CN110165236A - A kind of preparation method and applications of bilayer oxide solid electrolyte - Google Patents
A kind of preparation method and applications of bilayer oxide solid electrolyte Download PDFInfo
- Publication number
- CN110165236A CN110165236A CN201910483772.8A CN201910483772A CN110165236A CN 110165236 A CN110165236 A CN 110165236A CN 201910483772 A CN201910483772 A CN 201910483772A CN 110165236 A CN110165236 A CN 110165236A
- Authority
- CN
- China
- Prior art keywords
- solid electrolyte
- latp
- llzo
- layer
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 86
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims abstract description 60
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 50
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000013535 sea water Substances 0.000 claims abstract description 44
- 229910021525 ceramic electrolyte Inorganic materials 0.000 claims abstract description 37
- 239000003792 electrolyte Substances 0.000 claims abstract description 16
- 239000010406 cathode material Substances 0.000 claims abstract description 7
- 239000002223 garnet Substances 0.000 claims abstract description 7
- 239000000843 powder Substances 0.000 claims description 23
- 239000004005 microsphere Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 18
- 239000002228 NASICON Substances 0.000 claims description 14
- 238000005229 chemical vapour deposition Methods 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Natural products CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 150000002500 ions Chemical group 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- 238000001354 calcination Methods 0.000 claims description 10
- 238000007731 hot pressing Methods 0.000 claims description 10
- 239000011812 mixed powder Substances 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical group C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 239000011943 nanocatalyst Substances 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000012298 atmosphere Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 238000000231 atomic layer deposition Methods 0.000 claims description 6
- 239000002738 chelating agent Substances 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- 239000011858 nanopowder Substances 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 239000004793 Polystyrene Substances 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- 239000000376 reactant Substances 0.000 claims description 5
- 229910052706 scandium Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 238000003837 high-temperature calcination Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229920002472 Starch Polymers 0.000 claims description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 3
- XRNHBMJMFUBOID-UHFFFAOYSA-N [O].[Zr].[La].[Li] Chemical compound [O].[Zr].[La].[Li] XRNHBMJMFUBOID-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 239000011975 tartaric acid Substances 0.000 claims description 3
- 235000002906 tartaric acid Nutrition 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 206010007247 Carbuncle Diseases 0.000 claims 2
- 235000019441 ethanol Nutrition 0.000 claims 2
- 229910010585 Li5+xLa3Zrx Inorganic materials 0.000 claims 1
- 229910010252 TiO3 Inorganic materials 0.000 claims 1
- 239000000919 ceramic Substances 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 238000004090 dissolution Methods 0.000 claims 1
- 125000005909 ethyl alcohol group Chemical group 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 17
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 239000002184 metal Substances 0.000 abstract description 15
- 239000010410 layer Substances 0.000 description 61
- 239000002245 particle Substances 0.000 description 11
- 229910020717 Li0.33La0.56TiO3 Inorganic materials 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- NRJJZXGPUXHHTC-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] Chemical compound [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] NRJJZXGPUXHHTC-UHFFFAOYSA-N 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N NMP Substances CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- 229910009274 Li1.4Al0.4Ti1.6 (PO4)3 Inorganic materials 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- PHDNGVHIVIYFJP-UHFFFAOYSA-N [Zr].[La].[Li] Chemical compound [Zr].[La].[Li] PHDNGVHIVIYFJP-UHFFFAOYSA-N 0.000 description 2
- CVJYOKLQNGVTIS-UHFFFAOYSA-K aluminum;lithium;titanium(4+);phosphate Chemical compound [Li+].[Al+3].[Ti+4].[O-]P([O-])([O-])=O CVJYOKLQNGVTIS-UHFFFAOYSA-K 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000010671 solid-state reaction Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000011532 electronic conductor Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000001778 solid-state sintering Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/185—Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/188—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hybrid Cells (AREA)
- Conductive Materials (AREA)
Abstract
本发明公开了一种双层氧化物固态电解质的制备方法及其应用,双层LLZO/LATP多功能氧化物固体电解质包括致密的LLZO陶瓷电解质层和多孔的LATP固体电解质层,致密LLZO电解质层对金属锂负极稳定,并阻挡海水对金属锂负极的腐蚀;多孔LATP固体电解质层对海水和空气稳定,并为空气正极反应提供离子导电骨架。本发明的双层氧化物固态电解质可以用于制备锂海水电池组,该锂海水电池包括LLZO/LATP多功能氧化物固体电解质、封装致密石榴石电解质层内的锂负极以及具有离子/电子导电网络的空气正极材料。与现有锂海水电池相比,本发明的锂海水电池结构设计更适合复杂的海水工况,具有更优异的工作稳定性。
The invention discloses a preparation method and application of a double-layer oxide solid electrolyte. The double-layer LLZO/LATP multifunctional oxide solid electrolyte includes a dense LLZO ceramic electrolyte layer and a porous LATP solid electrolyte layer. The dense LLZO electrolyte layer is The metal lithium anode is stable and prevents seawater from corroding the metal lithium anode; the porous LATP solid electrolyte layer is stable to seawater and air, and provides an ion-conducting framework for the air cathode reaction. The double-layer oxide solid electrolyte of the present invention can be used to prepare a lithium seawater battery pack, the lithium seawater battery includes a LLZO/LATP multifunctional oxide solid electrolyte, a lithium negative electrode encapsulated in a dense garnet electrolyte layer, and an ion/electronic conductive network air cathode material. Compared with the existing lithium seawater battery, the structural design of the lithium seawater battery of the present invention is more suitable for complex seawater working conditions, and has better working stability.
Description
技术领域technical field
本发明涉及电池技术领域,具体来说涉及一种双层氧化物固态电解质的制备方法及其应用。The invention relates to the technical field of batteries, in particular to a preparation method and application of a double-layer oxide solid electrolyte.
背景技术Background technique
锂海水电池以金属锂为负极,以海水为正极,是通过控制锂与海水之间的电化学反应获得电能的新型能源体系。该电池体系直接注入海水或将其直接置于海水中即可发电,在对续航要求较高的深海自主式水下航行器以及海洋浮标电源等领域具有深远的应用前景。Lithium seawater batteries use metal lithium as the negative electrode and seawater as the positive electrode. It is a new energy system that obtains electrical energy by controlling the electrochemical reaction between lithium and seawater. The battery system can be directly injected into seawater or directly placed in seawater to generate electricity, and has far-reaching application prospects in the fields of deep-sea autonomous underwater vehicles and marine buoy power supplies that require high battery life.
作为锂海水电池的核心部件之一,固体电解质是实现电池高安全性和高循环稳定性的关键,而正极侧的多孔电极需要同时具备高离子导电、宽电压窗口和化学性质稳定(尤其对海水和空气)等特性。石榴石型锂镧锆氧LLZO(Li7La3Zr2O12)电化学窗口宽且对金属锂稳定,室温离子电导率可达10-3S/cm,具有较好的应用前景。有研究证实长期置于空气中的LLZO表面会形成碳酸锂薄层,导致离子电导率下降。然而锂镧锆氧的空气稳定性并非难以克服,最新研究表明,采用碳还原等手段可有效恢复锂镧锆氧钝化的表面,恢复其高离子电导特性。NASICON型LATP(Li1+xAlxTi2–x(PO4)3)、LAGP(Li1+xAlxGe2–x(PO4)3)具有优异的空气稳定性,即使在水溶液中依然保持稳定的离子导电性。然而由于LATP、LAGP中的Ti4+和Ge4+与金属锂接触会被还原成Ti和Ge,需要在金属锂负极界面处引入中间缓冲层,防止电解质层被持续还原。As one of the core components of lithium seawater batteries, the solid electrolyte is the key to achieving high safety and high cycle stability of the battery, while the porous electrode on the positive side needs to have high ion conductivity, wide voltage window and stable chemical properties (especially for seawater and air) and other properties. Garnet-type lithium lanthanum zirconium oxide LLZO (Li 7 La 3 Zr 2 O 12 ) has a wide electrochemical window and is stable to metal lithium. The room temperature ion conductivity can reach 10 -3 S/cm, which has a good application prospect. Studies have confirmed that a thin layer of lithium carbonate will form on the surface of LLZO placed in the air for a long time, resulting in a decrease in ionic conductivity. However, the air stability of lithium lanthanum zirconium oxygen is not difficult to overcome. The latest research shows that the use of carbon reduction and other means can effectively restore the passivated surface of lithium lanthanum zirconium oxygen and restore its high ion conductivity. NASICON type LATP (Li 1+x Al x Ti 2–x (PO 4 ) 3 ), LAGP (Li 1+x Al x Ge 2–x (PO 4 ) 3 ) has excellent air stability even in aqueous solution Still maintain stable ionic conductivity. However, since Ti 4+ and Ge 4+ in LATP and LAGP will be reduced to Ti and Ge in contact with lithium metal, an intermediate buffer layer needs to be introduced at the lithium metal negative electrode interface to prevent the electrolyte layer from being continuously reduced.
传统多孔电极由催化材料、电子导电网络和粘结剂组成,电解液在注入电池后可渗透到空气电极内部形成良好的气液固三相反应界面。由于固体电解质层不具有流动性,需要在空气电极中主动构建良好的离子导电网络。除了需要考虑空气电极中离子导电骨架和孔道结构设计,还需要考虑电子导电网络和催化剂的选择。从目前的研究现状来看,将固体电解质材料和导电碳等电子导电添加剂机械混合是目前常用的离子/电子导电网络构建方法,所获得空气正极的导电均匀性和电化学稳定性都有待提高。研究人员采用固相烧结法构建了基于无机电子导体ITO和无机离子导体LBO的复合正极,可实现固态锂电池的室温充放电,然而无机颗粒之间的界面阻抗过高导致电池极化较大、循环性能较差。可见,在空气正极内设计制备贯通的锂离子电子共导电网络是构建高性能锂海水电池的关键问题之一。Traditional porous electrodes are composed of catalytic materials, electronically conductive networks, and binders. After being injected into the battery, the electrolyte can penetrate into the air electrode to form a good gas-liquid-solid three-phase reaction interface. Due to the lack of fluidity of the solid electrolyte layer, a good ion-conducting network needs to be actively constructed in the air electrode. In addition to the design of the ion-conducting framework and pore structure in the air electrode, the selection of the electron-conducting network and catalyst also needs to be considered. Judging from the current research status, mechanical mixing of solid electrolyte materials and electronically conductive additives such as conductive carbon is a commonly used method for constructing ionic/electronically conductive networks, and the conductivity uniformity and electrochemical stability of the air cathode obtained need to be improved. The researchers used the solid-state sintering method to construct a composite positive electrode based on the inorganic electronic conductor ITO and the inorganic ionic conductor LBO, which can realize the charge and discharge of solid-state lithium batteries at room temperature. However, the high interface impedance between the inorganic particles leads to large polarization of the battery. Cycle performance is poor. It can be seen that designing and preparing a co-conductive network of lithium ions and electrons in the air cathode is one of the key issues in the construction of high-performance lithium seawater batteries.
发明内容Contents of the invention
本发明的目的在于提供一种双层氧化物固态电解质的制备方法及其应用,以获得界面稳定的双层固体电解质、以及具备优异稳定性的锂海水电池。The purpose of the present invention is to provide a method for preparing a double-layer oxide solid electrolyte and its application, so as to obtain a double-layer solid electrolyte with stable interface and a lithium seawater battery with excellent stability.
为此,本发明提供了一种双层氧化物固态电解质的制备方法,所述方法包括:For this reason, the invention provides a kind of preparation method of double layer oxide solid state electrolyte, and described method comprises:
(1)制备致密的石榴石型(Garnet)LLZO陶瓷电解质层;(1) Prepare a dense garnet-type (Garnet) LLZO ceramic electrolyte layer;
(2)制备多孔的LATP固体电解质,其材料包括NASICON结构固体电解质和钙钛矿结构固体电解质中的一种或几种,NASICON结构固体电解质化学式为Li1+x MxTi2-x (PO4)3 (M=Al,Sc, Y, La)、Li1+x MxGe2-x (PO4)3 (M=Al, Sc, Y, La),钙钛矿结构的化学式为Li3x La(2/3)-x (1/3)-2x TiO3 (0 < x < 0.16),NASICON结构的固体电解质如Li1.4Al0.4Ti1.6(PO4)3;(2) Prepare a porous LATP solid electrolyte, the material of which includes one or more of the NASICON structure solid electrolyte and the perovskite structure solid electrolyte. The chemical formula of the NASICON structure solid electrolyte is Li 1+ x M x Ti 2- x (PO 4 ) 3 (M=Al,Sc, Y, La), Li 1+ x M x Ge 2- x (PO 4 ) 3 (M=Al, Sc, Y, La), the chemical formula of the perovskite structure is Li 3 x La (2/3)- x (1/3)-2 x TiO 3 (0 < x < 0.16), solid electrolyte with NASICON structure such as Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 ;
(3)将所述LATP固体电解质纳米粉体、模板微球和粘结剂在有机溶剂中调配成粘度合适的浆料,并均匀涂覆在所述LLZO陶瓷电解质层表面,经高温煅烧即可在所述LLZO陶瓷电解质层表面构建多孔LATP离子导电骨架,形成双层LLZO/LATP多功能氧化物固体电解质;(3) The LATP solid electrolyte nanopowder, template microspheres and binder are prepared in an organic solvent to form a slurry with a suitable viscosity, and evenly coated on the surface of the LLZO ceramic electrolyte layer, and then calcined at a high temperature Build a porous LATP ion-conductive framework on the surface of the LLZO ceramic electrolyte layer to form a double-layer LLZO/LATP multifunctional oxide solid electrolyte;
(4)在所述双层LLZO/LATP多功能氧化物固体电解质的所述多孔LATP离子导电骨架上负载纳米催化剂,得到具有离子/电子导电网络的空气正极材料。(4) Loading nano-catalysts on the porous LATP ion-conducting framework of the double-layer LLZO/LATP multifunctional oxide solid electrolyte to obtain an air cathode material with an ion/electronic conducting network.
优选的,所述步骤(1)包括:采用真空热压法制备所述LLZO陶瓷电解质层,将锂镧锆氧粉体置于石墨模具中用压片机压实;然后置于真空热压炉,在真空气氛下于1140℃保温0.5-6小时,升温速率为1-10℃/min;待烧结完成后将其切削打磨成所述LLZO陶瓷电解质层。Preferably, the step (1) includes: preparing the LLZO ceramic electrolyte layer by a vacuum hot pressing method, placing the lithium lanthanum zirconium oxide powder in a graphite mold and compacting it with a tablet press; and then placing it in a vacuum hot pressing furnace , in a vacuum atmosphere at 1140° C. for 0.5-6 hours, and the heating rate is 1-10° C./min; after the sintering is completed, it is cut and polished to form the LLZO ceramic electrolyte layer.
优选的,所述石榴石型LLZO陶瓷电解质层的化学式为Li5+xLa3ZrxM2-xO12,其中M为Ta、Nb、Hf、Al、Si、Ga、Ge、Sc、Ti、V、Y和Sn中的一种,x=0-0.6,所述LLZO陶瓷电解质层的离子电导率为1.6×10-3S/cm,相对密度大于99.6%。Preferably, the chemical formula of the garnet-type LLZO ceramic electrolyte layer is Li 5+x La 3 Zr x M 2-x O 12 , wherein M is Ta, Nb, Hf, Al, Si, Ga, Ge, Sc, Ti , V, Y and Sn, x=0-0.6, the ionic conductivity of the LLZO ceramic electrolyte layer is 1.6×10 -3 S/cm, and the relative density is greater than 99.6%.
优选的,所述步骤(2)包括:采用溶胶凝胶法制备NASICON结构固体电解质和钙钛矿结构固体电解质,按照各固体电解质的化学计量比将反应物前驱体混合,加入溶剂溶解,加入螯合剂形成溶胶凝胶,将溶剂加热蒸干得到混合粉体;将混合粉体研磨,先在250-600℃下烧结2-48小时,再次研磨后,再在500-1000℃下烧结2-48小时,即可得到NASICON结构固体电解质粉体和钙钛矿结构固体电解质粉体。Preferably, the step (2) includes: using a sol-gel method to prepare a NASICON structure solid electrolyte and a perovskite structure solid electrolyte, mixing the reactant precursors according to the stoichiometric ratio of each solid electrolyte, adding a solvent to dissolve, and adding a chelate The mixture forms a sol-gel, and the solvent is heated and evaporated to obtain a mixed powder; the mixed powder is ground, first sintered at 250-600°C for 2-48 hours, and then ground again, and then sintered at 500-1000°C for 2-48 hours Hours, NASICON structure solid electrolyte powder and perovskite structure solid electrolyte powder can be obtained.
优选的,所述溶剂为乙醇或水溶液,所述螯合剂为柠檬酸或酒石酸,制备得到的固体电解质为纳米粉体,D50 < 100 nm。Preferably, the solvent is ethanol or an aqueous solution, the chelating agent is citric acid or tartaric acid, and the prepared solid electrolyte is nano-powder, D50 < 100 nm.
优选的,所述步骤(3)中,所述模板微球为有机微球,包括但不限于淀粉、聚苯乙烯、聚甲基丙烯酸甲酯;所述模板微球的粒径为1-10μm,所述模板微球与所述LATP固体电解质纳米粉体的质量比为1:1-10:1;所述粘结剂包括但不限于PvDF、PVA 、SBR、CMC和PAA中的至少一种,所述有机溶剂包括但不限于NMP、乙醇或水;煅烧温度为400-800℃,煅烧时间为1-20小时。Preferably, in the step (3), the template microspheres are organic microspheres, including but not limited to starch, polystyrene, polymethyl methacrylate; the particle size of the template microspheres is 1-10 μm , the mass ratio of the template microspheres to the LATP solid electrolyte nanopowder is 1:1-10:1; the binder includes but is not limited to at least one of PvDF, PVA, SBR, CMC and PAA , the organic solvent includes but not limited to NMP, ethanol or water; the calcination temperature is 400-800° C., and the calcination time is 1-20 hours.
优选的,所述步骤(3)中,所述多孔LATP离子导电骨架的孔径为1-10μm,孔隙率为50-90%。Preferably, in the step (3), the pore diameter of the porous LATP ion-conductive framework is 1-10 μm, and the porosity is 50-90%.
优选的,所述步骤(4)中,所述纳米催化剂包括但不限于Au、Ru、Pd和Pt。Preferably, in the step (4), the nano-catalyst includes but not limited to Au, Ru, Pd and Pt.
优选的,所述步骤(4)中,负载方法包括但不限于原子层沉积法(ALD)、化学气相沉积法(CVD)或溶液浸渍法。Preferably, in the step (4), the loading method includes but not limited to atomic layer deposition (ALD), chemical vapor deposition (CVD) or solution immersion method.
本发明还提供了所述的双层氧化物固态电解质在锂海水电池中的应用。The invention also provides the application of the double-layer oxide solid electrolyte in lithium seawater batteries.
与现有技术相比,本发明的优点和积极效果是:本发明提供了一种双层氧化物固态电解质的制备方法及其应用,本发明制备的LLZO/LATP多功能氧化物固体电解质为双层结构,包括致密的石榴石型(Garnet)LLZO陶瓷电解质层和多孔的LATP固体电解质层,致密石榴石型LLZO电解质层对金属锂负极稳定,并阻挡海水对金属锂负极的腐蚀;多孔LATP固体电解质层对海水和空气稳定,并为空气正极反应提供离子导电骨架。本发明的双层氧化物固态电解质可以用于制备锂海水电池组,该锂海水电池包括双层LLZO/LATP多功能氧化物固体电解质、封装致密石榴石电解质层内的锂负极以及具有离子/电子导电网络的空气正极材料。与现有锂海水电池相比,本发明的锂海水电池结构设计更适合复杂的海水工况,具有更优异的工作循环稳定性。Compared with the prior art, the advantages and positive effects of the present invention are: the present invention provides a preparation method and application of a double-layer oxide solid electrolyte, and the LLZO/LATP multifunctional oxide solid electrolyte prepared by the present invention is a dual Layer structure, including dense garnet-type (Garnet) LLZO ceramic electrolyte layer and porous LATP solid electrolyte layer, the dense garnet-type LLZO electrolyte layer is stable to the metal lithium anode and prevents seawater from corroding the metal lithium anode; porous LATP solid The electrolyte layer is stable to seawater and air, and provides an ionically conductive framework for the air cathode reaction. The double-layer oxide solid electrolyte of the present invention can be used to prepare a lithium seawater battery pack, which includes a double-layer LLZO/LATP multifunctional oxide solid electrolyte, a lithium negative electrode encapsulated in a dense garnet electrolyte layer, and an ion/electronic Conductive network of air cathode materials. Compared with the existing lithium seawater battery, the structural design of the lithium seawater battery of the present invention is more suitable for complex seawater working conditions, and has better working cycle stability.
本发明提供了结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。The present invention provides other features and advantages of the present invention will become clearer after reading the detailed description of the present invention in conjunction with the accompanying drawings.
附图说明Description of drawings
图1是本发明实施例1组装的锂海水电池的结构示意图;Fig. 1 is the structural representation of the assembled lithium seawater battery of Example 1 of the present invention;
图2是本发明实施例1组装的锂海水电池的放电曲线图;Fig. 2 is the discharge curve diagram of the assembled lithium seawater battery of Example 1 of the present invention;
图3是本发明实施例2组装的锂海水电池的放电曲线图。Fig. 3 is a discharge curve diagram of a lithium seawater battery assembled in Example 2 of the present invention.
具体实施方式Detailed ways
以下对本发明的具体实施方式进行详细说明,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。The specific embodiments of the present invention will be described in detail below, and it should be understood that the specific embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
本发明提供了一种双层氧化物固态电解质的制备方法,所述方法包括:The invention provides a method for preparing a double-layer oxide solid electrolyte, the method comprising:
(1)采用真空热压法制备致密的石榴石型(Garnet)LLZO陶瓷电解质层:将锂镧锆氧基固体电解质粉体装入模具,在压片机上以1-5 Mpa压实;然后在真空热压炉中于真空气氛下加压5-10 Mpa,1140℃保温0.5-6小时,升温速率为1-10℃/min;待烧结完成后将切削打磨成圆片,即得到致密的LLZO陶瓷电解质层;LLZO陶瓷电解质层的离子电导率为1.6×10-3S/cm,厚度为0.3-1 mm,相对密度大于99.6%。(1) Prepare a dense garnet-type (Garnet) LLZO ceramic electrolyte layer by vacuum hot pressing: put the lithium lanthanum zirconium oxide solid electrolyte powder into a mold, and compact it on a tablet machine at 1-5 Mpa; Pressurize 5-10 Mpa in a vacuum atmosphere in a vacuum hot-pressing furnace, hold at 1140°C for 0.5-6 hours, and heat up at a rate of 1-10°C/min; after the sintering is completed, cut and grind it into a disc to obtain a dense LLZO Ceramic electrolyte layer; the ionic conductivity of the LLZO ceramic electrolyte layer is 1.6×10-3S/cm, the thickness is 0.3-1 mm, and the relative density is greater than 99.6%.
(2)采用溶胶凝胶法制备多孔的LATP固体电解质,如NASICON结构或钙钛矿结构的固体电解质:按照各固体电解质的化学计量比将反应物前驱体混合,加入溶剂溶解,加入螯合剂形成溶胶凝胶,将溶剂加热蒸干得到混合粉体;将混合粉体研磨,先在250-600℃下烧结2-48小时,再次研磨后,再在500-1000℃下烧结2-48小时,即可得到NASICON结构或钙钛矿结构固体电解质粉体,一次颗粒的粒径中位数D50 < 100 nm。(2) Prepare porous LATP solid electrolytes by sol-gel method, such as solid electrolytes with NASICON structure or perovskite structure: mix the reactant precursors according to the stoichiometric ratio of each solid electrolyte, add a solvent to dissolve, and add a chelating agent to form Sol-gel, the solvent is heated and evaporated to dryness to obtain a mixed powder; the mixed powder is ground, first sintered at 250-600°C for 2-48 hours, after grinding again, and then sintered at 500-1000°C for 2-48 hours, The NASICON structure or perovskite structure solid electrolyte powder can be obtained, and the median particle size D50 of the primary particles is < 100 nm.
(3)将LATP固体电解质、模板微球和粘结剂在有机溶剂中调配成粘度合适的浆料,并均匀涂覆在LLZO陶瓷电解质层表面,经高温煅烧即可在LLZO陶瓷电解质层表面构建多孔LATP离子导电骨架,形成双层LLZO/LATP多功能氧化物固体电解质;模板微球为有机微球,包括但不限于淀粉、聚苯乙烯、聚甲基丙烯酸甲酯;模板微球的粒径为1-10μm,模板微球与所述LATP固体电解质的质量比为1:1-10:1;煅烧温度为400-800℃,煅烧时间为1-20小时,粘结剂包括PvDF、PVA、SBR、CMC和PAA等,有机溶剂包括NMP、乙醇和水;浆料粘度可以为1000-10000 Pa·s。(3) The LATP solid electrolyte, template microspheres and binder are prepared in an organic solvent to form a slurry with a suitable viscosity, and evenly coated on the surface of the LLZO ceramic electrolyte layer. After high-temperature calcination, it can be constructed on the surface of the LLZO ceramic electrolyte layer The porous LATP ion-conducting framework forms a double-layer LLZO/LATP multifunctional oxide solid electrolyte; the template microspheres are organic microspheres, including but not limited to starch, polystyrene, polymethyl methacrylate; the particle size of the template microspheres The mass ratio of the template microspheres to the LATP solid electrolyte is 1:1-10:1; the calcination temperature is 400-800°C, the calcination time is 1-20 hours, and the binder includes PvDF, PVA, SBR, CMC and PAA, etc., organic solvents include NMP, ethanol and water; slurry viscosity can be 1000-10000 Pa·s.
(4)在双层LLZO/LATP多功能氧化物固体电解质的多孔LATP离子导电骨架上负载纳米催化剂,得到具有离子/电子导电网络的空气正极材料。纳米催化剂为非碳基类,包括但不限于Au、Ru、Pd和Pt。负载方法可以为原子层沉积法(ALD)、化学气相沉积法(CVD)或溶液浸渍法。(4) Loading nanocatalysts on the porous LATP ion-conducting framework of the bilayer LLZO/LATP multifunctional oxide solid electrolyte to obtain an air cathode material with an ion/electron conduction network. Nanocatalysts are non-carbon based, including but not limited to Au, Ru, Pd and Pt. The loading method can be atomic layer deposition (ALD), chemical vapor deposition (CVD) or solution immersion.
本发明中,步骤(1)制备的致密Garnet型锂镧锆氧(LLZO)陶瓷电解质层相对密度大于99.6%,可以有效阻挡空气组分相金属锂负极表面的扩散,且形成稳定的Li/Garnet界面,对金属锂稳定。步骤(2)制备的多孔NASICON型磷酸钛铝锂(LATP)可作为海水正极中的离子导电网络且形成稳定的NASICON/海水界面,同时为正极反应提供更多的活性位点。步骤(3)制备的双层LLZO/LATP多功能氧化物固体电解质是指将对金属锂稳定的LLZO作为直接接触金属锂的电解质,将对空气和水稳定的LATP作为直接接触空气的电解质;双层LLZO/LATP多功能氧化物固体电解质满足在金属锂负极侧致密、在海水正极侧多孔的要求,具备导电性良好的多孔离子导电骨架和稳定的电解质/电极界面。步骤(4),基于双层LLZO/LATP多功能氧化物固体电解质上可制备多种纳米结构的电子导电催化剂,形成具有离子/电子导电网络的海水正极,使得固态锂海水电池具备更高容量和更优异的循环稳定性。In the present invention, the relative density of the dense Garnet-type lithium lanthanum zirconium oxide (LLZO) ceramic electrolyte layer prepared in step (1) is greater than 99.6%, which can effectively block the diffusion of the air component phase metal lithium negative electrode surface, and form a stable Li/Garnet interface, stable to lithium metal. The porous NASICON-type lithium aluminum titanium phosphate (LATP) prepared in step (2) can be used as the ion-conducting network in the seawater cathode and form a stable NASICON/seawater interface, while providing more active sites for the cathode reaction. The double-layer LLZO/LATP multifunctional oxide solid electrolyte prepared in step (3) refers to the use of LLZO stable to metal lithium as the electrolyte directly in contact with metal lithium, and LATP stable to air and water as the electrolyte directly in contact with air; The layered LLZO/LATP multifunctional oxide solid electrolyte meets the requirements of being dense on the metal lithium negative electrode side and porous on the seawater positive electrode side, and has a porous ion-conducting framework with good conductivity and a stable electrolyte/electrode interface. Step (4), based on the double-layer LLZO/LATP multifunctional oxide solid electrolyte, a variety of nanostructured electronically conductive catalysts can be prepared to form a seawater positive electrode with an ion/electronically conductive network, so that the solid-state lithium seawater battery has higher capacity and More excellent cycle stability.
实施例1Example 1
本实施例的双层氧化物固态电解质的制备方法包括:The preparation method of the double-layer oxide solid electrolyte of this embodiment includes:
(1)制备Garnet型锂镧锆氧(LLZO)陶瓷电解质层:(1) Preparation of Garnet-type lithium lanthanum zirconium oxide (LLZO) ceramic electrolyte layer:
采用固相反应法制备化学式为Li6.4La3Zr1.4Ta0.6O12的锂镧锆氧基固体电解质粉体,其制备步骤包括:按照Li、La、Zr、Ta的摩尔比为6.4:3:1.4:0.6,选取LiOH、La2O3、ZrO2和Ta2O5为原料,其中LiOH过量5%,在酒精中球磨24小时后烘干;然后在900℃煅烧10小时,升温速率4℃/min,待烧结完成后将粉体粉碎过筛即可得到Li6.4La3Zr1.4Ta0.6O12粉体(LLZO),将其过筛得到粒径为5μm的LLZO粉体;The lithium lanthanum zirconium-based solid electrolyte powder whose chemical formula is Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 is prepared by a solid-state reaction method, and the preparation steps include: according to the molar ratio of Li, La, Zr, and Ta being 6.4:3: 1.4:0.6, choose LiOH, La 2 O 3 , ZrO 2 and Ta 2 O 5 as raw materials, in which the excess of LiOH is 5%, ball mill in alcohol for 24 hours and then dry; then calcined at 900°C for 10 hours, the heating rate is 4°C /min, after the sintering is completed, crush and sieve the powder to obtain Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 powder (LLZO), and sieve it to obtain LLZO powder with a particle size of 5 μm;
采用真空热压法制备LLZO陶瓷电解质层,将LLZO粉体混入石墨模具,在手动压片机上以4 Mpa压实;然后在真空热压炉中于真空气氛下加压8 Mpa,1140℃保温1小时,升温速率为2℃/min;待烧结完成后将切削打磨成圆片,即得到致密的LLZO陶瓷电解质层;LLZO陶瓷电解质层的离子电导率为1.6×10-3S/cm,厚度为1 mm,相对密度大于99.6%。The LLZO ceramic electrolyte layer was prepared by vacuum hot pressing method. The LLZO powder was mixed into a graphite mold and compacted on a manual tablet press at 4 Mpa; then pressurized at 8 Mpa in a vacuum hot pressing furnace under vacuum atmosphere and kept at 1140 °C for 1 hour, the heating rate is 2°C/min; after the sintering is completed, it is cut and polished into a disc to obtain a dense LLZO ceramic electrolyte layer; the ionic conductivity of the LLZO ceramic electrolyte layer is 1.6×10 -3 S/cm, and the thickness is 1 mm, the relative density is greater than 99.6%.
(2)制备NASICON型磷酸钛铝锂(LATP)固体电解质;按照Li1.4Al0.4Ti1.6(PO4)3的化学计量比将反应物前驱体混合,加入纯水溶解,加入柠檬酸螯合剂形成溶胶凝胶,将溶剂加热蒸干得到混合粉体;将混合粉体研磨,先在600℃下烧结12小时,再次研磨后,再在1000℃下烧结12小时,即可得到LATP粉体,一次颗粒的粒径中位数D50 < 100 nm。(2) Prepare NASICON type lithium aluminum titanium phosphate (LATP) solid electrolyte; mix the reactant precursors according to the stoichiometric ratio of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 , add pure water to dissolve, add citric acid chelating agent to form For sol-gel, the solvent is heated and evaporated to dryness to obtain a mixed powder; the mixed powder is ground, first sintered at 600°C for 12 hours, after grinding again, and then sintered at 1000°C for 12 hours, the LATP powder can be obtained, once Particles have a median particle size D50 < 100 nm.
(3)将LATP固体电解质粉体、PP微球和粘结剂PvDF,在NMP溶剂中调配成粘度合适的浆料,并均匀涂覆在LLZO陶瓷电解质层表面,然后放入80℃鼓风烘箱中烘干12h。将其置于马弗炉中在空气气氛中进行高温煅烧,煅烧温度为800℃,煅烧时间为10小时;然后于800℃保温5小时,即可在LLZO陶瓷电解质层表面构建多孔LATP离子导电骨架,形成LLZO/LATP多功能氧化物固体电解质。PP微球的粒径为5μm,PP微球与LATP固体电解质的质量比为1:1。(3) Prepare LATP solid electrolyte powder, PP microspheres and binder PvDF in NMP solvent to form a slurry with a suitable viscosity, and evenly coat the surface of the LLZO ceramic electrolyte layer, and then put it into an 80°C blast oven Dry in medium for 12h. Put it in a muffle furnace for high-temperature calcination in an air atmosphere, the calcination temperature is 800°C, and the calcination time is 10 hours; then keep it at 800°C for 5 hours, and the porous LATP ion-conductive framework can be constructed on the surface of the LLZO ceramic electrolyte layer , forming LLZO/LATP multifunctional oxide solid electrolyte. The particle size of PP microspheres is 5 μm, and the mass ratio of PP microspheres to LATP solid electrolyte is 1:1.
(4)在LLZO/LATP多功能氧化物固体电解质的多孔LATP离子导电骨架上负载纳米催化剂,得到具有离子/电子导电网络的空气正极材料。本实施例中采用化学气相沉积法(CVD)在多孔LATP离子导电骨架上负载纳米金催化剂:将LLZO/LATP置于化学气相沉积反应室内,将反应室抽真空并预热至沉积温度,启动反应室开始旋转;将工作气体和加热至100℃的纳米金前驱体通入反应室内,调整反应室内压力进行纳米金沉积;反应结束后,反应室停止旋转,待反应室冷却至室温,可得到负载纳米金Au催化剂的LLZO/LATP。(4) Loading nanocatalysts on the porous LATP ion-conducting framework of the LLZO/LATP multifunctional oxide solid electrolyte to obtain an air cathode material with an ion/electron conduction network. In this example, chemical vapor deposition (CVD) is used to load nano-gold catalysts on the porous LATP ion-conductive framework: LLZO/LATP is placed in the chemical vapor deposition reaction chamber, the reaction chamber is evacuated and preheated to the deposition temperature, and the reaction is started. The chamber starts to rotate; the working gas and the nano-gold precursor heated to 100°C are passed into the reaction chamber, and the pressure in the reaction chamber is adjusted to deposit nano-gold; LLZO/LATP of nano-gold Au catalysts.
本实施例的双层LLZO/LATP多功能氧化物固体电解质可以用于制备锂海水电池,如图1所示,LLZO陶瓷电解质层1的一个表面为负载纳米金Au催化剂的多孔LATP离子导电骨架4,在LLZO陶瓷电解质层1的另一表面制备金属锂负极2,然后采用环氧树脂胶3将金属锂负极2密封,金属锂负极2位于不锈钢外壳5内,即组装成锂海水电池。将该锂海水电池组件置于0.1 M的模拟海水中,图2为基于本实施例的LLZO/LATP-Au的锂海水电池的放电曲线,可以看出在本实施例的双层LLZO/LATP多功能氧化物固体电解质封装下,电池放电平台保持在2.85V上下,稳定时间超过50天,体现了该双层结构的固体电解质在锂海水电池中良好的密封性和稳定性。The double-layer LLZO/LATP multifunctional oxide solid electrolyte of this embodiment can be used to prepare lithium seawater batteries, as shown in Figure 1, one surface of the LLZO ceramic electrolyte layer 1 is a porous LATP ion-conducting framework 4 loaded with nano-gold Au catalyst , on the other surface of the LLZO ceramic electrolyte layer 1 to prepare a metal lithium negative electrode 2, and then use epoxy resin glue 3 to seal the metal lithium negative electrode 2, and the metal lithium negative electrode 2 is located in the stainless steel shell 5, that is, a lithium seawater battery is assembled. Place the lithium seawater battery assembly in 0.1 M simulated seawater. Figure 2 is the discharge curve of the lithium seawater battery based on the LLZO/LATP-Au of this embodiment. It can be seen that the double-layer LLZO/LATP of this embodiment is more Under the encapsulation of functional oxide solid electrolyte, the battery discharge platform is maintained at around 2.85V, and the stability time exceeds 50 days, which reflects the good sealing and stability of the double-layer solid electrolyte in lithium seawater batteries.
实施例2Example 2
本实施例的双层氧化物固态电解质的制备方法包括:The preparation method of the double-layer oxide solid electrolyte of this embodiment includes:
(1)制备Garnet型锂镧锆氧(LLZO)陶瓷电解质层:(1) Preparation of Garnet-type lithium lanthanum zirconium oxide (LLZO) ceramic electrolyte layer:
采用固相反应法制备化学式为Li6.4La3Zr1.4Ta0.6O12的锂镧锆氧基固体电解质粉体,其制备步骤包括:按照Li、La、Zr、Ta的摩尔比为6.4:3:1.4:0.6,选取LiOH、La2O3、ZrO2和Ta2O5为原料,其中LiOH过量5%,在酒精中球磨24小时后烘干;然后在900℃煅烧10小时,升温速率4℃/min,待烧结完成后将粉体粉碎过筛即可得到Li6.4La3Zr1.4Ta0.6O12粉体(LLZO),将其过筛得到粒径为5μm的LLZO粉体;The lithium lanthanum zirconium-based solid electrolyte powder whose chemical formula is Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 is prepared by a solid-state reaction method, and the preparation steps include: according to the molar ratio of Li, La, Zr, and Ta being 6.4:3: 1.4:0.6, choose LiOH, La 2 O 3 , ZrO 2 and Ta 2 O 5 as raw materials, in which the excess of LiOH is 5%, ball mill in alcohol for 24 hours and then dry; then calcined at 900°C for 10 hours, the heating rate is 4°C /min, after the sintering is completed, crush and sieve the powder to obtain Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 powder (LLZO), and sieve it to obtain LLZO powder with a particle size of 5 μm;
采用真空热压法制备LLZO陶瓷电解质层,将LLZO粉体混入石墨模具,在手动压片机上以5Mpa压实;然后在真空热压炉中于真空气氛下加压10 Mpa,1140℃保温1小时,升温速率为2℃/min;待烧结完成后将切削打磨成圆片,即得到致密的LLZO陶瓷电解质层;LLZO陶瓷电解质层的离子电导率为1.6×10-3S/cm,厚度为0.5 mm,相对密度大于99.6%。The LLZO ceramic electrolyte layer was prepared by vacuum hot pressing method, the LLZO powder was mixed into the graphite mold, and compacted at 5 MPa on a manual tablet press; then pressurized at 10 MPa in a vacuum hot pressing furnace under vacuum atmosphere, and kept at 1140 ° C for 1 hour , the heating rate is 2°C/min; after the sintering is completed, it is cut and polished into a disc to obtain a dense LLZO ceramic electrolyte layer; the ionic conductivity of the LLZO ceramic electrolyte layer is 1.6×10 -3 S/cm, and the thickness is 0.5 mm, the relative density is greater than 99.6%.
(2)制备钙钛矿性型Li0.33La0.56TiO3 (LLTO)固体电解质粉体;按照Li0.33La0.56TiO3的化学计量比将反应物前驱体混合,加入水溶解,加入酒石酸螯合剂形成溶胶凝胶,将溶剂加热蒸干得到混合粉体;将混合粉体研磨,先在600℃下烧结10小时,再次研磨后,再在1100℃下烧结12小时,即可得到LLTO粉体,一次颗粒的粒径中位数D50 < 100 nm。(2) Prepare perovskite-type Li 0.33 La 0.56 TiO 3 (LLTO) solid electrolyte powder; mix the reactant precursors according to the stoichiometric ratio of Li 0.33 La 0.56 TiO 3 , add water to dissolve, and add tartaric acid chelating agent to form Sol-gel, heat the solvent and evaporate to dryness to obtain mixed powder; grind the mixed powder, first sinter at 600°C for 10 hours, after grinding again, and then sinter at 1100°C for 12 hours, you can get LLTO powder, once Particles have a median particle size D50 < 100 nm.
(3)将LATP固体电解质粉体、PS微球和粘结剂PvDF在NMP溶剂中调配成粘度合适的浆料,并均匀涂覆在LLZO陶瓷电解质层表面,然后放入80℃鼓风烘箱中烘干12h。将其置于马弗炉中在空气气氛中进行高温煅烧,煅烧温度为800 ℃,煅烧时间为10小时;然后于400℃保温1-10小时,即可在LLZO陶瓷电解质层表面构建多孔LLTO离子导电骨架,形成双层LLZO/LLTO多功能氧化物固体电解质;模板微球的粒径为6μm,PS微球与LLTO固体电解质的质量比为2:1;(3) Prepare LATP solid electrolyte powder, PS microspheres and binder PvDF in NMP solvent to form a slurry with a suitable viscosity, and evenly coat the surface of the LLZO ceramic electrolyte layer, and then put it in an 80°C blast oven Dry for 12h. Put it in a muffle furnace for high-temperature calcination in an air atmosphere, the calcination temperature is 800 ℃, and the calcination time is 10 hours; then it is kept at 400 ℃ for 1-10 hours, and the porous LLTO ion can be constructed on the surface of the LLZO ceramic electrolyte layer The conductive skeleton forms a double-layer LLZO/LLTO multifunctional oxide solid electrolyte; the particle size of the template microspheres is 6 μm, and the mass ratio of PS microspheres to LLTO solid electrolyte is 2:1;
(4)在双层LLZO/LLTO多功能氧化物固体电解质的多孔LLTO离子导电骨架上负载纳米催化剂,得到具有离子/电子导电网络的空气正极材料。本实施例中采用化学气相沉积法(CVD)在多孔LATP离子导电骨架上负载纳米铂Pt催化剂:将LLZO/LATP置于化学气相沉积反应室内,将反应室抽真空并预热至沉积温度,启动反应室开始旋转;将工作气体和加热至110℃的纳米Pt前驱体通入反应室内,调整反应室内压力进行沉积;反应结束后,反应室停止旋转,待反应室冷却至室温,即可得到负载纳米铂Pt的LLZO/LLTO。(4) Loading nanocatalysts on the porous LLTO ion-conducting framework of the bilayer LLZO/LLTO multifunctional oxide solid electrolyte to obtain an air cathode material with an ion/electron conduction network. In this example, chemical vapor deposition (CVD) is used to load nano-platinum Pt catalyst on the porous LATP ion-conducting framework: LLZO/LATP is placed in the chemical vapor deposition reaction chamber, the reaction chamber is evacuated and preheated to the deposition temperature, and the start-up The reaction chamber starts to rotate; the working gas and the nano-Pt precursor heated to 110°C are passed into the reaction chamber, and the pressure in the reaction chamber is adjusted for deposition; after the reaction is completed, the reaction chamber stops rotating, and the load can be obtained after the reaction chamber is cooled to room temperature. LLZO/LLTO of nano-platinum Pt.
本实施例的双层LLZO/LATP多功能氧化物固体电解质可以用于制备锂海水电池,LLZO陶瓷电解质层的一个表面为负载纳米铂Pt催化剂的多孔LATP离子导电骨架,在LLZO陶瓷电解质层的另一表面制备金属锂负极,然后采用环氧树脂胶将金属锂负极密封,即组装成锂海水电池。将该锂海水电池器件置于0.1M的模拟海水中,图3为基于本实施例的LLZO/LAT-Pt的锂海水电池的放电曲线,可以看出在本实施例的双层LLZO/LATP多功能氧化物固体电解质封装下,电池放电平台保持在2.8V上下,稳定时间超过60天,体现了该双层结构的固体电解质在锂海水电池中良好的密封性和稳定性。The double-layer LLZO/LATP multifunctional oxide solid electrolyte of this embodiment can be used to prepare lithium seawater battery. One surface of the LLZO ceramic electrolyte layer is a porous LATP ion-conductive framework loaded with nano-platinum Pt catalyst, and the other surface of the LLZO ceramic electrolyte layer A metal lithium negative electrode is prepared on the surface, and then the metal lithium negative electrode is sealed with epoxy resin glue, that is, a lithium seawater battery is assembled. The lithium seawater battery device is placed in 0.1M simulated seawater. Fig. 3 is the discharge curve of the lithium seawater battery based on the LLZO/LAT-Pt of the present embodiment. It can be seen that the double-layer LLZO/LATP of the present embodiment is more Under the encapsulation of functional oxide solid electrolyte, the battery discharge platform is maintained at around 2.8V, and the stability time exceeds 60 days, which reflects the good sealing and stability of the double-layer solid electrolyte in lithium seawater batteries.
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art can still understand the foregoing embodiments. Modifications are made to the technical solutions described, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions claimed in the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910483772.8A CN110165236A (en) | 2019-06-05 | 2019-06-05 | A kind of preparation method and applications of bilayer oxide solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910483772.8A CN110165236A (en) | 2019-06-05 | 2019-06-05 | A kind of preparation method and applications of bilayer oxide solid electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110165236A true CN110165236A (en) | 2019-08-23 |
Family
ID=67627558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910483772.8A Pending CN110165236A (en) | 2019-06-05 | 2019-06-05 | A kind of preparation method and applications of bilayer oxide solid electrolyte |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110165236A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110729511A (en) * | 2019-10-28 | 2020-01-24 | 溧阳天目先导电池材料科技有限公司 | Lithium ion solid electrolyte material with composite core-shell structure and preparation method thereof |
CN111018525A (en) * | 2019-12-24 | 2020-04-17 | 东北大学 | A kind of double-layer solid electrolyte proton conductor and preparation method thereof |
CN111028977A (en) * | 2019-12-24 | 2020-04-17 | 东北大学 | Double-layer composite proton conductor material and preparation method thereof |
CN111106392A (en) * | 2019-12-30 | 2020-05-05 | 华南师范大学 | Preparation method of all-solid-state electrolyte battery |
CN112467198A (en) * | 2020-11-26 | 2021-03-09 | 同济大学 | Oxide solid electrolyte for lithium ion battery and preparation method thereof |
CN112582713A (en) * | 2020-12-11 | 2021-03-30 | 北京新能源汽车技术创新中心有限公司 | Electrolyte and electrode integrated three-layer composite ceramic and preparation method thereof, and all-solid-state lithium-air battery and preparation method thereof |
CN112939601A (en) * | 2021-01-28 | 2021-06-11 | 中汽创智科技有限公司 | Electrolyte material, preparation method and application thereof |
CN113186535A (en) * | 2021-04-22 | 2021-07-30 | 海信(广东)厨卫系统股份有限公司 | Solid electrolyte, preparation method thereof and cathode protection system |
CN113461050A (en) * | 2021-07-20 | 2021-10-01 | 中国科学院上海硅酸盐研究所 | Porous LLZO ceramic powder inhibitor for thermal battery electrolyte and preparation method thereof |
CN113571763A (en) * | 2020-04-29 | 2021-10-29 | 肖特股份有限公司 | Solid lithium ion conductor |
CN113871588A (en) * | 2021-09-13 | 2021-12-31 | 武汉理工大学 | Lithium battery core-shell cathode material, lithium battery containing lithium battery core-shell cathode material and preparation method of lithium battery |
CN113948717A (en) * | 2021-10-15 | 2022-01-18 | 中国科学院长春应用化学研究所 | Composite solid electrolyte-positive electrode composite material, preparation method thereof and lithium oxygen battery |
US20220231331A1 (en) * | 2021-01-20 | 2022-07-21 | Seiko Epson Corporation | Stacked solid-state battery |
CN114774886A (en) * | 2022-06-21 | 2022-07-22 | 柔电(武汉)科技有限公司 | A kind of anti-oxidation and anti-salt spray wave absorbing material powder and preparation method |
US20220271333A1 (en) * | 2021-02-25 | 2022-08-25 | Seiko Epson Corporation | Stacked solid-state battery |
US20220271332A1 (en) * | 2021-02-25 | 2022-08-25 | Seiko Epson Corporation | Stacked solid-state battery |
US20220271331A1 (en) * | 2021-02-16 | 2022-08-25 | Seiko Epson Corporation | Stacked solid-state battery |
CN115312841A (en) * | 2022-07-26 | 2022-11-08 | 浙江固泰动力技术有限公司 | Solid-state lithium battery ceramic composite electrolyte and preparation method and application thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101794915A (en) * | 2009-09-29 | 2010-08-04 | 佛山市顺德区精进能源有限公司 | Lithium ion battery structure and preparation method thereof |
CN104916869A (en) * | 2015-05-15 | 2015-09-16 | 清华大学 | Porous-compact double-layer electrolyte ceramic sintered body, lithium ion battery and lithium-air battery |
CN105742761A (en) * | 2016-02-29 | 2016-07-06 | 苏州大学 | All-solid-state lithium-air battery and preparation method and application thereof |
CN107689453A (en) * | 2017-08-22 | 2018-02-13 | 哈尔滨工业大学 | Two-layer composite ceramics, the preparation method of the ceramic preparation method, self-absorption type lithium-air battery and the battery |
KR20180084236A (en) * | 2017-01-16 | 2018-07-25 | 한국생산기술연구원 | All solid state battery having LATP-containing cathode electrode composite and manufacturing method the same |
CN108539204A (en) * | 2017-03-01 | 2018-09-14 | 铃木株式会社 | The cathode complex structure of lithium-air battery |
US20180269483A1 (en) * | 2017-03-20 | 2018-09-20 | North Carolina Agricultural And Technical State University | Prelithiated silicon particles for lithium ion batteries |
KR20190013424A (en) * | 2017-07-27 | 2019-02-11 | 한국전자통신연구원 | Lithium secondary battery |
CN109361014A (en) * | 2018-09-12 | 2019-02-19 | 北京理工大学 | A lithium secondary battery solid electrolyte composite material, preparation method and lithium secondary battery |
-
2019
- 2019-06-05 CN CN201910483772.8A patent/CN110165236A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101794915A (en) * | 2009-09-29 | 2010-08-04 | 佛山市顺德区精进能源有限公司 | Lithium ion battery structure and preparation method thereof |
CN104916869A (en) * | 2015-05-15 | 2015-09-16 | 清华大学 | Porous-compact double-layer electrolyte ceramic sintered body, lithium ion battery and lithium-air battery |
CN105742761A (en) * | 2016-02-29 | 2016-07-06 | 苏州大学 | All-solid-state lithium-air battery and preparation method and application thereof |
KR20180084236A (en) * | 2017-01-16 | 2018-07-25 | 한국생산기술연구원 | All solid state battery having LATP-containing cathode electrode composite and manufacturing method the same |
CN108539204A (en) * | 2017-03-01 | 2018-09-14 | 铃木株式会社 | The cathode complex structure of lithium-air battery |
US20180269483A1 (en) * | 2017-03-20 | 2018-09-20 | North Carolina Agricultural And Technical State University | Prelithiated silicon particles for lithium ion batteries |
KR20190013424A (en) * | 2017-07-27 | 2019-02-11 | 한국전자통신연구원 | Lithium secondary battery |
CN107689453A (en) * | 2017-08-22 | 2018-02-13 | 哈尔滨工业大学 | Two-layer composite ceramics, the preparation method of the ceramic preparation method, self-absorption type lithium-air battery and the battery |
CN109361014A (en) * | 2018-09-12 | 2019-02-19 | 北京理工大学 | A lithium secondary battery solid electrolyte composite material, preparation method and lithium secondary battery |
Non-Patent Citations (1)
Title |
---|
孙继杨等: "无机陶瓷固体电解质基固态锂空气电池的研究进展及挑战", 《陶瓷学报》 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110729511A (en) * | 2019-10-28 | 2020-01-24 | 溧阳天目先导电池材料科技有限公司 | Lithium ion solid electrolyte material with composite core-shell structure and preparation method thereof |
CN111018525B (en) * | 2019-12-24 | 2021-08-31 | 东北大学 | A kind of double-layer solid electrolyte proton conductor and preparation method thereof |
CN111028977A (en) * | 2019-12-24 | 2020-04-17 | 东北大学 | Double-layer composite proton conductor material and preparation method thereof |
CN111028977B (en) * | 2019-12-24 | 2021-04-20 | 东北大学 | A kind of double-layer composite proton conductor material and preparation method thereof |
CN111018525A (en) * | 2019-12-24 | 2020-04-17 | 东北大学 | A kind of double-layer solid electrolyte proton conductor and preparation method thereof |
CN111106392A (en) * | 2019-12-30 | 2020-05-05 | 华南师范大学 | Preparation method of all-solid-state electrolyte battery |
CN113571763A (en) * | 2020-04-29 | 2021-10-29 | 肖特股份有限公司 | Solid lithium ion conductor |
CN112467198A (en) * | 2020-11-26 | 2021-03-09 | 同济大学 | Oxide solid electrolyte for lithium ion battery and preparation method thereof |
CN112467198B (en) * | 2020-11-26 | 2022-06-14 | 同济大学 | Oxide solid electrolyte for lithium ion battery and preparation method thereof |
CN112582713A (en) * | 2020-12-11 | 2021-03-30 | 北京新能源汽车技术创新中心有限公司 | Electrolyte and electrode integrated three-layer composite ceramic and preparation method thereof, and all-solid-state lithium-air battery and preparation method thereof |
CN112582713B (en) * | 2020-12-11 | 2022-09-06 | 北京国家新能源汽车技术创新中心有限公司 | Electrolyte and electrode integrated three-layer composite ceramic and preparation method thereof, and all-solid-state lithium-air battery and preparation method thereof |
US20220231331A1 (en) * | 2021-01-20 | 2022-07-21 | Seiko Epson Corporation | Stacked solid-state battery |
CN112939601A (en) * | 2021-01-28 | 2021-06-11 | 中汽创智科技有限公司 | Electrolyte material, preparation method and application thereof |
US20220271331A1 (en) * | 2021-02-16 | 2022-08-25 | Seiko Epson Corporation | Stacked solid-state battery |
US20220271332A1 (en) * | 2021-02-25 | 2022-08-25 | Seiko Epson Corporation | Stacked solid-state battery |
US20220271333A1 (en) * | 2021-02-25 | 2022-08-25 | Seiko Epson Corporation | Stacked solid-state battery |
CN113186535A (en) * | 2021-04-22 | 2021-07-30 | 海信(广东)厨卫系统股份有限公司 | Solid electrolyte, preparation method thereof and cathode protection system |
CN113461050A (en) * | 2021-07-20 | 2021-10-01 | 中国科学院上海硅酸盐研究所 | Porous LLZO ceramic powder inhibitor for thermal battery electrolyte and preparation method thereof |
CN113461050B (en) * | 2021-07-20 | 2024-01-23 | 中国科学院上海硅酸盐研究所 | Porous LLZO ceramic powder inhibitor for thermal battery electrolyte and preparation method thereof |
CN113871588A (en) * | 2021-09-13 | 2021-12-31 | 武汉理工大学 | Lithium battery core-shell cathode material, lithium battery containing lithium battery core-shell cathode material and preparation method of lithium battery |
CN113948717A (en) * | 2021-10-15 | 2022-01-18 | 中国科学院长春应用化学研究所 | Composite solid electrolyte-positive electrode composite material, preparation method thereof and lithium oxygen battery |
CN113948717B (en) * | 2021-10-15 | 2024-02-13 | 中国科学院长春应用化学研究所 | Composite solid electrolyte-positive electrode composite material, preparation method thereof and lithium-oxygen battery |
CN114774886A (en) * | 2022-06-21 | 2022-07-22 | 柔电(武汉)科技有限公司 | A kind of anti-oxidation and anti-salt spray wave absorbing material powder and preparation method |
CN115312841A (en) * | 2022-07-26 | 2022-11-08 | 浙江固泰动力技术有限公司 | Solid-state lithium battery ceramic composite electrolyte and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110165236A (en) | A kind of preparation method and applications of bilayer oxide solid electrolyte | |
Hao et al. | Architectural design and fabrication approaches for solid-state batteries | |
CN104916869B (en) | Porous densification bilayer electrolyte ceramic sintered bodies, lithium ion battery, lithium-air battery | |
CN110429288B (en) | Cathode material and electrolyte of proton conductor fuel cell with B-site defects and preparation method of cathode material and electrolyte | |
US11417870B2 (en) | Solid state battery and method for producing same | |
CN106129466A (en) | Solid electrolyte of reduction and metal lithium electrode interface resistance and preparation method thereof | |
CN103208634B (en) | For the composite cathode material of middle low-temperature protonic transmission Solid Oxide Fuel Cell | |
CN101515651B (en) | Preparation of solid oxide fuel cell | |
JP7183529B2 (en) | LAMINATED GREEN SHEET, ALL-SOLID SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF | |
CN106848358A (en) | A kind of doped cerium oxide base SOFC and preparation method thereof | |
CN108461759A (en) | Method for preparing nano composite cathode material of solid oxide fuel cell by impregnation method | |
CN111313087A (en) | Electrolyte materials, sodium ion solid electrolytes and their applications and sodium ion solid state batteries | |
CN105489880A (en) | Composite sodium-storage positive electrode for solid-state secondary sodium battery and preparation method for composite sodium-storage positive electrode | |
Zhou et al. | Self-assembled cathode induced by polarization for high-performance solid oxide fuel cell | |
CN110890530A (en) | Lithium metal secondary battery based on porous ceramic composite lithium metal anode and preparation method thereof | |
CN105140540A (en) | Lithium-air battery based on binder-free air electrode and preparation method of lithium-air battery | |
CN103985888B (en) | The preparation method of ceramic membrane fuel cells connecting material film and electrolytic thin-membrane | |
CN111416138A (en) | Proton ceramic membrane fuel cell and preparation method thereof | |
CN114975872B (en) | A method for preparing an integrated all-solid-state sodium ion battery | |
JP3661676B2 (en) | Solid oxide fuel cell | |
CN113130920A (en) | Integrated composite oxygen electrode and preparation method and application thereof | |
CN1402372A (en) | Method for mfg. anode carried thin film medium-temp. solid oxide fuel cell | |
JPH0769721A (en) | Scandia partially stabilized zirconia high strength solid electrolyte material | |
Kwon et al. | Fabrication of electrolyte-supported solid oxide fuel cells using a tape casting process | |
JP3411064B2 (en) | Method for producing solid electrolyte sintered body for solid oxide fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190823 |
|
RJ01 | Rejection of invention patent application after publication |