CN101857196A - A kind of preparation method of nanometer chromium carbide/vanadium composite powder - Google Patents
A kind of preparation method of nanometer chromium carbide/vanadium composite powder Download PDFInfo
- Publication number
- CN101857196A CN101857196A CN201010186209A CN201010186209A CN101857196A CN 101857196 A CN101857196 A CN 101857196A CN 201010186209 A CN201010186209 A CN 201010186209A CN 201010186209 A CN201010186209 A CN 201010186209A CN 101857196 A CN101857196 A CN 101857196A
- Authority
- CN
- China
- Prior art keywords
- vanadium
- preparation
- powder
- nano
- chromium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 83
- 229910052720 vanadium Inorganic materials 0.000 title claims abstract description 52
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 229910003470 tongbaite Inorganic materials 0.000 title claims abstract description 48
- 239000002131 composite material Substances 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 title 1
- 239000002245 particle Substances 0.000 claims abstract description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000002243 precursor Substances 0.000 claims abstract description 27
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 24
- 239000011651 chromium Substances 0.000 claims abstract description 21
- 239000000243 solution Substances 0.000 claims abstract description 20
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims abstract description 19
- 238000003763 carbonization Methods 0.000 claims abstract description 16
- 238000001035 drying Methods 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 14
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 14
- 239000011259 mixed solution Substances 0.000 claims abstract description 14
- 238000009826 distribution Methods 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 239000008367 deionised water Substances 0.000 claims abstract description 12
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 12
- 230000009467 reduction Effects 0.000 claims abstract description 10
- 239000012298 atmosphere Substances 0.000 claims abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 9
- 150000001844 chromium Chemical class 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052786 argon Inorganic materials 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 6
- 239000012153 distilled water Substances 0.000 claims abstract description 4
- GVEHJMMRQRRJPM-UHFFFAOYSA-N chromium(2+);methanidylidynechromium Chemical compound [Cr+2].[Cr]#[C-].[Cr]#[C-] GVEHJMMRQRRJPM-UHFFFAOYSA-N 0.000 claims description 25
- JOSWYUNQBRPBDN-UHFFFAOYSA-P ammonium dichromate Chemical compound [NH4+].[NH4+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O JOSWYUNQBRPBDN-UHFFFAOYSA-P 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000006229 carbon black Substances 0.000 claims description 9
- 229910021392 nanocarbon Inorganic materials 0.000 claims description 5
- PMJNEQWWZRSFCE-UHFFFAOYSA-N 3-ethoxy-3-oxo-2-(thiophen-2-ylmethyl)propanoic acid Chemical compound CCOC(=O)C(C(O)=O)CC1=CC=CS1 PMJNEQWWZRSFCE-UHFFFAOYSA-N 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 229930006000 Sucrose Natural products 0.000 claims description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 239000005720 sucrose Substances 0.000 claims description 3
- 241000143437 Aciculosporium take Species 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 238000009768 microwave sintering Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 28
- 230000008569 process Effects 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000035484 reaction time Effects 0.000 abstract description 5
- 238000009776 industrial production Methods 0.000 abstract description 3
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000003966 growth inhibitor Substances 0.000 description 4
- 238000005272 metallurgy Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- QVBBWZLIXSPGFW-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[V+5].[Cr+3] Chemical compound [O--].[O--].[O--].[O--].[V+5].[Cr+3] QVBBWZLIXSPGFW-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- -1 chromium carbides Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
一种纳米碳化铬/钒复合粉末的制备方法,所述的制备方法包括以下步骤:按重量比取粉状铬盐4.20~10.90g、钒酸铵3.70g~7.70g、碳质还原剂2.20g~8.40g,将它们置于去离子水或蒸馏水中,并搅拌均匀,制得溶液或混合液;将步骤a所得溶液或混合液置于干燥箱中,在100~200℃条件下加热1~3h,在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将步骤b所得前驱体粉末置于高温反应炉中,在真空、氩气或氢气气氛保护条件下,在800~1100℃、0.5~2h的条件下进行碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末。本方法具有反应温度低、反应时间短、生产成本低、工艺简单等特点,适合工业化生产纳米碳化铬/钒复合粉末。A preparation method of nano-chromium carbide/vanadium composite powder, said preparation method comprising the following steps: taking 4.20-10.90 g of powdery chromium salt, 3.70 g-7.70 g of ammonium vanadate, and 2.20 g of carbonaceous reducing agent according to the weight ratio ~8.40g, put them in deionized water or distilled water, and stir evenly to obtain a solution or a mixed solution; place the solution or mixed solution obtained in step a in a drying oven, and heat it at 100-200°C for 1- 3h, dry at 50-100°C for 1-5h, and finally obtain a precursor powder containing a chromium source, a vanadium source and a carbon source; place the precursor powder obtained in step b in a high-temperature reaction furnace, in vacuum, argon or Under the protection condition of hydrogen atmosphere, the carbonization reduction is carried out at 800-1100°C for 0.5-2 hours, and the nano-chromium carbide/vanadium composite powder with an average particle size of <100nm and uniform particle size distribution is obtained. The method has the characteristics of low reaction temperature, short reaction time, low production cost, simple process, etc., and is suitable for industrial production of nano-chromium carbide/vanadium composite powder.
Description
技术领域technical field
本发明提供了一种纳米碳化铬/钒复合粉末的制备方法,属于纳米金属碳化物制备领域。The invention provides a method for preparing nanometer chromium carbide/vanadium composite powder, which belongs to the field of nanometer metal carbide preparation.
背景技术Background technique
过渡族金属碳化物碳化铬(钒)具有较高的熔点、硬度和高温强度,以及良好的电导率和热导率。这些优异的性能确保了其在冶金、电子、催化剂和高温涂层材料等方面的广泛应用。The transition metal carbide, chromium carbide (vanadium), has a high melting point, hardness and high temperature strength, as well as good electrical and thermal conductivity. These excellent properties ensure its wide application in metallurgy, electronics, catalysts and high-temperature coating materials.
其中,碳化铬(钒)作为晶粒抑制剂在硬质合金、金属陶瓷领域具有重要作用。工业应用中需要的是粒度细、相组成单一的碳化铬(钒)粉末,例如在制备超细硬质合金时,WC粉的粒径要小于200nm,烧结时要采用高压低温的HIP烧结技术,另外还要加入碳化铬(钒)晶粒长大抑制剂。如果采用粉末粒度为2~5μm碳化铬(钒)作为晶粒长大抑制剂,则会由于颗粒粗大的碳化铬(钒)粉末比表面小、表面活化能低、原子迁移速度慢,而难以抑制WC的晶粒长大,从而导致超细硬质合金的性能难以得到进一步提高。因此,高性能超细硬质合金等领域迫切需要纳米碳化铬(钒)粉末。Among them, chromium carbide (vanadium) plays an important role as a grain inhibitor in the fields of cemented carbide and cermets. What is needed in industrial applications is chromium carbide (vanadium) powder with fine particle size and single phase composition. For example, when preparing ultra-fine cemented carbide, the particle size of WC powder should be less than 200nm, and high-pressure and low-temperature HIP sintering technology should be used for sintering. Also add chromium carbide (vanadium) grain growth inhibitor. If chromium carbide (vanadium) with a powder particle size of 2 to 5 μm is used as a grain growth inhibitor, it will be difficult to inhibit the particle size due to the small surface area, low surface activation energy, and slow atomic migration speed of the coarse chromium carbide (vanadium) powder. The grain growth of WC makes it difficult to further improve the performance of ultra-fine cemented carbide. Therefore, there is an urgent need for nano-chromium carbide (vanadium) powder in fields such as high-performance ultrafine cemented carbide.
另外,碳化钒使合金显示出最好的硬度和耐磨性,碳化铬对提高抗弯强度和抗氧化性最有效;复合添加碳化钒和碳化铬的合金,晶粒长大抑制剂偏析量大于单独添加碳化钒的硬质合金,晶粒抑制效果较好。但是目前复合添加碳化钒和碳化铬大多是机械混合的方法,不能使粉末充分分散,从而不利于晶粒抑制效果。因而,有必要合成纳米碳化铬/钒复合粉末。In addition, vanadium carbide makes the alloy show the best hardness and wear resistance, and chromium carbide is the most effective for improving the bending strength and oxidation resistance; the alloy added with vanadium carbide and chromium carbide, the segregation of grain growth inhibitor is greater than Cemented carbide with vanadium carbide added alone has better grain suppression effect. However, at present, the combined addition of vanadium carbide and chromium carbide is mostly a method of mechanical mixing, which cannot fully disperse the powder, which is not conducive to the effect of grain suppression. Therefore, it is necessary to synthesize nano-chromium carbide/vanadium composite powder.
但是,制备碳化铬(钒)粉末通常采用碳黑与铬(钒)的氧化物混合高温还原碳化法。该方法反应温度较高,生产成本较高。另外,反应产物粒度较粗,一般都在2~5μm之间,且粉末中游离碳含量高,不能满足碳化铬(钒)粉末在现代工业中的应用。However, the preparation of chromium carbide (vanadium) powder usually adopts the mixed high-temperature reduction carbonization method of carbon black and chromium (vanadium) oxide. This method reaction temperature is higher, and production cost is higher. In addition, the particle size of the reaction product is relatively coarse, generally between 2 and 5 μm, and the free carbon content in the powder is high, which cannot meet the application of chromium carbide (vanadium) powder in modern industry.
另外,2004年吴恩熙等人在专利CN1724349A中提出了纳米碳化铬粉末的制备方法:将Cr2O3溶解于有机物溶液中,溶液浓度为10%~20%;溶液在离心式喷雾干燥机中进行喷雾干燥,得到含有铬的络合物和游离有机物的混合粉末,粉末形状为多孔、疏松的空心球体。将此粉末在保护气氛中,500~600℃进行焙解,得到Cr2O3与原子级别游离C的均匀混合的粉末,在850~1000℃下,H2/CH4碳化40~90分钟可制得粉末平均粒度为0.1微米,晶粒尺寸为20~60纳米的纳米碳化铬粉末。该方法具有很多优点,如较低的反应温度、较短的反应时间等;但也存在一些缺点,如工艺较复杂,采用H2或H2/CH4碳化,增加了生产成本。In addition, in 2004, Wu Enxi and others proposed a preparation method of nano-chromium carbide powder in the patent CN1724349A: dissolve Cr 2 O 3 in an organic solution with a solution concentration of 10% to 20%; the solution is dried in a centrifugal spray dryer. Spray drying to obtain a mixed powder containing chromium complexes and free organic matter, and the powder shape is porous and loose hollow spheres. The powder is roasted at 500-600°C in a protective atmosphere to obtain a uniformly mixed powder of Cr 2 O 3 and atomic-level free C. At 850-1000°C, H 2 /CH 4 can be carbonized for 40-90 minutes. The nanometer chromium carbide powder with an average grain size of 0.1 micron and a grain size of 20-60 nanometers is prepared. This method has many advantages, such as lower reaction temperature, shorter reaction time, etc.; but there are also some disadvantages, such as complicated process and carbonization with H 2 or H 2 /CH 4 , which increases the production cost.
2005年吴成义等人在专利CN1569624A中提出了一种制备纳米碳化钒粉末的制备方法:将偏钒酸铵粉末溶于蒸馏水配制偏钒酸铵水溶液,然后将该溶液在120~130℃条件下喷雾转换为V2O5前驱体粉末,再将V2O5前驱体粉末在450~550℃空气中焙烧,使之转变成干燥的纳米级V2O5微晶粉末,然后再剪切配碳、烘干、混合料定碳、碳化、剪切破碎、真空烘干才能得到纳米级碳化钒粉末。该方法存在的主要问题是工艺较复杂,生产成本较高。In 2005, Wu Chengyi and others proposed a method for preparing nano-vanadium carbide powder in patent CN1569624A: dissolving ammonium metavanadate powder in distilled water to prepare ammonium metavanadate aqueous solution, and then spraying the solution at 120-130 °C Convert to V 2 O 5 precursor powder, then roast the V 2 O 5 precursor powder in the air at 450-550°C to convert it into dry nano-scale V 2 O 5 microcrystalline powder, and then shear the carbon , drying, carbonization of the mixture, carbonization, shearing and crushing, and vacuum drying to obtain nano-scale vanadium carbide powder. The main problem of this method is that the process is more complicated and the production cost is higher.
2005吴恩熙等人在专利CN1607175A中提出了碳化钒粉末的制备方法:首先将V2O5溶解于有机酸溶液中,边加热边搅拌,在60~80℃时得到澄清透明的溶液,溶液浓度为10%~40%;然后将此粉末在保护气氛中,500~600℃进行焙烧,得到V2O3与原子级别游离C均匀混合的粉末;又于850~1000℃下,H2或H2/CH4碳化40~90分钟,制得粉末平均粒度为0.1微米,晶粒尺寸为20~60纳米的超细碳化钒粉末。该方法具有很多优点,如较低的反应温度、较短的反应时间等;但也存在工艺复杂,不利于工业化生产等缺点。In 2005, Wu Enxi and others proposed the preparation method of vanadium carbide powder in the patent CN1607175A: first, dissolve V 2 O 5 in the organic acid solution, stir while heating, and obtain a clear and transparent solution at 60-80 ° C, the solution concentration is 10%-40%; then the powder is roasted at 500-600°C in a protective atmosphere to obtain a powder uniformly mixed with V 2 O 3 and atomic-level free C; and at 850-1000°C, H 2 or H 2 /CH 4 carbonization for 40 to 90 minutes to obtain superfine vanadium carbide powder with an average particle size of 0.1 micron and a grain size of 20 to 60 nanometers. This method has many advantages, such as lower reaction temperature, shorter reaction time, etc.; but it also has disadvantages such as complex process and unfavorable industrial production.
2006年郝俊杰等人在专利CN100357187C中提供了一种纳米碳化铬粉末的制备方法。该方法以重铬酸铵、水合肼、纳米碳黑、酚醛树脂为原料,制备工艺为:合成非晶纳米Cr2O3→配制酚醛树脂乙醇溶液→球磨(2-8h)→干燥(1-2h)→真空碳化→球磨(2-8h)→干燥→过筛→产品。该方法具有较高的创新性,并且合成的粉末达到了纳米级,但是工艺较复杂,能源消耗大,生产成本较高,不利于工业化生产。In 2006, Hao Junjie and others provided a preparation method of nano-chromium carbide powder in patent CN100357187C. The method uses ammonium dichromate, hydrazine hydrate, nano-carbon black, and phenolic resin as raw materials, and the preparation process is as follows: synthesis of amorphous nano-Cr 2 O 3 →preparation of phenolic resin ethanol solution →ball milling (2-8h) →drying (1- 2h)→vacuum carbonization→ball milling (2-8h)→drying→sieving→product. This method has high innovation, and the synthesized powder has reached the nanoscale, but the process is complicated, the energy consumption is large, and the production cost is high, which is not conducive to industrial production.
美国Rutger大学的Sadangi等人利用“喷雾干燥→还原分解→气相碳化”工艺制备了粒度为0.6μm(0.5μm)的Cr3C2(V8C7)粉末(参见R.K.Sadangi,L.E.McCandlish,B.H.Kear,P.Seegopaul.Synthesis and characterization of submicronvanadium and chromium carbide grain growth inhibitors.Advances in PowderMetallurgy&Particular Materials,1998:P9-P15)。其工艺过程为:首先制备含Cr(V)的前驱体溶液,然后进行喷雾干燥,再将喷雾干燥的粉末进行热解,将热解后的产物用CH4/H2混合气体进行气相碳化。该方法存在的主要问题是工艺较复杂,并且制得的碳化铬(钒)粉末的粒度偏大,不能满足碳化铬(钒)粉末在现代工业中的应用。Sadangi et al. from Rutger University in the United States prepared Cr 3 C 2 (V 8 C 7 ) powders with a particle size of 0.6 μm (0.5 μm) using the process of “spray drying → reduction decomposition → gas phase carbonization” (see RK Sadangi, LEMcCandlish, BHKear, P . Seegopaul. Synthesis and characterization of submicron vanadium and chromium carbide grain growth inhibitors. Advances in Powder Metallurgy & Particular Materials, 1998: P9-P15). The process is as follows: first prepare a precursor solution containing Cr(V), then spray dry it, then pyrolyze the spray-dried powder, and carry out gas phase carbonization of the pyrolyzed product with CH 4 /H 2 mixed gas. The main problem of this method is that the process is more complicated, and the particle size of the obtained chromium carbide (vanadium) powder is relatively large, which cannot satisfy the application of chromium carbide (vanadium) powder in modern industry.
Cintho等人通过高能球磨铬粉和石墨粉,随后在800℃、2h条件下,氩气气氛中进行热处理,最终得到碳化铬粉末(Cr3C2和Cr7C3)(参见O.M.Cintho,E.A.P.Favilla,J.D.T.Capocchi.Mechanical-thermal synthesis of chromium carbides[J].Journal ofAlloys and Compounds,2007,439(1-2):189-195.)。该方法存在的主要问题是工艺较复杂,并且制得的碳化铬粉末的粒度偏大,不能满足碳化铬粉末在现代工业中的应用。Cintho et al. milled chromium powder and graphite powder with high-energy balls, followed by heat treatment in an argon atmosphere at 800°C for 2 hours, and finally obtained chromium carbide powder (Cr 3 C 2 and Cr 7 C 3 ) (see OMCintho, EAPFavilla, JDT Capocchi. Mechanical-thermal synthesis of chromium carbides [J]. Journal of Alloys and Compounds, 2007, 439(1-2): 189-195.). The main problem of this method is that the process is relatively complicated, and the particle size of the obtained chromium carbide powder is relatively large, which cannot meet the application of chromium carbide powder in modern industry.
因此,为了节约能源、降低生产成本,有必要探索一种低成本、工艺简单的纳米碳化铬/钒复合粉末的制备方法,以便更好地满足碳化铬/钒复合粉末在冶金、电子、催化剂和高温涂层材料等领域的应用。Therefore, in order to save energy and reduce production costs, it is necessary to explore a low-cost, simple process for the preparation of nano-chromium carbide/vanadium composite powders, so as to better meet the needs of chromium carbide/vanadium composite powders in metallurgy, electronics, catalysts and Applications in high temperature coating materials and other fields.
发明内容Contents of the invention
本发明的目的在于提供一种新的纳米碳化铬/钒复合粉末的制备方法,从而满足碳化铬/钒复合粉末在冶金、电子、催化剂和高温涂层材料等领域的应用。The purpose of the present invention is to provide a new preparation method of nano-chromium carbide/vanadium composite powder, so as to meet the application of chromium carbide/vanadium composite powder in the fields of metallurgy, electronics, catalysts and high-temperature coating materials.
本发明的制备方法包括以下步骤:The preparation method of the present invention comprises the following steps:
a、按重量比取粉状铬盐4.20~10.90g、钒酸铵3.70g~7.70g、碳质还原剂2.20g~8.40g,将它们置于去离子水或蒸馏水中,并搅拌均匀,制得溶液或混合液;a. Take 4.20-10.90g of powdered chromium salt, 3.70g-7.70g of ammonium vanadate, and 2.20g-8.40g of carbonaceous reducing agent by weight, put them in deionized water or distilled water, and stir evenly to prepare to obtain a solution or mixture;
b、将步骤a所得溶液或混合液置于干燥箱中,在100~200℃条件下加热1~3h,在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;b. Put the solution or mixed solution obtained in step a in a drying oven, heat at 100-200°C for 1-3 hours, and dry at 50-100°C for 1-5 hours, and finally obtain the chromium source, vanadium source and carbon Source precursor powder;
c、将步骤b所得前驱体粉末置于高温反应炉中,在真空、氩气或氢气气氛保护条件下,在800~1100℃、0.5~2h的条件下进行碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末。c. Place the precursor powder obtained in step b in a high-temperature reaction furnace, and carry out carbonization and reduction at 800-1100°C for 0.5-2 hours under the protection conditions of vacuum, argon or hydrogen atmosphere, and obtain an average particle size of < 100nm nano-chromium carbide/vanadium composite powder with uniform particle size distribution.
本发明中所述粉状铬盐是铬酸铵或重铬酸铵中的任意一种或其混合物。The powdery chromium salt in the present invention is any one of ammonium chromate or ammonium dichromate or a mixture thereof.
本发明中所述粉状钒酸铵是偏钒酸铵或多聚钒酸铵中的任意一种或其混合物。The powdery ammonium vanadate described in the present invention is any one of ammonium metavanadate or ammonium polyvanadate or a mixture thereof.
本发明中所述碳质还原剂为纳米碳黑、纳米活性炭、葡萄糖、淀粉或蔗糖中的任意一种The carbonaceous reducing agent described in the present invention is any one of nano-carbon black, nano-activated carbon, glucose, starch or sucrose
本发明中所述高温反应炉为碳管炉、管式炉、感应炉、微波烧结炉、回转炉、推板窑或隧道窑中的任意一种。The high-temperature reaction furnace in the present invention is any one of carbon tube furnace, tube furnace, induction furnace, microwave sintering furnace, rotary furnace, pusher kiln or tunnel kiln.
本发明相比现有制备碳化铬(钒)粉末的方法,具有如下有益效果:Compared with the existing method for preparing chromium carbide (vanadium) powder, the present invention has the following beneficial effects:
(1)原料丰富、价格低廉:本发明以铬盐、钒酸铵和碳质还原剂为原料,来源丰富,价格低廉,节约成本。(1) Abundant raw materials and low price: the present invention uses chromium salt, ammonium vanadate and carbonaceous reducing agent as raw materials, which has abundant sources, low price and cost saving.
(2)反应温度低,反应时间短,节约能源:采用前驱体碳化法制备纳米碳化铬/钒复合粉末,大大降低了反应温度,缩短了反应时间,可以在800~1100℃、0.5~2h条件下制备纳米碳化铬/钒复合粉末,从而节约了能源。(2) Low reaction temperature, short reaction time, and energy saving: the preparation of nano-chromium carbide/vanadium composite powder by the precursor carbonization method greatly reduces the reaction temperature and shortens the reaction time. The preparation of nano-chromium carbide/vanadium composite powder, thus saving energy.
(3)工艺简单:本发明可一次碳化完成,避免了将铬盐、钒酸铵预还原成铬(钒)的低价氧化物,再进行碳化,免去了很多工艺,操作方便,适合工业化生产。(3) The process is simple: the present invention can complete carbonization at one time, avoiding the pre-reduction of chromium salt and ammonium vanadate into low-priced oxides of chromium (vanadium), and then carbonizing, eliminating many processes, convenient operation, and suitable for industrialization Production.
(4)成分单一,粒度均匀、细小:反应生成的碳化铬/钒复合粉末粒度<100nm,粒径分布范围较窄,且杂质含量少;可以满足碳化铬/钒复合粉末在冶金、电子、催化剂和高温涂层材料等领域的应用。(4) The composition is single, the particle size is uniform and fine: the particle size of the chromium carbide/vanadium composite powder produced by the reaction is less than 100nm, the particle size distribution range is narrow, and the impurity content is small; it can meet the requirements of the chromium carbide/vanadium composite powder in metallurgy, electronics, and catalysts. And high temperature coating materials and other fields of application.
具体实施方式Detailed ways
本发明以下将结合实施例作进一步描述:The present invention will be further described below in conjunction with embodiment:
实施例1:Example 1:
按重量比取重铬酸铵4.20g、偏钒酸铵3.80g和纳米碳黑2.19g,并将它们置于50ml的去离子水中,搅拌后得到混合均匀的混合液,将混合液置于干燥箱中,在100~200℃条件下加热1~3h,之后在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将所得到的前驱体粉末置于真空碳管炉中,在真空条件下,于800~1100℃、0.5~2h条件下碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末(重量比1∶1)。Take ammonium dichromate 4.20g, ammonium metavanadate 3.80g and nano carbon black 2.19g by weight, and they are placed in 50ml of deionized water, after stirring, a uniform mixed solution is obtained, and the mixed solution is placed in a dry place. box, heated at 100-200°C for 1-3h, then dried at 50-100°C for 1-5h, and finally obtained precursor powder containing chromium source, vanadium source and carbon source; the obtained precursor The powder is placed in a vacuum carbon tube furnace, and under vacuum conditions, it is carbonized and reduced at 800-1100° C. for 0.5-2 hours to obtain a nano-chromium carbide/vanadium composite powder with an average particle size of <100 nm and uniform particle size distribution (weight ratio 1:1).
实施例2:Example 2:
按重量比取重铬酸铵4.20g、偏钒酸铵7.60g和纳米碳黑3.51g,置于50ml去离子水中,搅拌后得到混合均匀的混合液,将混合液置于干燥箱中,在100~200℃条件下加热1~3h,之后在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将所得到的前驱体粉末置于管式炉中,在氩气或氢气气氛保护条件下,于800~1100℃、0.5~2h条件下碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末(重量比1∶2)。Get ammonium dichromate 4.20g, ammonium metavanadate 7.60g and nanometer carbon black 3.51g by weight, place 50ml deionized water, obtain the mixed solution that mixes after stirring, mixed solution is placed in drying box, in Heating at 100-200°C for 1-3 hours, and then drying at 50-100°C for 1-5 hours to obtain a precursor powder containing chromium source, vanadium source and carbon source; place the obtained precursor powder in a tube In a type furnace, under the protective condition of argon or hydrogen atmosphere, carbonization and reduction are carried out at 800-1100°C for 0.5-2 hours to obtain nano-chromium carbide/vanadium composite powder with an average particle size of <100nm and uniform particle size distribution (weight ratio 1:2).
实施例3:Example 3:
按重量比取重铬酸铵4.20g、偏钒酸铵3.80g和葡萄糖5.48g,置于50ml去离子水中,搅拌后得到混合均匀的溶液,将溶液置于干燥箱中,在100~200℃条件下加热1~3h,之后在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将所得到的前驱体粉末置于真空碳管炉中,在真空条件下,于800~1000℃、0.5~2h条件下碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末(重量比1∶1)。Take 4.20g of ammonium dichromate, 3.80g of ammonium metavanadate and 5.48g of glucose according to the weight ratio, put them in 50ml of deionized water, and stir to obtain a uniform solution. Heating under conditions for 1-3 hours, then drying at 50-100°C for 1-5 hours, and finally obtaining a precursor powder containing chromium source, vanadium source and carbon source; place the obtained precursor powder in a vacuum carbon tube furnace , under vacuum conditions, at 800-1000 ℃, 0.5-2h carbonization reduction, the average particle size <100nm, uniform particle size distribution of nano-chromium carbide / vanadium composite powder (weight ratio 1:1).
实施例4:Example 4:
按重量比取重铬酸铵4.20g、偏钒酸铵7.60g和淀粉8.34g,置于50ml去离子水中,搅拌后得到混合均匀的溶液,将溶液置于干燥箱中,在100~200℃条件下加热1~3h,之后在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将所得到的前驱体粉末置于真空碳管炉中,在真空条件下,于800~1000℃、0.5~2h条件下碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末(重量比1∶2)。Take 4.20g of ammonium dichromate, 7.60g of ammonium metavanadate and 8.34g of starch according to the weight ratio, put them in 50ml of deionized water, and stir to obtain a uniform solution. Heating under conditions for 1-3 hours, then drying at 50-100°C for 1-5 hours, and finally obtaining a precursor powder containing chromium source, vanadium source and carbon source; place the obtained precursor powder in a vacuum carbon tube furnace , under vacuum conditions, at 800-1000 ° C, 0.5-2h carbon reduction, the average particle size < 100nm, uniform particle size distribution of nano-chromium carbide / vanadium composite powder (weight ratio 1:2).
实施例5:Example 5:
按重量比取重铬酸铵4.20g、偏钒酸铵7.60g和蔗糖8.34g,置于50ml去离子水中,搅拌后得到混合均匀的溶液,将溶液置于干燥箱中,在100~200℃条件下加热1~3h,之后在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将所得到的前驱体粉末置于管式炉中,在氩气或氢气气氛保护条件下,于800~1000℃、0.5~2h条件下碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末(重量比1∶2)。Take 4.20g of ammonium dichromate, 7.60g of ammonium metavanadate and 8.34g of sucrose according to the weight ratio, put them in 50ml of deionized water, and stir to obtain a uniform solution. Heating under conditions for 1-3 hours, then drying at 50-100°C for 1-5 hours, and finally obtaining a precursor powder containing chromium source, vanadium source and carbon source; placing the obtained precursor powder in a tube furnace, Under the protective condition of argon or hydrogen atmosphere, carbonization reduction is carried out at 800-1000°C for 0.5-2 hours to produce nano-chromium carbide/vanadium composite powder with average particle size <100nm and uniform particle size distribution (weight ratio 1:2) .
实施例6:Embodiment 6:
按重量比取铬酸铵6.67g、偏钒酸铵3.80g和纳米碳黑2.19g,并将它们置于50ml的去离子水中,搅拌后得到混合均匀的混合液,将混合液置于干燥箱中,在100~200℃条件下加热1~3h,之后在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将所得到的前驱体粉末置于真空碳管炉中,在真空条件下,于800~1100℃、0.5~2h条件下碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末(重量比1∶1)。Get ammonium chromate 6.67g, ammonium metavanadate 3.80g and nanometer carbon black 2.19g by weight, and they are placed in the deionized water of 50ml, obtain the mixed solution that mixes after stirring, mixed solution is placed in drying box , heating at 100-200°C for 1-3h, and then drying at 50-100°C for 1-5h to obtain a precursor powder containing chromium source, vanadium source and carbon source; the obtained precursor powder Put it in a vacuum carbon tube furnace, and under vacuum conditions, carbonize and reduce at 800-1100°C for 0.5-2 hours to obtain nano-chromium carbide/vanadium composite powder with an average particle size of <100nm and uniform particle size distribution (weight ratio 1 : 1).
实施例7:Embodiment 7:
按重量比取铬酸铵6.67g、重铬酸铵4.20g、偏钒酸铵7.60g和纳米活性炭4.38g,并将它们置于50ml去离子水中,搅拌后得到混合均匀的混合液,将混合液置于干燥箱中,在100~200℃条件下加热1~3h,之后在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将前驱体粉末置于管式炉中,在氩气或氢气气氛保护条件下,于800~1100℃、0.5~2h条件下碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末(重量比1∶1)。Get ammonium chromate 6.67g, ammonium dichromate 4.20g, ammonium metavanadate 7.60g and nano activated carbon 4.38g by weight ratio, and they are placed in 50ml deionized water, after stirring, obtain the mixed solution that mixes, mix The solution is placed in a drying oven, heated at 100-200°C for 1-3 hours, then dried at 50-100°C for 1-5 hours, and finally the precursor powder containing chromium source, vanadium source and carbon source is obtained; the precursor The body powder is placed in a tube furnace, and under the protection of argon or hydrogen atmosphere, it is carbonized and reduced at 800-1100°C for 0.5-2 hours to obtain nano-chromium carbide/vanadium with an average particle size of <100nm and uniform particle size distribution. Composite powder (weight ratio 1:1).
实施例8:Embodiment 8:
按重量比取重铬酸铵4.20g、多聚钒酸铵6.48g和纳米碳黑3.50g,并将它们置于50ml的去离子水中,搅拌后得到混合均匀的混合液,将混合液置于干燥箱中,在100~200℃条件下加热1~3h,之后在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将所得到的前驱体粉末置于真空碳管炉中,在真空条件下,于800~1100℃、0.5~2h条件下碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末(重量比1∶2)。Get ammonium dichromate 4.20g, ammonium polyvanadate 6.48g and nanometer carbon black 3.50g by weight ratio, and they are placed in the deionized water of 50ml, after stirring, obtain the mixed solution that mixes evenly, mixed solution is placed In a drying oven, heat at 100-200°C for 1-3 hours, then dry at 50-100°C for 1-5 hours, and finally obtain a precursor powder containing chromium source, vanadium source and carbon source; The body powder is placed in a vacuum carbon tube furnace, and under vacuum conditions, it is carbonized and reduced at 800-1100 ° C for 0.5-2 hours to obtain a nano-chromium carbide/vanadium composite powder with an average particle size of <100 nm and uniform particle size distribution (weight ratio 1:2).
实施例9:Embodiment 9:
按重量比取重铬酸铵4.20g、偏钒酸铵3.80g、多聚钒酸铵3.24g和纳米碳黑3.51g,并将它们置于50ml的去离子水中,搅拌后得到混合均匀的混合液,将混合液置于干燥箱中,在100~200℃条件下加热1~3h,之后在50~100℃条件下干燥1~5h,最后得到含有铬源、钒源和碳源的前驱体粉末;将所得到的前驱体粉末置于管式炉中,在氩气或氢气气氛保护条件下,于800~1100℃、0.5~2h条件下碳化还原,制得平均粒径<100nm、粒度分布均匀的纳米碳化铬/钒复合粉末(重量比1∶2)。Take ammonium dichromate 4.20g, ammonium metavanadate 3.80g, polyammonium vanadate 3.24g and nano carbon black 3.51g by weight, and they are placed in 50ml of deionized water, and after stirring, a uniform mixture is obtained. solution, put the mixed solution in a drying oven, heat at 100-200°C for 1-3h, then dry at 50-100°C for 1-5h, and finally obtain a precursor containing chromium source, vanadium source and carbon source powder; the obtained precursor powder is placed in a tube furnace, and under the protection of argon or hydrogen atmosphere, it is carbonized and reduced at 800-1100°C for 0.5-2 hours to obtain an average particle size of <100nm and a particle size distribution of Uniform nano-chromium carbide/vanadium composite powder (weight ratio 1:2).
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101862093A CN101857196B (en) | 2010-05-31 | 2010-05-31 | Method for preparing nano chrome/vanadium carbide composite powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101862093A CN101857196B (en) | 2010-05-31 | 2010-05-31 | Method for preparing nano chrome/vanadium carbide composite powder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101857196A true CN101857196A (en) | 2010-10-13 |
CN101857196B CN101857196B (en) | 2012-08-22 |
Family
ID=42943394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101862093A Expired - Fee Related CN101857196B (en) | 2010-05-31 | 2010-05-31 | Method for preparing nano chrome/vanadium carbide composite powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101857196B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102336405A (en) * | 2011-06-10 | 2012-02-01 | 重庆文理学院 | Rare-earth-containing ultrafine chromium vanadium carbide composite powder and preparation method thereof |
CN102674844A (en) * | 2012-06-04 | 2012-09-19 | 河南工业大学 | Method for preparing nanometer vanadium/chromium carbide composite powder by reduction with microwave method |
CN103274407A (en) * | 2013-05-29 | 2013-09-04 | 北京工业大学 | Preparation method of composite crystalline grain growth inhibitor with adjustable ratio |
CN103343257A (en) * | 2013-07-18 | 2013-10-09 | 四川大学 | Preparation method of multi-component nanograin growth inhibitor |
CN105154706A (en) * | 2015-09-28 | 2015-12-16 | 河南工业大学 | Preparation method for high-performance ultrafine hard alloy |
CN111842920A (en) * | 2020-08-04 | 2020-10-30 | 厦门理工学院 | Nanoscale high-performance hard alloy inhibitor and preparation method thereof |
CN113184853A (en) * | 2021-05-26 | 2021-07-30 | 崇义章源钨业股份有限公司 | Superfine tungsten carbide powder and preparation method and application thereof |
CN113651617A (en) * | 2021-07-06 | 2021-11-16 | 河钢承德钒钛新材料有限公司 | Preparation method of vanadium carbide and chromium carbide composite material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103708429B (en) * | 2013-12-19 | 2015-08-19 | 河南工业大学 | A kind of preparation method of nano vanadium nitride/chromium nitride composite powder |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869019A (en) * | 1996-10-02 | 1999-02-09 | Nanodyne Incorporated | Synthesis of phase stabilized vanadium and chromium carbides |
CN101428344A (en) * | 2008-12-17 | 2009-05-13 | 四川大学 | Nano-scale wolfram carbine composite powder and method of manufacturing the same |
-
2010
- 2010-05-31 CN CN2010101862093A patent/CN101857196B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869019A (en) * | 1996-10-02 | 1999-02-09 | Nanodyne Incorporated | Synthesis of phase stabilized vanadium and chromium carbides |
CN101428344A (en) * | 2008-12-17 | 2009-05-13 | 四川大学 | Nano-scale wolfram carbine composite powder and method of manufacturing the same |
Non-Patent Citations (1)
Title |
---|
《硬质合金》 20041231 颜练武 等 超细V8C7和Cr3C2粉末的制备方法 第244-248页 1-5 第21卷, 第4期 2 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102336405A (en) * | 2011-06-10 | 2012-02-01 | 重庆文理学院 | Rare-earth-containing ultrafine chromium vanadium carbide composite powder and preparation method thereof |
CN102336405B (en) * | 2011-06-10 | 2015-01-28 | 重庆文理学院 | Rare-earth-containing ultrafine chromium vanadium carbide composite powder and preparation method thereof |
CN102674844A (en) * | 2012-06-04 | 2012-09-19 | 河南工业大学 | Method for preparing nanometer vanadium/chromium carbide composite powder by reduction with microwave method |
CN103274407A (en) * | 2013-05-29 | 2013-09-04 | 北京工业大学 | Preparation method of composite crystalline grain growth inhibitor with adjustable ratio |
CN103274407B (en) * | 2013-05-29 | 2015-04-29 | 北京工业大学 | Preparation method of composite crystalline grain growth inhibitor with adjustable ratio |
CN103343257A (en) * | 2013-07-18 | 2013-10-09 | 四川大学 | Preparation method of multi-component nanograin growth inhibitor |
CN105154706A (en) * | 2015-09-28 | 2015-12-16 | 河南工业大学 | Preparation method for high-performance ultrafine hard alloy |
CN105154706B (en) * | 2015-09-28 | 2017-10-10 | 河南工业大学 | A kind of preparation method of high-performance superfine hard alloy |
CN111842920A (en) * | 2020-08-04 | 2020-10-30 | 厦门理工学院 | Nanoscale high-performance hard alloy inhibitor and preparation method thereof |
CN113184853A (en) * | 2021-05-26 | 2021-07-30 | 崇义章源钨业股份有限公司 | Superfine tungsten carbide powder and preparation method and application thereof |
CN113651617A (en) * | 2021-07-06 | 2021-11-16 | 河钢承德钒钛新材料有限公司 | Preparation method of vanadium carbide and chromium carbide composite material |
Also Published As
Publication number | Publication date |
---|---|
CN101857196B (en) | 2012-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101830463B (en) | A kind of preparation method of nanometer chromium carbide powder | |
CN101857196B (en) | Method for preparing nano chrome/vanadium carbide composite powder | |
CN101428344B (en) | A kind of nanoscale tungsten carbide composite powder and its preparation method | |
CN105478755B (en) | A kind of preparation method of nonmetal doping carbon-clad metal nano particle magnetic composite | |
CN100480180C (en) | Process for preparing nano vanadium carbide powder | |
CN109309214A (en) | Preparation method of carbon-coated nickel nanocomposite | |
CN102424919A (en) | Method for preparing carbon nanotube reinforced aluminum-based composite material | |
CN107610938A (en) | A kind of transition metal nitride/nitrogen-doped graphene nano composite material, its preparation method and application | |
CN101864547A (en) | Preparation method of uniformly dispersed carbon nanotube reinforced aluminum matrix composite | |
CN104495846B (en) | A kind of method producing nano silicon carbide vanadium powder | |
CN102350508B (en) | Method for preparing doped-tungsten-based composite powder | |
CN102674844A (en) | Method for preparing nanometer vanadium/chromium carbide composite powder by reduction with microwave method | |
CN103658677B (en) | The preparation method of a kind of nano powder of tungsten carbide | |
CN100577329C (en) | A method for preparing carbon-coated magnetic metal nanoparticles | |
CN102839313B (en) | Nano Cr3C2-WC-N composite powder and its preparation method | |
CN1293215C (en) | Method for preparing composite powder of nano tungsten carbide-coblt through direct reducition and carbonization | |
CN102078965A (en) | Method for preparing WC-Co (tungsten carbide-cobalt) nano-powder | |
Wu et al. | Preparation technology of ultra-fine tungsten carbide powders: an overview | |
CN110227826A (en) | A method of preparing high-purity nm molybdenum powder | |
CN102603007A (en) | Preparation method of tungsten oxide nano powder and metal tungsten nano powder | |
CN110496969A (en) | Nano tungsten powder and its preparation method | |
CN103072987A (en) | Method for preparing metal carbide or carbon coated metal carbide | |
Lu et al. | Characterization of Al2O3–Al nano-composite powder prepared by a wet chemical method | |
Li et al. | In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites | |
CN102814503A (en) | Method for preparing dispersion strengthening ferritic alloy steel powder of nanometer yttrium oxide particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120822 Termination date: 20130531 |