CN110174213B - Calibration method of flexible pressure sensing array - Google Patents
Calibration method of flexible pressure sensing array Download PDFInfo
- Publication number
- CN110174213B CN110174213B CN201910455755.3A CN201910455755A CN110174213B CN 110174213 B CN110174213 B CN 110174213B CN 201910455755 A CN201910455755 A CN 201910455755A CN 110174213 B CN110174213 B CN 110174213B
- Authority
- CN
- China
- Prior art keywords
- sensing array
- pressure sensing
- pixel point
- flexible pressure
- fitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000004044 response Effects 0.000 claims abstract description 52
- 238000007476 Maximum Likelihood Methods 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L25/00—Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
本发明涉及压力传感技术领域,尤其涉及一种柔性压力传感阵列的校准方法。所述柔性压力传感阵列的校准方法包括如下步骤:依次施加多个不同大小的压力于整个所述柔性压力传感阵列,获取每一所述像素点在每一所述压力下的响应特征值;获得每一所述像素点的基础校准公式;提供补偿校准函数:获得每一所述像素点的补偿校准公式;计算每一所述像素点的基础校准公式与补偿校准公式的乘积,以所述乘积作为该像素点的校准公式。本发明提高了单个像素点的校准精度,确保了所述柔性压力传感阵列测量结果的准确度,改善所述柔性压力传感阵列的性能。
The invention relates to the technical field of pressure sensing, in particular to a calibration method of a flexible pressure sensing array. The method for calibrating the flexible pressure sensing array includes the following steps: sequentially applying a plurality of pressures of different magnitudes to the entire flexible pressure sensing array, and acquiring the response characteristic value of each pixel point under each pressure ; Obtain the basic calibration formula of each of the pixel points; provide a compensation calibration function: obtain the compensation calibration formula of each of the pixel points; calculate the product of the basic calibration formula and the compensation calibration formula of each of the pixel points, so that The above product is used as the calibration formula for the pixel. The invention improves the calibration accuracy of a single pixel point, ensures the accuracy of the measurement result of the flexible pressure sensing array, and improves the performance of the flexible pressure sensing array.
Description
技术领域technical field
本发明涉及压力传感技术领域,尤其涉及一种柔性压力传感阵列的校准方法。The invention relates to the technical field of pressure sensing, in particular to a calibration method of a flexible pressure sensing array.
背景技术Background technique
柔性压力传感阵列能够检测压力的位置分布状况以及各区域的压力大小,能够应用于可穿戴电子设备、环境监测、人机交互接口、电子皮肤等领域,具有广泛的应用前景。Flexible pressure sensing arrays can detect the location distribution of pressure and the pressure in each area, and can be applied to wearable electronic devices, environmental monitoring, human-computer interaction interfaces, electronic skin and other fields, and have broad application prospects.
然而,由于柔性压力传感阵列自身存在蠕变性、不一致性、衰减性等缺陷,导致其在使用过程中的检测准确性不能够长期保持。但是,检测准确性则是衡量柔性压力传感阵列性能的一个关键因素,因此,当前主要采用对柔性压力传感阵列定期校准来确保其测量准确度。However, since the flexible pressure sensing array itself has defects such as creep, inconsistency, attenuation, etc., its detection accuracy during use cannot be maintained for a long time. However, detection accuracy is a key factor to measure the performance of flexible pressure sensing arrays. Therefore, at present, periodic calibration of flexible pressure sensing arrays is mainly used to ensure its measurement accuracy.
传统的校准方式是依据柔性压力传感阵列的整个传感区域在多次施压后的响应特性来拟合阵列中每个传感器的特征曲线。然而,在实际使用过程中,往往是柔性压力传感阵列中的部分区域受力,而并非整个传感区域受力。受力面积的改变,会引起传感器力学和电学方面串扰特性的改变,导致校准时的条件与实际使用过程中的存在不同,进而导致最终的测量结果出现偏差。The traditional calibration method is to fit the characteristic curve of each sensor in the array according to the response characteristics of the entire sensing area of the flexible pressure sensing array after multiple pressure applications. However, in actual use, a part of the flexible pressure sensing array is often subjected to force, rather than the entire sensing area. The change of the force area will cause the change of the crosstalk characteristics in the mechanical and electrical aspects of the sensor, resulting in different conditions during calibration and in the actual use process, which will lead to deviations in the final measurement results.
因此,如何改善柔性压力传感阵列的校准方法,提高校准精度,以确保柔性压力传感阵列测量结果的准确度,是目前亟待解决的技术问题。Therefore, how to improve the calibration method of the flexible pressure sensing array and improve the calibration accuracy to ensure the accuracy of the measurement results of the flexible pressure sensing array is a technical problem that needs to be solved urgently.
发明内容SUMMARY OF THE INVENTION
本发明提供一种柔性压力传感阵列的校准方法,用于解决现有的校准方法校准精度较低的问题,以确保柔性压力传感阵列测量结果的准确度,改善柔性压力传感阵列的性能。The invention provides a calibration method for a flexible pressure sensing array, which is used to solve the problem of low calibration accuracy of the existing calibration method, so as to ensure the accuracy of the measurement result of the flexible pressure sensing array and improve the performance of the flexible pressure sensing array .
为了解决上述问题,本发明提供了一种柔性压力传感阵列的校准方法,所述柔性压力传感阵列包括呈阵列排布的多个传感器,每一所述传感器作为一像素点,包括如下步骤:In order to solve the above problems, the present invention provides a method for calibrating a flexible pressure sensing array, wherein the flexible pressure sensing array includes a plurality of sensors arranged in an array, and each of the sensors is used as a pixel, including the following steps :
依次施加多个不同大小的压力于整个所述柔性压力传感阵列,获取每一所述像素点在每一所述压力下的响应特征值;successively applying a plurality of pressures of different magnitudes to the entire flexible pressure sensing array to obtain the response characteristic value of each of the pixels under each of the pressures;
根据每一所述像素点在多个所述压力下的多个所述响应特征值拟合该像素点的响应特征曲线,获得每一所述像素点的基础校准公式;Fitting a response characteristic curve of each pixel point according to a plurality of the response characteristic values of the pixel point under a plurality of the pressures to obtain a basic calibration formula of each pixel point;
提供一如下所示的补偿校准函数:Provides a compensation calibration function as shown below:
式中,Y1表示所述补偿校准函数的函数值,ai、b均为函数系数,X0表示一像素点的响应特征值,Xi表示在相同的所述压力下、与X0对应的像素点相邻的像素点的响应特征值;In the formula, Y 1 represents the function value of the compensation calibration function, a i and b are function coefficients, X 0 represents the response characteristic value of a pixel point, and X i represents the same pressure, corresponding to X 0 The response eigenvalues of the pixels adjacent to the pixel point;
将一所述像素点的所述响应特征值、以及与该像素点相邻的像素点的响应特征值代入至所述补偿校准函数中,并令所述补偿校准函数的值Y1为1,获得每一所述像素点的补偿校准公式;Substitute the response characteristic value of a pixel point and the response characteristic value of the pixel point adjacent to the pixel point into the compensation calibration function, and set the value Y 1 of the compensation calibration function to be 1, Obtain the compensation calibration formula for each of the pixel points;
计算每一所述像素点的基础校准公式与补偿校准公式的乘积,以所述乘积作为该像素点的校准公式。Calculate the product of the basic calibration formula and the compensation calibration formula for each pixel, and use the product as the calibration formula for the pixel.
优选的,所述响应特征值类型为电容型、电流型、电阻型或者电压型。Preferably, the response characteristic value type is capacitance type, current type, resistance type or voltage type.
优选的,依次施加多个压力于整个所述柔性压力传感阵列的具体步骤包括:Preferably, the specific steps of sequentially applying multiple pressures to the entire flexible pressure sensing array include:
将所述柔性压力传感阵列置于一刚性水平台表面;placing the flexible pressure sensing array on the surface of a rigid water platform;
提供一刚性压力板,所述刚性压力板的面积大于或等于所述柔性压力传感阵列的面积;providing a rigid pressure plate, the area of the rigid pressure plate is greater than or equal to the area of the flexible pressure sensing array;
通过所述刚性压力板向整个所述柔性压力传感阵列施加所述压力。The pressure is applied to the entire flexible pressure sensing array through the rigid pressure plate.
优选的,通过所述刚性压力板向整个所述柔性压力传感阵列施加所述压力的具体步骤包括:Preferably, the specific step of applying the pressure to the entire flexible pressure sensing array through the rigid pressure plate includes:
所述刚性压力板向整个所述柔性压力传感阵列施加同一所述压力多次,针对每一所述像素点,以多次相同压力下的响应特征值的平均值作为所述像素点在该压力下的响应特征值。The rigid pressure plate applies the same pressure to the entire flexible pressure sensing array multiple times, and for each pixel point, the average value of the response characteristic values under the same pressure multiple times is used as the pixel point in the Response eigenvalues under pressure.
优选的,多个不同大小的压力的个数为5个以上。Preferably, the number of multiple pressures with different magnitudes is 5 or more.
优选的,获得每一所述像素点的基础校准公式的具体步骤包括:Preferably, the specific steps of obtaining the basic calibration formula for each of the pixel points include:
采用多种不同的数据拟合方式对每一所述像素点进行所述响应特征曲线拟合,得到针对每一所述像素点的多条拟合曲线;Perform the response characteristic curve fitting on each of the pixel points by using a variety of different data fitting methods, to obtain a plurality of fitting curves for each of the pixel points;
选择决定系数最大的拟合曲线作为该像素点的基础校准公式。The fitting curve with the largest coefficient of determination is selected as the basic calibration formula for this pixel.
优选的,多种不同的数据拟合方式包括线性拟合和曲线拟合;所述曲线拟合包括指数函数拟合、多项式函数拟合、对数函数拟合、幂指数函数拟合、三角函数拟合和反三角函数拟合。Preferably, a variety of different data fitting methods include linear fitting and curve fitting; the curve fitting includes exponential function fitting, polynomial function fitting, logarithmic function fitting, power exponential function fitting, and trigonometric function fitting Fitting and inverse trigonometric function fitting.
优选的,所述数据拟合的算法为最小二乘法或者最大似然估计法。Preferably, the data fitting algorithm is a least squares method or a maximum likelihood estimation method.
优选的,多个不同的所述压力中的最大压力为所述柔性压力传感阵列所能检测到的最大压力;多个不同的所述压力中的最小压力为所述柔性压力传感阵列所能检测到的最小压力。Preferably, the maximum pressure among the multiple different pressures is the maximum pressure that can be detected by the flexible pressure sensing array; the minimum pressure among the multiple different pressures is the maximum pressure detected by the flexible pressure sensing array The minimum pressure that can be detected.
优选的,所述柔性压力传感阵列为薄膜型压力传感阵列或纤维编织型压力传感阵列。Preferably, the flexible pressure sensing array is a thin film pressure sensing array or a fiber braided pressure sensing array.
本发明提供的柔性压力传感阵列的校准方法,针对每一像素点的校准,在基础校准公式的基础之上,综合考虑与每一像素点相邻的其他像素点对该像素点的影响,采用补偿校准公式与基础校准公式的乘积作为一像素点的最终的校准公式,避免了现有技术中校准时为柔性压力传感阵列的整个传感区域受力和实际检测时传感区域的局部受力不同所带来的串扰误差,提高了单个像素点的校准精度,确保了所述柔性压力传感阵列测量结果的准确度,改善所述柔性压力传感阵列的性能。For the calibration method of the flexible pressure sensing array provided by the present invention, for the calibration of each pixel point, on the basis of the basic calibration formula, the influence of other pixel points adjacent to each pixel point on the pixel point is comprehensively considered, The product of the compensation calibration formula and the basic calibration formula is used as the final calibration formula for a pixel, which avoids the stress on the entire sensing area of the flexible pressure sensing array during calibration in the prior art and the local part of the sensing area during actual detection. The crosstalk error caused by different forces improves the calibration accuracy of a single pixel point, ensures the accuracy of the measurement results of the flexible pressure sensing array, and improves the performance of the flexible pressure sensing array.
附图说明Description of drawings
附图1是本发明具体实施方式中柔性压力传感阵列的校准方法流程图;1 is a flowchart of a calibration method for a flexible pressure sensing array in a specific embodiment of the present invention;
附图2是本发明具体实施方式中对一柔性压力传感阵列进行校准时的结构示意图;2 is a schematic structural diagram of a flexible pressure sensing array when calibrating in a specific embodiment of the present invention;
附图3是本发明具体实施方式在拟合一像素点的基础校准公式时的拟合曲线图。FIG. 3 is a fitting curve diagram of a specific embodiment of the present invention when fitting a basic calibration formula of a pixel.
具体实施方式Detailed ways
下面结合附图对本发明提供的柔性压力传感阵列的校准方法的具体实施方式做详细说明。The specific embodiments of the calibration method of the flexible pressure sensing array provided by the present invention will be described in detail below with reference to the accompanying drawings.
本具体实施方式提供了一种柔性压力传感阵列的校准方法,附图1是本发明具体实施方式中柔性压力传感阵列的校准方法流程图,附图2是本发明具体实施方式中对一柔性压力传感阵列进行校准时的结构示意图。如图1、图2所示,所述柔性压力传感阵列21包括呈阵列排布的多个传感器,每一所述传感器作为一像素点22。本具体实施方式提供的柔性压力传感阵列的校准方法,包括如下步骤:This specific embodiment provides a method for calibrating a flexible pressure sensing array. FIG. 1 is a flow chart of the calibration method of the flexible pressure sensing array in the specific embodiment of the present invention. Schematic diagram of the structure of the flexible pressure sensing array during calibration. As shown in FIG. 1 and FIG. 2 , the flexible
步骤S11,依次施加多个不同大小的压力于整个所述柔性压力传感阵列21,获取每一所述像素点22在每一所述压力下的响应特征值。Step S11 , sequentially applying a plurality of pressures of different magnitudes to the entire flexible
本具体实施方式中所述的“多个”是指两个以上。The "plurality" as used in the present embodiment refers to two or more.
优选的,依次施加多个压力于整个所述柔性压力传感阵列21的具体步骤包括:Preferably, the specific steps of sequentially applying multiple pressures to the entire flexible
将所述柔性压力传感阵列21置于一刚性水平台20表面;placing the flexible
提供一刚性压力板23,所述刚性压力板23的面积大于或等于所述柔性压力传感阵列21的面积;providing a
通过所述刚性压力板23向整个所述柔性压力传感阵列21施加所述压力。The pressure is applied to the entire flexible
图2中的虚线表示该角度下不可见的像素点。本具体实施方式对所述柔性压力传感阵列21的具体类型并不作限定,例如,所述柔性压力传感阵列21为薄膜型压力传感阵列或纤维编织型压力传感阵列。所述柔性压力传感阵列21中所述传感器的类型可以为电容型、电阻型、压电型、摩擦电型或者薄膜晶体管型。相应的,响应特征值类型为电容型、电流型、电阻型或者电压型。所述柔性压力传感阵列21具有传感区域,所有的所述像素点22呈阵列排布于所述传感区域。The dotted lines in Figure 2 represent pixels that are not visible at this angle. The specific embodiment does not limit the specific type of the flexible
为了确保施加于所述柔性压力传感阵列21中每一所述像素点上的压力值相同,进一步确保校准精度,本具体实施方式在校准过程中将所述柔性压力传感阵列21置于一如图2所示的刚性水平台20表面。所述刚性水平台20上还设置有高度调节器25和压力示数计24,所述压力示数计24沿垂直于所述刚性水平台20的方向设置于所述柔性压力传感阵列21的上方,用于调整并显示所述刚性压力板23向整个所述柔性压力传感阵列21施加的压力的数值。所述刚性压力板23固定连接于所述压力示数计24下方。所述高度调节器25连接所述压力示数计24,用于驱动所述压力示数计24沿竖直方向(即垂直于所述刚性水平台20的方向)升降运动,以调节所述刚性压力板23的高度。所述高度调节器25的具体结构,本领域技术人员可以根据实际需要进行设置,只要能够实现对所述刚性压力板23的高度调节即可。为了简化校准装置的结构,优选的,所述高度调节器25包括一升降柱以及一连接杆,所述连接杆的一端连接所述升降柱、另一端连接所述压力示数计24。通过所述升降柱沿竖直方向的升降运动,带动所述刚性压力板23沿竖直方向的升降运动,从而调整所述刚性压力板23与所述柔性压力传感阵列21之间的距离。In order to ensure the same pressure value applied to each pixel point in the flexible
优选的,通过所述刚性压力板23向整个所述柔性压力传感阵列21施加所述压力的具体步骤包括:Preferably, the specific steps of applying the pressure to the entire flexible
所述刚性压力板23向整个所述柔性压力传感阵列21施加同一所述压力多次,针对每一所述像素点22,以多次相同压力下的响应特征值的平均值作为所述像素点22在该压力下的响应特征值。The
施加于整个所述柔性压力传感阵列21不同压力的具体个数,本领域技术人员可以根据实际需要进行选择。为了进一步提高校准精度,优选的,多个不同大小的压力的个数为5个以上。The specific number of different pressures applied to the entire flexible
优选的,多个不同的所述压力中的最大压力为所述柔性压力传感阵列21所能检测到的最大压力;多个不同的所述压力中的最小压力为所述柔性压力传感阵列21所能检测到的最小压力。其他所述压力分布于所述最大压力与所述最小压力之间。Preferably, the maximum pressure among the multiple different pressures is the maximum pressure that can be detected by the flexible
举例来说,提供P1、P2、P3、P4、P5这五个按从小到大顺序排列的五个压力值,其中P1是所述柔性压力传感阵列21所能检测到的最小压力,P5是所述柔性压力传感阵列所能检测到的最大压力。通过调节所述高度调节器25和所述压力示数计24向所述柔性压力传感阵列21的整个传感区域均有施加大小为P1的压力多次(即两次以上)。针对每一所述像素点22,在每次施加P1压力时,都会得到一个响应特征值。采用求平均值的方法,将一像素点多次得到的响应特征值的平均值作为该像素点在P1压力下的响应特征值。采用同样的方法,可以得到每一所述像素点在P2、P3、P4和P5压力下的响应特征值。本具体实施方式通过多次测量、求平均值的方法获取一像素点在一压力下的响应特征值,减小了测量误差,从而进一步提高了校准精度。For example, five pressure values of P1, P2, P3, P4, and P5 are provided in ascending order, where P1 is the minimum pressure that can be detected by the flexible
步骤S12,根据每一所述像素点22在多个所述压力下的多个所述响应特征值拟合该像素点的响应特征曲线,获得每一所述像素点的基础校准公式。Step S12, fitting a response characteristic curve of each
优选的,获得每一所述像素点的基础校准公式的具体步骤包括:Preferably, the specific steps of obtaining the basic calibration formula of each of the pixel points include:
采用多种不同的数据拟合方式对每一所述像素点22进行所述响应特征曲线拟合,得到针对每一所述像素点22的多条拟合曲线;The response characteristic curve fitting is performed on each of the pixel points 22 by using a variety of different data fitting methods to obtain a plurality of fitting curves for each of the pixel points 22;
选择决定系数最大的拟合曲线作为该像素点22的基础校准公式。The fitting curve with the largest coefficient of determination is selected as the basic calibration formula for the
优选的,多种不同的数据拟合方式包括线性拟合和曲线拟合;所述曲线拟合包括指数函数拟合、多项式函数拟合、对数函数拟合、幂指数函数拟合、三角函数拟合和反三角函数拟合。Preferably, a variety of different data fitting methods include linear fitting and curve fitting; the curve fitting includes exponential function fitting, polynomial function fitting, logarithmic function fitting, power exponential function fitting, and trigonometric function fitting Fitting and inverse trigonometric function fitting.
优选的,所述数据拟合的算法为最小二乘法或者最大似然估计法。Preferably, the data fitting algorithm is a least squares method or a maximum likelihood estimation method.
具体来说,针对每一所述像素点,可以采用多种不同的拟合曲线,利用最小二乘法或者最大似然估计法进行响应特征曲线拟合,从而得到多条拟合曲线;之后,通过对多条拟合曲线的决定系数进行比对,选择出最逼近该像素点各响应特征值的拟合曲线作为该像素点最终的拟合曲线,以该拟合曲线对应的函数公式作为该像素点的基础校准公式。Specifically, for each of the pixel points, a variety of different fitting curves can be used, and the least squares method or the maximum likelihood estimation method is used to fit the response characteristic curve, so as to obtain multiple fitting curves; Compare the coefficients of determination of multiple fitting curves, select the fitting curve that is closest to each response characteristic value of the pixel point as the final fitting curve of the pixel point, and use the function formula corresponding to the fitting curve as the pixel point. Point-based calibration formula.
本具体实施方式中的数据拟合的过程是改变函数(即拟合曲线)中系数,使函数曲线尽量逼近该像素点所有的测试数据点(即与多个不同压力一一对应的多个响应特征值),逼近的程度可以通过拟合后的决定系数判断(决定系数越高,逼近程度越高,拟合效果越好),从中得到最佳的拟合函数(包括函数中具体的系数)。The process of data fitting in this specific embodiment is to change the coefficients in the function (that is, the fitting curve), so that the function curve is as close as possible to all the test data points of the pixel point (that is, the multiple responses corresponding to multiple different pressures one-to-one). Eigenvalue), the degree of approximation can be judged by the coefficient of determination after fitting (the higher the coefficient of determination, the higher the degree of approximation, the better the fitting effect), from which the best fitting function (including the specific coefficients in the function) can be obtained. .
步骤S13,提供一如下所示的补偿校准函数:Step S13, providing a compensation calibration function as shown below:
式中,Y1表示所述补偿校准函数的函数值,ai、b均为函数系数,X0表示一像素点的响应特征值,Xi表示在相同的所述压力下、与X0对应的像素点相邻的像素点的响应特征值。In the formula, Y 1 represents the function value of the compensation calibration function, a i and b are function coefficients, X 0 represents the response characteristic value of a pixel point, and X i represents the same pressure, corresponding to X 0 The response eigenvalues of the pixels adjacent to the pixel point.
步骤S14,将一所述像素点22的所述响应特征值、以及与该像素点22相邻的像素点22的响应特征值代入至所述补偿校准函数中,并令所述补偿校准函数的值Y1为1,获得每一所述像素点22的补偿校准公式。Step S14: Substitute the response characteristic value of a
具体来说,针对每一所述像素点22,令Y1=1,即将该像素点在一压力下测得的响应特征值、以及在相同压力下与该像素点相邻的周围像素点测得的响应特征值作为一组补偿校准数据,则总共得到多组补偿校准数据。将上述多组补偿校准数据依次代入上述补偿校准函数,经计算或者逼近得到所述补偿函数中的函数系数ai和b的值,即得到该像素点的补偿校准公式。Specifically, for each of the pixel points 22, let Y 1 =1, that is, The response characteristic value measured by the pixel point under a pressure and the response characteristic value measured by the surrounding pixel points adjacent to the pixel point under the same pressure are used as a set of compensation calibration data, then a total of multiple sets of compensation calibration are obtained. data. Substitute the above multiple sets of compensation calibration data into the above compensation calibration function in turn, and obtain the values of the function coefficients a i and b in the compensation function through calculation or approximation, that is, the compensation calibration formula of the pixel point is obtained.
在本具体实施方式中,对于位于所述柔性传感阵列21中部的像素点,则与该像素点相邻的像素点包括位于该像素点上侧、下侧、左侧和右侧的四个像素点(即Xi表示在相同的所述压力下、位于与X0对应的像素点上侧、下侧、左侧和右侧的四个像素点的响应特征值);对于位于所述柔性传感阵列21边界处的像素点,则与该像素点相邻的像素点包括位于该像素点上侧、下侧、左侧、右侧中两个或者三个位置的像素点(即Xi表示在相同的所述压力下、位于与X0对应的像素点上侧、下侧、左侧和右侧中的两个或者三个像素点的响应特征值),例如对于位于所述柔性传感阵列21右下角处的像素点,则与其相邻的像素点包括位于其左侧和上侧的两个像素点。In this specific embodiment, for a pixel located in the middle of the
步骤S15,计算每一所述像素点22的基础校准公式与补偿校准公式的乘积,以所述乘积作为该像素点的校准公式。Step S15: Calculate the product of the basic calibration formula and the compensation calibration formula for each
附图3是本发明具体实施方式在拟合一像素点的基础校准公式时的拟合曲线图。举例来说,所述压力的个数为5,则每一所述像素点通过测试得到5个响应特征值。所述响应特征值为电容差值,所述拟合曲线为指数函数Y0=A*exp(-X/B)+C,其中,A、B、C为函数系数。其中,所述电容差值是指施加所述压力后,所述像素点检测到的电容值与该像素点的初始电容值之间的差值。在图3中的横坐标表示电容差值,测试点30表示在校准过程中一像素点在一压力下的响应特征值,曲线31表面采用上述指数函数进行拟合后得到的最优拟合曲线。经过拟合,所述指数函数中的函数系数A、B、C的值分别为:72.645、-248.3、-73.94。从而得到该像素点的基础校准公式为:Y0=72.645*exp(X/248.3)-73.94。FIG. 3 is a fitting curve diagram of a specific embodiment of the present invention when fitting a basic calibration formula of a pixel. For example, if the number of the pressures is 5, then each pixel point obtains 5 response characteristic values through the test. The response characteristic value is a capacitance difference, and the fitting curve is an exponential function Y 0 =A*exp(-X/B)+C, where A, B, and C are function coefficients. The capacitance difference refers to the difference between the capacitance value detected by the pixel point and the initial capacitance value of the pixel point after the pressure is applied. The abscissa in FIG. 3 represents the capacitance difference, the
将所述像素点在不同压力下测得的所述响应特征值依次代入所述补偿校准函数,并令所述补偿校准函数的函数值Y1为1,经过计算或者逼近得到b的数值为-1.6234,a1、a2、a3、a4的数值分别为0.369872、0.149765、1.075986、1.007117。其中,a1、a2、a3、a4分别表示位于该像素点上侧、下侧、左侧和右侧的像素点所对应的函数系数。则该像素点最终的校准公式为: 其中,X1、X2、X3、X4分别表示位于该像素点上侧、下侧、左侧和右侧的像素点的响应特征值。Substitute the response characteristic values of the pixel points measured under different pressures into the compensation calibration function in turn, and set the function value Y 1 of the compensation calibration function to be 1, and the value of b obtained by calculation or approximation is − 1.6234, the values of a 1 , a 2 , a 3 , and a 4 are 0.369872, 0.149765, 1.075986, and 1.007117, respectively. Among them, a 1 , a 2 , a 3 , and a 4 respectively represent the function coefficients corresponding to the pixel points located on the upper side, the lower side, the left side and the right side of the pixel point. Then the final calibration formula of the pixel is: Among them, X1, X2, X3, and X4 respectively represent the response feature values of the pixel points located on the upper side, the lower side, the left side and the right side of the pixel point.
本具体实施方式中所述压力的施加以及数据拟合、校准公式的计算可以通过数控和计算机实现。The application of pressure, data fitting, and calculation of calibration formulas described in this specific embodiment can be realized by numerical control and computer.
本具体实施方式提供的柔性压力传感阵列的校准方法,针对每一像素点的校准,在基础校准公式的基础之上,综合考虑与每一像素点相邻的其他像素点对该像素点的影响,采用补偿校准公式与基础校准公式的乘积作为一像素点的最终的校准公式,避免了现有技术中校准时为柔性压力传感阵列的整个传感区域受力和实际检测时传感区域的局部受力不同所带来的串扰误差,提高了单个像素点的校准精度,确保了所述柔性压力传感阵列测量结果的准确度,改善所述柔性压力传感阵列的性能。For the calibration method of the flexible pressure sensing array provided by this specific embodiment, for the calibration of each pixel point, on the basis of the basic calibration formula, comprehensively consider the influence of other pixel points adjacent to each pixel point on the pixel point. The product of the compensation calibration formula and the basic calibration formula is used as the final calibration formula for one pixel point, which avoids the stress on the entire sensing area of the flexible pressure sensing array during calibration in the prior art and the sensing area during actual detection. The crosstalk error caused by different local forces improves the calibration accuracy of a single pixel point, ensures the accuracy of the measurement results of the flexible pressure sensing array, and improves the performance of the flexible pressure sensing array.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can also be made, and these improvements and modifications should also be regarded as It is the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910455755.3A CN110174213B (en) | 2019-05-29 | 2019-05-29 | Calibration method of flexible pressure sensing array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910455755.3A CN110174213B (en) | 2019-05-29 | 2019-05-29 | Calibration method of flexible pressure sensing array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110174213A CN110174213A (en) | 2019-08-27 |
CN110174213B true CN110174213B (en) | 2020-12-25 |
Family
ID=67695981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910455755.3A Active CN110174213B (en) | 2019-05-29 | 2019-05-29 | Calibration method of flexible pressure sensing array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110174213B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110897425A (en) * | 2019-11-18 | 2020-03-24 | 中国地质大学(武汉) | Child sitting posture detection cushion, device interacting with cushion and sitting posture monitoring method |
CN111623919A (en) * | 2020-05-15 | 2020-09-04 | 常州天策电子科技有限公司 | Pressure distribution sensor balancing and calibrating device and method |
CN111380650B (en) * | 2020-06-01 | 2020-09-18 | 深圳市千分一智能技术有限公司 | Pressure curve calibration method, device, equipment and readable storage medium |
CN111813260B (en) * | 2020-06-19 | 2021-07-20 | 东南大学 | Solutions to Capacitive Tactile Sensor Hysteresis Errors and High-Frequency Noise Errors |
FR3125587B1 (en) | 2021-07-23 | 2024-02-23 | Commissariat A L’Energie Atomique Et Aux Energies Alternatives | Neural network matrix pressure sensor and calibration method |
CN113959635A (en) * | 2021-09-02 | 2022-01-21 | 中国科学院合肥物质科学研究院 | Hydraulic calibration device and calibration method for flexible force-sensitive sensor array |
CN114459676B (en) * | 2022-01-18 | 2023-05-05 | 同济大学 | Flexible electronic skin array performance detection system |
CN114705331B (en) * | 2022-04-02 | 2023-12-22 | 深圳国微感知技术有限公司 | Pressure response characteristic curve acquisition method, calibration method and storage medium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5756904A (en) * | 1996-08-30 | 1998-05-26 | Tekscan, Inc. | Pressure responsive sensor having controlled scanning speed |
JP2012112685A (en) * | 2010-11-22 | 2012-06-14 | Takano Co Ltd | Flexible sensor and controller for evaluating sensor |
CN103565423A (en) * | 2012-08-01 | 2014-02-12 | 郭福生 | Flexible, micro-array and three-portion precision t pulse testing system |
CN103148983B (en) * | 2013-03-07 | 2014-12-10 | 中国科学院合肥物质科学研究院 | Three-dimensional force loading and calibration device of flexible touch sensor |
CN105758563A (en) * | 2015-04-03 | 2016-07-13 | 中国医学科学院生物医学工程研究所 | Single-side electrode flexible touch sense sensor array based on electrical impedance distributed measurement |
CN105675181B (en) * | 2016-04-01 | 2018-11-13 | 山东大学 | A kind of dot matrix pressure detecting system and detection method based on flexible pressure drag material |
CN106525332A (en) * | 2016-12-15 | 2017-03-22 | 上海市共进通信技术有限公司 | Calibration method of flexible pressure sensor |
CN108827915B (en) * | 2018-07-28 | 2020-10-30 | 华中科技大学 | Sub-pixel position obtaining method based on photoelectric sensing array for measuring refractive index |
-
2019
- 2019-05-29 CN CN201910455755.3A patent/CN110174213B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110174213A (en) | 2019-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110174213B (en) | Calibration method of flexible pressure sensing array | |
TW535077B (en) | Method for calibrating a mathematical model | |
AU2007242027B2 (en) | Capacitive node measurement in a capacitive matrix pressure transducer | |
CN110751925B (en) | Method and device for compensating brightness of curved display panel | |
US20230325033A1 (en) | System and method for calibrating a touch sensor | |
CN106597111B (en) | High Precision 2D Resistor Array Readout Circuit | |
KR20080059308A (en) | Eliminate inline position error for 4-point resistance measurement | |
CN110118525B (en) | Detection method of metal flatness by multi-point matrix eddy current sensor | |
TWI456445B (en) | Method of detecting position on touchscreen panel, touchscreen panel, and method of initializing touchscreen panel | |
CN109458990B (en) | A method for measuring the pose of instruments and equipment and error compensation based on marker-free anchor point detection | |
WO2019042004A1 (en) | Weighting method and storage medium thereof | |
KR20170025620A (en) | Flexible display device having the bending sensing device and method for bending sensing the same | |
WO2014043983A1 (en) | Built-in capacitive touch display screen, and touch point detection method and system therefor | |
JP6577478B2 (en) | Use of dynamically scaled linear correction to improve finger tracking linearity on touch sensors | |
CN111323133A (en) | Temperature compensation method and device for temperature sensor, electronic equipment and storage medium | |
RU2345341C1 (en) | Thin-film data unit of pressure | |
CN104615326B (en) | Method and device for detecting resistance type touch screen | |
JP3626460B2 (en) | Two-dimensional stress field measurement system and two-dimensional stress field measurement program | |
CN107340614A (en) | System and method for detecting or correcting position | |
TWI570608B (en) | Pressure sensing and touch sensitive panel, pressure sensing method, pressure sensing electronic device and control unit thereof | |
US20130027343A1 (en) | Position determination techniques in resistive touch screen applications | |
Ivanovich et al. | Model of the spatial conversion characteristics for graduation of the microprocessor-based sensor's with indemnification of influence destabilizing factors | |
JP5399428B2 (en) | Resistive touch device | |
US10606410B2 (en) | Method for calibrating touchscreen panel with industrial robot and system, industrial robot and touchscreen using the same | |
CN111551258A (en) | A multi-infrared sensor temperature measurement correction method based on adaptive weighting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |