CN111313087A - Electrolyte materials, sodium ion solid electrolytes and their applications and sodium ion solid state batteries - Google Patents
Electrolyte materials, sodium ion solid electrolytes and their applications and sodium ion solid state batteries Download PDFInfo
- Publication number
- CN111313087A CN111313087A CN201910485840.4A CN201910485840A CN111313087A CN 111313087 A CN111313087 A CN 111313087A CN 201910485840 A CN201910485840 A CN 201910485840A CN 111313087 A CN111313087 A CN 111313087A
- Authority
- CN
- China
- Prior art keywords
- sodium ion
- electrolyte
- ion solid
- layer
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 110
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 title claims abstract description 94
- 229910001415 sodium ion Inorganic materials 0.000 title claims abstract description 94
- 239000002001 electrolyte material Substances 0.000 title claims abstract description 72
- 239000007787 solid Substances 0.000 title claims abstract description 23
- 239000011734 sodium Substances 0.000 claims abstract description 127
- 229910052751 metal Inorganic materials 0.000 claims abstract description 51
- 239000002184 metal Substances 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 37
- 239000011148 porous material Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 47
- 239000011575 calcium Substances 0.000 claims description 43
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 36
- 239000000843 powder Substances 0.000 claims description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- 239000011259 mixed solution Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 229920002472 Starch Polymers 0.000 claims description 10
- 239000008107 starch Substances 0.000 claims description 10
- 235000019698 starch Nutrition 0.000 claims description 10
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- 238000003825 pressing Methods 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 239000007774 positive electrode material Substances 0.000 claims description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 3
- 239000000920 calcium hydroxide Substances 0.000 claims description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 229920002545 silicone oil Polymers 0.000 claims description 3
- YOBOXHGSEJBUPB-MTOQALJVSA-N (z)-4-hydroxypent-3-en-2-one;zirconium Chemical compound [Zr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O YOBOXHGSEJBUPB-MTOQALJVSA-N 0.000 claims description 2
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 claims description 2
- 229910001373 Na3V2(PO4)2F3 Inorganic materials 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 2
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 2
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 claims description 2
- 239000001639 calcium acetate Substances 0.000 claims description 2
- 235000011092 calcium acetate Nutrition 0.000 claims description 2
- 229960005147 calcium acetate Drugs 0.000 claims description 2
- 239000001110 calcium chloride Substances 0.000 claims description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 2
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 2
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 2
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 2
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 claims description 2
- 235000011007 phosphoric acid Nutrition 0.000 claims description 2
- 239000001632 sodium acetate Substances 0.000 claims description 2
- 235000017281 sodium acetate Nutrition 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- 235000017550 sodium carbonate Nutrition 0.000 claims description 2
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 2
- 239000004317 sodium nitrate Substances 0.000 claims description 2
- 235000010344 sodium nitrate Nutrition 0.000 claims description 2
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 claims description 2
- PFXYQVJESZAMSV-UHFFFAOYSA-K zirconium(iii) chloride Chemical compound Cl[Zr](Cl)Cl PFXYQVJESZAMSV-UHFFFAOYSA-K 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims 1
- 229920000881 Modified starch Polymers 0.000 claims 1
- 239000004368 Modified starch Substances 0.000 claims 1
- 229910020650 Na3V2 Inorganic materials 0.000 claims 1
- 229910020657 Na3V2(PO4)3 Inorganic materials 0.000 claims 1
- 229910021312 NaFePO4 Inorganic materials 0.000 claims 1
- 229910019338 NaMnO2 Inorganic materials 0.000 claims 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims 1
- 229910001628 calcium chloride Inorganic materials 0.000 claims 1
- 235000019426 modified starch Nutrition 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 27
- 238000002360 preparation method Methods 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 24
- 238000012360 testing method Methods 0.000 description 18
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 15
- 229910052708 sodium Inorganic materials 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 14
- 229910006404 SnO 2 Inorganic materials 0.000 description 13
- 239000008367 deionised water Substances 0.000 description 11
- 229910021641 deionized water Inorganic materials 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 210000001787 dendrite Anatomy 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 244000248349 Citrus limon Species 0.000 description 2
- 235000005979 Citrus limon Nutrition 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 229910007926 ZrCl Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0094—Composites in the form of layered products, e.g. coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Abstract
本发明涉及固体电池领域,具体涉及电解质材料及由其形成的钠离子固体电解质和钠离子固体电池。所述电解质材料的组成为Na3+2xZr2‑ xCaxSi2PO12,其中x为0.05‑0.3。所述钠离子固体电解质包括由上述电解质材料形成的至少两层结构,所述至少两层结构包括致密层和位于致密层至少一侧的多孔层,所述多孔层具有亲钠多孔表面。所述钠离子固体电池,包括:一体化金属Na负极;正极电极;其中,所述一体化金属Na负极通过将上述钠离子固体电解质与金属Na整合得到,所述金属Na位于所述钠离子固体电解质多孔层的孔中。
The invention relates to the field of solid batteries, in particular to electrolyte materials, sodium ion solid electrolytes and sodium ion solid batteries formed therefrom. The composition of the electrolyte material is Na 3+2x Zr 2- x Ca x Si 2 PO 12 , wherein x is 0.05-0.3. The sodium ion solid electrolyte includes an at least two-layer structure formed of the above electrolyte material, the at least two-layer structure including a dense layer and a porous layer on at least one side of the dense layer, the porous layer having a natriophilic porous surface. The sodium ion solid battery includes: an integrated metal Na negative electrode; a positive electrode; wherein, the integrated metal Na negative electrode is obtained by integrating the above-mentioned sodium ion solid electrolyte and metal Na, and the metal Na is located in the sodium ion solid in the pores of the electrolyte porous layer.
Description
技术领域technical field
本发明涉及固体电池领域,具体涉及电解质材料及由其形成的钠离子固体电解质和钠离子固体电池。The invention relates to the field of solid batteries, in particular to electrolyte materials, sodium ion solid electrolytes and sodium ion solid batteries formed therefrom.
背景技术Background technique
相对于已经成功商业化应用的锂离子电池,全固态钠电池,因其优异的安全特性、更高的能量密度和丰富的钠资源,引起了全世界的广泛关注。在全固态钠电池中,使用固态钠离子电解质取代易燃的有机液态电解质,大大提高了电池的安全性。固态电解质又具有高硬度特性,可以阻隔钠枝晶,避免刺穿电解质造成电池短路。因此在电池中应用高能量密度的金属Na作为负极材料成为可能。Compared with lithium-ion batteries that have been successfully commercialized, all-solid-state sodium batteries have attracted worldwide attention due to their excellent safety properties, higher energy density, and abundant sodium resources. In all-solid-state sodium batteries, the use of solid-state sodium-ion electrolytes instead of flammable organic liquid electrolytes greatly improves battery safety. The solid electrolyte also has the characteristics of high hardness, which can block sodium dendrites and avoid puncturing the electrolyte and causing a short circuit of the battery. Therefore, it is possible to use Na metal with high energy density as anode material in batteries.
目前,阻碍全固态钠电池发展与应用的因素主要有两点:固体电解质的离子电导率低;固体电解质与金属Na负极界面电阻大。关于界面电阻大的问题,现有技术主要通过在界面处加入液态电解液、引入聚合物界面层、施加压力等方法以降低电解质与钠负极材料的界面电阻。尽管这些方法对改善界面电阻有一定的效果,但是仍不能实现全固态电池长期稳定的运行。除此之外,现有固体电解质常被制作成简单的平板式构型,组装成的全电池仍是三层结构,固体电解质不仅与金属Na负极的界面接触不紧密,而且接触面积十分有限。At present, there are two main factors hindering the development and application of all-solid-state sodium batteries: the ionic conductivity of the solid electrolyte is low; the interface resistance between the solid electrolyte and the metal Na anode is large. Regarding the problem of large interface resistance, the prior art mainly reduces the interface resistance between the electrolyte and the sodium anode material by adding liquid electrolyte at the interface, introducing a polymer interface layer, and applying pressure. Although these methods have a certain effect on improving the interfacial resistance, they still cannot achieve long-term stable operation of all-solid-state batteries. In addition, the existing solid electrolytes are often fabricated into a simple flat-plate configuration, and the assembled full battery is still a three-layer structure.
因此,亟需一种钠离子电导率高的电解质材料,并且亟需可以有利地降低电解质与金属Na负极之间界面电阻的固体电解质,且由此固体电解质形成的固体电池具有优异的电池性能。Therefore, an electrolyte material with high sodium ion conductivity is urgently needed, and a solid electrolyte that can advantageously reduce the interfacial resistance between the electrolyte and the metallic Na anode is urgently needed, and the solid battery formed by the solid electrolyte has excellent battery performance.
发明内容SUMMARY OF THE INVENTION
本发明的目的之一在于克服现有技术固体电解质离子电导率低的问题,提供一种离子电导率高的电解质材料。One of the objectives of the present invention is to overcome the problem of low ionic conductivity of solid electrolytes in the prior art, and to provide an electrolyte material with high ionic conductivity.
本发明的目的之二在于克服现有技术固体电池中的固体电解质与金属Na负极界面电阻大、形成全电池的电池性能如循环性能较差的问题,提供钠离子固体电解质和钠离子固体电池。The second purpose of the present invention is to overcome the problems of high interfacial resistance between the solid electrolyte and the metal Na negative electrode in the prior art solid battery and poor battery performance such as cycle performance forming a full battery, and to provide a sodium ion solid electrolyte and a sodium ion solid battery.
为了实现上述目的,本发明第一方面提供了一种电解质材料,所述电解质材料的组成为Na3+2xZr2-xCaxSi2PO12,其中x为0.05-0.3。In order to achieve the above object, the first aspect of the present invention provides an electrolyte material, the composition of the electrolyte material is Na 3+2x Zr 2-x Ca x Si 2 PO 12 , wherein x is 0.05-0.3.
本发明第二方面提供了所述电解质材料的制备方法,所述方法包括:A second aspect of the present invention provides a method for preparing the electrolyte material, the method comprising:
(1)将Na源、Zr源、Ca源、硅源、P源和柠檬酸以摩尔比为(3+2x):(2-x):x:2:1:(6-10)混合于水醇混合液中,充分搅拌溶解,得到混合物I;(1) Mix Na source, Zr source, Ca source, silicon source, P source and citric acid in a molar ratio of (3+2x):(2-x):x:2:1:(6-10) In the water-alcohol mixed solution, fully stir and dissolve to obtain mixture I;
(2)将所述混合物I加热直到完全蒸发除去水和醇,形成凝胶;(2) heating the
(3)将所述凝胶烘干、研磨,煅烧,得到Na3+2xZr2-xCaxSi2PO12粉末。(3) drying, grinding and calcining the gel to obtain Na 3+2x Zr 2-x Ca x Si 2 PO 12 powder.
本发明第三方面提供了一种钠离子固体电解质,包括由电解质材料形成的至少两层结构,所述至少两层结构包括致密层和位于致密层至少一侧的多孔层,所述多孔层具有亲钠多孔表面,所述电解质材料为本发明第一方面所述的电解质材料。A third aspect of the present invention provides a sodium ion solid electrolyte, comprising an at least two-layer structure formed of an electrolyte material, the at least two-layer structure comprising a dense layer and a porous layer on at least one side of the dense layer, the porous layer having Sodium-philic porous surface, the electrolyte material is the electrolyte material described in the first aspect of the present invention.
本发明第四方面提供了本发明第三方面所述固体电解质的制备方法,包括:The fourth aspect of the present invention provides a method for preparing the solid electrolyte according to the third aspect of the present invention, comprising:
(a)由纯的电解质材料形成基层;由电解质材料与造孔剂按照质量比1:(0.5-5)混合得到混合物II,将混合物II放置于所述基层的至少一侧形成外层,对所述基层和外层施加压力,得到坯体;(a) The base layer is formed from pure electrolyte material; the mixture II is obtained by mixing the electrolyte material and the pore-forming agent in a mass ratio of 1:(0.5-5), and the mixture II is placed on at least one side of the base layer to form an outer layer. The base layer and the outer layer apply pressure to obtain a green body;
(b)将所述坯体在1000-1400℃下空气中烧结0.5-30h,得到包含多孔层和致密层的结构;(b) sintering the green body in air at 1000-1400° C. for 0.5-30 h to obtain a structure comprising a porous layer and a dense layer;
(c)将步骤(b)得到的多孔层进行SnO2和/或Bi2O3改性。(c) modifying the porous layer obtained in step (b) with SnO 2 and/or Bi 2 O 3 .
本发明第五方面提供了本发明第三方面所述钠离子固体电解质在固体电池领域中的应用。The fifth aspect of the present invention provides the application of the sodium ion solid electrolyte of the third aspect of the present invention in the field of solid batteries.
本发明第六方面提供了一种钠离子固体电池,包括:A sixth aspect of the present invention provides a sodium ion solid state battery, comprising:
一体化金属Na负极;Integrated metal Na negative electrode;
正极电极;positive electrode;
其中,所述一体化金属Na负极通过将钠离子固体电解质与金属Na整合得到,所述钠离子固体电解质为本发明第三方面所述的钠离子固体电解质,所述金属Na位于所述钠离子固体电解质多孔层的孔中。Wherein, the integrated metal Na negative electrode is obtained by integrating a sodium ion solid electrolyte and metal Na, the sodium ion solid electrolyte is the sodium ion solid electrolyte described in the third aspect of the present invention, and the metal Na is located in the sodium ion solid electrolyte. in the pores of the solid electrolyte porous layer.
本发明第七方面提供了上述钠离子固体电池的制备方法,包括:The seventh aspect of the present invention provides the preparation method of the above-mentioned sodium ion solid state battery, comprising:
(1)将金属Na放置在钠离子固体电解质多孔层的表面,加热以熔化金属Na,熔化的金属Na渗透进入多孔层中,与钠离子固体电解质进行整合,形成一体化金属Na负极;(1) metal Na is placed on the surface of the sodium ion solid electrolyte porous layer, heated to melt the metal Na, the molten metal Na penetrates into the porous layer, and is integrated with the sodium ion solid electrolyte to form an integrated metal Na negative electrode;
(2)将一体化金属Na负极与正极电极进行组装。(2) Assembling the integrated metal Na negative electrode and the positive electrode.
本发明提供了一种离子电导率高的电解质材料,并使用该电解质材料形成类似“三明治”结构的钠离子固体电解质(包括致密层和多孔层),该固体电解质可以有效地降低电解质与金属Na的界面电阻,实现固体电解质的阻抗达到175Ω·cm-2,进而实现由该种电解质形成的固体电池获得更高的比容量和良好的循环性能。The invention provides an electrolyte material with high ionic conductivity, and uses the electrolyte material to form a sodium ion solid electrolyte (including a dense layer and a porous layer) similar to a "sandwich" structure, which can effectively reduce the amount of electrolyte and metal Na The interface resistance of the solid electrolyte can reach 175Ω·cm -2 , and the solid battery formed by this electrolyte can achieve higher specific capacity and good cycle performance.
附图说明Description of drawings
图1示出了制备例1-5、对比制备例4所制备的电解质材料的X射线衍射(XRD)图,其中(2)为(1)中2θ为5-35度的局部放大图。FIG. 1 shows the X-ray diffraction (XRD) patterns of the electrolyte materials prepared in Preparation Examples 1-5 and Comparative Preparation Example 4, wherein (2) is a partial enlarged view of 2θ of 5-35 degrees in (1).
图2为制备例1-5、对比制备例4所制备的电解质材料的电导率与温度的关系图。FIG. 2 is a graph showing the relationship between the electrical conductivity and temperature of the electrolyte materials prepared in Preparation Examples 1-5 and Comparative Preparation Example 4. FIG.
图3为本发明所述电解质材料A1制成平板式电解质片,组装不锈钢片|电解质|金属钠电池,通过循环伏安法测得的电流-电压变化图。FIG. 3 is a current-voltage change diagram measured by cyclic voltammetry when the electrolyte material A1 of the present invention is made into a flat-plate electrolyte sheet, and a stainless steel sheet|electrolyte|metal sodium battery is assembled.
图4为实施例10所述对称电池E1电压随循环时间的变化图。FIG. 4 is a graph showing the variation of the voltage of the symmetrical battery E1 with cycle time according to Example 10. FIG.
图5为实施例10所述对称电池E1不同循环时间的阻抗变化图。FIG. 5 is a graph of impedance changes of the symmetrical battery E1 described in Example 10 at different cycle times.
图6为实施例11所述方法制备的全电池C1的充、放电比容量随循环次数的变化图,以及库伦效率随循环次数的变化图。FIG. 6 is a graph showing the change of the specific capacity of charge and discharge with the number of cycles, and the graph of the change of the Coulomb efficiency with the number of cycles, of the full battery C1 prepared by the method described in Example 11.
图7为实施例11所述方法制备的全电池C1在不同循环次数下阻抗变化图。FIG. 7 is a graph showing the impedance change of the full battery C1 prepared by the method described in Example 11 under different cycle times.
图8为三明治结构对称电池的制备示意图。FIG. 8 is a schematic diagram of the fabrication of a sandwich-structure symmetrical battery.
图9(1)为本发明所述钠离子固体电解质S1灌入Na时的光学显微镜照片;图9(2)为对比例4所述钠离子固体电解质D4灌入Na时的光学显微镜照片。Fig. 9(1) is an optical microscope photo of the sodium ion solid electrolyte S1 according to the present invention when Na is poured into it; Fig. 9(2) is an optical microscope photo of the sodium ion solid electrolyte D4 of the comparative example 4 when Na is poured into it.
图10示出了向本发明所述钠离子固体电解质S1的多孔层中灌入金属Na之后,多孔层的元素能谱图,其中,(1)为Na的元素分布图;(2)为Zr的元素分布图;(3)为P的元素分布图。Figure 10 shows the element energy spectrum of the porous layer after the metal Na is poured into the porous layer of the sodium ion solid electrolyte S1 of the present invention, wherein (1) is the element distribution of Na; (2) is Zr The element distribution map of ; (3) is the element distribution map of P.
图11示出了本发明所述钠离子固体电解质组装成全固态钠离子电池的结构示意图。FIG. 11 shows a schematic structural diagram of the sodium ion solid electrolyte of the present invention assembled into an all-solid-state sodium ion battery.
具体实施方式Detailed ways
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。The endpoints of ranges and any values disclosed herein are not limited to the precise ranges or values, which are to be understood to encompass values proximate to those ranges or values. For ranges of values, the endpoints of each range, the endpoints of each range and the individual point values, and the individual point values can be combined with each other to yield one or more new ranges of values that Ranges should be considered as specifically disclosed herein.
本发明第一方面提供了一种电解质材料,所述电解质材料的组成为Na3+2xZr2- xCaxSi2PO12,其中x为0.05-0.3。A first aspect of the present invention provides an electrolyte material, wherein the composition of the electrolyte material is Na 3+2x Zr 2- x Ca x Si 2 PO 12 , wherein x is 0.05-0.3.
根据本发明,所述电解质材料为Ca掺杂的NASICON型电解质材料,在所述电解质材料组成结构中,x可以为0.05、0.06、0.075、0.08、0.1、0.12、0.15、0.18、0.2、0.25、0.28或0.3,以及上述数值中任意两个所述成范围中的任意一值。优选地,x为0.05-0.25。According to the present invention, the electrolyte material is a Ca-doped NASICON type electrolyte material, and in the composition structure of the electrolyte material, x may be 0.28 or 0.3, and any two of the above values stated as any value in the range. Preferably, x is 0.05-0.25.
本发明第二方面提供了所述电解质材料的制备方法,所述方法包括:A second aspect of the present invention provides a method for preparing the electrolyte material, the method comprising:
(1)将Na源、Zr源、Ca源、硅源、P源和柠檬酸以摩尔比为(3+2x):(2-x):x:2:1:(6-10)混合于水醇混合液中,充分搅拌溶解,得到混合物I;(1) Mix Na source, Zr source, Ca source, silicon source, P source and citric acid in a molar ratio of (3+2x):(2-x):x:2:1:(6-10) In the water-alcohol mixed solution, fully stir and dissolve to obtain mixture I;
(2)将所述混合物I加热直到完全蒸发除去水和醇,形成凝胶;(2) heating the
(3)将所述凝胶烘干、研磨,煅烧,得到Na3+2xZr2-xCaxSi2PO12粉末。(3) drying, grinding and calcining the gel to obtain Na 3+2x Zr 2-x Ca x Si 2 PO 12 powder.
优选地,所述方法包括:Preferably, the method includes:
(1)将Na源、Zr源、Ca源、硅源、P源和柠檬酸以摩尔比为(3+2x):(2-x):x:2:1:(6-10)混合于水醇混合液中,充分搅拌溶解,得到混合物I;(1) Mix Na source, Zr source, Ca source, silicon source, P source and citric acid in a molar ratio of (3+2x):(2-x):x:2:1:(6-10) In the water-alcohol mixed solution, fully stir and dissolve to obtain mixture I;
(2)将所述混合物I加热至50-90℃,直到完全蒸发除去水和醇,形成凝胶;(2) heating the mixture I to 50-90° C. until the water and alcohol are completely evaporated to form a gel;
(3)将所述凝胶烘干、研磨,并在500-700℃下煅烧2-8h,再升温至900-1000℃煅烧8-16h;得到Na3+2xZr2-xCaxSi2PO12粉末。(3) drying and grinding the gel, and calcining at 500-700 ℃ for 2-8 hours, and then heating up to 900-1000 ℃ and calcining for 8-16 hours; obtaining Na 3+2x Zr 2-x Ca x Si 2 PO 12 powder.
所述Na源可以为Na的水溶性化合物,优选地选自醋酸钠、硝酸钠、碳酸钠和氢氧化钠中的至少一种;所述Zr源可以为Zr的水溶性化合物,优选地选自硝酸氧锆水合物、三氯化锆、乙酰丙酮锆和乙酸锆的至少一种;所述Ca源可以为Ca的水溶性化合物,优选地选自硝酸钙、氢氧化钙、乙酸钙和氯化钙中的至少一种。在本文中,“水溶性化合物”应理解为可溶或微溶于去离子水的化合物。所述Si源可以为硅酸酯、硅酸、硅酸盐或硅油,优选地所述硅源选自正硅酸乙酯、正硅酸丙酯、硅酸和硅油中的至少一种。所述P源可以为磷酸和/或磷酸盐,优选地所述P源选自磷酸氢二铵、磷酸二氢铵和磷酸中的至少一种。The Na source can be a water-soluble compound of Na, preferably selected from at least one of sodium acetate, sodium nitrate, sodium carbonate and sodium hydroxide; the Zr source can be a water-soluble compound of Zr, preferably selected from At least one of zirconium oxynitrate hydrate, zirconium trichloride, zirconium acetylacetonate and zirconium acetate; the Ca source can be a water-soluble compound of Ca, preferably selected from calcium nitrate, calcium hydroxide, calcium acetate and chloride at least one of calcium. In this context, "water-soluble compounds" are to be understood as compounds which are soluble or sparingly soluble in deionized water. The Si source can be silicate, silicic acid, silicate or silicone oil, preferably the Si source is selected from at least one of ethyl orthosilicate, propyl orthosilicate, silicic acid and silicone oil. The P source may be phosphoric acid and/or phosphate, preferably the P source is selected from at least one of diammonium hydrogen phosphate, ammonium dihydrogen phosphate and phosphoric acid.
在步骤(1)中,将Na源、Zr源、Ca源、硅源、P源和柠檬酸以摩尔比为(3+2x):(2-x):x:2:1:(6-10),优选地以摩尔比为(3+2x):(2-x):x:2:1:8混合于水醇混合液中,充分搅拌溶解,得到混合物I,其中x为0.05-0.3。所述水醇混合液为水与醇的混合物,所述醇为能够与水互溶的一元或多元醇,例如乙醇、甲醇、丙醇等。所述水醇混合溶液中水和醇的体积比可以为现有技术已知的比例,例如可以为1:1、1:2、1:0.5、1:3等。优选地,混合过程伴随着搅拌,例如并充分搅拌1-20h,搅拌6-18h。In step (1), the Na source, Zr source, Ca source, silicon source, P source and citric acid in a molar ratio of (3+2x):(2-x):x:2:1:(6- 10), preferably in a molar ratio of (3+2x): (2-x): x: 2: 1: 8 mixed in a water-alcohol mixed solution, fully stirring and dissolving to obtain mixture I, wherein x is 0.05-0.3 . The water-alcohol mixed solution is a mixture of water and alcohol, and the alcohol is a monohydric or polyhydric alcohol that is miscible with water, such as ethanol, methanol, propanol, and the like. The volume ratio of water and alcohol in the water-alcohol mixed solution may be a ratio known in the prior art, for example, may be 1:1, 1:2, 1:0.5, 1:3, and the like. Preferably, the mixing process is accompanied by agitation, for example, with sufficient stirring for 1-20 h, and stirring for 6-18 h.
在步骤(2)中,将所述混合物I加热至50-90℃,优选地加热至60-90℃,直到完全蒸发除去水和醇,形成凝胶。In step (2), the mixture I is heated to 50-90°C, preferably 60-90°C, until the water and alcohol are completely evaporated and a gel is formed.
在步骤(3)中,将所述凝胶干燥、研磨,并在500-700℃下煅烧2-8h,优选地在550-650℃下煅烧4-7h;再升温至900-1000℃煅烧8-16h;得到Na3+2xZr2-xCaxSi2PO12粉末。优选地,干燥的条件包括:温度为100-150℃,时间为8-16h。In step (3), the gel is dried, ground, and calcined at 500-700°C for 2-8h, preferably 550-650°C for 4-7h; then heated to 900-1000°C for 8 hours -16h; Na 3+2x Zr 2-x Ca x Si 2 PO 12 powder was obtained. Preferably, the drying conditions include: a temperature of 100-150° C. and a time of 8-16 h.
在一种优选的实施方式中,所述方法包括:In a preferred embodiment, the method includes:
(1)将CH3COONa、ZrO(NO3)2、Ca(NO3)2·4H2O、正硅酸乙酯、NH4H2PO4和柠檬酸以摩尔比(3+2x):(2-x):x:2:1:8溶解于乙醇和水的混合溶液中,充分搅拌12h,得到混合物I;(1) CH 3 COONa, ZrO(NO 3 ) 2 , Ca(NO 3 ) 2 ·4H 2 O, ethyl orthosilicate, NH 4 H 2 PO 4 and citric acid in a molar ratio (3+2x): (2-x): x: 2: 1: 8 is dissolved in a mixed solution of ethanol and water, fully stirred for 12h to obtain mixture I;
(2)将混合物I加热到50-90℃,直到完全蒸发去除去离子水和乙醇,形成凝胶;(2) heating mixture I to 50-90° C. until the deionized water and ethanol are completely evaporated to form a gel;
(3)将凝胶在120℃烘干12h后,并充分研磨,在600℃下煅烧6h,再升温至950℃煅烧12h,得到Na3+2xZr2-xCaxSi2PO12粉末。(3) The gel was dried at 120°C for 12h, fully ground, calcined at 600°C for 6h, and then heated to 950°C for 12h to obtain Na 3+2x Zr 2-x Ca x Si 2 PO 12 powder.
使用本方法制备的电解质材料颗粒粒径较小,元素分布更均匀。The particle size of the electrolyte material prepared by this method is smaller, and the distribution of elements is more uniform.
本发明第三方面提供了一种钠离子固体电解质,包括由电解质材料形成的至少两层结构,所述至少两层结构包括致密层和位于致密层至少一侧的多孔层,所述多孔层具有亲钠多孔的表面,所述电解质材料为本发明第一方面所述的电解质材料。A third aspect of the present invention provides a sodium ion solid electrolyte, comprising an at least two-layer structure formed of an electrolyte material, the at least two-layer structure comprising a dense layer and a porous layer on at least one side of the dense layer, the porous layer having The sodium-philic porous surface, the electrolyte material is the electrolyte material described in the first aspect of the present invention.
根据本发明所述钠离子固体电解质,致密层能够有效地分离正负极,抑制钠枝晶,避免枝晶穿透电解质造成电池短路;多孔层可以作为钠负极的载体,多孔骨架形成了三维的离子传输网络,增大了接触面积,又为金属Na沉积/剥离过程中的体积变化留有空隙,避免界面断裂造成界面电阻增大。According to the sodium ion solid electrolyte of the present invention, the dense layer can effectively separate the positive and negative electrodes, suppress sodium dendrites, and prevent the dendrites from penetrating the electrolyte to cause a short circuit of the battery; the porous layer can be used as a carrier for the sodium negative electrode, and the porous skeleton forms a three-dimensional The ion transport network increases the contact area and leaves a void for the volume change during the deposition/stripping of metallic Na, avoiding the increase in interface resistance caused by interface fracture.
根据本发明所述钠离子固体电解质,为了实现将金属Na灌入多孔层中,并保证金属Na与电解质的良好接触,所述多孔层具有亲钠多孔表面,所述“亲钠多孔表面”应理解为可以容易地与金属Na结合的多孔表面。所述亲钠多孔表面可以通过本领域已知的技术手段和/或方法获得。优选地,所述亲钠多孔表面通过将所述多孔层进行SnO2和/或Bi2O3改性制得。所述改性方法可以为本领域已知的方法,例如可以为向多孔层浸渍SnCl4水溶液与浓HCl的混合溶液。如果多孔层表面不设置亲钠多孔表面,在向多孔层灌入金属Na时,金属Na不能有效地进入。如图9(2)所示的多孔层表面没有进行亲钠改性,金属Na不能有效地进入多孔层的孔中。钠的进入与否可以通过多孔层区域截面的微观形貌和元素分布(SU扫描电子显微镜和附带特征X射线能谱仪)来验证。如图10所示,将Na元素的存在区域除去Zr、P元素的存在区域,可以看出有较多的金属Na进入多孔层的孔中。According to the sodium ion solid electrolyte of the present invention, in order to pour metal Na into the porous layer and ensure good contact between the metal Na and the electrolyte, the porous layer has a natriophilic porous surface, and the "natriophilic porous surface" should be It is understood as a porous surface that can be easily combined with metallic Na. The natriophilic porous surface can be obtained by technical means and/or methods known in the art. Preferably, the natriophilic porous surface is prepared by modifying the porous layer with SnO 2 and/or Bi 2 O 3 . The modification method can be a method known in the art, for example, the porous layer can be immersed in a mixed solution of SnCl 4 aqueous solution and concentrated HCl. If the surface of the porous layer is not provided with a natriophilic porous surface, when metallic Na is poured into the porous layer, the metallic Na cannot enter effectively. As shown in Fig. 9(2), the surface of the porous layer is not modified with sodium affinity, and the metal Na cannot effectively enter the pores of the porous layer. The entry of sodium can be verified by the microscopic morphology and element distribution (SU scanning electron microscope and incidental characteristic X-ray energy dispersive spectrometer) of the cross-section of the porous layer region. As shown in FIG. 10 , it can be seen that a large amount of metallic Na enters the pores of the porous layer by removing the existing regions of Zr and P elements from the existing regions of Na element.
优选地,在所述钠离子固体电解质中,所述致密层厚度为1-1000μm,多孔层的厚度为1-1000μm,多孔层孔隙率为10-80%,平均孔径为2-50μm。更优选地,致密层厚度为10-300μm,多孔层厚度为10-300μm,多孔层孔隙率为40-60%,平均孔径为5-20μm。Preferably, in the sodium ion solid electrolyte, the thickness of the dense layer is 1-1000 μm, the thickness of the porous layer is 1-1000 μm, the porosity of the porous layer is 10-80%, and the average pore diameter is 2-50 μm. More preferably, the thickness of the dense layer is 10-300 μm, the thickness of the porous layer is 10-300 μm, the porosity of the porous layer is 40-60%, and the average pore diameter is 5-20 μm.
根据本发明所述钠离子固体电解质,钠离子固体电解质中的至少两层结构可以通过本领域已知的技术手段制得,例如通过共压技术制备。According to the sodium ion solid electrolyte of the present invention, the at least two-layer structure in the sodium ion solid electrolyte can be prepared by technical means known in the art, for example, by co-pressing technology.
优选地,所述共压技术包括以下步骤:Preferably, the co-pressing technique includes the following steps:
(a)由纯的电解质材料形成基层;由电解质材料与造孔剂按照质量比1:(0.5-5)混合得到混合物II;将混合物II放置于所述基层的至少一侧形成外层,对所述基层和外层施加压力,得到坯体;(a) The base layer is formed from pure electrolyte material; Mixture II is obtained by mixing electrolyte material and pore-forming agent in a mass ratio of 1:(0.5-5); Mixture II is placed on at least one side of the base layer to form an outer layer. The base layer and the outer layer apply pressure to obtain a green body;
(b)将所述坯体在1000-1400℃下空气中烧结0.5-30h;(b) sintering the green body in air at 1000-1400° C. for 0.5-30 h;
优选地,所述造孔剂选自淀粉、聚甲基丙烯酸甲酯粉末、球形石墨和聚苯乙烯粉末中的至少一种,造孔剂的平均粒径为2-50μm。Preferably, the pore-forming agent is selected from at least one of starch, polymethyl methacrylate powder, spherical graphite and polystyrene powder, and the average particle size of the pore-forming agent is 2-50 μm.
在应用过程中,本发明所述钠离子固体电解质与金属Na的界面阻抗以及应用过程中的本发明所述钠离子固体电解质的循环性能可以使用对称电池作为测试样品来检测。所述对称电池按照制备本发明所述钠离子固体电解质的类似方法制成的,具有三层“三明治结构”,即在致密层的两侧形成相同的两层多孔层。在测试过程中,给予对称电池一定电流,测试对称电池电压、阻抗随循环(电流方向变化,电流方向变化一次即为循环一次)时间的变化,以此反映应用过程中本发明所述钠离子固体电解质与金属Na的界面阻抗以及本发明所述钠离子固体电解质的循环性能。In the application process, the interface impedance of the sodium ion solid electrolyte of the present invention and the metal Na and the cycle performance of the sodium ion solid electrolyte of the present invention in the application process can be detected by using a symmetrical battery as a test sample. The symmetric cell is fabricated in a similar manner to the sodium ion solid electrolyte of the present invention, and has a three-layer "sandwich structure", ie, the same two-layer porous layer is formed on both sides of the dense layer. In the test process, a certain current is given to the symmetrical battery, and the voltage and impedance of the symmetrical battery are tested with the time of the cycle (the current direction changes, and the current direction changes once is one cycle) time, so as to reflect the sodium ion solid of the present invention in the application process. Interfacial impedance between electrolyte and metal Na and cycle performance of the sodium ion solid electrolyte of the present invention.
本发明第四方面提供了上述固体电解质的制备方法,包括以下步骤:A fourth aspect of the present invention provides a method for preparing the above-mentioned solid electrolyte, comprising the following steps:
(a)由纯的电解质材料形成基层;由电解质材料与造孔剂按照质量比1:(0.5-5)混合得到混合物II,将混合物II放置于所述基层的至少一侧形成外层,对所述基层和外层施加压力,得到坯体;(a) The base layer is formed from pure electrolyte material; the mixture II is obtained by mixing the electrolyte material and the pore-forming agent in a mass ratio of 1:(0.5-5), and the mixture II is placed on at least one side of the base layer to form an outer layer. The base layer and the outer layer apply pressure to obtain a green body;
(b)将所述坯体在1000-1400℃下空气中烧结0.5-30h,得到包含多孔层和致密层的结构;(b) sintering the green body in air at 1000-1400° C. for 0.5-30 h to obtain a structure comprising a porous layer and a dense layer;
(c)将步骤(b)得到的多孔层进行SnO2和/或Bi2O3改性。(c) modifying the porous layer obtained in step (b) with SnO 2 and/or Bi 2 O 3 .
更优选地,所述方法包括以下步骤:More preferably, the method includes the following steps:
(a)将电解质材料与造孔剂按照质量比1:(0.5-5)混合得到混合物II,将混合物II与纯的电解质材料依次分散于模具中,混合物II位于纯的电解质材料所形成层的至少一侧,对模具施加压力,得到坯体;(a) Mix the electrolyte material and the pore-forming agent in a mass ratio of 1:(0.5-5) to obtain the mixture II, and disperse the mixture II and the pure electrolyte material in the mold in turn, and the mixture II is located in the layer formed by the pure electrolyte material. At least one side, applying pressure to the mold to obtain a green body;
(b)将所述坯体在1000-1400℃下空气中烧结0.5-30h,得到包含多孔层和致密层的结构;(b) sintering the green body in air at 1000-1400° C. for 0.5-30 h to obtain a structure comprising a porous layer and a dense layer;
(c)将步骤(b)得到的多孔层进行SnO2和/或Bi2O3改性。(c) modifying the porous layer obtained in step (b) with SnO 2 and/or Bi 2 O 3 .
优选地,施加压力的范围为100-140MPa。Preferably, the applied pressure is in the range of 100-140 MPa.
优选地,所述造孔剂选自淀粉、聚甲基丙烯酸甲酯粉末、球形石墨和聚苯乙烯粉末中的至少一种,造孔剂的平均粒径为2-50μm。在制备钠离子固体电解质的过程中,粒径较小的造孔剂形成了孔径较小的孔,进而利于增加了固体电解质与金属Na的接触面积,减少界面电阻。然而造孔剂的平均粒径太小,例如低于2μm,不利于制备具有连续孔洞和电解质骨架的多孔网络,熔化金属Na难以浸入孔洞。Preferably, the pore-forming agent is selected from at least one of starch, polymethyl methacrylate powder, spherical graphite and polystyrene powder, and the average particle size of the pore-forming agent is 2-50 μm. In the process of preparing sodium ion solid electrolyte, the pore-forming agent with smaller particle size forms pores with smaller pore size, which is beneficial to increase the contact area between the solid electrolyte and metal Na and reduce the interface resistance. However, the average particle size of the pore-forming agent is too small, for example, less than 2 μm, which is not conducive to the preparation of porous networks with continuous pores and electrolyte skeletons, and it is difficult for molten metal Na to penetrate into the pores.
优选地,电解质材料与造孔剂的质量比为1:(0.5-2),例如可以为1:1.5。Preferably, the mass ratio of the electrolyte material to the pore-forming agent is 1:(0.5-2), for example, it may be 1:1.5.
根据本发明所述钠离子固体电解质,为了改善金属Na与钠离子固体电解质的浸润性,增强界面结合,优选地,对所述多孔层进行改性,得到具有SnO2改性的亲钠多孔表面。优选地,通过将SnCl4水溶液与浓HCl的混合液滴加至多孔层,并干燥对多孔层进行改性。According to the sodium ion solid electrolyte of the present invention, in order to improve the wettability of metal Na and the sodium ion solid electrolyte and enhance the interface bonding, preferably, the porous layer is modified to obtain a natriophilic porous surface modified with SnO 2 . . Preferably, the porous layer is modified by dropwise adding a mixture of SnCl4 aqueous solution and concentrated HCl to the porous layer and drying.
根据本发明所述钠离子固体电解质,在步骤(c)中,对所述多孔层进行SnO2和/或Bi2O3改性,改性过程所需的SnO2和/或Bi2O3的量可以根据需要进行选择,只要能够实现多孔层具有亲钠多孔表面即可。According to the sodium ion solid electrolyte of the present invention, in step (c), the porous layer is modified with SnO 2 and/or Bi 2 O 3 , and SnO 2 and/or Bi 2 O 3 required for the modification process The amount can be selected as required, as long as the porous layer can have a natriophilic porous surface.
本发明所述钠离子固体电解质不仅保证了金属Na与钠离子固体电解质表面的紧密结合,而且极大地扩展了接触面积,大大降低了全固态钠电池中金属Na与电解质之间的界面电阻。The sodium ion solid electrolyte of the invention not only ensures the close bonding between the metal Na and the surface of the sodium ion solid electrolyte, but also greatly expands the contact area and greatly reduces the interface resistance between the metal Na and the electrolyte in the all-solid-state sodium battery.
本发明第五方面提供了本发明所述钠离子固体电解质在固体电池领域中的应用。The fifth aspect of the present invention provides the application of the sodium ion solid electrolyte of the present invention in the field of solid batteries.
本发明第六方面提供了一种钠离子固体电池,包括:A sixth aspect of the present invention provides a sodium ion solid state battery, comprising:
一体化金属Na负极;Integrated metal Na negative electrode;
正极电极;positive electrode;
其中,所述一体化金属Na负极通过钠离子固体电解质与金属Na整合得到,所述钠离子固体电解质为本发明第三方面所述的钠离子固体电解质,所述金属Na位于钠离子固体电解质所包括的多孔层的孔中。Wherein, the integrated metal Na negative electrode is obtained by integrating sodium ion solid electrolyte and metal Na, the sodium ion solid electrolyte is the sodium ion solid electrolyte described in the third aspect of the present invention, and the metal Na is located in the place where the sodium ion solid electrolyte is located. Included in the pores of the porous layer.
根据本发明所述钠离子固体电池,所述正极电极包含正极材料,所述正极材料可以根据现有技术来选择,优选地,所述正极材料选自Na3V2(PO4)3/C、NaMnO2、NaFePO4、Na2/ 3Ni1/3Mn1/3Ti1/3O2和Na3V2(PO4)2F3和Na3V2(PO4)2O2F中的至少一种。According to the sodium ion solid state battery of the present invention, the positive electrode comprises a positive electrode material, and the positive electrode material can be selected according to the prior art, preferably, the positive electrode material is selected from Na 3 V 2 (PO 4 ) 3 /C , NaMnO 2 , NaFePO 4 , Na 2/ 3 Ni 1/3 Mn 1/3 Ti 1/3 O 2 and Na 3 V 2 (PO 4 ) 2 F 3 and Na 3 V 2 (PO 4 ) 2 O 2 F at least one of them.
在一种实施方式中,所述正极电极为正极电极片。In one embodiment, the positive electrode is a positive electrode sheet.
本发明第七方面提供了上述钠离子固体电池的制备方法,包括:The seventh aspect of the present invention provides the preparation method of the above-mentioned sodium ion solid state battery, comprising:
(1)将金属Na放置在钠离子固体电解质所包括的多孔层的表面并进行加热,以使金属Na熔化而渗透进入多孔层中,形成所述一体化金属Na负极;(1) metal Na is placed on the surface of the porous layer included in the sodium ion solid electrolyte and heated, so that the metal Na is melted and penetrated into the porous layer to form the integrated metal Na negative electrode;
(2)将一体化金属Na负极与正极电极进行组装。(2) Assembling the integrated metal Na negative electrode and the positive electrode.
优选地,在步骤(1)中,加热至100-300℃以熔化金属Na,熔化过程在惰性气氛中进行。Preferably, in step (1), heating to 100-300° C. to melt Na metal, and the melting process is carried out in an inert atmosphere.
本发明所述电解质材料具有较高的离子电导率,例如可以达到1.67×10-3S cm-1。本发明所述钠离子固体电解质可以有效地降低钠离子固体电解质与金属Na负极之间的界面电阻。由本发明所述钠离子固体电解质形成的一体式固体电池具有较高的比容量和优异的循环性能。The electrolyte material of the present invention has high ionic conductivity, for example, can reach 1.67×10 -3 S cm -1 . The sodium ion solid electrolyte of the present invention can effectively reduce the interface resistance between the sodium ion solid electrolyte and the metal Na negative electrode. The integrated solid battery formed by the sodium ion solid electrolyte of the present invention has high specific capacity and excellent cycle performance.
以下将通过制备例、实施例对本发明进行详细描述。The present invention will be described in detail below through preparation examples and examples.
制备例和对比制备例用于说明电解质材料。Preparation Examples and Comparative Preparation Examples are used to illustrate electrolyte materials.
制备例1Preparation Example 1
此实施例为了说明本发明所述电解质材料的制备。This example is intended to illustrate the preparation of the electrolyte material of the present invention.
CH3COONa、ZrO(NO3)2、Ca(NO3)2·4H2O、正硅酸乙酯、NH4H2PO4和柠檬酸以摩尔比(3+2x):(2-x):x:2:1:8(x=0.1)溶解在250mL乙醇和250mL去离子水的混合溶液中,充分搅拌12h。将该溶液边搅拌边加热到80℃,直到完全蒸发去除去离子水和酒精,形成凝胶。该凝胶在120℃烘干12h后,充分研磨,之后在马弗炉中600℃煅烧6h,再升温到950℃煅烧12h,得到Na3+2xZr2-xCaxSi2PO12样品粉末A1(x=0.1)。CH 3 COONa, ZrO(NO 3 ) 2 , Ca(NO 3 ) 2 ·4H 2 O, ethyl orthosilicate, NH 4 H 2 PO 4 and citric acid in molar ratio (3+2x): (2-x ): x: 2: 1: 8 (x=0.1) was dissolved in a mixed solution of 250 mL of ethanol and 250 mL of deionized water, and fully stirred for 12 h. The solution was heated to 80°C with stirring until the deionized water and alcohol were completely evaporated and a gel formed. The gel was dried at 120°C for 12h, fully ground, then calcined at 600°C for 6h in a muffle furnace, and then heated to 950°C for 12h to obtain Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder A1 (x=0.1).
制备例2Preparation Example 2
此实施例为了说明本发明所述电解质材料的制备。This example is intended to illustrate the preparation of the electrolyte material of the present invention.
CH3COONa、ZrO(NO3)2、Ca(NO3)2·4H2O、正硅酸乙酯、NH4H2PO4和柠檬酸以摩尔比(3+2x):(2-x):x:2:1:6(x=0.05)溶解在250mL乙醇和250mL去离子水的混合溶液中,充分搅拌6h。将该溶液边搅拌边加热到90℃,直到完全蒸发去除去离子水和酒精,形成凝胶。该凝胶在100℃烘干16h后,充分研磨,之后在马弗炉中550℃煅烧7h,再升温到1000℃煅烧16h,得到Na3+2xZr2-xCaxSi2PO12样品粉末A2(x=0.05)。CH 3 COONa, ZrO(NO 3 ) 2 , Ca(NO 3 ) 2 ·4H 2 O, ethyl orthosilicate, NH 4 H 2 PO 4 and citric acid in molar ratio (3+2x): (2-x ): x: 2: 1: 6 (x=0.05) was dissolved in a mixed solution of 250 mL of ethanol and 250 mL of deionized water, and fully stirred for 6 h. The solution was heated to 90°C with stirring until the deionized water and alcohol were completely evaporated and a gel formed. The gel was dried at 100 °C for 16 h, fully ground, then calcined in a muffle furnace at 550 °C for 7 h, and then heated to 1000 °C for 16 h to obtain Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder A2(x=0.05).
制备例3Preparation Example 3
此实施例为了说明本发明所述电解质材料的制备。This example is intended to illustrate the preparation of the electrolyte material of the present invention.
CH3COONa、ZrO(NO3)2、Ca(NO3)2·4H2O、正硅酸乙酯、NH4H2PO4和柠檬酸以摩尔比(3+2x):(2-x):x:2:1:10(x=0.25)溶解在250mL乙醇和250mL去离子水的混合溶液中,充分搅拌18h。将该溶液边搅拌边加热到60℃,直到完全蒸发去除去离子水和酒精,形成凝胶。该凝胶在150℃烘干8h后,充分研磨,之后在马弗炉中650℃煅烧4h,再升温到950℃煅烧16h,得到Na3+2xZr2-xCaxSi2PO12样品粉末A3(x=0.25)。CH 3 COONa, ZrO(NO 3 ) 2 , Ca(NO 3 ) 2 ·4H 2 O, ethyl orthosilicate, NH 4 H 2 PO 4 and citric acid in molar ratio (3+2x): (2-x ): x: 2: 1: 10 (x=0.25) was dissolved in a mixed solution of 250 mL of ethanol and 250 mL of deionized water, and fully stirred for 18 h. The solution was heated to 60°C with stirring until the deionized water and alcohol were completely evaporated and a gel formed. The gel was dried at 150°C for 8h, fully ground, then calcined at 650°C for 4h in a muffle furnace, and then heated to 950°C for 16h to obtain Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder A3 (x=0.25).
制备例4、5Preparation Examples 4 and 5
参照制备例1所述方法制备本发明所述电解质材料,不同的是,使用CH3COONa、ZrO(NO3)2、Ca(NO3)2·4H2O、正硅酸乙酯、NH4H2PO4和柠檬酸的摩尔比为(3+2x):(2-x):x:2:1:8(x=0.15、0.2),最终分别得到Na3+2xZr2-xCaxSi2PO12样品粉末A4(x=0.15)、A5(x=0.2)。The electrolyte material of the present invention was prepared by referring to the method described in Preparation Example 1, except that CH 3 COONa, ZrO(NO 3 ) 2 , Ca(NO 3 ) 2 ·4H 2 O, ethyl orthosilicate, NH 4 were used The molar ratio of H 2 PO 4 and citric acid is (3+2x): (2-x): x: 2: 1: 8 (x=0.15, 0.2), and finally Na 3+2x Zr 2-x Ca are obtained respectively x Si 2 PO 12 sample powders A4 (x=0.15), A5 (x=0.2).
制备例6Preparation Example 6
NaNO3、ZrCl3、氢氧化钙、硅酸、磷酸和柠檬酸以摩尔比(3+2x):(2-x):x:2:1:10(x=0.3)溶解在250mL甲醇和250mL去离子水的混合溶液中,充分搅拌20h。将该溶液边搅拌边加热到50℃,直到完全蒸发去除去离子水和酒精,形成凝胶。该凝胶在150℃烘干8h后,充分研磨,之后在马弗炉中700℃煅烧2h,再升温到1000℃煅烧8h,得到Na3+2xZr2-xCaxSi2PO12样品粉末A6(x=0.3)。NaNO 3 , ZrCl 3 , calcium hydroxide, silicic acid, phosphoric acid and citric acid were dissolved in 250 mL methanol and 250 mL in molar ratio (3+2x):(2-x):x:2:1:10 (x=0.3) The mixed solution of deionized water was fully stirred for 20h. The solution was heated to 50°C with stirring until the deionized water and alcohol were completely evaporated and a gel formed. The gel was dried at 150 °C for 8 hours, fully ground, then calcined at 700 °C for 2 hours in a muffle furnace, and then heated to 1000 °C for 8 hours to obtain Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder A6 (x=0.3).
对比制备例1Comparative Preparation Example 1
将Na2CO3、NH4H2PO4、ZrO4、SiO2、CaO进行球磨,并在流动氧气的气氛下、170-900℃保持4h,在1200℃下保持16h。最终得到Na3+2xZr2-xCaxSi2PO12样品粉末B1(x=0.1)。Na 2 CO 3 , NH 4 H 2 PO 4 , ZrO 4 , SiO 2 , and CaO were ball-milled, and kept at 170-900° C. for 4 hours and 1200° C. for 16 hours in an atmosphere of flowing oxygen. Finally, Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder B1 (x=0.1) was obtained.
对比制备例2Comparative Preparation Example 2
参照制备例1所述方法制备电解质材料,不同的是CH3COONa、ZrO(NO3)2、Ca(NO3)2·4H2O、正硅酸乙酯、NH4H2PO4和柠檬酸的摩尔比(3+2x):(2-x):x:2:1:8(x=0.4),其余与制备例1相同,最终得到Na3+2xZr2-xCaxSi2PO12样品粉末B2(x=0.4)。Electrolyte materials were prepared according to the method described in Preparation Example 1, except that CH 3 COONa, ZrO(NO 3 ) 2 , Ca(NO 3 ) 2 ·4H 2 O, ethyl orthosilicate, NH 4 H 2 PO 4 and lemon The molar ratio of acid (3+2x): (2-x): x: 2: 1: 8 (x=0.4), the rest is the same as in Preparation Example 1, and finally Na 3+2x Zr 2-x Ca x Si 2 is obtained PO 12 sample powder B2 (x=0.4).
对比制备例3、4Comparative Preparation Examples 3 and 4
参照制备例1所述方法制备电解质材料,不同的是CH3COONa、ZrO(NO3)2、Ca(NO3)2·4H2O、正硅酸乙酯、NH4H2PO4和柠檬酸的摩尔比(3+2x):(2-x):x:2:1:8(x=0.04、0),其余与制备例1相同,最终得到Na3+2xZr2-xCaxSi2PO12样品粉末B3(x=0.04)、B4(x=0)。Electrolyte materials were prepared according to the method described in Preparation Example 1, except that CH 3 COONa, ZrO(NO 3 ) 2 , Ca(NO 3 ) 2 ·4H 2 O, ethyl orthosilicate, NH 4 H 2 PO 4 and lemon The molar ratio of acid (3+2x): (2-x): x: 2: 1: 8 (x=0.04, 0), the rest is the same as in Preparation Example 1, and finally Na 3+2x Zr 2-x Ca x is obtained Si 2 PO 12 sample powders B3 (x=0.04), B4 (x=0).
实施例1-9、对比例1-4用于说明钠离子固体电解质Examples 1-9 and comparative examples 1-4 are used to illustrate the sodium ion solid electrolyte
实施例1Example 1
将制备例1中制备的Na3+2xZr2-xCaxSi2PO12样品粉末A1(x=0.1)与淀粉(淀粉颗粒的平均粒径为10μm)按照质量比1:1.5在研钵中研磨混合均匀。把0.025g该混合粉末和0.1g纯Na3+2xZr2-xCaxSi2PO12样品粉末依次均匀地置于在不锈钢柱状模具中,分别形成两层。然后对模具中的两层样品粉末施加120MPa压力,得到坯体。再在1230℃下空气中烧结5h,得到两层类似“三明治”结构的固体电解质,其中致密层的厚度为240μm,多孔层的厚度为80μm。配置50mL 0.5M SnCl4水溶液,并加入10mL浓HCl,防止水解。滴加该溶液至多孔层,烘干后,在500℃空气中处理1h,得到多孔层经SnO2改性的钠离子固体电解质S1(多孔层具有亲钠多孔表面),多孔层孔隙率为60%,平均孔径为10μm。The Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder A1 (x=0.1) prepared in Preparation Example 1 and starch (the average particle size of starch granules is 10 μm) were mixed in a mortar at a mass ratio of 1:1.5. Grind and mix well. 0.025 g of the mixed powder and 0.1 g of pure Na 3 + 2x Zr 2-x Ca x Si 2 PO 12 sample powder were sequentially and uniformly placed in a stainless steel cylindrical mold to form two layers respectively. Then a pressure of 120 MPa was applied to the two layers of sample powder in the mold to obtain a green body. After sintering at 1230 °C for 5 h in air, two layers of solid electrolytes with a similar "sandwich" structure were obtained, in which the thickness of the dense layer was 240 μm and the thickness of the porous layer was 80 μm. Prepare 50 mL of 0.5M SnCl 4 aqueous solution, and add 10 mL of concentrated HCl to prevent hydrolysis. The solution was added dropwise to the porous layer, dried, and then treated in air at 500 °C for 1 h to obtain a sodium-ion solid electrolyte S1 (the porous layer has a natriophilic porous surface) whose porous layer was modified by SnO 2 . The porous layer has a porosity of 60 %, the average pore size is 10 μm.
实施例2Example 2
将制备例3中制备的Na3+2xZr2-xCaxSi2PO12样品粉末A3(x=0.25)与淀粉(淀粉颗粒的平均粒径为5μm)按照质量比1:1在研钵中研磨混合均匀。把0.015g该混合粉末和0.08g纯Na3+2xZr2-xCaxSi2PO12样品粉末依次均匀地分散在不锈钢柱状模具中,分别形成两层。然后对模具中的两层样品粉末施加120MPa压力,得到坯体。再在1200℃下空气中烧结2h,得到两层类似“三明治”结构的固体电解质,其中致密层的厚度为200μm,多孔层的厚度为50μm。配置50mL 0.5M SnCl4水溶液,并加入10mL浓HCl,防止水解。滴加该溶液至多孔层,烘干后,在500℃空气中处理1h,得到多孔层表面经SnO2改性的钠离子固体电解质S2(多孔层具有亲钠多孔表面),多孔层孔隙率为50%,平均孔径为5μm。The Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder A3 (x=0.25) prepared in Preparation Example 3 and starch (average particle size of starch granules 5 μm) were mixed in a mortar at a mass ratio of 1:1. Grind and mix well. 0.015 g of the mixed powder and 0.08 g of pure Na 3 + 2x Zr 2-x Ca x Si 2 PO 12 sample powder were uniformly dispersed in a stainless steel cylindrical mold in turn to form two layers respectively. Then a pressure of 120 MPa was applied to the two layers of sample powder in the mold to obtain a green body. After sintering at 1200 °C for 2 h in air, two layers of solid electrolytes similar to "sandwich" structures were obtained, in which the thickness of the dense layer was 200 μm and the thickness of the porous layer was 50 μm. Prepare 50 mL of 0.5M SnCl 4 aqueous solution, and add 10 mL of concentrated HCl to prevent hydrolysis. The solution was added dropwise to the porous layer, dried, and then treated in air at 500 °C for 1 h to obtain a sodium-ion solid electrolyte S2 modified by SnO 2 on the surface of the porous layer (the porous layer has a natriophilic porous surface). The porosity of the porous layer is 50%, and the average pore size is 5 μm.
实施例3Example 3
将制备例5中制备的Na3+2xZr2-xCaxSi2PO12样品粉末A5(x=0.2)与球形石墨(球形石墨颗粒的平均粒径为50μm)按照质量比1:0.8在研钵中研磨混合均匀。把0.05g该混合粉末和0.2g纯Na3+2xZr2-xCaxSi2PO12样品粉末依次均匀地分散在不锈钢柱状模具中,分别形成两层。然后对模具中的两层样品粉末施加120MPa压力,得到坯体。再在1150℃下空气中烧结10h,得到两层类似“三明治”结构的固体电解质,其中致密层的厚度为300μm,多孔层的厚度为100μm。配置50mL 0.5M SnCl4水溶液,并加入10mL浓HCl,防止水解。滴加该溶液至多孔层,烘干后,在500℃空气中处理1h,得到多孔层表面经SnO2改性的钠离子固体电解质S3(多孔层具有亲钠多孔表面),多孔层孔隙率为40%,平均孔径为50μm。The Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder A5 (x=0.2) prepared in Preparation Example 5 and spherical graphite (the average particle size of the spherical graphite particles is 50 μm) were prepared in a mass ratio of 1:0.8. Grind in a mortar and mix well. 0.05 g of the mixed powder and 0.2 g of pure Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder were uniformly dispersed in a stainless steel cylindrical mold in turn to form two layers respectively. Then a pressure of 120 MPa was applied to the two layers of sample powder in the mold to obtain a green body. After sintering in air at 1150 °C for 10 h, two layers of solid electrolytes similar to "sandwich" structures were obtained, in which the thickness of the dense layer was 300 μm and the thickness of the porous layer was 100 μm. Prepare 50 mL of 0.5M SnCl 4 aqueous solution, and add 10 mL of concentrated HCl to prevent hydrolysis. The solution was added dropwise to the porous layer, dried, and treated in air at 500 °C for 1 h to obtain a sodium-ion solid electrolyte S3 (the porous layer has a natriophilic porous surface) whose surface was modified by SnO 2 . 40%, and the average pore size is 50 μm.
实施例4Example 4
按照实施例1所述方法制备钠离子固体电解质,不同的是,Na3+2xZr2-xCaxSi2PO12样品粉末与淀粉的质量比为1:6,其余与实施例1相同,最终制得钠离子固体电解质S4,多孔层孔隙率为80%,平均孔径为10μm。The sodium ion solid electrolyte was prepared according to the method described in Example 1, except that the mass ratio of Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder to starch was 1:6, and the rest were the same as in Example 1, Finally, the sodium ion solid electrolyte S4 was obtained, the porosity of the porous layer was 80%, and the average pore diameter was 10 μm.
实施例5Example 5
按照实施例1所述方法制备钠离子固体电解质,不同的是,使用的电解质材料为样品粉末A2(x=0.05),其余与实施例1相同,最终制得钠离子固体电解质S5。The sodium ion solid electrolyte was prepared according to the method described in Example 1, except that the electrolyte material used was the sample powder A2 (x=0.05).
实施例6Example 6
按照实施例1所述方法制备钠离子固体电解质,不同的是,Na3+2xZr2-xCaxSi2PO12样品粉末与淀粉的质量比为1:0.5,其余与实施例1相同,最终制得钠离子固体电解质S6,多孔层孔隙率为20%,平均孔径为10μm。The sodium ion solid electrolyte was prepared according to the method described in Example 1, except that the mass ratio of Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder to starch was 1:0.5, and the rest were the same as in Example 1, Finally, the sodium ion solid electrolyte S6 was obtained, the porosity of the porous layer was 20%, and the average pore diameter was 10 μm.
实施例7Example 7
按照实施例1所述方法制备钠离子固体电解质,不同的是,所使用的淀粉的平均粒径为80μm,其余与实施例1相同,最终制得钠离子固体电解质S7,多孔层孔隙率为30%,平均孔径为80μm。The sodium ion solid electrolyte was prepared according to the method described in Example 1. The difference was that the average particle size of the starch used was 80 μm. %, the average pore size is 80 μm.
实施例8Example 8
按照实施例1所述方法制备钠离子固体电解质,不同的是,调整混合物Ⅰ和混合物Ⅱ的质量,使得到的类似“三明治”结构的钠离子固体电解质S8,其中致密层的厚度为500μm,多孔层的厚度为500μm。The sodium ion solid electrolyte was prepared according to the method described in Example 1, except that the quality of mixture I and mixture II was adjusted, so that the obtained sodium ion solid electrolyte S8 similar to the "sandwich" structure, in which the thickness of the dense layer was 500 μm, porous The thickness of the layers is 500 μm.
实施例9Example 9
按照实施例1所述方法制备钠离子固体电解质,不同的是,配置50mL0.5M Bi(NO3)3水溶液,并加入10mL浓HNO3,防止水解。滴加该溶液至多孔层,烘干后,在500℃空气中处理1h,使得多孔层具有Bi2O3改性的亲钠多孔表面,计为钠离子固体电解质S9。The sodium ion solid electrolyte was prepared according to the method described in Example 1, except that 50 mL of 0.5M Bi(NO 3 ) 3 aqueous solution was prepared, and 10 mL of concentrated HNO 3 was added to prevent hydrolysis. The solution was added dropwise to the porous layer, dried, and treated in air at 500°C for 1 h, so that the porous layer had a Na-philic porous surface modified by Bi 2 O 3 , which was designated as sodium ion solid electrolyte S9.
对比例1Comparative Example 1
将制备例1制备的Na3+2xZr2-xCaxSi2PO12粉末A1(x=0.1)通过干压成型,在120MPa压力下压成片状,在1230℃下烧结5h,使用砂纸打磨至厚度为300μm,得到钠离子固体电解质片D1。The Na 3+2x Zr 2-x Ca x Si 2 PO 12 powder A1 (x=0.1) prepared in Preparation Example 1 was formed by dry pressing, pressed into a sheet under a pressure of 120MPa, sintered at 1230°C for 5h, and sandpaper was used. It was polished to a thickness of 300 μm to obtain a sodium ion solid electrolyte sheet D1.
对比例2Comparative Example 2
将制备例1中制备的Na3+2xZr2-xCaxSi2PO12样品粉末A1(x=0.1),通过干压成型,在120MPa压力下压成片状,在1230℃下烧结5h,得到固体电解质片,使用砂纸打磨至厚度为300μm。配置50mL 0.5M SnCl4水溶液,并加入10mL的浓HCl,防止水解。滴加该溶液至固体电解质表面,烘干后,在500℃空气中处理1h,得到表面经SnO2改性的钠离子固体电解质D2。The Na 3+2x Zr 2-x Ca x Si 2 PO 12 sample powder A1 (x=0.1) prepared in Preparation Example 1 was formed by dry pressing, pressed into a sheet under a pressure of 120MPa, and sintered at 1230°C for 5h , to obtain a solid electrolyte sheet, which was polished with sandpaper to a thickness of 300 μm. Prepare 50 mL of 0.5M SnCl 4 aqueous solution, and add 10 mL of concentrated HCl to prevent hydrolysis. The solution was added dropwise to the surface of the solid electrolyte, dried, and treated in air at 500 °C for 1 h to obtain the sodium ion solid electrolyte D2 whose surface was modified by SnO 2 .
对比例3Comparative Example 3
按照实施例1所述方法制备钠离子固体电解质,不同的是,使用的电解质材料为对比制备例1所得的样品粉末B1,其余与实施例1相同,最终制得钠离子固体电解质D3。The sodium ion solid electrolyte was prepared according to the method described in Example 1, except that the electrolyte material used was the sample powder B1 obtained in Comparative Preparation Example 1, and the rest were the same as in Example 1, and finally the sodium ion solid electrolyte D3 was obtained.
对比例4Comparative Example 4
按照实施例1所述方法制备钠离子固体电解质,不同的是,不进行多孔层表面SnO2改性,最终得到钠离子固体电解质D4。The sodium ion solid electrolyte was prepared according to the method described in Example 1, except that the SnO 2 modification on the surface of the porous layer was not carried out, and finally the sodium ion solid electrolyte D4 was obtained.
实施例10Example 10
此实施例用于说明由钠离子固体电解质形成的对称电池(用于检测本发明所述钠离子固体电解质)。This example is used to illustrate a symmetrical cell formed from a sodium ion solid electrolyte (for testing the sodium ion solid electrolyte of the present invention).
分别按照实施例1-9、对比例3各自提供的方法,使用各自的混合粉末(相同的用量),在致密层的两侧各形成一层多孔层,制备三层“三明治结构”(多孔层/致密层/多孔层)的固体电解质,之后按照各自所述的方法进行亲钠改性,并向各个多孔层中灌入钠,例如图8所示的制备过程。之后使用2032纽扣电池壳在Ar气气氛手套箱中进行组装成对称电池,分别记为对称电池E1-E9、DE3。According to the methods provided in Examples 1-9 and Comparative Example 3, respectively, using the respective mixed powders (the same amount), a porous layer was formed on each side of the dense layer to prepare a three-layer "sandwich structure" (porous layer). /dense layer/porous layer), and then perform sodium-philic modification according to the method described in each, and pour sodium into each porous layer, such as the preparation process shown in FIG. 8 . Afterwards, 2032 button battery shells were used to assemble symmetrical batteries in an Ar gas atmosphere glove box, which were denoted as symmetrical batteries E1-E9 and DE3, respectively.
按照对比例1所述方法制备平板固体电解质,将金属Na压在固体电解质表面。使用2032纽扣电池壳在Ar气气氛手套箱中组装成对称电池,记为DE1。A flat-plate solid electrolyte was prepared according to the method described in Comparative Example 1, and Na metal was pressed on the surface of the solid electrolyte. Symmetrical cells were assembled in an Ar gas atmosphere glove box using a 2032 coin cell case, denoted as DE1.
按照对比例2所述方法制备SnO2改性的平板固体电解质,将金属Na放置在固体电解质表面,加热到250℃熔融金属Na,冷却后与平板固体电解质结合,使用2032纽扣电池壳在Ar气气氛手套箱中组装成对称电池,记为DE2。The SnO 2 modified flat solid electrolyte was prepared according to the method described in Comparative Example 2. Metal Na was placed on the surface of the solid electrolyte, heated to 250 ° C to melt the metallic Na, and then combined with the flat solid electrolyte after cooling, using a 2032 button battery shell in Ar gas Symmetric cells were assembled in the atmosphere glove box, denoted as DE2.
按照对比例4所述方法制备不进行SnO2改性的三层“三明治结构”的钠离子固体电解质。将金属Na放置在钠离子固体电解质表面,加热到250℃熔融金属Na,但是钠无法全部进入多孔结构中,使用2032纽扣电池壳在Ar气气氛手套箱中组装成对称电池,记为DE4。According to the method described in Comparative Example 4, a three-layer "sandwich structure" sodium ion solid electrolyte without SnO modification was prepared. The metallic Na was placed on the surface of the sodium ion solid electrolyte and heated to 250 °C to melt the metallic Na, but the Na could not all enter the porous structure. A 2032 button battery case was used to assemble a symmetrical battery in an Ar gas atmosphere glove box, denoted as DE4.
实施例11Example 11
此实施例用于说明由固体电解质组装成的全电池。This example is used to illustrate a full cell assembled from a solid electrolyte.
将实施例1-9、对比例1-4制得的固体电解质,按照以下方法组装成全电池:The solid electrolytes prepared in Examples 1-9 and Comparative Examples 1-4 were assembled into a full battery according to the following method:
一体化金属Na负极制备方法:将金属Na放置在固体电解质多孔层的表面,加热到250℃,利用毛细作用,熔化的金属Na自动渗透进入多孔层中,与多孔电解质整合,形成一体化金属Na负极。The preparation method of the integrated metal Na anode: the metal Na is placed on the surface of the solid electrolyte porous layer, heated to 250 ° C, and the molten metal Na automatically penetrates into the porous layer by capillary action, and integrates with the porous electrolyte to form an integrated metal Na negative electrode.
Na3V2(PO4)3/C正极材料制备:将NaH2PO4,NH4VO3和柠檬酸按照摩尔比3:2:2溶解在去离子水中,充分搅拌2h。加热该溶液至70℃,直至水分蒸发完全,形成凝胶。将该凝胶在120℃下烘干12h,充分研磨得到粉末状前驱体。再在800℃下Ar气气氛中焙烧8h得到Na3V2(PO4)3/C正极材料。Preparation of Na 3 V 2 (PO 4 ) 3 /C cathode material: NaH 2 PO 4 , NH 4 VO 3 and citric acid were dissolved in deionized water in a molar ratio of 3:2:2, and stirred thoroughly for 2 h. The solution was heated to 70°C until the water evaporated completely and a gel formed. The gel was dried at 120 °C for 12 h, and fully ground to obtain a powdery precursor. Then calcined at 800℃ for 8h in Ar gas atmosphere to obtain Na 3 V 2 (PO 4 ) 3 /C cathode material.
正极电极片制备:将Na3V2(PO4)3/C、SP导电炭黑(Alfar,99.9%)、丁二腈(Aladdin,99%)、聚氧化乙烯(Aladdin,Mw 100000)和高氯酸钠(Aladdin,99%)按照质量比6:1:1.5:0.5:1加入到乙腈中,充分搅拌得到均匀浆料,并涂布到铝箔上。再在50℃下真空干燥24h,得到正极电极片。Preparation of positive electrode sheet: Na 3 V 2 (PO 4 ) 3 /C, SP conductive carbon black (Alfar, 99.9%), succinonitrile (Aladdin, 99%), polyethylene oxide (Aladdin, Mw 100000) and high Sodium chlorate (Aladdin, 99%) was added to acetonitrile according to a mass ratio of 6:1:1.5:0.5:1, stirred well to obtain a uniform slurry, and coated on aluminum foil. Then vacuum-dried at 50° C. for 24 h to obtain a positive electrode sheet.
全电池组装:将PEO(0.05g)、SCN(0.15g)和NaClO4(0.1g)溶解在5mL乙腈中,并充分搅拌12h得到聚合物电解质溶液。在正极电极片表面滴加4μL聚合物电解质溶液,并真空干燥4h,以减小界面电阻。将该正极电极片贴合在致密层一侧,使用2032纽扣电池壳在Ar气气氛手套箱中组装,其中,正极电极片与固体电解质致密层接触,最终形成全电池C1-C9、DC1-DC4,全电池的结构如图11所示。Full cell assembly: PEO (0.05 g), SCN (0.15 g) and NaClO 4 (0.1 g) were dissolved in 5 mL of acetonitrile and fully stirred for 12 h to obtain a polymer electrolyte solution. 4 μL of polymer electrolyte solution was dropped on the surface of the positive electrode sheet and dried in vacuum for 4 h to reduce the interface resistance. The positive electrode sheet was attached to one side of the dense layer, and assembled in an Ar gas atmosphere glove box using a 2032 button battery case, wherein the positive electrode sheet was in contact with the solid electrolyte dense layer, and finally the full cells C1-C9, DC1-DC4 were formed , the structure of the full cell is shown in Figure 11.
测试例test case
1、电解质材料的结构表征1. Structural characterization of electrolyte materials
通过X射线衍射表征电解质材料A1-A6的结构,结果如图1所示。样品x=0、0.05、0.1、0.15、0.2通过比对XRD图谱,发现都为单斜结构,无其他杂质(包括ZrO2)。The structures of the electrolyte materials A1-A6 were characterized by X-ray diffraction, and the results are shown in Figure 1. By comparing the XRD patterns of samples x=0, 0.05, 0.1, 0.15, and 0.2, it is found that they are all monoclinic structures without other impurities (including ZrO 2 ).
2、离子电导率的测试2. Test of ionic conductivity
通过交流阻抗法测试电解质材料A1-A6、B1-B3的离子电导率。具体地,通过以下方法测试电解质材料的离子电导率:The ionic conductivity of the electrolyte materials A1-A6 and B1-B3 was tested by the AC impedance method. Specifically, the ionic conductivity of the electrolyte material was tested by the following methods:
通过干压成型,将电解质材料粉末样品压制成片状,在1250℃下烧结5h得到致密电解质片(各种电解质材料的尺寸相同)。将该致密电解质片作为阻塞电极,在1MHz-1Hz频率范围内,偏压10mV下测试得到交流阻抗谱。通过拟合得到固体电解质欧姆阻抗R,按照以下公式计算得到离子电导率。Through dry pressing, the electrolyte material powder samples were pressed into sheets, and sintered at 1250 °C for 5 h to obtain dense electrolyte sheets (the sizes of various electrolyte materials were the same). The dense electrolyte sheet was used as the blocking electrode, and the AC impedance spectrum was obtained by testing under the bias voltage of 10mV in the frequency range of 1MHz-1Hz. The ohmic impedance R of the solid electrolyte is obtained by fitting, and the ionic conductivity is calculated according to the following formula.
σ=L/(S×R),σ=L/(S×R),
其中σ为电导率,S为电解质横截面积,L为电解质厚度。where σ is the conductivity, S is the electrolyte cross-sectional area, and L is the electrolyte thickness.
测试结果如图2和表1所示。The test results are shown in Figure 2 and Table 1.
表1Table 1
3、电解质材料电化学稳定性3. Electrochemical stability of electrolyte materials
以金属Na为参比电极,以不锈钢片为对电极,使用x=0.1电解质材料制备平板式电解质片,组装不锈钢片|电解质|金属Na电池,利用循环伏安法,在-1V至7V范围内,扫描速度为5mV/s,测试电解质材料的电化学稳定窗口,测试结果如图3所示。Using metallic Na as the reference electrode and stainless steel sheet as the counter electrode, using x=0.1 electrolyte material to prepare a flat-plate electrolyte sheet, assembling a stainless steel sheet|electrolyte|metal Na battery, using cyclic voltammetry, in the range of -1V to 7V , the scanning speed is 5mV/s, and the electrochemical stability window of the electrolyte material is tested. The test results are shown in Figure 3.
4、对称电池性能测试4. Symmetrical battery performance test
按照实施例10所述方法(例如对应于实施例1)制备的三层“三明治结构”的对称电池在电池测试仪(LAND CT2001A)上进行恒流充放电测试,测试结果如图4所示。使用交流阻抗仪测试不同循环次数后对称电池阻抗变化如图5所示。类似地,对应于实施例2-9、对比例1-4的三层“三明治结构”的对称电池进行恒流充放电测试和交流阻抗测试,测试结果如表2所示。The three-layer "sandwich structure" symmetrical battery prepared according to the method described in Example 10 (for example, corresponding to Example 1) was subjected to a constant current charge-discharge test on a battery tester (LAND CT2001A). The test results are shown in Figure 4 . Figure 5 shows the impedance changes of the symmetrical battery after different cycles were tested with an AC impedance meter. Similarly, the three-layer "sandwich structure" symmetrical batteries corresponding to Examples 2-9 and Comparative Examples 1-4 were subjected to constant current charge-discharge test and AC impedance test, and the test results are shown in Table 2.
表2Table 2
表2中“-”表示界面阻抗大,导致电池无法循环或无法实现300次循环,因而不能测得相应数据。"-" in Table 2 indicates that the interface impedance is too large, so that the battery cannot be cycled or 300 cycles cannot be achieved, so the corresponding data cannot be measured.
5、全电池性能测试5. Full battery performance test
将实施例11形成的全电池C1在电池测试仪(LAND CT2001A)上进行恒流充放电测试,测试结果如图6所示。使用交流阻抗仪测试不同循环次数后全电池阻抗变化如图7所示。类似地,将实施例11形成的全电池C2-C9、DC1-DC4进行恒流充放电测试和交流阻抗测试,测试结果如表3所述。The full battery C1 formed in Example 11 was subjected to a constant current charge-discharge test on a battery tester (LAND CT2001A), and the test results are shown in FIG. 6 . Figure 7 shows the impedance change of the full battery after different cycles were tested with an AC impedance meter. Similarly, the full cells C2-C9 and DC1-DC4 formed in Example 11 were subjected to constant current charge-discharge test and AC impedance test, and the test results are shown in Table 3.
表3table 3
表3中“-”表示界面阻抗大,导致电池无法循环或无法实现300次循环,因而不能测得相应数据。"-" in Table 3 indicates that the interface impedance is too large, so that the battery cannot be cycled or 300 cycles cannot be achieved, so the corresponding data cannot be measured.
通过图2、图3的结果可以看出,本发明所述电解质材料具有较高的离子电导率,并且在较宽的电压范围内(如0-7V)保持电化学稳定。It can be seen from the results in Fig. 2 and Fig. 3 that the electrolyte material of the present invention has high ionic conductivity and is electrochemically stable in a wide voltage range (eg, 0-7V).
由本发明所述电解质材料形成的类似“三明治结构”的固体电解质有效地降低了负极金属Na与电解质之间的界面电阻。亲钠表面增强了金属Na与固体电解质的结合。多孔结构构建了三维离子传导网络,增大了金属Na与电解质的接触面积,降低了局域电流密度,并且多孔结构为金属Na沉积/剥离过程中产生的体积变化预留空间,避免了内应力破坏电池结构。对应于实施例1-9所述固体电解质的对称电池,基于x=0.05-0.25的Ca掺杂固体电解质,通过构建三维多孔结构,并且进行亲钠表面修饰,获得了较低的界面阻抗,数据如表2和图4、图5所示。特别地,实施例1所述固体电解质的对称电池,在0.1-0.3mA·cm-2电流密度下能够循环600h(如图4所示),并保持界面阻抗稳定在175Ω·cm-2(如图5所示)。对应于对比例1-4所述电解质的对称电池具有明显更大的界面阻抗,例如对应于对比例1所述电解质,没有三维多孔结构和亲钠表面改性,界面阻抗达到10000Ω·cm-2。对比例2中虽然进行了亲钠表面改性,但是没有三维多孔结构,界面阻抗仍然高达906Ω·cm-2。对比例4,虽然具有三维多孔结构,但是无亲钠表面改性,界面阻抗达9506Ω·cm-2。对比例3,由于制备方法得到电解质材料电导率较低,如表1所示,界面阻抗达709Ω·cm-2。The "sandwich structure"-like solid electrolyte formed by the electrolyte material of the present invention effectively reduces the interfacial resistance between the negative electrode metal Na and the electrolyte. The natriophilic surface enhances the binding of metallic Na to the solid electrolyte. The porous structure builds a three-dimensional ion conduction network, increases the contact area between metallic Na and electrolyte, reduces the local current density, and the porous structure reserves space for the volume change during the deposition/stripping of metallic Na, avoiding internal stress damage the battery structure. Corresponding to the symmetric battery of the solid electrolyte described in Examples 1-9, based on the Ca-doped solid electrolyte with x=0.05-0.25, by constructing a three-dimensional porous structure and carrying out sodium-philic surface modification, a lower interface impedance was obtained. Data As shown in Table 2 and Figures 4 and 5. In particular, the symmetric battery with the solid electrolyte described in Example 1 can be cycled for 600 h at a current density of 0.1-0.3 mA·cm -2 (as shown in Figure 4), and maintains a stable interfacial impedance of 175 Ω·cm -2 (as shown in Figure 4). shown in Figure 5). Symmetric cells corresponding to the electrolytes described in Comparative Examples 1-4 have significantly larger interfacial impedances, for example, corresponding to the electrolytes described in Comparative Example 1, without the three-dimensional porous structure and the natriophilic surface modification, the interfacial impedance reaches 10000 Ω·cm −2 . Although the natriophilic surface modification was carried out in Comparative Example 2, there was no three-dimensional porous structure, and the interface impedance was still as high as 906Ω·cm -2 . Comparative Example 4, although it has a three-dimensional porous structure, has no sodium-philic surface modification, and the interface impedance reaches 9506Ω·cm -2 . In Comparative Example 3, due to the low conductivity of the electrolyte material obtained by the preparation method, as shown in Table 1, the interface impedance reaches 709Ω·cm −2 .
由该种“三明治结构”的固体电解质组装形成的一体化固体电池具有较高的比容量和优异的循环性能,实现了全固态钠电池在室温下大电流密度下充放电的长期稳定运行,保证1C下500次循环(如图6所示)。该固态电池能够抑制了钠枝晶,实现应用金属Na负极,对提高全固态电池的安全性和能量密度具有极大的促进作用。相对于DC1,电解质不具备多孔结构和亲钠表面;DC2,电解质不具备多孔结构;DC3,电解质材料电导率较低,以及DC4,不具备亲钠改性表面,本发明所述电解质组装成的全电池如C1-C3、C5、C7-C9表现出优异的电池性能,例如较低的总阻抗、高的比容量、长的循环寿命。特别地,全电池C1,性能如图6和图7所示。图6中,将全电池C1在不断增加电流密度(从0.1C增加至4C)条件下进行循环,之后再返回1C,保持1C继续循环。在1C电流密度下能够循环500次以上,并且比容量保持在93.7mAh·g-1;在4C电流密度下,比容量仍可达到80.5mAh·g-1;充放电的库伦效率(在此,库伦效率=放电容量/充电容量)保持99.5%以上。如图7所示全电池的总阻抗约为400Ω·cm-2,循环300次、500次之后未有较大变化。The integrated solid-state battery assembled with the "sandwich structure" solid electrolyte has a high specific capacity and excellent cycle performance, and realizes the long-term stable operation of the all-solid-state sodium battery under high current density at room temperature. 500 cycles at 1C (as shown in Figure 6). The solid-state battery can suppress sodium dendrites and realize the application of metal Na anode, which greatly promotes the improvement of the safety and energy density of all-solid-state batteries. Compared with DC1, the electrolyte does not have a porous structure and a natriophilic surface; DC2, the electrolyte does not have a porous structure; DC3, the conductivity of the electrolyte material is low, and DC4, does not have a natriophilic modified surface. Batteries such as C1-C3, C5, C7-C9 exhibit excellent battery performance, such as lower overall impedance, high specific capacity, and long cycle life. In particular, the performance of the full cell C1 is shown in Figures 6 and 7. In Fig. 6, the full cell C1 was cycled under the condition of increasing current density (from 0.1C to 4C), and then returned to 1C, maintaining 1C to continue cycling. It can cycle more than 500 times at a current density of 1C, and the specific capacity remains at 93.7mAh·g -1 ; at a current density of 4C, the specific capacity can still reach 80.5mAh·g -1 ; the Coulombic efficiency of charge and discharge (here, Coulombic efficiency=discharge capacity/charge capacity) remains above 99.5%. As shown in Fig. 7, the total impedance of the full cell is about 400Ω·cm -2 , and there is no significant change after 300 cycles and 500 cycles.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。The preferred embodiments of the present invention have been described above in detail, however, the present invention is not limited thereto. Within the scope of the technical concept of the present invention, a variety of simple modifications can be made to the technical solutions of the present invention, including the combination of various technical features in any other suitable manner. These simple modifications and combinations should also be regarded as the content disclosed in the present invention. All belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910485840.4A CN111313087B (en) | 2019-06-05 | 2019-06-05 | Electrolyte materials, sodium ion solid electrolytes and their applications and sodium ion solid state batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910485840.4A CN111313087B (en) | 2019-06-05 | 2019-06-05 | Electrolyte materials, sodium ion solid electrolytes and their applications and sodium ion solid state batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111313087A true CN111313087A (en) | 2020-06-19 |
CN111313087B CN111313087B (en) | 2021-10-01 |
Family
ID=71148086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910485840.4A Active CN111313087B (en) | 2019-06-05 | 2019-06-05 | Electrolyte materials, sodium ion solid electrolytes and their applications and sodium ion solid state batteries |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111313087B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113113664A (en) * | 2021-03-09 | 2021-07-13 | 北京理工大学 | Modified NASICON type sodium ion ceramic electrolyte and preparation method and application thereof |
CN113277843A (en) * | 2021-05-24 | 2021-08-20 | 哈尔滨工业大学 | Method for improving ionic conductivity of sodium-based solid electrolyte |
CN114171787A (en) * | 2021-12-07 | 2022-03-11 | 四川大学 | A kind of Mg2+ doping modified Nascion type sodium ion solid electrolyte and preparation method thereof |
CN115215361A (en) * | 2021-03-29 | 2022-10-21 | 中国科学院物理研究所 | Inorganic glass state sodium ion solid electrolyte and preparation method thereof |
CN116710407A (en) * | 2023-03-24 | 2023-09-05 | 广东邦普循环科技有限公司 | A kind of modified sodium ion cathode material and its preparation method and application |
WO2024152721A1 (en) * | 2023-01-16 | 2024-07-25 | 宁德时代新能源科技股份有限公司 | Solid-state electrolyte, preparation method therefor, secondary battery, battery module, battery pack and electrical apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105355966A (en) * | 2015-11-16 | 2016-02-24 | 天津工业大学 | Preparation method of NASICON-type sodion solid electrolyte |
CN105742698A (en) * | 2014-12-12 | 2016-07-06 | 中国科学院物理研究所 | NASICON-type sodion solid electrolyte material and preparation method thereof |
CN107819149A (en) * | 2017-11-09 | 2018-03-20 | 天津工业大学 | A kind of method that growth in situ prepares all-solid sodium ion battery |
CN108550842A (en) * | 2018-05-18 | 2018-09-18 | 天津师范大学 | A kind of high specific surface area porous shape stannic oxide anode material of lithium-ion battery of two dimension and preparation method thereof |
-
2019
- 2019-06-05 CN CN201910485840.4A patent/CN111313087B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105742698A (en) * | 2014-12-12 | 2016-07-06 | 中国科学院物理研究所 | NASICON-type sodion solid electrolyte material and preparation method thereof |
CN105355966A (en) * | 2015-11-16 | 2016-02-24 | 天津工业大学 | Preparation method of NASICON-type sodion solid electrolyte |
CN107819149A (en) * | 2017-11-09 | 2018-03-20 | 天津工业大学 | A kind of method that growth in situ prepares all-solid sodium ion battery |
CN108550842A (en) * | 2018-05-18 | 2018-09-18 | 天津师范大学 | A kind of high specific surface area porous shape stannic oxide anode material of lithium-ion battery of two dimension and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
MOJTABA SAMIEE等: "Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases", 《JOURNAL OF POWER SOURCES》 * |
SHUFENG SONG等: "A Na+ Superionic Conductor for Room-Temperature Sodium Batteries", 《SCIENTIFIC REPORTS》 * |
YING ZHANG等: "3D Wettable Framework for Dendrite-Free Alkali Metal Anodes", 《ADVANCED ENERGY MATERIALS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113113664A (en) * | 2021-03-09 | 2021-07-13 | 北京理工大学 | Modified NASICON type sodium ion ceramic electrolyte and preparation method and application thereof |
CN115215361A (en) * | 2021-03-29 | 2022-10-21 | 中国科学院物理研究所 | Inorganic glass state sodium ion solid electrolyte and preparation method thereof |
CN115215361B (en) * | 2021-03-29 | 2023-06-06 | 中国科学院物理研究所 | Inorganic glassy sodium ion solid electrolyte and preparation method thereof |
CN113277843A (en) * | 2021-05-24 | 2021-08-20 | 哈尔滨工业大学 | Method for improving ionic conductivity of sodium-based solid electrolyte |
CN114171787A (en) * | 2021-12-07 | 2022-03-11 | 四川大学 | A kind of Mg2+ doping modified Nascion type sodium ion solid electrolyte and preparation method thereof |
CN114171787B (en) * | 2021-12-07 | 2024-04-16 | 四川大学 | Mg (magnesium) 2+ Doped modified NASCION sodium ion solid electrolyte and preparation method thereof |
WO2024152721A1 (en) * | 2023-01-16 | 2024-07-25 | 宁德时代新能源科技股份有限公司 | Solid-state electrolyte, preparation method therefor, secondary battery, battery module, battery pack and electrical apparatus |
CN116710407A (en) * | 2023-03-24 | 2023-09-05 | 广东邦普循环科技有限公司 | A kind of modified sodium ion cathode material and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN111313087B (en) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7093588B2 (en) | A method for producing a composite solid electrolyte membrane, and an all-solid-state lithium battery using the composite solid electrolyte membrane. | |
JP4615339B2 (en) | Porous solid electrode and all-solid lithium secondary battery using the same | |
US7824795B2 (en) | Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods | |
CN111313087A (en) | Electrolyte materials, sodium ion solid electrolytes and their applications and sodium ion solid state batteries | |
CN111509293B (en) | A method for reducing oxide electrolyte grain boundary impedance and interface impedance | |
CN108987798A (en) | A kind of integration all solid lithium metal battery | |
CN111952551A (en) | Improved composite cathode for solid-state lithium-sulfur battery and preparation method thereof | |
CN109244546B (en) | Solid-state composite electrolyte film and preparation method thereof, and all-solid-state battery | |
CN103531840A (en) | Double-electrolyte system lithium sulphur battery and preparing method thereof | |
CN110010852A (en) | A kind of secondary cell lithium anode, preparation method and applications | |
CN110233285A (en) | A method of improving solid state battery interface stability using polymer dielectric | |
CN106229498A (en) | A kind of negative material being applicable to Water based metal ion battery and preparation method thereof | |
JP2015156356A (en) | Aqueous solution electrolyte sodium ion secondary battery, and charge/discharge system including the same | |
CN105489880B (en) | A kind of secondary sode cell of solid-state compound storage sodium anode and preparation method thereof | |
CN110400929A (en) | A phosphate-coated metal-doped ternary cathode active material and its preparation and application | |
CN115084638A (en) | Solid-state electrode unit, preparation method, solid-state battery and system thereof | |
CN110336048A (en) | A low-loaded ruthenium-coated ZIF-67 derivative and its preparation method and application in lithium-air batteries | |
CN106159204A (en) | A kind of active substance growth in situ electrode slice and preparation method thereof | |
KR20080091795A (en) | Electrochemical cell electrode containing mesoporous nickel hydroxide | |
Li et al. | In situ preparation of chromium carbide–modified carbon nanofibers as functional electrocatalyst for polysulfide reduction in lithium/sulfur batteries | |
CN115799441A (en) | A kind of lithium ion battery and electric device | |
CN104282868A (en) | Electrolyte ceramic membrane supported by modified porous membrane and preparation method of electrolyte ceramic membrane | |
WO2024198567A1 (en) | Positive electrode material, secondary battery, and electrical device | |
CN116093304B (en) | A high-voltage lithium nickel manganate cathode material and its preparation method and application | |
CN115084549B (en) | Nano perovskite electrode for solid oxide battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: No.8, yangyandong 1st Road, Yanqi Economic Development Zone, Huairou District, Beijing Applicant after: Beijing Institute of Nanoenergy and Nanosystems Address before: 100083, C building, Tiangong building, No. 30, Haidian District, Beijing, Xueyuan Road Applicant before: Beijing Institute of Nanoenergy and Nanosystems |
|
GR01 | Patent grant | ||
GR01 | Patent grant |