare molybdenum dioxide and molybdenum powder. In the present invention, finer carbon black is used as a reducing agent to generate a certain amount of dispersed nano-molybdenum cores in molybdenum dioxide, and these dispersed fine nano-molybdenum cores can assist hydrogen to reduce molybdenum dioxide to form molybdenum nanoparticles. The average particle size of the nano-molybdenum powder prepared by the invention is 40-200nm, and the carbon content can be less than 0.01%. The invention has low raw material cost, high product purity, small particle size, simple process and high production efficiency, and is suitable for large-scale industrial production of high-purity nanometer molybdenum powder.
Description
技术领域technical field
本发明属于纳米粉体材料制备领域,公开了一种制备高纯纳米钼粉的方法。The invention belongs to the field of nano powder material preparation and discloses a method for preparing high-purity nano molybdenum powder.
背景技术Background technique
钼具有许多优异的特性,如:高熔点、高硬度、高耐磨性、低热膨胀系数、优异的导电导热性能以及良好的耐腐蚀性能。因此,钼及其合金在许多领域有广泛的应用。例如:化工、冶金、电子、军工及航空航天等领域。而纳米尺寸的钼粉,具有许多独特的性质,如极高的比表面积,界面处原子的化学活性增强,这些都可能显着改变其物理,机械和化学性质。另外,纳米钼粉可以显著降低烧结温度,在较低的温度下获得致密度较高且晶粒较小的产品。所以用纳米钼粉烧结合成钼坯及其合金是提高钼系合金物理力学性能的最佳途径之一。Molybdenum has many excellent properties, such as: high melting point, high hardness, high wear resistance, low thermal expansion coefficient, excellent electrical and thermal conductivity, and good corrosion resistance. Therefore, molybdenum and its alloys are widely used in many fields. For example: chemical industry, metallurgy, electronics, military industry and aerospace and other fields. Nano-sized molybdenum powder has many unique properties, such as extremely high specific surface area and enhanced chemical activity of atoms at the interface, which may significantly change its physical, mechanical and chemical properties. In addition, nano-molybdenum powder can significantly reduce the sintering temperature, and obtain products with higher density and smaller grains at lower temperatures. Therefore, it is one of the best ways to improve the physical and mechanical properties of molybdenum-based alloys by sintering and combining nano-molybdenum powders into molybdenum billets and their alloys.
目前,工业上制备钼粉主要采用氢气两段还原三氧化钼的工艺。但是,在传统使用氢气还原三氧化钼制备二氧化钼和钼粉的过程中,由于二氧化钼和钼分散形核困难,以及气相迁移机理的存在,使得难以制备出纳米钼粉。虽然有很多其他的方法用于制备纳米钼粉,包括高能球磨,热等离子体技术,羰基钼热分解法,低温熔盐制备等等,但是,这些方法由于成本、生产效率、工艺复杂等原因难以用于工业化生产纳米钼粉。At present, the industrial preparation of molybdenum powder mainly adopts the process of two-stage reduction of molybdenum trioxide with hydrogen. However, in the traditional process of using hydrogen to reduce molybdenum trioxide to prepare molybdenum dioxide and molybdenum powder, it is difficult to prepare nano-molybdenum powder due to the difficulty in the dispersion and nucleation of molybdenum dioxide and molybdenum and the existence of gas phase migration mechanism. Although there are many other methods for preparing nano-molybdenum powder, including high-energy ball milling, thermal plasma technology, molybdenum carbonyl thermal decomposition method, low-temperature molten salt preparation, etc., these methods are difficult due to cost, production efficiency, and complicated process. It is used for industrial production of nano molybdenum powder.
发明内容Contents of the invention
本发明的目的是提供一种新的低成本、工艺简单、高效、适宜大规模工业化生产的制备高纯纳米钼粉的方法。The purpose of the present invention is to provide a new method for preparing high-purity nano-molybdenum powder with low cost, simple process, high efficiency and suitable for large-scale industrial production.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种制备高纯纳米钼粉的方法,其特征在于,本发明以三氧化钼为钼源,炭黑和氢气为还原剂;用炭黑将三氧化钼还原为含一定量纳米钼核心的二氧化钼,然后用氢气将含有纳米钼核心的二氧化钼还原,得到高纯纳米钼粉。A method for preparing high-purity nano-molybdenum powder is characterized in that the present invention uses molybdenum trioxide as a molybdenum source, and carbon black and hydrogen are reducing agents; carbon black is used to reduce molybdenum trioxide to a dihydrogen molybdenum containing a certain amount of nano-molybdenum core. Molybdenum oxide, and then use hydrogen to reduce molybdenum dioxide containing nano-molybdenum cores to obtain high-purity nano-molybdenum powder.
进一步地,所述的三氧化钼可以用钼酸铵替代。Further, the molybdenum trioxide can be replaced by ammonium molybdate.
进一步地,本发明具体步骤如下:Further, the specific steps of the present invention are as follows:
(1)将三氧化钼和碳黑按摩尔比1:0.5-1:2.0配料并混合均匀,在400-750℃进行还原,得到含一定量炭黑的超细二氧化钼。(1) Molybdenum trioxide and carbon black are mixed in a molar ratio of 1:0.5-1:2.0 and mixed evenly, and reduced at 400-750°C to obtain ultrafine molybdenum dioxide containing a certain amount of carbon black.
(2)将步骤(1)中得到的含一定量炭黑的超细二氧化钼在800℃-1150℃的温度下反应,得到含有一定量纳米钼核心的二氧化钼。(2) reacting the ultrafine molybdenum dioxide containing a certain amount of carbon black obtained in step (1) at a temperature of 800° C. to 1150° C. to obtain molybdenum dioxide containing a certain amount of nano-molybdenum core.
(3)将步骤(2)中得到的含有一定量纳米钼核心的二氧化钼在600-1100℃进行氢气还原,得到高纯纳米钼粉,平均粒度在40-200nm。(3) Reducing the molybdenum dioxide containing a certain amount of nano-molybdenum core obtained in step (2) with hydrogen at 600-1100° C. to obtain high-purity nano-molybdenum powder with an average particle size of 40-200 nm.
进一步地,可以采用氢气替代炭黑还原含有一定量纳米钼核心的二氧化钼,进而制备高纯纳米钼粉。Furthermore, hydrogen can be used instead of carbon black to reduce molybdenum dioxide containing a certain amount of nano-molybdenum cores, thereby preparing high-purity nano-molybdenum powder.
本发明与现有技术相比,有以下优点:Compared with the prior art, the present invention has the following advantages:
1.本发明提供了一种新的制备高纯纳米钼粉的工艺,解决了传统使用氢气还原三氧化钼制备二氧化钼和钼粉的过程中难以制备出纳米钼粉的问题。1. The present invention provides a new process for preparing high-purity nano-molybdenum powder, which solves the problem that it is difficult to prepare nano-molybdenum powder in the traditional process of using hydrogen to reduce molybdenum trioxide to prepare molybdenum dioxide and molybdenum powder.
2.本发明使用的原料三氧化钼(或钼酸铵)、炭黑和氢气都是工业上常用的原料,可以有效的降低生产成本和提高生产效率。2. The raw materials molybdenum trioxide (or ammonium molybdate), carbon black and hydrogen used in the present invention are all commonly used raw materials in industry, which can effectively reduce production costs and improve production efficiency.
3.本发明工艺简单且对设备要求低。炭黑和氧化钼反应不需要特殊设备、控制方便且生成效率高;氢气还原含纳米钼核心的二氧化钼可以用现有的工业生产钼粉的设备。因此,本发明适合工业化大规模生产纳米钼粉。3. The process of the present invention is simple and has low requirements on equipment. The reaction between carbon black and molybdenum oxide does not require special equipment, is convenient to control, and has high production efficiency; hydrogen reduction of molybdenum dioxide containing nano-molybdenum cores can use existing industrial equipment for producing molybdenum powder. Therefore, the present invention is suitable for industrialized large-scale production of nano molybdenum powder.
4.本发明制备的纳米钼粉,平均粒度在40nm-200nm,粒度均匀,碳含量可小于0.01%。4. The nano-molybdenum powder prepared by the present invention has an average particle size of 40nm-200nm, uniform particle size, and a carbon content of less than 0.01%.
具体实施方式Detailed ways
为进一步了解本发明的内容。下面结合实例对本发明作进一步的表述。For further understanding of the present invention. Below in conjunction with example the present invention is described further.
实施例一:Embodiment one:
将高纯三氧化钼和炭黑按摩尔比1:0.8的比例混合均匀。将混匀的原料在600℃下惰性气体气氛焙烧1个小时,然后在1000℃焙烧1个小时,再将焙烧后的产物在900℃进行氢气还原,得到高纯纳米钼粉。Mix high-purity molybdenum trioxide and carbon black evenly in a molar ratio of 1:0.8. The mixed raw materials are calcined in an inert gas atmosphere at 600°C for 1 hour, then calcined at 1000°C for 1 hour, and then the calcined product is subjected to hydrogen reduction at 900°C to obtain high-purity nano-molybdenum powder.
实施例二:Embodiment two:
将高纯三氧化钼和炭黑按摩尔比1:1.4的比例混合均匀。将混匀的原料在550℃下惰性气体气氛焙烧1.5个小时,然后在900℃焙烧1个小时,再将焙烧后的产物在800℃进行氢气还原,得到高纯纳米钼粉。Mix high-purity molybdenum trioxide and carbon black evenly in a molar ratio of 1:1.4. The mixed raw materials were calcined at 550°C in an inert gas atmosphere for 1.5 hours, then at 900°C for 1 hour, and then the calcined product was subjected to hydrogen reduction at 800°C to obtain high-purity nano-molybdenum powder.
实施例三:Embodiment three:
将钼酸铵按其中所含钼和炭黑摩尔比1:1.0的比例混合均匀。将混匀的原料在530℃下惰性气体气氛焙烧2个小时,然后在950℃焙烧1个小时,再将焙烧后的产物在850℃进行氢气还原,得到高纯纳米钼粉。Mix the ammonium molybdate evenly with the molar ratio of molybdenum and carbon black contained therein at 1:1.0. Roast the mixed raw materials at 530°C in an inert gas atmosphere for 2 hours, then at 950°C for 1 hour, and then reduce the calcined product with hydrogen at 850°C to obtain high-purity nano-molybdenum powder.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810826127.7A CN110227826B (en) | 2018-07-25 | 2018-07-25 | Method for preparing high-purity nano molybdenum powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810826127.7A CN110227826B (en) | 2018-07-25 | 2018-07-25 | Method for preparing high-purity nano molybdenum powder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110227826A true CN110227826A (en) | 2019-09-13 |
CN110227826B CN110227826B (en) | 2020-06-12 |
Family
ID=67862272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810826127.7A Active CN110227826B (en) | 2018-07-25 | 2018-07-25 | Method for preparing high-purity nano molybdenum powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110227826B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112207287A (en) * | 2020-12-07 | 2021-01-12 | 西安稀有金属材料研究院有限公司 | Preparation method and application of yttrium oxide nanoparticle-doped nano molybdenum powder |
CN112222419A (en) * | 2020-12-07 | 2021-01-15 | 西安稀有金属材料研究院有限公司 | Method for preparing nano molybdenum powder by regulating nucleation and growth processes and application |
CN112222420A (en) * | 2020-12-07 | 2021-01-15 | 西安稀有金属材料研究院有限公司 | Nano tungsten powder doped with metal oxide nano particles and preparation method thereof |
CN113234940A (en) * | 2021-04-13 | 2021-08-10 | 郑州大学 | Method for preparing molybdenum metal product from molybdenum concentrate in short process |
CN115229181A (en) * | 2022-09-23 | 2022-10-25 | 西安稀有金属材料研究院有限公司 | Method for preparing superfine molybdenum dioxide and molybdenum powder based on nano-scale solid-liquid mixed deposition |
CN115233022A (en) * | 2022-09-23 | 2022-10-25 | 西安稀有金属材料研究院有限公司 | Ultrahigh-hardness nano-structure molybdenum-aluminum alloy and preparation method thereof |
CN115321598A (en) * | 2022-09-23 | 2022-11-11 | 西安稀有金属材料研究院有限公司 | Preparation method of low-cost, high-dispersion, high-porosity and high-purity ultrafine molybdenum trioxide |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101200001A (en) * | 2007-12-17 | 2008-06-18 | 金堆城钼业股份有限公司 | Preparing process for ultrafine powder molybdenum |
CN101966592A (en) * | 2010-11-01 | 2011-02-09 | 金堆城钼业股份有限公司 | Method for preparing molybdenum powder |
US20160310929A1 (en) * | 2015-04-24 | 2016-10-27 | Georgia Tech Research Corporation | Carbide-derived carbons having incorporated metal chloride or metallic nanoparticles |
CN106735282A (en) * | 2016-12-31 | 2017-05-31 | 湖南省华京粉体材料有限公司 | A kind of sodium molybdate organises the method for preparing nano Mo powder |
CN107262733A (en) * | 2017-08-02 | 2017-10-20 | 北京科技大学 | A kind of method that two-part reduction prepares ultrafine molybdenum powder |
-
2018
- 2018-07-25 CN CN201810826127.7A patent/CN110227826B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101200001A (en) * | 2007-12-17 | 2008-06-18 | 金堆城钼业股份有限公司 | Preparing process for ultrafine powder molybdenum |
CN101966592A (en) * | 2010-11-01 | 2011-02-09 | 金堆城钼业股份有限公司 | Method for preparing molybdenum powder |
US20160310929A1 (en) * | 2015-04-24 | 2016-10-27 | Georgia Tech Research Corporation | Carbide-derived carbons having incorporated metal chloride or metallic nanoparticles |
CN106735282A (en) * | 2016-12-31 | 2017-05-31 | 湖南省华京粉体材料有限公司 | A kind of sodium molybdate organises the method for preparing nano Mo powder |
CN107262733A (en) * | 2017-08-02 | 2017-10-20 | 北京科技大学 | A kind of method that two-part reduction prepares ultrafine molybdenum powder |
Non-Patent Citations (1)
Title |
---|
林小芹等: "钼粉的制备技术及其进展", 《中国钼业》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112207287A (en) * | 2020-12-07 | 2021-01-12 | 西安稀有金属材料研究院有限公司 | Preparation method and application of yttrium oxide nanoparticle-doped nano molybdenum powder |
CN112222419A (en) * | 2020-12-07 | 2021-01-15 | 西安稀有金属材料研究院有限公司 | Method for preparing nano molybdenum powder by regulating nucleation and growth processes and application |
CN112222420A (en) * | 2020-12-07 | 2021-01-15 | 西安稀有金属材料研究院有限公司 | Nano tungsten powder doped with metal oxide nano particles and preparation method thereof |
CN112222420B (en) * | 2020-12-07 | 2021-03-16 | 西安稀有金属材料研究院有限公司 | Nano tungsten powder doped with metal oxide nano particles and preparation method thereof |
CN113234940A (en) * | 2021-04-13 | 2021-08-10 | 郑州大学 | Method for preparing molybdenum metal product from molybdenum concentrate in short process |
CN115229181A (en) * | 2022-09-23 | 2022-10-25 | 西安稀有金属材料研究院有限公司 | Method for preparing superfine molybdenum dioxide and molybdenum powder based on nano-scale solid-liquid mixed deposition |
CN115233022A (en) * | 2022-09-23 | 2022-10-25 | 西安稀有金属材料研究院有限公司 | Ultrahigh-hardness nano-structure molybdenum-aluminum alloy and preparation method thereof |
CN115321598A (en) * | 2022-09-23 | 2022-11-11 | 西安稀有金属材料研究院有限公司 | Preparation method of low-cost, high-dispersion, high-porosity and high-purity ultrafine molybdenum trioxide |
CN115321598B (en) * | 2022-09-23 | 2023-10-20 | 西安稀有金属材料研究院有限公司 | Preparation method of low-cost, high-dispersion, high-porosity and high-purity superfine molybdenum trioxide |
Also Published As
Publication number | Publication date |
---|---|
CN110227826B (en) | 2020-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110227826B (en) | Method for preparing high-purity nano molybdenum powder | |
Liu et al. | Molten salt synthesis, formation mechanism, and oxidation behavior of nanocrystalline HfB 2 powders | |
CN101830463B (en) | A kind of preparation method of nanometer chromium carbide powder | |
CN103924111B (en) | The preparation method of a kind of Wimet nanometer particle size powder and high performance sintered block materials | |
CN102515164B (en) | Preparation method of zirconium carbide ceramic powder | |
CN108500283B (en) | A low-cost two-stage reduction method for preparing nano-tungsten powder | |
CN109304478B (en) | One-step method for preparing graphene/copper composite powder | |
CN103978224B (en) | The method of nano-tungsten powder prepared by a kind of arsenic doping ammonium paratungstate or ammonium metatungstate | |
WO2020186752A1 (en) | Method for preparing superfine grain wc-co hard alloy by means of plasma ball milling | |
CN110184488B (en) | Method for preparing metal dispersion strengthened copper in short process | |
CN102603007A (en) | Preparation method of tungsten oxide nano powder and metal tungsten nano powder | |
CN112011705A (en) | Batch preparation method of nano-carbon reinforced copper matrix composites | |
CN108543952A (en) | A kind of method of precursor process synthesis WC base nano composite powders | |
CN101168197A (en) | A kind of preparation method of superfine/nanometer tungsten-copper-nickel composite powder | |
CN109079151B (en) | Method for preparing ultra-coarse tungsten powder by high-temperature liquid-phase reduction of tungsten oxide | |
Wu et al. | Synthesis of tungsten carbide nanopowders by direct carbonization of tungsten oxide and carbon: Effects of tungsten oxide source on phase structure and morphology evolution | |
Wan et al. | Synthesis and characterization of W–Cu nanopowders by a wet-chemical method | |
CN105195750A (en) | Preparation method of micro low-oxygen titanium hydride powder | |
CN101857196A (en) | A kind of preparation method of nanometer chromium carbide/vanadium composite powder | |
CN102674844A (en) | Method for preparing nanometer vanadium/chromium carbide composite powder by reduction with microwave method | |
CN103658677B (en) | The preparation method of a kind of nano powder of tungsten carbide | |
WO2019227811A1 (en) | Ultrafine transition-metal boride powder, and preparation method therefor and application thereof | |
Xiong et al. | Ultrafine hardmetals prepared by WC–10 wt.% Co composite powder | |
CN108264041A (en) | Graphene oxide/copper oxide composite powder and preparation method thereof, microcosmic stratiform structure graphite alkene/method of manufacturing carbon/carbon-copper composite material | |
CN103252506B (en) | Preparation method of nanometer molybdenum powder containing homodisperse carbon nano tubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |