CN110164967A - Semiconductor device and its manufacturing method - Google Patents
Semiconductor device and its manufacturing method Download PDFInfo
- Publication number
- CN110164967A CN110164967A CN201810139717.2A CN201810139717A CN110164967A CN 110164967 A CN110164967 A CN 110164967A CN 201810139717 A CN201810139717 A CN 201810139717A CN 110164967 A CN110164967 A CN 110164967A
- Authority
- CN
- China
- Prior art keywords
- oxide layer
- polysilicon
- semiconductor device
- top surface
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 83
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 160
- 229920005591 polysilicon Polymers 0.000 claims abstract description 158
- 238000000034 method Methods 0.000 claims abstract description 121
- 238000002955 isolation Methods 0.000 claims abstract description 115
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 238000005530 etching Methods 0.000 claims abstract description 34
- 238000000151 deposition Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 170
- 239000000463 material Substances 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 6
- 239000012212 insulator Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000005380 borophosphosilicate glass Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000005360 phosphosilicate glass Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- 239000005388 borosilicate glass Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910001029 Hf alloy Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910003811 SiGeC Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- MIQVEZFSDIJTMW-UHFFFAOYSA-N aluminum hafnium(4+) oxygen(2-) Chemical compound [O-2].[Al+3].[Hf+4] MIQVEZFSDIJTMW-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- PDKGWPFVRLGFBG-UHFFFAOYSA-N hafnium(4+) oxygen(2-) silicon(4+) Chemical compound [O-2].[Hf+4].[Si+4].[O-2].[O-2].[O-2] PDKGWPFVRLGFBG-UHFFFAOYSA-N 0.000 description 1
- ZQXQADNTSSMHJI-UHFFFAOYSA-N hafnium(4+) oxygen(2-) tantalum(5+) Chemical compound [O-2].[Ta+5].[Hf+4] ZQXQADNTSSMHJI-UHFFFAOYSA-N 0.000 description 1
- KQHQLIAOAVMAOW-UHFFFAOYSA-N hafnium(4+) oxygen(2-) zirconium(4+) Chemical compound [O--].[O--].[O--].[O--].[Zr+4].[Hf+4] KQHQLIAOAVMAOW-UHFFFAOYSA-N 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- KUVFGOLWQIXGBP-UHFFFAOYSA-N hafnium(4+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Hf+4] KUVFGOLWQIXGBP-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
- H10D64/117—Recessed field plates, e.g. trench field plates or buried field plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Element Separation (AREA)
Abstract
Description
技术领域technical field
本发明关于一种半导体装置及其制造方法,特别关于一种可以降低栅极-漏极电容(Cgd)和抑制栅极漏电流的半导体装置及其制造方法。The present invention relates to a semiconductor device and a manufacturing method thereof, in particular to a semiconductor device capable of reducing gate-drain capacitance (Cgd) and suppressing gate leakage current and a manufacturing method thereof.
背景技术Background technique
半导体集成电路(IC)工业已历经快速发展的阶段。集成电路材料及设计在技术上的进步已生产出许多代的集成电路。每一代的集成电路比前代的集成电路具有更小且更复杂的电路。The semiconductor integrated circuit (IC) industry has gone through a stage of rapid development. Technological advances in integrated circuit materials and design have produced many generations of integrated circuits. Each generation of integrated circuits has smaller and more complex circuits than the previous generation of integrated circuits.
分裂式栅极沟槽金属氧化物半导体场效应晶体管(Metal-Oxide-SemiconductorField-Effect Transistor;MOSFET)元件中,可通过应用sss遮罩栅极沟槽(shield gatetrench;SGT)的结构降低栅极-漏极电容(Cgd),以提升元件的切换速度。遮罩栅极沟槽中的遮罩多晶硅与源极电连接,使沟槽栅极多晶硅与漏极电性绝缘。栅极多晶硅与遮罩多晶硅(shield polysilicon)则通过位于其间的多晶硅层间氧化物(inter-poly oxide;IPO)而相互电性绝缘。In split gate trench metal oxide semiconductor field effect transistor (Metal-Oxide-SemiconductorField-Effect Transistor; MOSFET) components, the gate- Drain capacitance (Cgd) to increase the switching speed of the device. The mask polysilicon in the mask gate trench is electrically connected to the source, so that the trench gate polysilicon is electrically insulated from the drain. The gate polysilicon and the shield polysilicon are electrically insulated from each other by an inter-poly oxide (IPO) therebetween.
然而,随着元件尺寸的不断微缩,在分裂式栅极沟槽金属氧化物半导体场效应晶体管元件的工艺中,使用回填氧化物当作多晶硅层间氧化物(IPO)以绝缘栅极多晶硅和遮罩多晶硅的技术,由于受限于回填氧化物时沟槽的深宽比(aspect ratio),使得掌控多晶硅层间氧化物的厚度及品质的能力受限,导致元件产生栅极源极漏电流(gate to sourceleakage current)偏高的问题。此外,遮罩栅极沟槽(SGT)结构降低栅极-漏极电容(Cgd)的能力也受到限制。However, as device dimensions continue to shrink, backfill oxide is used as an interpoly oxide (IPO) to insulate the gate polysilicon and shielding in the process of split gate trench MOSFET devices. The technology of covering polysilicon is limited by the aspect ratio of the trench when backfilling the oxide, which limits the ability to control the thickness and quality of the oxide between polysilicon layers, resulting in gate-source leakage current ( gate to sourceleakage current) is too high. In addition, the ability of the shielded gate trench (SGT) structure to reduce the gate-drain capacitance (Cgd) is also limited.
因此,在此技术领域中,需要一种改良的分裂式栅极沟槽金属氧化物半导体场效应晶体管元件及其制造方法。Therefore, there is a need in the art for an improved split-gate trench MOSFET device and method of manufacturing the same.
发明内容Contents of the invention
本发明的一实施例提供一种半导体装置的制造方法。上述方法包括:提供一基板;形成多个沟槽于基板中;形成一隔离氧化物层于沟槽中及基板上方;沉积一遮罩多晶硅(shield polysilicon)于沟槽中及基板上的隔离氧化物层上;进行一第一刻蚀工艺以移除遮罩多晶硅的一第一部分,并暴露出沟槽中的隔离氧化层的一部分表面;进行一第一移除工艺以移除隔离氧化物层的一第一部分;进行一第二刻蚀工艺以移除遮罩多晶硅的一第二部分,并暴露出沟槽中的隔离氧化层的另一部分表面;进行一第二移除工艺以移除隔离氧化物层的一第二部分;以及形成一多晶硅层间氧化层(inter-poly oxide layer)于剩余的遮罩多晶硅和剩余的隔离氧化物层上。其中,多晶硅层间氧化层具有一凹形顶表面。An embodiment of the invention provides a method for manufacturing a semiconductor device. The method includes: providing a substrate; forming a plurality of trenches in the substrate; forming an isolation oxide layer in the trenches and above the substrate; depositing a shield polysilicon (shield polysilicon) in the trenches and isolation oxide on the substrate on the object layer; perform a first etching process to remove a first portion of the mask polysilicon, and expose a part of the surface of the isolation oxide layer in the trench; perform a first removal process to remove the isolation oxide layer a first part of a first part; perform a second etching process to remove a second part of the mask polysilicon, and expose another part of the surface of the isolation oxide layer in the trench; perform a second removal process to remove the isolation a second portion of the oxide layer; and forming an inter-poly oxide layer on the remaining mask polysilicon and the remaining isolation oxide layer. Wherein, the interpolysilicon oxide layer has a concave top surface.
本发明的另一实施例提供一种半导体装置。上述半导体装置包括:一基板,包括多个沟槽;一隔离氧化层,位于沟槽中;一遮罩多晶硅,位于沟槽中且被隔离氧化层围绕;以及一多晶硅层间氧化层,位于隔离氧化层和遮罩多晶硅上。其中,多晶硅层间氧化层具有一凹形顶表面。Another embodiment of the present invention provides a semiconductor device. The above semiconductor device includes: a substrate including a plurality of trenches; an isolation oxide layer located in the trenches; a mask polysilicon located in the trenches and surrounded by the isolation oxide layer; and an interpolysilicon oxide layer located in the isolation oxide layer and mask polysilicon. Wherein, the interpolysilicon oxide layer has a concave top surface.
本发明的有益效果在于,本发明的半导体装置制造方法通过对遮罩氧化物进行两阶段的刻蚀工艺并对隔离氧化物层进行两阶段的移除工艺,以减缓过去工艺中在沟槽侧壁和遮罩氧化物侧壁之间所产生的隔离氧化物的凹陷程度,使得后续工艺所填入的层间多晶硅氧化物可良好地沉积在遮罩多晶硅和隔离氧化层上而不产生孔隙(void)。并且,隔离氧化层在沟槽侧壁和遮罩多晶硅侧壁之间所产生的凹陷程度获得减缓,且后续工艺中填入的多晶硅层间氧化层(IPO)不具有孔隙(void)。在栅极多晶硅和遮罩多晶硅之间提供良好的电性绝缘效果。并且,由于不具有孔隙,多晶硅层间氧化层(IPO)可提供良好的抑制栅极至源极漏电流的隔离效果,进而提高半导体装置的性能。此外,多晶硅层间氧化层(IPO)的凹形顶表面在接近沟槽侧壁的部分呈现向上弯曲的弧度,相当于增加了氧化层在栅极多晶硅和漏极之间的厚度,因此可降低半导体装置的栅极-漏极电容(Cgd)。The beneficial effect of the present invention is that, the semiconductor device manufacturing method of the present invention performs a two-stage etching process on the mask oxide layer and a two-stage removal process on the isolation oxide layer, so as to slow down the process on the trench side in the past process. The recessed degree of the isolation oxide generated between the wall and the sidewall of the mask oxide allows the interlayer polysilicon oxide filled in the subsequent process to be well deposited on the mask polysilicon and the isolation oxide layer without creating pores ( void). Moreover, the degree of depression generated by the isolation oxide layer between the sidewall of the trench and the sidewall of the mask polysilicon is reduced, and the interpolysilicon oxide layer (IPO) filled in the subsequent process has no void. Good electrical insulation effect is provided between the gate polysilicon and the mask polysilicon. Moreover, since there are no pores, the inter-polysilicon oxide layer (IPO) can provide a good isolation effect for suppressing leakage current from the gate to the source, thereby improving the performance of the semiconductor device. In addition, the concave top surface of the interpolysilicon oxide layer (IPO) presents an upwardly curved arc near the sidewall of the trench, which is equivalent to increasing the thickness of the oxide layer between the gate polysilicon and the drain, thus reducing the The gate-drain capacitance (Cgd) of a semiconductor device.
为让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举出较佳实施例,并配合所附图式,作详细说明如下:In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the preferred embodiments are specifically listed below, together with the accompanying drawings, and are described in detail as follows:
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are only some embodiments of the present invention, and those skilled in the art can also obtain other drawings based on these drawings without any creative effort.
图1~图10为根据本发明一些实施例显示于半导体装置的工艺中各阶段的剖面示意图。1 to 10 are schematic cross-sectional views showing various stages in the process of a semiconductor device according to some embodiments of the present invention.
附图标号:Figure number:
10~装置;10 ~ device;
100~基板;100~substrate;
102~沟槽;102~groove;
104、104’~隔离氧化层104, 104'~isolation oxide layer
104”~剩余的隔离氧化层;104"~remaining isolation oxide layer;
104a、104b~表面部分;104a, 104b ~ surface portion;
104S-1~第一顶表面部分104S-1 ~ first top surface portion
104S-2~第二顶表面部分;104S-2 ~ second top surface portion;
106、106’~遮罩多晶硅;106, 106'~mask polysilicon;
106”~剩余的遮罩多晶硅;106" ~ remaining mask polysilicon;
106’S、106”S~侧壁;106’S, 106”S~side wall;
108~多晶硅层间氧化物;108~polysilicon interlayer oxide;
108’~多晶硅层间氧化层;108'~polysilicon interlayer oxide layer;
106S、108S~顶表面;106S, 108S~top surface;
110~栅极氧化层;110~gate oxide layer;
112~栅极多晶硅;112~gate polysilicon;
D1、D2~深度;D1, D2 ~ depth;
H~高度差;H~height difference;
P1、P2~轮廓;P1, P2~contour;
T1、T2、T3~厚度;T1, T2, T3 ~ thickness;
W1、W2~凹陷部分。W1, W2 ~ concave part.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域相关技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts fall within the protection scope of the present invention.
本发明说明书提供不同的实施例来说明本发明不同实施方式的技术特征。本发明中特定的元件及配置是为了简化,但本发明并不以这些实施例为限。举例而言,于第二元件上形成第一元件的描述可包括第一元件与第二元件直接接触的实施例,亦包括具有额外的元件形成在第一元件与第二元件之间、使得第一元件与第二元件并未直接接触的实施例。此外,为简明起见,本发明在不同例子中以重复的元件符号及/或字母表示,但不代表所述各实施例及/或结构间具有特定的关系。要强调的是,根据工业上的标准作业,各个元件未必依照比例绘制。事实上,为了清楚讨论,可能任意的放大或缩小各个元件的尺寸。The description of the present invention provides different examples to illustrate the technical features of different implementations of the present invention. The specific components and configurations in the present invention are for simplicity, but the present invention is not limited by these embodiments. For example, a description of forming a first element on a second element may include embodiments in which the first element is in direct contact with the second element, as well as embodiments having additional elements formed between the first element and the second element such that the second element An embodiment in which one element is not in direct contact with a second element. In addition, for the sake of brevity, the present invention is represented by repeated element symbols and/or letters in different examples, but it does not mean that there is a specific relationship between the various embodiments and/or structures. It is emphasized that, in accordance with the standard practice in the industry, various elements have not necessarily been drawn to scale. In fact, the dimensions of the various elements may be arbitrarily expanded or reduced for clarity of discussion.
除非内文清楚地指明,此处所使用的单数形式“一”和“该”也包括多数形式。可进一步了解的是,当说明书中使用“包括”等用语,是为了指出所述特征、步骤、操作、元件、及/或构件的存在,但不排除额外一或多个其他特征、步骤、操作、元件、构件及/或上述组合的存在。As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly dictates otherwise. It can be further understood that when terms such as "comprising" are used in the specification, they are intended to indicate the existence of the stated features, steps, operations, elements, and/or components, but do not exclude the addition of one or more other features, steps, and operations. , elements, components and/or the presence of combinations of the above.
全文说明书中所指的“一种实施例”或“一实施例”意味着在实施例中描述到的特定特征、结构、或特色至少包含在一实施例中。因此,全文说明书不同地方所出现的片语“在一种实施例中”或“在一实施例中”所指不一定为相同的实施例。此外,特定的特征、结构、或特色可在一或多个的实施例中通过任何合适的方法结合。"An embodiment" or "an embodiment" referred to throughout the specification means that the specific features, structures, or characteristics described in the embodiment are included in at least one embodiment. Thus, appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout the specification are not necessarily to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
以下描述本发明的一些实施例。图1~图10为根据本发明一些实施例显示于半导体装置10的工艺中各阶段的剖面示意图。可在图1~图10所述的阶段之前、期间、及/或之后提供额外的操作。在不同的实施例中,可移动、删除或置换前述的一些操作。可加入额外的特征到半导体装置。在不同的实施例中,可移动、删除或置换以下所述的一些特征。Some embodiments of the present invention are described below. 1-10 are schematic cross-sectional views showing various stages in the process of a semiconductor device 10 according to some embodiments of the present invention. Additional operations may be provided before, during, and/or after the stages described in FIGS. 1-10 . In various embodiments, some of the aforementioned operations may be moved, deleted or replaced. Additional features may be added to the semiconductor device. In various embodiments, some of the features described below may be removed, deleted or substituted.
本发明实施例提供一种半导体装置及其制造方法。在本发明一些实施例中,上述半导体装置为一分裂式栅极沟槽金属氧化物半导体场效应晶体管(MOSFET)元件。本发明针对工艺进行改良,对遮罩多晶硅(shield polysilicon)进行两阶段的刻蚀工艺并对隔离氧化物层进行两阶段的移除工艺,以减缓过去工艺中在沟槽侧壁和遮罩多晶硅侧壁之间所产生的隔离氧化物的凹陷程度,使得后续工艺所填入的多晶硅层间氧化物(inter-polyoxide)不产生(或大致上不产生)孔隙(void),进而提升对多晶硅层间氧化层的厚度和品质的控制能力,达到抑制栅极漏电流的目的。Embodiments of the present invention provide a semiconductor device and a manufacturing method thereof. In some embodiments of the present invention, the aforementioned semiconductor device is a split gate trench metal oxide semiconductor field effect transistor (MOSFET) device. The present invention improves the process by performing a two-stage etching process on the mask polysilicon (shield polysilicon) and a two-stage removal process on the isolation oxide layer, so as to slow down the damage to the sidewall of the trench and the mask polysilicon in the past process. The degree of depression of the isolation oxide generated between the sidewalls makes the polysilicon interlayer oxide (inter-polyoxide) filled in the subsequent process not generate (or substantially generate) voids (void), thereby improving the protection of the polysilicon layer. The ability to control the thickness and quality of the intermediate oxide layer achieves the purpose of suppressing gate leakage current.
本发明的一实施例提供一种半导体装置的制造方法。如图1所示,根据一些实施例,提供一基板100。在一些实施例中,基板100可为块状半导体基板,像是一半导体晶圆。例如,基板100为一硅晶圆。基板100可包括硅或其他元素半导体材料,像是锗。在一些实施例中,基板100可包括一蓝宝石基板、一硅基板、或一碳化硅基板。在一些实施例中,基板100可包括半导体材料、绝缘体材料、导体材料、或前述组合所组成的一层或多层结构。例如,基板100可由选自于Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs、和InP所组成的群组中的至少一种半导体材料形成。在另一实施例中,基板100也可包括一绝缘层上硅(silicon oninsulator;SOI)。可利用氧植入隔离(SIMOX)工艺、晶圆接合工艺、其他可应用的方式、或前述的组合形成SOI基板。在另一实施例中,基板100也可由多层材料组成,例如:Si/SiGe、Si/SiC。在另一实施例中,基板100可包括绝缘体材料,例如:有机绝缘体、无机绝缘体、或前述组合形成的一层或多层结构。在另一实施例中,基板100也可包括导体材料,例如:多晶硅、金属、合金、或前述组合形成的一层或多层结构。An embodiment of the invention provides a method for manufacturing a semiconductor device. As shown in FIG. 1 , according to some embodiments, a substrate 100 is provided. In some embodiments, the substrate 100 may be a bulk semiconductor substrate, such as a semiconductor wafer. For example, the substrate 100 is a silicon wafer. Substrate 100 may comprise silicon or other elemental semiconductor materials, such as germanium. In some embodiments, the substrate 100 may include a sapphire substrate, a silicon substrate, or a silicon carbide substrate. In some embodiments, the substrate 100 may include a semiconductor material, an insulator material, a conductor material, or a one-layer or multi-layer structure composed of a combination thereof. For example, the substrate 100 may be formed of at least one semiconductor material selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP. In another embodiment, the substrate 100 may also include a silicon on insulator (SOI). The SOI substrate can be formed using a isolation implantation of oxygen (SIMOX) process, a wafer bonding process, other applicable methods, or a combination of the foregoing. In another embodiment, the substrate 100 may also be composed of multiple layers of materials, such as Si/SiGe, Si/SiC. In another embodiment, the substrate 100 may include an insulator material, such as an organic insulator, an inorganic insulator, or a one-layer or multi-layer structure formed by a combination thereof. In another embodiment, the substrate 100 may also include a conductive material, such as polysilicon, metal, alloy, or a one-layer or multi-layer structure formed by a combination thereof.
如图1所示,根据一些实施例,形成多个沟槽(或凹槽)102于基板100中。在一些实施例中,沟槽102可利用例如一个或多个光刻和刻蚀工艺来形成。应理解的是,图1所示的沟槽102尺寸、形状、及位置仅为例示,而非用以限制本发明。As shown in FIG. 1 , a plurality of trenches (or grooves) 102 are formed in a substrate 100 according to some embodiments. In some embodiments, trenches 102 may be formed using, for example, one or more photolithography and etching processes. It should be understood that the size, shape, and position of the trench 102 shown in FIG. 1 are for illustration only, rather than limiting the present invention.
接着,如图2所示,根据一些实施例,形成一隔离氧化物层104于沟槽102中及基板100上。在一些实施例中,可利用例如热氧化法、或其他合适的沉积工艺,顺应性地形成隔离氧化物层104于沟槽102的侧壁和底部上以及基板100的顶表面上。可根据半导体装置的元件尺寸及设计需要而调整隔离氧化物层104的厚度T1。在一些实施例中,隔离氧化物层104于沟槽102的侧壁和底部上以及基板100的顶表面上的厚度T1可例如为70nm至150nm。Next, as shown in FIG. 2 , according to some embodiments, an isolation oxide layer 104 is formed in the trench 102 and on the substrate 100 . In some embodiments, the isolation oxide layer 104 can be conformally formed on the sidewalls and bottom of the trench 102 and the top surface of the substrate 100 by using, for example, thermal oxidation, or other suitable deposition processes. The thickness T1 of the isolation oxide layer 104 can be adjusted according to the device size and design requirements of the semiconductor device. In some embodiments, the thickness T1 of the isolation oxide layer 104 on the sidewalls and bottom of the trench 102 and on the top surface of the substrate 100 may be, for example, 70 nm to 150 nm.
如图2所示,根据一些实施例,沉积一遮罩多晶硅106于沟槽102中及基板100上的隔离氧化物层104上。在一些实施例中,可利用例如化学气相沉积(chemical vapordeposition;CVD)、或其他合适的多晶硅沉积技术,将遮罩多晶硅106填充于沟槽102中并沉积于基板100上的隔离氧化物层104上。在一些实施例中,遮罩多晶硅106可由未掺杂的多晶硅或是经原位掺杂的多晶硅所形成。As shown in FIG. 2 , a mask polysilicon 106 is deposited in the trench 102 and on the isolation oxide layer 104 on the substrate 100 in accordance with some embodiments. In some embodiments, the mask polysilicon 106 can be filled in the trench 102 and deposited on the isolation oxide layer 104 on the substrate 100 using, for example, chemical vapor deposition (CVD) or other suitable polysilicon deposition techniques. superior. In some embodiments, the mask polysilicon 106 may be formed of undoped polysilicon or in-situ doped polysilicon.
如图3所示,根据一些实施例,进行一第一刻蚀工艺以移除遮罩多晶硅106的第一部分,并暴露出沟槽102中的隔离氧化层104的一部分表面104a。在一些实施例中,第一刻蚀工艺可包括例如回刻蚀工艺。在一些实施例中,通过移除遮罩多晶硅106的第一部分,可使遮罩多晶硅106凹陷至沟槽102中,直到达到所需要的深度。例如,如图3所示,在一实施例中,遮罩多晶硅106’的顶表面可低于基板100的顶表面。表面104a是形成于沟槽102的侧壁上的隔离氧化层104的一部分表面,经由移除遮罩多晶硅106的第一部分而被暴露出来。在一些实施例中,经移除第一部分后的遮罩多晶硅106’在沟槽102中具有一深度D1,如图3所示。应注意的是,在一些实施例中,遮罩多晶硅106’的深度D1并非最终半导体装置中的遮罩多晶硅所需要的深度。在一些实施例中,遮罩多晶硅106’的深度D1大于最终半导体装置中的遮罩多晶硅所需要的深度。As shown in FIG. 3 , according to some embodiments, a first etching process is performed to remove a first portion of the mask polysilicon 106 and expose a portion of the surface 104 a of the isolation oxide layer 104 in the trench 102 . In some embodiments, the first etching process may include, for example, an etch-back process. In some embodiments, the mask polysilicon 106 may be recessed into the trench 102 by removing a first portion of the mask polysilicon 106 until a desired depth is reached. For example, as shown in FIG. 3 , in one embodiment, the top surface of the mask polysilicon 106 ′ may be lower than the top surface of the substrate 100 . The surface 104 a is a portion of the surface of the isolation oxide layer 104 formed on the sidewalls of the trench 102 and exposed by removing the first portion of the mask polysilicon 106 . In some embodiments, the mask polysilicon 106' having the first portion removed has a depth D1 in the trench 102, as shown in FIG. 3 . It should be noted that, in some embodiments, the depth D1 of the mask polysilicon 106' is not the desired depth of the mask polysilicon in the final semiconductor device. In some embodiments, the depth D1 of the mask polysilicon 106' is greater than the desired depth of the mask polysilicon in the final semiconductor device.
在一些实施例中,可在进行上述第一刻蚀工艺以移除遮罩多晶硅106的第一部分之前,先对遮罩多晶硅106进行一化学平坦化工艺像是化学机械平坦化研磨(CMP)工艺,直到曝露出隔离氧化物层104。或者,在一些实施例中,可省略上述化学机械平坦化研磨(CMP)工艺的步骤,直接进行上述第一刻蚀工艺,以使遮罩多晶硅106凹陷至沟槽102中,直到达到所需要的深度。In some embodiments, a chemical planarization process such as a chemical mechanical planarization polishing (CMP) process may be performed on the mask polysilicon 106 before performing the first etching process to remove the first portion of the mask polysilicon 106. until the isolation oxide layer 104 is exposed. Alternatively, in some embodiments, the step of the above chemical mechanical planarization polishing (CMP) process can be omitted, and the above first etching process can be performed directly, so that the mask polysilicon 106 is recessed into the trench 102 until the desired depth.
如图4所示,根据一些实施例,进行一第一移除工艺以移除隔离氧化物层104的第一部分。在一些实施例中,第一移除工艺可包括例如湿刻蚀工艺、氧化刻蚀工艺、或其他合适的工艺。在一些实施例中,在第一移除工艺之后,经移除第一部分的隔离氧化物层104’的暴露于沟槽102的部分(对应于图3具有表面104a的部分)具有较薄的厚度T2,如图4所示。在一些实施例中,在第一移除工艺之后,位于基板100上的隔离氧化物层104’也具有较薄的厚度T2。在一些实施例中,厚度T2小于厚度T1。在一些实施例中,在第一移除工艺之后,经移除第一部分的隔离氧化物层104’在邻近于遮罩多晶硅106’的部分形成一凹陷部分W1,并曝露出遮罩多晶硅106’的一部分侧壁106’S。如图4所示,在一些实施例中,所述凹陷部分W1在遮罩多晶硅106’的侧壁与具有厚度T2的隔离氧化物层104’之间延伸。As shown in FIG. 4 , according to some embodiments, a first removal process is performed to remove a first portion of the isolation oxide layer 104 . In some embodiments, the first removal process may include, for example, a wet etching process, an oxidation etching process, or other suitable processes. In some embodiments, after the first removal process, the portion of the removed first portion of the isolation oxide layer 104 ′ exposed to the trench 102 (corresponding to the portion with the surface 104 a in FIG. 3 ) has a thinner thickness. T2, as shown in Figure 4. In some embodiments, after the first removal process, the isolation oxide layer 104' on the substrate 100 also has a thinner thickness T2. In some embodiments, thickness T2 is less than thickness T1. In some embodiments, after the first removal process, the first portion of the isolation oxide layer 104' is removed to form a recessed portion W1 adjacent to the mask polysilicon 106', exposing the mask polysilicon 106'. A portion of the sidewall 106'S. As shown in FIG. 4 , in some embodiments, the recessed portion W1 extends between the sidewall of the mask polysilicon 106' and the isolation oxide layer 104' having a thickness T2.
虽然图4中所绘制的凹陷部分W1具有一平坦的上表面,然而,可理解的是,图4中所绘制的图式仅为示例,在一些实施例中,隔离氧化物层104’的凹陷部分W1的上表面可具有一个凹形弧度。Although the concave portion W1 drawn in FIG. 4 has a flat upper surface, it is understood that the diagram drawn in FIG. 4 is only an example. In some embodiments, the depression of the isolation oxide layer 104' The upper surface of the portion W1 may have a concave curvature.
如图5所示,根据一些实施例,进行一第二刻蚀工艺以移除遮罩多晶硅106的第二部分,并暴露出沟槽102中的隔离氧化层104的另一部分表面104b。在一些实施例中,第一刻蚀工艺可包括例如回刻蚀工艺。在一些实施例中,通过移除遮罩多晶硅106的第二部分,可使遮罩多晶硅106进一步凹陷至沟槽102中,直到达到所需要的深度。例如,如图5所示,在一实施例中,遮罩多晶硅106”的顶表面可低于隔离氧化物层104’的凹陷部分W1的上表面。表面104b是形成于沟槽102的侧壁上的隔离氧化层104的另一部分表面,经由移除遮罩多晶硅106的第二部分而被暴露出来。在一些实施例中,经移除第二部分后的遮罩多晶硅106”在沟槽102中具有一深度D2,如图5所示。应注意的是,在一些实施例中,遮罩多晶硅106”的深度D2即为最终半导体装置中的遮罩多晶硅所需要的深度。在一些实施例中,深度D2小于深度D1。As shown in FIG. 5 , according to some embodiments, a second etching process is performed to remove a second portion of the mask polysilicon 106 and expose another portion of the surface 104 b of the isolation oxide layer 104 in the trench 102 . In some embodiments, the first etching process may include, for example, an etch-back process. In some embodiments, the mask polysilicon 106 can be further recessed into the trench 102 by removing the second portion of the mask polysilicon 106 until a desired depth is reached. For example, as shown in FIG. 5 , in one embodiment, the top surface of the mask polysilicon 106 ″ may be lower than the upper surface of the recessed portion W1 of the isolation oxide layer 104 ′. The surface 104 b is formed on the sidewall of the trench 102 Another part of the surface of the isolation oxide layer 104 is exposed by removing the second part of the mask polysilicon 106. In some embodiments, the mask polysilicon 106" after removing the second part is in the trench 102 There is a depth D2 in it, as shown in FIG. 5 . It should be noted that, in some embodiments, the depth D2 of the mask polysilicon 106 ″ is the desired depth of the mask polysilicon in the final semiconductor device. In some embodiments, the depth D2 is smaller than the depth D1 .
如图5所示,由于隔离氧化层104经第二刻蚀工艺而暴露于沟槽102中的部分(即具有表面104b的部分)在第一移除工艺期间受到遮罩多晶硅106’的保护而未被移除,因此,在第二刻蚀工艺之后,隔离氧化层104”具有表面104b的部分仍然具有与厚度T1相同的厚度。也就是说,由于本发明实施例对遮罩氧化物106进行两阶段的刻蚀工艺(第一刻蚀工艺及第二刻蚀工艺),在对隔离氧化物104进行第一移除工艺的期间,一部分的隔离氧化层104可受到第一刻蚀工艺后具有深度D1的遮罩氧化物106’的保护,所以保留了原本的厚度T1。因此,在第二刻蚀工艺之后,曝露于沟槽102中的隔离氧化层104’具有不同的厚度(T1和T2),并以这样的状态(如图5所示)接着进行后续的第二移除工艺。As shown in FIG. 5 , since the portion of the isolation oxide layer 104 exposed in the trench 102 through the second etching process (ie, the portion having the surface 104 b ) is protected by the mask polysilicon 106 ′ during the first removal process. is not removed, therefore, after the second etching process, the part of the isolation oxide layer 104″ having the surface 104b still has the same thickness as the thickness T1. That is, since the embodiment of the present invention performs Two-stage etching process (the first etching process and the second etching process), during the first removal process on the isolation oxide 104, a part of the isolation oxide layer 104 can have The protection of the mask oxide 106' of the depth D1, so the original thickness T1 is retained. Therefore, after the second etching process, the isolation oxide layer 104' exposed in the trench 102 has different thicknesses (T1 and T2 ), and in such a state (as shown in FIG. 5 ), a subsequent second removal process is performed.
如图6所示,根据一些实施例,进行一第二移除工艺以移除隔离氧化物层104的第二部分。在一些实施例中,第二移除工艺可包括例如湿刻蚀工艺、氧化刻蚀工艺、或其他合适的工艺。在一些实施例中,第二移除工艺可与第一移除工艺相同。在一些实施例中,第二移除工艺可与第一移除工艺不同。可根据半导体装置的元件尺寸、两阶段的刻蚀工艺中遮罩多晶硅的深度等工艺条件的不同,选择所使用的第一移除工艺及第二移除工艺并调整第一移除工艺及第二移除工艺的工艺条件。应注意的是,可通过控制第一移除工艺及第二移除工艺的条件而决定隔离氧化物层最终的顶表面轮廓,进而影响最终半导体装置10中多晶硅层间氧化层108’的顶表面轮廓。As shown in FIG. 6 , according to some embodiments, a second removal process is performed to remove the second portion of the isolation oxide layer 104 . In some embodiments, the second removal process may include, for example, a wet etching process, an oxidation etching process, or other suitable processes. In some embodiments, the second removal process may be the same as the first removal process. In some embodiments, the second removal process may be different from the first removal process. The first removal process and the second removal process can be selected and adjusted according to the different process conditions such as the element size of the semiconductor device and the depth of the mask polysilicon in the two-stage etching process. 2. Process conditions of the removal process. It should be noted that the final top surface profile of the isolation oxide layer can be determined by controlling the conditions of the first removal process and the second removal process, thereby affecting the top surface of the interpolysilicon oxide layer 108 ′ in the final semiconductor device 10 contour.
如图6所示,在一些实施例中,在第二移除工艺之后,经移除第二部分的隔离氧化物层104”(在本文中有时也称为剩余的隔离氧化物层104”)的暴露于沟槽102的部分(大致对应于图3具有表面104a的部分)具有更薄的厚度T3。在一些实施例中,在第二移除工艺之后,位于基板100上的剩余的隔离氧化物层104”也具有更薄的厚度T3。在一些实施例中,厚度T3小于厚度T2。在另一些实施例中,在第二移除工艺之后,隔离氧化物层104’在大致对应于图3具有表面104a的部分也可完全地被移除,且位于基板100上的隔离氧化物层104’也可完全地被移除。As shown in FIG. 6 , in some embodiments, after the second removal process, a second portion of the isolation oxide layer 104 ″ (also sometimes referred to herein as the remaining isolation oxide layer 104 ″) is removed. The portion exposed to the trench 102 (roughly corresponding to the portion with the surface 104a in FIG. 3 ) has a thinner thickness T3. In some embodiments, after the second removal process, the remaining isolation oxide layer 104″ on the substrate 100 also has a thinner thickness T3. In some embodiments, the thickness T3 is less than the thickness T2. In other In an embodiment, after the second removal process, the isolation oxide layer 104' may also be completely removed at a portion substantially corresponding to the surface 104a in FIG. can be completely removed.
如图6所示,在一些实施例中,在第二移除工艺之后,经移除第二部分的隔离氧化物层104”在邻近遮罩多晶硅106”的区域进一步形成另一凹陷部分W2,并曝露出遮罩多晶硅106”的一部分侧壁106”S。如图6所示,在一些实施例中,所述凹陷部分W2在遮罩多晶硅106”的侧壁与具有厚度T3的隔离氧化物层104”之间延伸。As shown in FIG. 6 , in some embodiments, after the second removal process, the second portion of the isolation oxide layer 104 ″ is removed to further form another recessed portion W2 in a region adjacent to the mask polysilicon 106 ″, A part of the sidewall 106"S of the mask polysilicon 106" is exposed. As shown in FIG. 6 , in some embodiments, the recessed portion W2 extends between the sidewall of the mask polysilicon 106 ″ and the isolation oxide layer 104 ″ having a thickness T3 .
应注意的是,在第二移除工艺期间,由于图5中所述受到保护的隔离氧化层104”(具有表面104b的部分)仍然具有与厚度T1相同的厚度,因此,第二移除工艺对于此部分的隔离氧化层104”所造成的凹陷程度会较为减缓。如图6所示,在一些实施例中,在进行第二移除工艺以移除隔离氧化物层104的第二部分之后,剩余的隔离氧化层104”的顶表面大抵上从遮罩多晶硅106的侧壁向沟槽102的侧壁方向平缓地往上延伸。在一些实施例中,在第二移除工艺之后所形成的凹陷部分W2具有不平滑(或不连续)的顶表面。It should be noted that during the second removal process, since the protected isolation oxide layer 104" (the portion having the surface 104b) in FIG. 5 still has the same thickness as the thickness T1, the second removal process The degree of depression caused by the part of the isolation oxide layer 104" will be relatively slow. As shown in FIG. 6 , in some embodiments, after performing the second removal process to remove the second portion of the isolation oxide layer 104 , the top surface of the remaining isolation oxide layer 104 ″ is substantially removed from the mask polysilicon 106 . The sidewall of the trench 102 gently extends upward toward the sidewall of the trench 102. In some embodiments, the recessed portion W2 formed after the second removal process has an uneven (or discontinuous) top surface.
如图6所示,在一些实施例中,在第二移除工艺之后所形成的凹陷部分W2的顶表面104S可由第一顶表面部分104S-1和第二顶表面部分104S-2所组成。虽然图6中所绘制的凹陷部分W2的第一顶表面部分104S-1和第二顶表面部分104S-2为平坦的表面,然而,可理解的是,图6中所绘制的图式仅为示例,在一些实施例中,隔离氧化物层104”的凹陷部分W2的第一顶表面部分104S-1和第二顶表面部分104S-2可分别具有一个凹形弧度。As shown in FIG. 6 , in some embodiments, the top surface 104S of the recessed portion W2 formed after the second removal process may consist of a first top surface portion 104S- 1 and a second top surface portion 104S- 2 . Although the first top surface portion 104S-1 and the second top surface portion 104S-2 of the concave portion W2 drawn in FIG. 6 are flat surfaces, it is understood that the drawing in FIG. 6 is only For example, in some embodiments, the first top surface portion 104S-1 and the second top surface portion 104S-2 of the recessed portion W2 of the isolation oxide layer 104″ may respectively have a concave curvature.
更明确地说,如图6所示,在一些实施例中,在进行第二移除工艺以移除隔离氧化物层104的第二部分之后,剩余的隔离氧化层104”与遮罩多晶硅106”的侧壁相邻的第一顶表面部分104S-1具有一第一曲率,而剩余的隔离氧化层104”与沟槽102的侧壁相邻的第二顶表面部分104S-2具有一第二曲率。在一些实施例中,第一曲率与第二曲率不同。在一些实施例中,第一曲率大于第二曲率。在一些实施例中,第一曲率可例如为0.06至0.1nm-1。在一些实施例中,第二曲率可例如为0.02至0.025nm-1。More specifically, as shown in FIG. 6, in some embodiments, after the second removal process is performed to remove the second portion of the isolation oxide layer 104, the remaining isolation oxide layer 104″ and the mask polysilicon 106 The first top surface portion 104S-1 adjacent to the sidewall of the trench 102 has a first curvature, while the remaining second top surface portion 104S-2 of the isolation oxide layer 104" adjacent to the sidewall of the trench 102 has a first curvature. Two curvatures. In some embodiments, the first curvature is different from the second curvature. In some embodiments, the first curvature is greater than the second curvature. In some embodiments, the first curvature can be, for example, 0.06 to 0.1 nm −1 In some embodiments, the second curvature may be, for example, 0.02 to 0.025 nm −1 .
如图6所示,在一些实施例中,在进行第二移除工艺以移除隔离氧化物层104的第二部分之后,剩余的隔离氧化层104”邻接于遮罩多晶硅106”的第一顶表面部分104S-1的最低点与剩余的遮罩多晶硅106”的顶表面106S的高度差H可小于如图2所示隔离氧化层104于基板100上方的厚度T1。As shown in FIG. 6 , in some embodiments, after performing the second removal process to remove the second portion of the isolation oxide layer 104 , the remaining isolation oxide layer 104 ″ is adjacent to the first portion of the mask polysilicon 106 ″. The height difference H between the lowest point of the top surface portion 104S- 1 and the remaining top surface 106S of the mask polysilicon 106 ″ may be smaller than the thickness T1 of the isolation oxide layer 104 above the substrate 100 as shown in FIG. 2 .
值得一提的是,这样较小的高度差是来自于本发明针对工艺进行改良的结果。过去为了去除位于沟槽侧壁上和基板上的隔离氧化层,以往的工艺通常会对隔离氧化物层进行过刻蚀,因而导致隔离氧化层在遮罩多晶硅的侧壁和沟槽的侧壁之间形成明显的凹陷,使隔离氧化层与遮罩多晶硅的顶表面之间产生明显的高度差。然而,由于本发明实施例对遮罩多晶硅进行两阶段的刻蚀工艺并对隔离氧化物层进行两阶段的移除工艺,隔离氧化物在遮罩多晶硅的侧壁和沟槽的侧壁之间所产生的凹陷程度得以减缓,同时也降低隔离氧化层与遮罩多晶硅的顶表面之间的高度差。这样的结果使得在后续工艺填充至沟槽102中的多晶硅层间氧化物不产生(或大致上不产生)孔隙(void)。由于多晶硅层间氧化物可被良好地沉积,因此可更好地控制多晶硅层间氧化物层的形成,改良最终半导体装置的性能。It is worth mentioning that such a small height difference is the result of the improvement of the process of the present invention. In the past, in order to remove the isolation oxide layer located on the sidewall of the trench and on the substrate, the previous process usually over-etched the isolation oxide layer, resulting in the isolation oxide layer on the sidewall of the mask polysilicon and the sidewall of the trench. A distinct recess is formed between them, resulting in a significant height difference between the isolation oxide layer and the top surface of the mask polysilicon. However, since the embodiment of the present invention performs a two-stage etching process on the mask polysilicon and a two-stage removal process on the isolation oxide layer, the isolation oxide is between the sidewall of the mask polysilicon and the sidewall of the trench. The resulting level of dishing is mitigated, while also reducing the height difference between the isolation oxide layer and the top surface of the mask polysilicon. As a result, there is no (or substantially no) void in the interpolysilicon layer oxide filled into the trench 102 in subsequent processes. Since the IPO can be well deposited, the formation of the IPO layer can be better controlled, improving the performance of the final semiconductor device.
如图6所示,在一些实施例中,在进行一第二移除工艺以移除隔离氧化物层104的第二部分之后,剩余的隔离氧化层104”的第一顶表面部分104S-1和第二顶表面部分104S-2及遮罩多晶硅106”的顶表面106S构成轮廓P1。在一些实施例中,轮廓P1大致上可视为一凹形曲线。As shown in FIG. 6, in some embodiments, after performing a second removal process to remove the second portion of the isolation oxide layer 104, the remaining first top surface portion 104S-1 of the isolation oxide layer 104″ and the second top surface portion 104S-2 and the top surface 106S of the mask polysilicon 106″ form a profile P1. In some embodiments, the profile P1 can be generally regarded as a concave curve.
如图7所示,根据一些实施例,沉积一多晶硅层间氧化物108于沟槽102中及基板100上方。在一些实施例中,可利用例如高密度电浆化学气相沉积(high density plasmachemical vapor deposition;HDPCVD)、或其他合适的沉积工艺沉积多晶硅层间氧化物108。如上所述,在一些实施例中,多晶硅层间氧化物108可完全地覆盖隔离氧化层104和遮罩多晶硅106,而不产生(或大致上不产生)孔隙(void)。这样的结果有利于提升对于多晶硅层间氧化物层的厚度和品质的控制,改良最终半导体装置的性能,例如,降低栅极-漏极电容(Cgd)和抑制栅极至源极漏电流(gate to source leakage current)。As shown in FIG. 7 , an IPO 108 is deposited in the trench 102 and above the substrate 100 in accordance with some embodiments. In some embodiments, the polysilicon interlayer oxide 108 may be deposited by, for example, high density plasma chemical vapor deposition (HDPCVD), or other suitable deposition processes. As mentioned above, in some embodiments, the interpoly oxide 108 may completely cover the isolation oxide layer 104 and the mask poly 106 without (or substantially without) voids. Such a result is beneficial to improve the control of the thickness and quality of the interpoly oxide layer, improve the performance of the final semiconductor device, for example, reduce the gate-drain capacitance (Cgd) and suppress the gate-to-source leakage current (gate to source leakage current).
如图8所示,根据一些实施例,进行一第三刻蚀工艺以移除多晶硅层间氧化物108的一部分,并曝露出沟槽102的侧壁的一部分。在一些实施例中,第三刻蚀工艺可包括例如干刻蚀工艺、湿刻蚀工艺、回刻蚀工艺、其他合适的刻蚀工艺、或前述的组合。如图8所示,在一些实施例中,可利用例如回刻蚀工艺将多晶硅层间氧化物108刻蚀至目标深度,形成一多晶硅层间氧化层108’于剩余的遮罩多晶硅106”和剩余的隔离氧化物层104”上。例如,如图8所示,在一实施例中,多晶硅层间氧化层108’的顶表面108S可低于基板100的顶表面。在一些实施例中,在第三刻蚀工艺之后,可一起将位于沟槽102侧壁上和基板100上剩余的隔离氧化物层104”完全去除。在一些实施例中,多晶硅层间氧化层108’可用于使遮罩多晶硅106”与后续形成于上方的栅极多晶硅电性绝缘。在一些实施例中,多晶硅层间氧化层108’的平均厚度可例如为90nm到170nm。As shown in FIG. 8 , according to some embodiments, a third etch process is performed to remove a portion of the IPO 108 and expose a portion of the sidewall of the trench 102 . In some embodiments, the third etching process may include, for example, a dry etching process, a wet etching process, an etching back process, other suitable etching processes, or a combination thereof. As shown in FIG. 8 , in some embodiments, the interpolysilicon layer oxide 108 can be etched to a target depth by using, for example, an etch-back process to form an interpolysilicon layer oxide layer 108 ′ on the remaining mask polysilicon 106 ″ and on the remaining isolation oxide layer 104". For example, as shown in FIG. 8 , in one embodiment, the top surface 108S of the interpolysilicon oxide layer 108 ′ may be lower than the top surface of the substrate 100 . In some embodiments, after the third etching process, the remaining isolation oxide layer 104" located on the sidewall of the trench 102 and on the substrate 100 can be completely removed together. In some embodiments, the interpolysilicon oxide layer 108' may be used to electrically insulate the mask polysilicon 106" from the subsequently formed overlying gate polysilicon. In some embodiments, the average thickness of the interpolysilicon oxide layer 108' may be, for example, 90 nm to 170 nm.
根据一些实施例,图8显示在图6所述的第二移除工艺之后,隔离氧化物层104’的暴露于沟槽102的部分(大致对应于图3具有表面104a的部分)及位于基板100上的隔离氧化物层104’完全地被移除的半导体装置剖面示意图。另一些实施例中,如图8也显示在图6所述的第二移除工艺之后,剩余的隔离氧化物层104”的暴露于沟槽102的部分(大致对应于图3具有表面104a的部分)具有更薄的厚度T3的半导体装置剖面示意图(如虚线所示)。然而,为达简洁的目的,于下文及关于图9、图10的描述中省略虚线部分。According to some embodiments, FIG. 8 shows the portion of the isolation oxide layer 104' exposed to the trench 102 (roughly corresponding to the portion with the surface 104a in FIG. A schematic cross-sectional view of a semiconductor device with the isolation oxide layer 104 ′ on 100 completely removed. In other embodiments, FIG. 8 also shows that after the second removal process described in FIG. Part) a schematic cross-sectional view of a semiconductor device with a thinner thickness T3 (as shown by the dotted line). However, for the sake of simplicity, the dotted line part is omitted in the description below and in relation to FIGS. 9 and 10 .
应注意的是,如图8所示,根据一些实施例,多晶硅层间氧化层108’的顶表面为一凹形顶表面108S。凹形顶表面108S具有一轮廓P2。在一些实施例中,轮廓P2可被视为具有一凹形曲线,且在接近沟槽102侧壁的部分呈现向上弯曲的弧度。如图8所示,在一些实施例中,多晶硅层间氧化层108’的凹形顶表面108S的轮廓P2与剩余的隔离氧化层104”的第一顶表面部分104S-1、第二顶表面部分104S-2、和剩余的遮罩多晶硅106”的顶表面106S所构成的轮廓P1大致相同。也就是说,在一些实施例中,轮廓P2和轮廓P1大致相同,且可视为具有大致相同的凹形曲线。It should be noted that, as shown in FIG. 8 , according to some embodiments, the top surface of the interpolysilicon oxide layer 108' is a concave top surface 108S. The concave top surface 108S has a profile P2. In some embodiments, the profile P2 can be regarded as having a concave curve, and a portion close to the sidewall of the trench 102 presents an upwardly curved arc. As shown in FIG. 8, in some embodiments, the profile P2 of the concave top surface 108S of the interpolysilicon oxide layer 108' is consistent with the first top surface portion 104S-1, the second top surface portion 104S-1, and the remaining isolation oxide layer 104". Profile P1 formed by portion 104S-2, and top surface 106S of the remaining mask polysilicon 106″ is substantially the same. That is, in some embodiments, profile P2 and profile P1 are substantially the same, and may be considered to have substantially the same concave curve.
在一些实施例中,多晶硅层间氧化层108’的凹形顶表面108S与沟槽102的侧壁之间的角度可例如为110°到120°。在一些实施例中,多晶硅层间氧化层108’的凹形顶表面108S的曲率可例如为0.045到0.055nm-1。在一些实施例中,所述凹形顶表面108S的曲率即为轮廓P2的曲率。在一些实施例中,轮廓P2的曲率大致等于轮廓P1的曲率。在一些实施例中,多晶硅层间氧化层108’的凹形顶表面108S与沟槽102的侧壁之间的角度越大、或多晶硅层间氧化层108’的凹形顶表面108S的曲率越大,最终半导体装置的栅极-漏极电容(Cgd)下降程度越大。In some embodiments, the angle between the concave top surface 108S of the interpoly oxide layer 108 ′ and the sidewalls of the trench 102 may be, for example, 110° to 120°. In some embodiments, the curvature of the concave top surface 108S of the interpolysilicon oxide layer 108 ′ may be, for example, 0.045 to 0.055 nm −1 . In some embodiments, the curvature of the concave top surface 108S is the curvature of the profile P2. In some embodiments, the curvature of profile P2 is approximately equal to the curvature of profile P1. In some embodiments, the greater the angle between the concave top surface 108S of the interpolysilicon oxide layer 108 ′ and the sidewall of the trench 102 is, the greater the curvature of the concave top surface 108S of the interpolysilicon oxide layer 108 ′ is. The larger the value, the greater the decrease in the gate-drain capacitance (Cgd) of the final semiconductor device.
根据一实施例,本发明实施例所提供的半导体装置10的多晶硅层间氧化层108’的凹形顶表面108S与沟槽102的侧壁之间的角度为120°、多晶硅层间氧化层108’的凹形顶表面108S的曲率(即轮廓P2的曲率)为120°的情况下,半导体装置10的栅极-漏极电容(Cgd)为2.5E-9至3E-9库伦。According to an embodiment, the angle between the concave top surface 108S of the interpolysilicon oxide layer 108 ′ and the sidewall of the trench 102 in the semiconductor device 10 provided by the embodiment of the present invention is 120°, and the interpolysilicon oxide layer 108 When the curvature of the concave top surface 108S of '' (ie the curvature of the profile P2) is 120°, the gate-drain capacitance (Cgd) of the semiconductor device 10 is 2.5E-9 to 3E-9 coulombs.
值得一提的是,由于多晶硅层间氧化层108’的凹形顶表面108S在接近沟槽102侧壁的部分呈现向上弯曲的弧度,相当于增加了氧化层(例如,多晶硅层间氧化层108’及剩余的隔离氧化层104”)在后续形成的栅极多晶硅和漏极之间的厚度,因此,可降低最终半导体装置的栅极-漏极电容(Cgd)。It is worth mentioning that since the concave top surface 108S of the interpolysilicon oxide layer 108 ′ presents an upwardly curved arc near the sidewall of the trench 102 , it is equivalent to adding an oxide layer (for example, the interpolysilicon oxide layer 108 ' and the remaining isolation oxide layer 104") between the subsequently formed gate polysilicon and the drain, thereby reducing the gate-drain capacitance (Cgd) of the final semiconductor device.
在一些实施例中,剩余的隔离氧化层104”从邻接于沟槽102的第二顶表面部分104S-2的最高点至邻接于遮罩多晶硅106”的第一顶表面部分104S-1的最低点的高度差可例如为30nm到40nm。在一些实施例中,多晶硅层间氧化层108’的凹形顶表面108S的最高点至凹形顶表面108S的最低点的高度差可例如为32nm到38nm。In some embodiments, the remaining isolation oxide layer 104" extends from the highest point of the second top surface portion 104S-2 adjacent to the trench 102 to the lowest point of the first top surface portion 104S-1 adjacent to the mask polysilicon 106". The height difference of the dots may be, for example, 30 nm to 40 nm. In some embodiments, the height difference from the highest point of the concave top surface 108S to the lowest point of the concave top surface 108S of the interpolysilicon oxide layer 108' may be, for example, 32 nm to 38 nm.
如图9所示,根据一些实施例,形成一栅极氧化层110于多晶硅层间氧化层108’上。在一些实施例中,可利用例如利用化学气相沉积(CVD)工艺、原子层沉积(ALD)工艺、热氧化工艺、物理气相沉积(PVD)工艺、光刻图案化工艺、刻蚀工艺、其他可应用的工艺、或前述的组合形成栅极氧化层110。在一些实施例中,栅极氧化层110可由氧化硅、氧化铪、氧化锆、氧化铝、二氧化铝铪合金、二氧化硅铪、氮氧化硅铪、氧化钽铪、氧化钛铪、氧化锆铪、其它合适的高介电常数(high-k)介电材料、或前述的组合所形成。As shown in FIG. 9, according to some embodiments, a gate oxide layer 110 is formed on the interpolysilicon oxide layer 108'. In some embodiments, chemical vapor deposition (CVD) process, atomic layer deposition (ALD) process, thermal oxidation process, physical vapor deposition (PVD) process, photolithographic patterning process, etching process, other possible The gate oxide layer 110 is formed by an applied process, or a combination of the foregoing. In some embodiments, the gate oxide layer 110 can be made of silicon oxide, hafnium oxide, zirconium oxide, aluminum oxide, aluminum oxide hafnium alloy, silicon hafnium oxide, silicon hafnium oxynitride, tantalum hafnium oxide, titanium hafnium oxide, zirconium oxide Hafnium, other suitable high-k dielectric materials, or combinations thereof.
如图10所示,根据一些实施例,形成一栅极多晶硅112于栅极氧化层110上。在一些实施例中,可利用例如化学气相沉积(CVD)、或其他合适的多晶硅沉积技术形成栅极多晶硅112。至此,完成本发明实施例所提供的半导体装置10。As shown in FIG. 10 , according to some embodiments, a gate polysilicon 112 is formed on the gate oxide layer 110 . In some embodiments, gate polysilicon 112 may be formed using, for example, chemical vapor deposition (CVD), or other suitable polysilicon deposition techniques. So far, the semiconductor device 10 provided by the embodiment of the present invention is completed.
接着,可依照本技术领域相关技术人员所熟知的技术进行后续步骤,例如,可利用像是化学气相沉积(CVD)、或其他合适的沉积工艺形成硼磷硅酸盐玻璃(BPSG)、磷硅酸盐玻璃(PSG)、或硼硅酸盐玻璃(BSG)等绝缘层于半导体装置10上方,以及形成金属层等工艺步骤。为达简洁的目的,故不在此赘述。Next, follow-up steps can be performed according to techniques well known to those skilled in the art, for example, borophosphosilicate glass (BPSG), phosphosilicate An insulating layer such as sodium silicate glass (PSG) or borosilicate glass (BSG) is placed on the semiconductor device 10, and a metal layer is formed. For the purpose of brevity, it is not repeated here.
本发明的另一实施例提供一种由上述的半导体制造方法所形成的半导体装置。如图10所示,半导体装置10包括具有多个沟槽102的一基板100,以及隔离氧化层104”位于沟槽102中。基板100的材料可参照前述相关段落,不在此重复叙述。在一些实施例中,隔离氧化层104”可顺应性地形成于沟槽102的侧壁和底部上以及基板100的顶表面上。Another embodiment of the present invention provides a semiconductor device formed by the above-mentioned semiconductor manufacturing method. As shown in FIG. 10, the semiconductor device 10 includes a substrate 100 having a plurality of trenches 102, and an isolation oxide layer 104" is located in the trenches 102. The material of the substrate 100 can refer to the aforementioned relevant paragraphs, and will not be repeated here. In some In an embodiment, the isolation oxide layer 104 ″ may be conformably formed on the sidewalls and bottom of the trench 102 and on the top surface of the substrate 100 .
在一些实施例中,半导体装置10还包括遮罩多晶硅106”。在一些实施例中,遮罩多晶硅106”可由未掺杂的多晶硅或是经原位掺杂的多晶硅所形成。在一些实施例中,遮罩多晶硅106”位于沟槽102中且部分地被隔离氧化层104”围绕。In some embodiments, the semiconductor device 10 further includes a mask polysilicon 106 ″. In some embodiments, the mask polysilicon 106 ″ may be formed of undoped polysilicon or in-situ doped polysilicon. In some embodiments, mask polysilicon 106" is located in trench 102 and is partially surrounded by isolation oxide 104".
在一些实施例中,隔离氧化层104”的一顶表面从遮罩多晶硅106”的侧壁106”S向沟槽102的侧壁方向往上延伸。在一些实施例中,隔离氧化层104”的一顶表面具有两个不同的曲率。在一些实施例中,隔离氧化层104”与遮罩多晶硅106”的侧壁106”S相邻的第一顶表面部分104S-1具有第一曲率,隔离氧化层104”与沟槽102的侧壁相邻的第二顶表面部分104S-2具有第二曲率。在一些实施例中,第一曲率大于第二曲率。在一些实施例中,隔离氧化层104”具有不平滑(或不连续)的顶表面。In some embodiments, a top surface of the isolation oxide layer 104" extends upward from the sidewall 106"S of the mask polysilicon 106" toward the sidewall of the trench 102. In some embodiments, the isolation oxide layer 104" A top surface of has two different curvatures. In some embodiments, the first top surface portion 104S-1 of the isolation oxide layer 104" adjacent to the sidewall 106"S of the mask polysilicon 106" has a first curvature, and the isolation oxide layer 104" is separated from the sides of the trench 102. The wall adjacent second top surface portion 104S- 2 has a second curvature. In some embodiments, the first curvature is greater than the second curvature. In some embodiments, the isolation oxide layer 104" has an uneven (or discontinuous) top surface.
在一些实施例中,隔离氧化层104”邻接于遮罩多晶硅106”的第一顶表面部分104S-1与遮罩多晶硅106”的一顶表面106S的高度差小于50nm。这样的结果使得在后续工艺填充至沟槽102中的多晶硅层间氧化物不产生(或大致上不产生)孔隙(void)。由于多晶硅层间氧化物可被良好地沉积,因此可更好地控制多晶硅层间氧化物层的形成,改良最终半导体装置的性能,例如,降低栅极-漏极电容(Cgd)和抑制栅极至源极漏电流。In some embodiments, the isolation oxide layer 104" is adjacent to the first top surface portion 104S-1 of the mask polysilicon 106" and the height difference between the first top surface 106S of the mask polysilicon 106" is less than 50nm. Such a result makes subsequent The process fills the IPO into the trenches 102 without (or substantially without) voids. Since the IPO can be deposited well, the IPO can be better controlled. The formation of layers improves the performance of the final semiconductor device, eg, reduces gate-drain capacitance (Cgd) and suppresses gate-to-source leakage current.
在一些实施例中,隔离氧化层104”从邻接于沟槽102的第二顶表面部分104S-2的最高点至邻接于遮罩多晶硅106”的第一顶表面部分104S-1的最低点的高度差可例如为30nm到40nm。In some embodiments, the isolation oxide layer 104" extends from the highest point of the second top surface portion 104S-2 adjacent to the trench 102 to the lowest point of the first top surface portion 104S-1 adjacent to the mask polysilicon 106". The height difference may be, for example, 30nm to 40nm.
在一些实施例中,半导体装置10还包括多晶硅层间氧化层108’。在一些实施例中,多晶硅层间氧化层108’可例如为高密度电浆化学气相沉积(HDPCVD)氧化物。多晶硅层间氧化层108’位于隔离氧化层104”和遮罩多晶硅106”上。在一些实施例中,多晶硅层间氧化层108’完全地覆盖隔离氧化层104”和遮罩多晶硅106”,而不具有(或大致上不具有)孔隙(void)。多晶硅层间氧化层108’具有一凹形顶表面108S。In some embodiments, the semiconductor device 10 further includes an interpolysilicon oxide layer 108'. In some embodiments, the interpoly oxide layer 108' may be, for example, a high density plasma chemical vapor deposition (HDPCVD) oxide. An interpoly oxide 108' overlies the isolation oxide 104" and the mask poly 106". In some embodiments, the interpoly oxide layer 108' completely covers the isolation oxide layer 104" and the mask polysilicon 106" without (or substantially without) voids. The interpoly oxide layer 108' has a concave top surface 108S.
在一些实施例中,多晶硅层间氧化层108’的凹形顶表面108S的轮廓与隔离氧化层104”的顶表面(第一顶表面部分104S-1及第二顶表面部分104S-2)和遮罩多晶硅106”的一顶表面106S所构成的轮廓P1大致相同。In some embodiments, the profile of the concave top surface 108S of the interpolysilicon oxide layer 108' is consistent with the top surface of the isolation oxide layer 104" (the first top surface portion 104S-1 and the second top surface portion 104S-2) and The profile P1 formed by a top surface 106S of the mask polysilicon 106" is substantially the same.
应注意的是,由于多晶硅层间氧化层108’的凹形顶表面108S在接近沟槽102侧壁的部分呈现向上弯曲的弧度,相当于增加了氧化层(例如,多晶硅层间氧化层108’及剩余的隔离氧化层104”)在后续形成的栅极多晶硅和漏极之间的厚度,因此,可降低最终半导体装置的栅极-漏极电容(Cgd)。在一些实施例中,多晶硅层间氧化层108’的平均厚度可例如为90nm到170nm。It should be noted that since the concave top surface 108S of the interpolysilicon oxide layer 108' presents an upward curved arc near the sidewall of the trench 102, it is equivalent to adding an oxide layer (for example, the interpolysilicon oxide layer 108' and the remaining isolation oxide layer 104") between the subsequently formed gate polysilicon and the drain, thereby reducing the gate-drain capacitance (Cgd) of the final semiconductor device. In some embodiments, the polysilicon layer The average thickness of the inter-oxide layer 108' may be, for example, 90 nm to 170 nm.
在一些实施例中,多晶硅层间氧化层108’的凹形顶表面108S与沟槽102的侧壁之间的角度可例如为110°到120°。在一些实施例中,多晶硅层间氧化层108’的凹形顶表面108S的曲率可例如为0.045到0.055nm-1。在一些实施例中,多晶硅层间氧化层108’的凹形顶表面108S与沟槽102的侧壁之间的角度越大、或多晶硅层间氧化层108’的凹形顶表面108S的曲率越大,最终半导体装置的栅极-漏极电容(Cgd)下降程度越大。In some embodiments, the angle between the concave top surface 108S of the interpoly oxide layer 108 ′ and the sidewalls of the trench 102 may be, for example, 110° to 120°. In some embodiments, the curvature of the concave top surface 108S of the interpolysilicon oxide layer 108 ′ may be, for example, 0.045 to 0.055 nm −1 . In some embodiments, the greater the angle between the concave top surface 108S of the interpolysilicon oxide layer 108 ′ and the sidewall of the trench 102 is, the greater the curvature of the concave top surface 108S of the interpolysilicon oxide layer 108 ′ is. The larger the value, the greater the decrease in the gate-drain capacitance (Cgd) of the final semiconductor device.
在一些实施例中,半导体装置10更包括一栅极氧化层110位于多晶硅层间氧化层108’上,以及一栅极多晶硅112位于栅极氧化层110上。栅极氧化层110和栅极多晶硅112的材料可参照前述相关段落,故不在此重复叙述。可理解的是,半导体装置10还可包括其他未显示于图式中的元件,例如,位于半导体装置10上方的硼磷硅酸盐玻璃(BPSG)、磷硅酸盐玻璃(PSG)、或硼硅酸盐玻璃(BSG)等绝缘层、以及金属层等结构。由于上述结构为本技术领域相关技术人员所熟知,为达简洁的目的,故不在此赘述。In some embodiments, the semiconductor device 10 further includes a gate oxide layer 110 on the interpolysilicon oxide layer 108', and a gate polysilicon 112 on the gate oxide layer 110. The materials of the gate oxide layer 110 and the gate polysilicon 112 can refer to the relevant paragraphs above, so the description will not be repeated here. It can be understood that the semiconductor device 10 may also include other elements not shown in the drawings, for example, borophosphosilicate glass (BPSG), phosphosilicate glass (PSG), or borophosilicate glass (PSG) located above the semiconductor device 10 Structures such as insulating layers such as silicate glass (BSG), and metal layers. Since the above structure is well known to those skilled in the art, for the sake of brevity, it is not repeated here.
本发明实施例所提供的半导体装置制造方法通过对遮罩氧化物进行两阶段的刻蚀工艺并对隔离氧化物层进行两阶段的移除工艺,以减缓过去工艺中在沟槽侧壁和遮罩氧化物侧壁之间所产生的隔离氧化物的凹陷程度,使得后续工艺所填入的层间多晶硅氧化物可良好地沉积在遮罩多晶硅和隔离氧化层上而不产生孔隙(void)。The semiconductor device manufacturing method provided by the embodiment of the present invention performs a two-stage etching process on the mask oxide layer and a two-stage removal process on the isolation oxide layer, so as to slow down the damage caused by the trench sidewall and masking process in the past process. The degree of recessing of the isolation oxide formed between the sidewalls of the mask oxide enables the interlayer polysilicon oxide filled in the subsequent process to be well deposited on the mask polysilicon and the isolation oxide layer without creating voids.
根据本发明实施例所提供的半导体装置制造方法所得到的半导体装置具有以下优点。本发明实施例所提供的半导体装置相较于过去工艺所提供的半导体装置,隔离氧化层在沟槽侧壁和遮罩多晶硅侧壁之间所产生的凹陷程度获得减缓,且后续工艺中填入的多晶硅层间氧化层(IPO)不具有孔隙(void)。因此,本发明实施例的半导体装置的多晶硅层间氧化层(IPO)可在栅极多晶硅和遮罩多晶硅之间提供良好的电性绝缘效果。并且,由于不具有孔隙,多晶硅层间氧化层(IPO)可提供良好的抑制栅极至源极漏电流的隔离效果,进而提高半导体装置的性能。The semiconductor device obtained according to the semiconductor device manufacturing method provided by the embodiment of the present invention has the following advantages. Compared with the semiconductor device provided by the past process, the semiconductor device provided by the embodiment of the present invention has a reduced degree of depression caused by the isolation oxide layer between the sidewall of the trench and the sidewall of the mask polysilicon, and the subsequent process fills The interpoly oxide layer (IPO) does not have voids. Therefore, the interpolysilicon oxide layer (IPO) of the semiconductor device according to the embodiment of the present invention can provide a good electrical insulation effect between the gate polysilicon and the mask polysilicon. Moreover, since there are no pores, the inter-polysilicon oxide layer (IPO) can provide a good isolation effect for suppressing leakage current from the gate to the source, thereby improving the performance of the semiconductor device.
此外,由于对遮罩氧化物进行两阶段的刻蚀工艺并对隔离氧化物层进行两阶段的移除工艺,本发明实施例所提供半导体装置的隔离氧化层在沟槽侧壁和遮罩多晶硅侧壁之间的凹陷部位具有改良的轮廓。又,由于本发明实施例所提供半导体装置的多晶硅层间氧化层(IPO)与上述隔离氧化层凹陷部位的轮廓大致相同,因此,本发明实施例所提供半导体装置的多晶硅层间氧化层(IPO)具有一个凹形顶表面。多晶硅层间氧化层(IPO)的凹形顶表面在接近沟槽侧壁的部分呈现向上弯曲的弧度,相当于增加了氧化层在栅极多晶硅和漏极之间的厚度,因此可降低半导体装置的栅极-漏极电容(Cgd)。In addition, due to the two-stage etching process on the mask oxide and the two-stage removal process on the isolation oxide layer, the isolation oxide layer of the semiconductor device provided by the embodiment of the present invention is formed on the trench sidewall and the mask polysilicon layer. The recessed portion between the side walls has a modified profile. Furthermore, since the outline of the inter-polysilicon oxide layer (IPO) of the semiconductor device provided by the embodiment of the present invention is substantially the same as that of the recessed portion of the isolation oxide layer, the inter-polysilicon oxide layer (IPO) of the semiconductor device provided by the embodiment of the present invention ) has a concave top surface. The concave top surface of the interpolysilicon oxide layer (IPO) presents an upwardly curved arc near the sidewall of the trench, which is equivalent to increasing the thickness of the oxide layer between the gate polysilicon and the drain, thus reducing the semiconductor device. of gate-drain capacitance (Cgd).
本虽然本发明已以实施例揭露于上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视权利要求所界定者为准。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention should be defined by the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810139717.2A CN110164967B (en) | 2018-02-11 | 2018-02-11 | Semiconductor device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810139717.2A CN110164967B (en) | 2018-02-11 | 2018-02-11 | Semiconductor device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110164967A true CN110164967A (en) | 2019-08-23 |
CN110164967B CN110164967B (en) | 2022-02-15 |
Family
ID=67641506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810139717.2A Active CN110164967B (en) | 2018-02-11 | 2018-02-11 | Semiconductor device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110164967B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110600371A (en) * | 2019-08-23 | 2019-12-20 | 中芯集成电路制造(绍兴)有限公司 | Polycrystalline silicon filling method, semiconductor device manufacturing method and semiconductor device |
CN112133637A (en) * | 2020-11-30 | 2020-12-25 | 中芯集成电路制造(绍兴)有限公司 | Method for manufacturing semiconductor device with shielded gate trench |
CN113013028A (en) * | 2021-03-24 | 2021-06-22 | 上海华虹宏力半导体制造有限公司 | Method for forming inter-gate oxide layer and method for forming shielded gate trench type device |
CN113013027A (en) * | 2021-03-24 | 2021-06-22 | 上海华虹宏力半导体制造有限公司 | Method for forming inter-gate oxide layer and method for forming shielded gate trench type device |
CN113964176A (en) * | 2020-07-21 | 2022-01-21 | 新唐科技股份有限公司 | Semiconductor structure and forming method thereof |
CN114284149A (en) * | 2021-12-22 | 2022-04-05 | 瑶芯微电子科技(上海)有限公司 | A kind of preparation method of shielded gate trench field effect transistor |
CN114388438A (en) * | 2020-10-22 | 2022-04-22 | 无锡华润上华科技有限公司 | Manufacturing method of split gate trench MOSFET |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101626033A (en) * | 2008-07-09 | 2010-01-13 | 飞兆半导体公司 | Structure and method for forming a shielded gate trench fet with an inter-electrode dielectric having a low-k dielectric therein |
CN102683390A (en) * | 2011-03-16 | 2012-09-19 | 飞兆半导体公司 | Inter-poly dielectric in shielded gate mosfet device |
CN102723277A (en) * | 2009-08-31 | 2012-10-10 | 万国半导体股份有限公司 | Fabrication of trench dmos device having thick bottom shielding oxide |
CN103426771A (en) * | 2012-05-14 | 2013-12-04 | 半导体元件工业有限责任公司 | Method of making an insulated gate semiconductor device having a shield electrode structure |
US20150311295A1 (en) * | 2014-04-23 | 2015-10-29 | Alpha And Omega Semiconductor Incorporated | Split poly connection via through-poly-contact (tpc) in split-gate based power mosfets |
US9281368B1 (en) * | 2014-12-12 | 2016-03-08 | Alpha And Omega Semiconductor Incorporated | Split-gate trench power MOSFET with protected shield oxide |
CN105895516A (en) * | 2016-04-29 | 2016-08-24 | 深圳尚阳通科技有限公司 | Method for manufacturing trench gate MOSFET with shielding grid |
-
2018
- 2018-02-11 CN CN201810139717.2A patent/CN110164967B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101626033A (en) * | 2008-07-09 | 2010-01-13 | 飞兆半导体公司 | Structure and method for forming a shielded gate trench fet with an inter-electrode dielectric having a low-k dielectric therein |
CN102723277A (en) * | 2009-08-31 | 2012-10-10 | 万国半导体股份有限公司 | Fabrication of trench dmos device having thick bottom shielding oxide |
CN102683390A (en) * | 2011-03-16 | 2012-09-19 | 飞兆半导体公司 | Inter-poly dielectric in shielded gate mosfet device |
CN103426771A (en) * | 2012-05-14 | 2013-12-04 | 半导体元件工业有限责任公司 | Method of making an insulated gate semiconductor device having a shield electrode structure |
US20150311295A1 (en) * | 2014-04-23 | 2015-10-29 | Alpha And Omega Semiconductor Incorporated | Split poly connection via through-poly-contact (tpc) in split-gate based power mosfets |
US9281368B1 (en) * | 2014-12-12 | 2016-03-08 | Alpha And Omega Semiconductor Incorporated | Split-gate trench power MOSFET with protected shield oxide |
CN105895516A (en) * | 2016-04-29 | 2016-08-24 | 深圳尚阳通科技有限公司 | Method for manufacturing trench gate MOSFET with shielding grid |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110600371A (en) * | 2019-08-23 | 2019-12-20 | 中芯集成电路制造(绍兴)有限公司 | Polycrystalline silicon filling method, semiconductor device manufacturing method and semiconductor device |
CN113964176A (en) * | 2020-07-21 | 2022-01-21 | 新唐科技股份有限公司 | Semiconductor structure and forming method thereof |
CN113964176B (en) * | 2020-07-21 | 2023-05-09 | 新唐科技股份有限公司 | Semiconductor structures and methods of forming them |
CN114388438A (en) * | 2020-10-22 | 2022-04-22 | 无锡华润上华科技有限公司 | Manufacturing method of split gate trench MOSFET |
WO2022083076A1 (en) * | 2020-10-22 | 2022-04-28 | 无锡华润上华科技有限公司 | Manufacturing method for split-gate trench mosfet |
CN112133637A (en) * | 2020-11-30 | 2020-12-25 | 中芯集成电路制造(绍兴)有限公司 | Method for manufacturing semiconductor device with shielded gate trench |
CN112133637B (en) * | 2020-11-30 | 2021-02-12 | 中芯集成电路制造(绍兴)有限公司 | Manufacturing method of semiconductor device with shielded gate trench |
CN113013028A (en) * | 2021-03-24 | 2021-06-22 | 上海华虹宏力半导体制造有限公司 | Method for forming inter-gate oxide layer and method for forming shielded gate trench type device |
CN113013027A (en) * | 2021-03-24 | 2021-06-22 | 上海华虹宏力半导体制造有限公司 | Method for forming inter-gate oxide layer and method for forming shielded gate trench type device |
CN114284149A (en) * | 2021-12-22 | 2022-04-05 | 瑶芯微电子科技(上海)有限公司 | A kind of preparation method of shielded gate trench field effect transistor |
CN114284149B (en) * | 2021-12-22 | 2023-04-28 | 瑶芯微电子科技(上海)有限公司 | Preparation method of shielded gate trench field effect transistor |
Also Published As
Publication number | Publication date |
---|---|
CN110164967B (en) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10600906B1 (en) | Semiconductor devices and methods for forming the same | |
TWI689043B (en) | Transistor and methods of forming the same | |
CN110164967A (en) | Semiconductor device and its manufacturing method | |
US9953885B2 (en) | STI shape near fin bottom of Si fin in bulk FinFET | |
US6566718B2 (en) | Field effect transistor with an improved gate contact and method of fabricating the same | |
TWI662652B (en) | Method of forming integrated circuit | |
TW202002089A (en) | Semiconductor devices and methods for manufacturing the same | |
CN107564953B (en) | Varactor transistor and method of making the same | |
CN114864496A (en) | Method for forming semiconductor device | |
CN111933529A (en) | Manufacturing method and structure of trench type MOSFET | |
CN116801629A (en) | Memory device and method of forming same | |
CN111200017A (en) | Semiconductor structure and forming method thereof | |
CN100390926C (en) | Method for manufacturing contact region on Silicon On Insulator (SOI) wafer | |
CN112151611B (en) | Semiconductor element and method for manufacturing the same | |
CN114843269A (en) | Transistor gate contact and method of forming the same | |
CN118888551A (en) | Semiconductor element and method for manufacturing the same | |
US10608094B2 (en) | Semiconductor device and method of forming the same | |
CN108987276B (en) | Enlarged sacrificial gate cover for forming self-aligned contacts | |
CN109087892B (en) | Semiconductor structure, forming method thereof and forming method of fin field effect transistor | |
CN113838933B (en) | Semiconductor structure and forming method thereof | |
TWI646605B (en) | Semiconductor devices and methods for forming the same | |
JP2013045953A (en) | Semiconductor device and method of manufacturing the same | |
CN114744045B (en) | Semiconductor structure | |
CN113972257B (en) | Semiconductor structures and methods of forming them | |
CN112736082B (en) | Semiconductor components and preparation methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |