CN110161446A - Relay protection device for high-voltage dc voltage mutual inductor - Google Patents
Relay protection device for high-voltage dc voltage mutual inductor Download PDFInfo
- Publication number
- CN110161446A CN110161446A CN201910341179.XA CN201910341179A CN110161446A CN 110161446 A CN110161446 A CN 110161446A CN 201910341179 A CN201910341179 A CN 201910341179A CN 110161446 A CN110161446 A CN 110161446A
- Authority
- CN
- China
- Prior art keywords
- voltage
- transformer
- transient
- relay switch
- square wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001052 transient effect Effects 0.000 claims abstract description 64
- 238000012360 testing method Methods 0.000 claims abstract description 34
- 238000007599 discharging Methods 0.000 claims abstract description 14
- 239000003990 capacitor Substances 0.000 claims description 20
- 238000005070 sampling Methods 0.000 claims description 20
- 238000004146 energy storage Methods 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 13
- 238000010998 test method Methods 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/02—Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
本发明公开了一种用于高压直流电压互感器的暂态试验装置,包括高压直流充电电源、直流方波发生器、高压标准器、电压互感器、互感器暂态校验仪以及PC端等,从而通过所述高压直流充电电源等实现了电压互感器的暂态试验;而且,所述直流方波发生器包括若干个并联连接的充电放电单元以及用于控制所述充电放电单元工作状态的继电器开关组件,因此,通过改变所述充电放电单元的数量就可以对所述直流方波发生器输出的高压电大小进行调整,以满足不同电压等级的电压互感器的暂态试验要求。
The invention discloses a transient test device for a high voltage direct current voltage transformer, comprising a high voltage direct current charging power supply, a direct current square wave generator, a high voltage standard device, a voltage transformer, a transformer transient calibrator, a PC terminal and the like , so that the transient test of the voltage transformer is realized through the high-voltage DC charging power supply, etc.; moreover, the DC square wave generator includes several charging and discharging units connected in parallel and a Therefore, by changing the number of the charging and discharging units, the high voltage output by the DC square wave generator can be adjusted to meet the transient test requirements of voltage transformers of different voltage levels.
Description
技术领域technical field
本发明涉及电网检测技术领域,尤其涉及一种用于高压直流电压互感器的暂态试验装置。The invention relates to the technical field of power grid detection, in particular to a transient test device for a high-voltage direct current voltage transformer.
背景技术Background technique
高压直流输电技术因具其远距离、大容量以及无同步问题等优点而被广泛应用,但是由于高压直流输电系统中直流侧故障时的回路阻抗很小,在高压直流输电系统中出现直流故障时会产生很大的故障电流,这就需要控制保护信号具有更快的采样速度和更宽的频宽宽度,这对于直流输电系统中互感器的暂态响应提出了更高的要求,因此,在互感器使用前对其进行现场校验和试验验证是很有必要的。HVDC technology is widely used due to its advantages of long distance, large capacity and no synchronization problems. However, due to the small circuit impedance of the DC side fault in the HVDC It will generate a large fault current, which requires the control and protection signal to have a faster sampling speed and a wider bandwidth, which puts forward higher requirements for the transient response of the transformer in the DC transmission system. It is necessary to carry out on-site calibration and test verification of the transformer before use.
根据国标GB/T 26217-2010《高压直流输电系统直流电压测量装置》中的规定,直流电压测量装置的“暂态响应”是二次电压对一次电压暂态变化的响应,其要求在直流电压测量装置的高压端施加测量范围10%以上的一个阶跃电压,测量输出端暂态响应,此时的响应时间应不大于250us,而且作为测试装置需要提供一个响应时间远小于该响应时间的电压波形,达到10us量级。但是,由于缺乏相关理论研究、缺少相应检测设备,导致针对电压互感器的暂态试验不能正常进行。According to the national standard GB/T 26217-2010 "DC voltage measurement device for high-voltage DC transmission system", the "transient response" of the DC voltage measurement device is the response of the secondary voltage to the transient change of the primary voltage, which requires Apply a step voltage over 10% of the measurement range to the high-voltage terminal of the measuring device, and measure the transient response of the output terminal. The response time at this time should not be greater than 250us, and as a test device, a voltage with a response time much shorter than the response time should be provided. waveform, reaching the order of 10us. However, due to the lack of relevant theoretical research and the lack of corresponding testing equipment, the transient test for the voltage transformer cannot be carried out normally.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的不足,本发明所解决的技术问题是提供一种用于高压直流电压互感器的暂态试验装置及控制方法,其可以为入网的高直流电压互感器进行暂态试验。In order to overcome the deficiencies of the prior art, the technical problem solved by the present invention is to provide a transient test device and a control method for high-voltage DC voltage transformers, which can perform transient tests for high-voltage DC voltage transformers connected to the grid.
为解决上述技术问题,本发明所采用的技术方案内容具体如下:In order to solve the above-mentioned technical problems, the content of the technical solution adopted in the present invention is as follows:
一种用于高压直流电压互感器的暂态试验装置,包括高压直流充电电源、直流方波发生器、高压标准器、电压互感器、互感器暂态校验仪以及PC端,其中:所述高压直流充电电源用于向所述直流方波发生器充电,所述直流方波发生器用于对接收到的充电电压进行升级、并将升级后的电压传输至所述高压标准器和所述电压互感器,所述互感器暂态校验仪用于对所述高压标准器和所述电压互感器输出的信号进行采样、并将采样后的信号传输至所述PC端,所述 PC端用于对接收的信号进行计算、存储和显示。A transient test device for a high-voltage DC voltage transformer, comprising a high-voltage DC charging power supply, a DC square wave generator, a high-voltage standard, a voltage transformer, a transformer transient calibrator and a PC terminal, wherein: the The high-voltage DC charging power supply is used to charge the DC square wave generator, and the DC square wave generator is used to upgrade the received charging voltage and transmit the upgraded voltage to the high-voltage standard device and the voltage Transformer, the transformer transient calibrator is used to sample the signals output by the high-voltage standard device and the voltage transformer, and transmit the sampled signals to the PC end, and the PC end uses It is used to calculate, store and display the received signal.
进一步地,所述直流方波发生器包括若干个并联连接的充电放电单元以及用于控制所述充电放电单元工作状态的继电器开关组件,每个所述充电放电单元包括储能电容、IGBT开关、第一二极管和第二二极管,所述第一二极管、所述储能电容以及所述第二二极管依次串联连接后与所述IGBT开关并联连接。Further, the DC square wave generator includes a plurality of charging and discharging units connected in parallel and a relay switch assembly for controlling the working state of the charging and discharging units, and each charging and discharging unit includes an energy storage capacitor, an IGBT switch, The first diode and the second diode, the first diode, the energy storage capacitor and the second diode are sequentially connected in series and then connected in parallel with the IGBT switch.
更进一步地,所述继电器开关组件包括设置在所述第一二极管输入端的第一继电器开关、设置在所述高压标准器和所述电压互感器输出端的第二继电器开关以及设置在接地小电阻输出端的第三继电器开关。Further, the relay switch assembly includes a first relay switch arranged at the input end of the first diode, a second relay switch arranged at the output end of the high-voltage standard and the voltage transformer, and a second relay switch arranged at the ground terminal. A third relay switch at the resistor output.
更进一步地,所述互感器暂态校验仪包含有用于连接所述高压标准器的第一信号接口、以及用于连接所述电压互感器的第二信号接口。Furthermore, the transformer transient calibrator includes a first signal interface for connecting to the high-voltage standard, and a second signal interface for connecting to the voltage transformer.
进一步地,所述暂态试验装置还包括与所述电压互感器相连接的远端数字模块,所述远端数字模块的输出端连接所述互感器暂态校验仪。Further, the transient test device further includes a remote digital module connected to the voltage transformer, and an output end of the remote digital module is connected to the transformer transient calibrator.
进一步地,所述高压直流充电电源、所述直流方波发生器、所述高压标准器以及所述电压互感器均设置有接地端。Further, the high voltage DC charging power supply, the DC square wave generator, the high voltage standard device and the voltage transformer are all provided with ground terminals.
更进一步地,所述互感器暂态校验仪包括与所述高压标准器和所述电压互感器相连接的隔离采样与通讯单元、以及与所述隔离采样与通讯单元相连接的主机,所述隔离采样与通讯单元与所述主机通过光纤连接。Further, the transformer transient calibrator includes an isolated sampling and communication unit connected to the high-voltage standard device and the voltage transformer, and a host connected to the isolated sampling and communication unit, so The isolated sampling and communication unit is connected with the host through an optical fiber.
本发明还公开了一种用于高压直流电压互感器的暂态试验方法,包括如下步骤:The invention also discloses a transient test method for the high voltage direct current voltage transformer, comprising the following steps:
S1:控制继电器开关组件的开、断状态,使得所述高压直流充电电源采用设定的充电电压向所述直流方波发生器充电;S1: Control the on and off states of the relay switch assembly, so that the high-voltage DC charging power supply charges the DC square wave generator with a set charging voltage;
S2:直流方波发生器充电完成后,控制继电器开关组件的开、断状态,同时导通IGBT开关,使得直流方波发生器进行放电,并且释放的电压被传输至所述高压标准器和所述电压互感器;S2: After the charging of the DC square wave generator is completed, the on and off states of the relay switch components are controlled, and the IGBT switch is turned on at the same time, so that the DC square wave generator discharges, and the released voltage is transmitted to the high-voltage standard and all said voltage transformer;
S3:所述互感器暂态校验仪对所述高压标准器和所述电压互感器输出的信号进行采样、并将采样后的信号传输至所述PC端;S3: The transformer transient calibrator samples the signals output by the high-voltage standard device and the voltage transformer, and transmits the sampled signals to the PC terminal;
S4:所述PC端对接收的信号进行计算、存储和显示。S4: The PC terminal calculates, stores and displays the received signal.
进一步地,步骤S1具体为:接通第一继电器开关,断开第二继电器开关、第三继电器开关以及IGBT开关,则所述高压直流充电电源将向所述直流方波发生器进行充电,并且充电电流流经所述第一二极管后将对于储能电容进行并联充电。Further, step S1 is specifically: turning on the first relay switch, turning off the second relay switch, the third relay switch and the IGBT switch, then the high-voltage DC charging power supply will charge the DC square wave generator, and After the charging current flows through the first diode, the energy storage capacitor will be charged in parallel.
进一步地,步骤S2具体为:接通第二继电器开关,断开第一继电器开关和第三继电器开关,导通IGBT开关,则各第一二极管、储能电容以及第二二极管将串联后进行放电,并且释放的电压被传输至所述高压标准器和所述电压互感器。Further, step S2 is specifically: turning on the second relay switch, turning off the first relay switch and the third relay switch, and turning on the IGBT switch, then the first diodes, the energy storage capacitors and the second diodes will The discharge is performed after being connected in series, and the discharged voltage is transmitted to the high voltage standard and the voltage transformer.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明公开了一种用于高压直流电压互感器的暂态试验装置,包括高压直流充电电源、直流方波发生器、高压标准器、电压互感器、互感器暂态校验仪以及PC端等,从而通过所述高压直流充电电源等实现了电压互感器的暂态试验;而且,所述直流方波发生器包括若干个并联连接的充电放电单元以及用于控制所述充电放电单元工作状态的继电器开关组件,因此,通过改变所述充电放电单元的数量就可以对所述直流方波发生器输出的高压电大小进行调整,以满足不同电压等级的电压互感器的暂态试验要求。The invention discloses a transient test device for a high voltage direct current voltage transformer, comprising a high voltage direct current charging power supply, a direct current square wave generator, a high voltage standard device, a voltage transformer, a transformer transient calibrator, a PC terminal, etc. , so that the transient test of the voltage transformer is realized through the high-voltage DC charging power supply, etc.; moreover, the DC square wave generator includes a plurality of charging and discharging units connected in parallel and a Therefore, by changing the number of the charging and discharging units, the high voltage output by the DC square wave generator can be adjusted to meet the transient test requirements of voltage transformers of different voltage levels.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。The above description is only an overview of the technical solutions of the present invention, in order to be able to understand the technical means of the present invention more clearly, it can be implemented according to the content of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and easy to understand , the following specific preferred embodiments, and in conjunction with the accompanying drawings, are described in detail as follows.
附图说明Description of drawings
图1为本发明所述的用于高直流电压互感器的暂态试验装置的结构示意图;1 is a schematic structural diagram of a transient test device for a high DC voltage transformer according to the present invention;
图2为直流方波发生器处于充电状态时的电路图;Fig. 2 is the circuit diagram when the DC square wave generator is in the charging state;
图3为直流方波发生器处于放电状态时的电路图;Fig. 3 is the circuit diagram when the DC square wave generator is in the discharge state;
图4为利用本发明所述的用于高直流电压互感器的暂态试验装置进行暂态试验的示意图;4 is a schematic diagram of performing a transient test using the transient test device for a high DC voltage transformer according to the present invention;
图5为本发明所述的用于高压直流电压互感器的暂态试验方法的流程示意图;FIG. 5 is a schematic flowchart of the transient test method for a high-voltage DC voltage transformer according to the present invention;
其中,图1-图4中的附图标记为:Among them, the reference numerals in Fig. 1-Fig. 4 are:
1、高压直流充电电源;2、直流方波发生器;3、高压标准器;4、电压互感器;5、互感器暂态校验仪;6、PC端;7、隔离采样与通讯单元;8、主机;9、远端数字模块;10、第一二极管;11、储能电容;12、IGBT开关;13、第一继电器开关;14、第二继电器开关;15、第三继电器开关;16、第二二极管。1. High voltage DC charging power supply; 2. DC square wave generator; 3. High voltage standard device; 4. Voltage transformer; 5. Transformer transient calibrator; 6. PC terminal; 7. Isolated sampling and communication unit; 8. Host; 9. Remote digital module; 10. First diode; 11. Energy storage capacitor; 12. IGBT switch; 13. First relay switch; 14. Second relay switch; 15. Third relay switch ; 16, the second diode.
具体实施方式Detailed ways
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下:In order to further illustrate the technical means and effects adopted by the present invention to achieve the predetermined purpose of the invention, below in conjunction with the accompanying drawings and preferred embodiments, the specific embodiments, structures, features and effects according to the present invention are described in detail as follows:
如图1所示,本发明公开了一种用于高压直流电压互感器的暂态试验装置,其包括高压直流充电电源1、直流方波发生器2、高压标准器3、电压互感器4、互感器暂态校验仪5以及PC端6,其中:所述高压直流充电电源1用于向所述直流方波发生器2充电,所述直流方波发生器2用于对接收到的充电电压进行升级、并将升级后的电压传输至所述高压标准器3和所述电压互感器4,所述互感器暂态校验仪5用于对所述高压标准器3和所述电压互感器4输出的信号进行采样、并将采样后的信号传输至所述PC端6,所述PC端6用于对接收的信号进行计算、存储和显示,从而通过所述高压直流充电电源1等实现了电压互感器的暂态试验。As shown in FIG. 1, the present invention discloses a transient test device for a high-voltage DC voltage transformer, which includes a high-voltage DC charging power supply 1, a DC square wave generator 2, a high-voltage standard 3, a voltage transformer 4, Transformer transient calibrator 5 and PC terminal 6, wherein: the high-voltage DC charging power supply 1 is used to charge the DC square wave generator 2, and the DC square wave generator 2 is used to charge the received The voltage is upgraded, and the upgraded voltage is transmitted to the high-voltage standard device 3 and the voltage transformer 4, and the transformer transient calibrator 5 is used for the high-voltage standard device 3 and the voltage transformer. The signal output by the device 4 is sampled, and the sampled signal is transmitted to the PC terminal 6, and the PC terminal 6 is used to calculate, store and display the received signal, so as to pass the high-voltage DC charging power supply 1, etc. The transient test of the voltage transformer is realized.
在本发明中,所述高压直流充电电源1的基本功能是生成kV量级的电压,并将电压供给所述直流方波发生器2升压,其电压值是连续可调的,自带过压、过流以及过温保护功能;所述直流方波发生器2的主要功能是对所述高压直流充电电源1输入的充电电压进行升级、并将升级后的电压传输至所述高压标准器3和所述电压互感器4,而且电压升级的幅度取决于所述高压直流充电电源1 输入的充电电压的大小和所述直流方波发生器2的内部电路及级联方式;所述电压互感器4是直流输电工程中高电压测量的重要一次设备;所述高压标准器3 作为测量器具,需要在使用前进行计量检定,且具备波形上升响应时间小于1μs;所述PC端6是对接收到的信息进行计算、存储以及显示。In the present invention, the basic function of the high-voltage DC charging power supply 1 is to generate a voltage of the magnitude of kV, and supply the voltage to the DC square wave generator 2 for boosting. Voltage, over-current and over-temperature protection functions; the main function of the DC square wave generator 2 is to upgrade the charging voltage input by the high-voltage DC charging power supply 1, and transmit the upgraded voltage to the high-voltage standard device 3 and the voltage transformer 4, and the magnitude of the voltage upgrade depends on the size of the charging voltage input by the high-voltage DC charging power supply 1 and the internal circuit and cascading mode of the DC square wave generator 2; the voltage mutual inductance The device 4 is an important primary device for high-voltage measurement in the DC power transmission project; the high-voltage standard device 3, as a measuring instrument, needs to be calibrated before use, and has a waveform rise response time of less than 1 μs; the PC terminal 6 is used for receiving The information is calculated, stored and displayed.
所述直流方波发生器2包括若干个并联连接的充电放电单元以及用于控制所述充电放电单元工作状态的继电器开关组件,因此,通过改变所述充电放电单元的数量可以对所述直流方波发生器2输出的高压电大小进行调整,以满足不同电压等级的电压互感器4的暂态试验要求。The DC square wave generator 2 includes several charging and discharging units connected in parallel and a relay switch assembly for controlling the working state of the charging and discharging units. Therefore, by changing the number of the charging and discharging units, the DC square wave can be adjusted. The size of the high-voltage electricity output by the wave generator 2 is adjusted to meet the transient test requirements of the voltage transformers 4 of different voltage levels.
如图2和图3所示,每个所述充电放电单元包括储能电容11、IGBT开关 12、第一二极管10和第二二极管16,所述第一二极管10、所述储能电容11以及所述第二二极管16依次串联连接后与所述IGBT开关12并联连接;所述继电器开关组件包括设置在所述第一二极管10输入端的第一继电器开关13、设置在所述高压标准器3和所述电压互感器4输出端的第二继电器开关14以及设置在接地小电阻输出端的第三继电器开关15。As shown in FIG. 2 and FIG. 3 , each of the charging and discharging units includes a storage capacitor 11 , an IGBT switch 12 , a first diode 10 and a second diode 16 . The energy storage capacitor 11 and the second diode 16 are sequentially connected in series and then connected in parallel with the IGBT switch 12 ; the relay switch assembly includes a first relay switch 13 disposed at the input end of the first diode 10 . , a second relay switch 14 arranged at the output end of the high voltage standard device 3 and the voltage transformer 4 and a third relay switch 15 arranged at the output end of the grounding small resistance.
具体地,如图2所示,当所述直流方波发生器2处于充电状态时,接通所述第一继电器开关13,断开所述第二继电器开关14和所述第三继电器开关15,并且所述IGBT开关12均处于断开状态;此时,所述高压直流充电电源1将向所述直流方波发生器2进行充电,充电时,充电电流流经所述第一二极管10后将对于所述储能电容11进行并联充电。假设充电电压为U0,则充电结束后,各储能电容11上的电压为U0-(n+1)Vf,其中:n为直流方波发生器2所包含的级数,Vf为第一二极管10的正向导通压降,一般第一二极管10压降可以忽略,可以认为各级储能电容11充电后的电压都是U0。Specifically, as shown in FIG. 2 , when the DC square wave generator 2 is in a charging state, the first relay switch 13 is turned on, and the second relay switch 14 and the third relay switch 15 are turned off. , and the IGBT switches 12 are all in the off state; at this time, the high-voltage DC charging power supply 1 will charge the DC square wave generator 2, and during charging, the charging current flows through the first diode After 10, the storage capacitor 11 will be charged in parallel. Assuming that the charging voltage is U 0 , after charging, the voltage on each energy storage capacitor 11 is U 0 -(n+1)V f , where n is the number of stages included in the DC square wave generator 2 , and V f It is the forward conduction voltage drop of the first diode 10 . Generally, the voltage drop of the first diode 10 can be ignored. It can be considered that the voltages of the energy storage capacitors 11 at all levels after charging are all U 0 .
如图3所示,当所述直流方波发生器2处于放电状态时,各储能电容11的电压为U0,各所述IGBT开关12、所述第一二极管10以及所述第二二极管16 均处于断开状态,电流为零;然后触发各级所述IGBT开关12导通,所述IGBT 开关12的触发方式为光纤同步触,因此,各所述第一二极管10和所述第二二极管16都将反向偏置而关断,从而使得各储能电容11串联起来对所述高压标准器3和所述电压互感器4放电,在负载上得到多倍的U0负极性脉冲。As shown in FIG. 3 , when the DC square wave generator 2 is in a discharge state, the voltage of each energy storage capacitor 11 is U 0 , each of the IGBT switches 12 , the first diode 10 and the first The two diodes 16 are both in the off state, and the current is zero; then the IGBT switches 12 at all levels are triggered to conduct, and the triggering mode of the IGBT switches 12 is the synchronous contact of the optical fiber. Therefore, each of the first diodes 10 and the second diode 16 will be reverse biased and turned off, so that the energy storage capacitors 11 are connected in series to discharge the high-voltage standard 3 and the voltage transformer 4, and obtain more power on the load. times the U 0 negative polarity pulse.
另外,所述直流方波发生器2还具有待机状态,即断开第一继电器开关13 和第二继电器开关14,闭合第三继电器开关15,所述IGBT开关12均处于可控的导通状态,从而将各所述储能电容11中未完全释放的电量通过接地小电阻放完,以确保所述直流方波发生器2处于安全无压的工况中。In addition, the DC square wave generator 2 also has a standby state, that is, the first relay switch 13 and the second relay switch 14 are disconnected, and the third relay switch 15 is closed, and the IGBT switches 12 are all in a controllable conduction state. , so that the electricity that is not completely discharged in each of the energy storage capacitors 11 is completely discharged through the small grounding resistance, so as to ensure that the DC square wave generator 2 is in a safe and voltage-free working condition.
如图1所示,所述互感器暂态校验仪5包含有用于连接所述高压标准器3 的第一信号接口、以及用于连接所述电压互感器4的第二信号接口,具体连接时,所述高压标准器3的输出端通过电缆连接所述第一信号接口,所述电压互感器4的输出端通过电缆连接所述第二信号接口。As shown in FIG. 1 , the transformer transient calibrator 5 includes a first signal interface for connecting to the high-voltage standard device 3 and a second signal interface for connecting to the voltage transformer 4. Specifically, the connection is as follows: , the output end of the high voltage standard device 3 is connected to the first signal interface through a cable, and the output end of the voltage transformer 4 is connected to the second signal interface through a cable.
作为进一步优选的实施方式,所述暂态试验装置还包括与所述电压互感器4 相连接的远端数字模块9,所述远端数字模块9的输出端连接所述互感器暂态校验仪5,从而使得所述互感器暂态校验仪5能够应用于具有所述远端数字模块9 和没有所述远端数字模块9的两种情况。而且,在试验中,将所述电压互感器4 的二次模拟信号和高压标准器3的二次模拟信号进行直接采样和比对就可以了,而当电压互感器4连接有远端数字模块9时,需要通过光纤连接远端数字模块9 和主机8,通过数据解析和时间延迟补偿后再进行波形比对。As a further preferred embodiment, the transient test device further includes a remote digital module 9 connected to the voltage transformer 4, and the output end of the remote digital module 9 is connected to the transformer for transient verification. instrument 5 , so that the transformer transient calibrator 5 can be applied to both cases with the remote digital module 9 and without the remote digital module 9 . Moreover, in the test, it is enough to directly sample and compare the secondary analog signal of the voltage transformer 4 and the secondary analog signal of the high-voltage standard 3, and when the voltage transformer 4 is connected with a remote digital module At 9 o'clock, it is necessary to connect the remote digital module 9 and the host 8 through an optical fiber, and then perform waveform comparison after data analysis and time delay compensation.
如图1所示,所述高压直流充电电源1、所述直流方波发生器2、所述高压标准器3以及所述电压互感器4均设置有接地端。As shown in FIG. 1 , the high-voltage DC charging power supply 1 , the DC square wave generator 2 , the high-voltage standard device 3 and the voltage transformer 4 are all provided with ground terminals.
为了便于所述互感器暂态校验仪5采集数据,所述互感器暂态校验仪5包括与所述高压标准器3和所述电压互感器4相连接的隔离采样与通讯单元7、以及与所述隔离采样与通讯单元7相连接的主机8,所述隔离采样与通讯单元7与所述主机8通过光纤连接。In order to facilitate the data collection by the transformer transient calibrator 5, the transformer transient calibrator 5 includes an isolated sampling and communication unit 7 connected to the high-voltage standard 3 and the voltage transformer 4, and a host computer 8 connected to the isolation sampling and communication unit 7, the isolation sampling and communication unit 7 and the host computer 8 are connected by optical fibers.
如图5所示,本发明还公开了一种用于高压直流电压互感器的暂态试验方法,其包括如下步骤:As shown in FIG. 5 , the present invention also discloses a transient test method for a high-voltage DC voltage transformer, which includes the following steps:
S1:设置所述高压直流充电电源1的充电电压。S1: Set the charging voltage of the high-voltage DC charging power source 1 .
在本发明中,所述高压直流充电电源1用于向所述直流方波发生器2充电,并且设定所述充电电压为U0。In the present invention, the high voltage DC charging power source 1 is used to charge the DC square wave generator 2, and the charging voltage is set to U 0 .
S2:连接所述高压直流充电电源1和直流方波发生器2,控制继电器开关组件的开、断状态,使得所述高压直流充电电源1向所述直流方波发生器充电。S2: Connect the high-voltage DC charging power source 1 and the DC square wave generator 2, and control the on/off state of the relay switch assembly, so that the high-voltage DC charging power source 1 charges the DC square wave generator.
具体地,步骤S2为:接通所述第一继电器开关13,断开所述第二继电器开关14、所述第三继电器开关15以及各所述IGBT开关12,此时所述高压直流充电电源1将向所述直流方波发生器2进行充电,并且充电电流流经所述第一二极管10后将对于所述储能电容11进行并联充电。在充电的过程中观察所述高压直流充电电源1输出端的电压,直到所述高压直流充电电源1的电压上升至 U0并保持稳定,说明充电完成,即各储能电容11的电压近似达到U0。Specifically, step S2 is: turning on the first relay switch 13, turning off the second relay switch 14, the third relay switch 15 and each of the IGBT switches 12, at this time the high-voltage DC charging power supply 1 will charge the DC square wave generator 2, and after the charging current flows through the first diode 10, the energy storage capacitor 11 will be charged in parallel. During the charging process, observe the voltage of the output terminal of the high-voltage DC charging power supply 1 until the voltage of the high-voltage DC charging power supply 1 rises to U0 and remains stable, indicating that the charging is completed, that is, the voltage of each energy storage capacitor 11 approximately reaches U 0 .
S3:控制继电器开关组件的开、断状态,同时导通IGBT开关12,使得直流方波发生器2进行放电,并且释放的电压被传输至所述高压标准器3和所述电压互感器4。S3 : Control the on/off state of the relay switch assembly, and turn on the IGBT switch 12 at the same time, so that the DC square wave generator 2 discharges, and the discharged voltage is transmitted to the high-voltage standard 3 and the voltage transformer 4 .
具体地,步骤S3为:接通所述第二继电器开关14,断开所述第一继电器开关13和所述第三继电器开关15,此时,各所述IGBT开关12均处于断开状态;设置所述互感器暂态校验仪5,如果所述电压互感器4的二次输出为模拟量,则仅需要设置所述高压标准器3和所述电压互感器4的二次变化;如果所述电压互感器4输出的为数字量,则不仅要设置所述高压标准器3和所述电压互感器4 的二次变化,而且还要设置所述电压互感器4的固有延时时间;然后控制所述互感器暂态校验仪5为触发预备状态,触发源是所述高压标准器3通道内的二次转换电压;然后,导通所述IGBT开关12,则各第一二极管10、储能电容11 以及第二二极管16将串联后进行放电,并且释放的电压被传输至所述高压标准器3和所述电压互感器4,即由所述直流方波发生器2释放的电流将通过所述高压标准器3和所述电压互感器4,放电的持续时间为时间控制在10ms左右,高压标准器3和电压互感器4均承受了试验电压。Specifically, step S3 is: turning on the second relay switch 14, turning off the first relay switch 13 and the third relay switch 15, at this time, each of the IGBT switches 12 is in an off state; Set the transformer transient calibrator 5, if the secondary output of the voltage transformer 4 is an analog quantity, only the secondary changes of the high voltage standard 3 and the voltage transformer 4 need to be set; if If the output of the voltage transformer 4 is a digital quantity, not only the secondary changes of the high voltage standard 3 and the voltage transformer 4 should be set, but also the inherent delay time of the voltage transformer 4; Then, the transformer transient calibrator 5 is controlled to be in a ready state for triggering, and the trigger source is the secondary conversion voltage in the channel 3 of the high-voltage standard device; then, the IGBT switch 12 is turned on, and each first diode The tube 10, the energy storage capacitor 11 and the second diode 16 will be connected in series for discharge, and the released voltage will be transmitted to the high-voltage standard device 3 and the voltage transformer 4, that is, the DC square wave generator 2. The released current will pass through the high-voltage standard device 3 and the voltage transformer 4, and the duration of discharge is controlled at about 10ms. Both the high-voltage standard device 3 and the voltage transformer 4 bear the test voltage.
S4:所述互感器暂态校验仪5对所述高压标准器3和所述电压互感器4输出的信号进行采样、并将采样后的信号传输至所述PC端6。S4 : The transformer transient calibrator 5 samples the signals output by the high-voltage standard device 3 and the voltage transformer 4 , and transmits the sampled signals to the PC terminal 6 .
具体地,如果所述电压互感器4的二次转换输出为模拟量,则所述隔离采样与通讯单元7对所述电压互感器4和所述高压标准器3通道内的电压进行采集,一旦采集到的电压大小到达触发预留值,则所述隔离采样与通讯单元7对采集到的电压进行AD转换并存储,同时将转换后的数据传输至主机8。由于所述隔离采样与通讯单元7是高速模拟采样,可以认为它是无时延的采样信号,而所述远端数字模块9传过来的数字信号在处理过程中会产生一个固有的延时,这是电压互感器4的固有特性,需要一个准确的补偿,该延时数据由电压互感器4的厂家提供。Specifically, if the secondary conversion output of the voltage transformer 4 is an analog quantity, the isolation sampling and communication unit 7 collects the voltages in the channels of the voltage transformer 4 and the high-voltage standard 3. Once When the size of the collected voltage reaches the trigger reserved value, the isolated sampling and communication unit 7 performs AD conversion on the collected voltage and stores it, and transmits the converted data to the host 8 at the same time. Since the isolation sampling and communication unit 7 is a high-speed analog sampling, it can be considered as a sampling signal without delay, and the digital signal transmitted from the remote digital module 9 will generate an inherent delay in the processing process, This is an inherent characteristic of the voltage transformer 4 and requires an accurate compensation, and the delay data is provided by the manufacturer of the voltage transformer 4 .
另外,如图4所示,波形结果的计算方法是:首先对所述高压标准器3和所述电压互感器4的数据进行比对,当所述电压互感器4连接所述远端数字模块9时,例如,当电压互感器4的固有时延为0.125ms,补偿掉该部分的延时,暂态电压的采样波形就可以跟高压标准器3的模拟采样波基本重合,该补偿量由PC端6下发,电压互感器4直接接模拟输出时不需要对时。In addition, as shown in FIG. 4 , the calculation method of the waveform result is: firstly, compare the data of the high-voltage standard device 3 and the voltage transformer 4, and when the voltage transformer 4 is connected to the remote digital module 9 o’clock, for example, when the inherent time delay of the voltage transformer 4 is 0.125ms, and this part of the delay is compensated, the sampling waveform of the transient voltage can basically coincide with the analog sampling wave of the high-voltage standard 3, and the compensation amount is determined by PC terminal 6 sends it, and when the voltage transformer 4 is directly connected to the analog output, no time synchronization is required.
S5:所述PC端6对接收的信号进行计算、存储和显示。S5: The PC terminal 6 calculates, stores and displays the received signal.
具体地,所述互感器暂态校验仪5将两路试验数据传输给PC端6,再由PC 端6计算测量误差,测量误差的主要内容包含上升时间、峰值、瞬时误差,其中瞬时误差是两组采样数据在整个试验过程中所有采样点之间的误差,两点之间的最大误差值就是最大瞬时误差;国标对电压互感器4的多项测量误差均有明确限制,对比高压标准器3通道和电压互感器4通道的数据,就可以对结果进行定量分析。Specifically, the transformer transient calibrator 5 transmits the two-way test data to the PC terminal 6, and then the PC terminal 6 calculates the measurement error. The main contents of the measurement error include rise time, peak value, and instantaneous error, wherein the instantaneous error It is the error between all sampling points of the two sets of sampling data in the whole test process, and the maximum error value between the two points is the maximum instantaneous error; the national standard has clear restrictions on multiple measurement errors of the voltage transformer 4. Compared with the high-voltage standard Quantitative analysis of the results can be done by analyzing the data of 3 channels of the transformer and 4 channels of the voltage transformer.
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。The above-mentioned embodiments are only preferred embodiments of the present invention, and cannot be used to limit the scope of protection of the present invention. Any insubstantial changes and substitutions made by those skilled in the art on the basis of the present invention belong to the scope of the present invention. Scope of protection claimed.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、 CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/ 或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910341179.XA CN110161446A (en) | 2019-04-25 | 2019-04-25 | Relay protection device for high-voltage dc voltage mutual inductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910341179.XA CN110161446A (en) | 2019-04-25 | 2019-04-25 | Relay protection device for high-voltage dc voltage mutual inductor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110161446A true CN110161446A (en) | 2019-08-23 |
Family
ID=67640027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910341179.XA Pending CN110161446A (en) | 2019-04-25 | 2019-04-25 | Relay protection device for high-voltage dc voltage mutual inductor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110161446A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110488216A (en) * | 2019-09-20 | 2019-11-22 | 云南电网有限责任公司电力科学研究院 | A kind of digital output DCVT field calibration system |
CN111025219A (en) * | 2019-11-29 | 2020-04-17 | 中国电力科学研究院有限公司 | A device and method for testing the transient response of a DC voltage transformer |
CN111239666A (en) * | 2020-02-07 | 2020-06-05 | 云南电网有限责任公司电力科学研究院 | A Transient Characteristic Testing System of Remote Module Box |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102621514A (en) * | 2012-03-31 | 2012-08-01 | 哈尔滨工业大学 | Electronic transformer verifying device |
CN205484760U (en) * | 2016-01-18 | 2016-08-17 | 云南电网有限责任公司电力科学研究院 | Electronic type current transformer transient characterisitics analytic system |
CN206193226U (en) * | 2016-11-18 | 2017-05-24 | 云南电网有限责任公司电力科学研究院 | Synchronous calbiration system of direct current voltage transformer |
CN206387898U (en) * | 2016-12-13 | 2017-08-08 | 云南电网有限责任公司电力科学研究院 | A kind of DC voltage transformer transient response checked for characteristics device |
CN107422212A (en) * | 2017-08-23 | 2017-12-01 | 国网电力科学研究院武汉南瑞有限责任公司 | A kind of electronic direct current transformer transient characterisitics experimental rig and control method |
CN206892309U (en) * | 2017-05-23 | 2018-01-16 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | A kind of high-voltage dc voltage mutual inductor on site check system |
CN207301193U (en) * | 2017-08-23 | 2018-05-01 | 国网电力科学研究院武汉南瑞有限责任公司 | A kind of electronic direct current transformer transient characterisitics experimental rig |
CN108051769A (en) * | 2017-12-12 | 2018-05-18 | 中国西电电气股份有限公司 | A kind of capacitance type potential transformer transient response experimental rig and test method |
CN108508399A (en) * | 2018-04-02 | 2018-09-07 | 国网安徽省电力有限公司电力科学研究院 | Voltage transient test method based on the emulation of electronic type voltage transformer transmittance process |
CN109342788A (en) * | 2018-11-19 | 2019-02-15 | 中国电力科学研究院有限公司 | A square wave voltage source |
CN109490812A (en) * | 2018-12-05 | 2019-03-19 | 中国电力科学研究院有限公司 | Nanosecond the impulse voltage generator and detection system for detecting mutual inductor overvoltage |
CN109507626A (en) * | 2018-11-01 | 2019-03-22 | 苏州华电电气股份有限公司 | Extra-high voltage direct-current transformer checking system |
-
2019
- 2019-04-25 CN CN201910341179.XA patent/CN110161446A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102621514A (en) * | 2012-03-31 | 2012-08-01 | 哈尔滨工业大学 | Electronic transformer verifying device |
CN205484760U (en) * | 2016-01-18 | 2016-08-17 | 云南电网有限责任公司电力科学研究院 | Electronic type current transformer transient characterisitics analytic system |
CN206193226U (en) * | 2016-11-18 | 2017-05-24 | 云南电网有限责任公司电力科学研究院 | Synchronous calbiration system of direct current voltage transformer |
CN206387898U (en) * | 2016-12-13 | 2017-08-08 | 云南电网有限责任公司电力科学研究院 | A kind of DC voltage transformer transient response checked for characteristics device |
CN206892309U (en) * | 2017-05-23 | 2018-01-16 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | A kind of high-voltage dc voltage mutual inductor on site check system |
CN107422212A (en) * | 2017-08-23 | 2017-12-01 | 国网电力科学研究院武汉南瑞有限责任公司 | A kind of electronic direct current transformer transient characterisitics experimental rig and control method |
CN207301193U (en) * | 2017-08-23 | 2018-05-01 | 国网电力科学研究院武汉南瑞有限责任公司 | A kind of electronic direct current transformer transient characterisitics experimental rig |
CN108051769A (en) * | 2017-12-12 | 2018-05-18 | 中国西电电气股份有限公司 | A kind of capacitance type potential transformer transient response experimental rig and test method |
CN108508399A (en) * | 2018-04-02 | 2018-09-07 | 国网安徽省电力有限公司电力科学研究院 | Voltage transient test method based on the emulation of electronic type voltage transformer transmittance process |
CN109507626A (en) * | 2018-11-01 | 2019-03-22 | 苏州华电电气股份有限公司 | Extra-high voltage direct-current transformer checking system |
CN109342788A (en) * | 2018-11-19 | 2019-02-15 | 中国电力科学研究院有限公司 | A square wave voltage source |
CN109490812A (en) * | 2018-12-05 | 2019-03-19 | 中国电力科学研究院有限公司 | Nanosecond the impulse voltage generator and detection system for detecting mutual inductor overvoltage |
Non-Patent Citations (2)
Title |
---|
佚名: "在一阶动态电路响应试验中,为什么要使用方波代替阶跃作为激励信号", 《百度知道》 * |
嵇保健 等: "基于Marx电路的纳秒级高压脉冲电源设计", 《高电压技术》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110488216A (en) * | 2019-09-20 | 2019-11-22 | 云南电网有限责任公司电力科学研究院 | A kind of digital output DCVT field calibration system |
CN111025219A (en) * | 2019-11-29 | 2020-04-17 | 中国电力科学研究院有限公司 | A device and method for testing the transient response of a DC voltage transformer |
CN111239666A (en) * | 2020-02-07 | 2020-06-05 | 云南电网有限责任公司电力科学研究院 | A Transient Characteristic Testing System of Remote Module Box |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104237831B (en) | A kind of counter of lightning arrester tester calibration device | |
CN101470145B (en) | Insulation resistance test system | |
CN203324381U (en) | Portable pole tower grounding device impulse grounding resistance measuring device | |
CN102998645B (en) | Impulse voltage standard wave source for high-voltage impulse voltage quantity value traceability and using method thereof | |
CN106291310A (en) | A kind of method of testing utilizing double-pulsed technology test IGBT dynamic switching characteristic and device | |
CN101710159A (en) | Novel direct-current converter valve test unit | |
CN110161446A (en) | Relay protection device for high-voltage dc voltage mutual inductor | |
CN106896258B (en) | A Thyristor Transient Conduction Voltage Drop Measurement Circuit | |
CN110275096A (en) | Insulator surface defect partial discharge detection device and detection method | |
CN103176160A (en) | Local discharge simulation calibrating device | |
CN103389425A (en) | Test system for shunting characteristics of multi-column lightning arrester | |
CN204101715U (en) | A kind of counter of lightning arrester tester calibration device | |
CN203965489U (en) | A kind of shelf depreciation high voltage pulse generation device | |
CN105974243A (en) | Detection system and method for onsite power supply and charging equipment | |
CN204101671U (en) | A kind of Novel multi-core cable tester | |
CN201489102U (en) | Calibration device for withstand voltage tester | |
CN107102182A (en) | Centralized surge voltage reference waveform method for generation and system for magnitude tracing | |
CN113030614B (en) | Mobile AC/DC charging pile detection device and method | |
CN111521964B (en) | Electromagnetic field test platform for simulating power grid event disturbances | |
CN110618356A (en) | Long-time voltage tolerance test device and method for direct current transfer switch lightning arrester | |
CN106772201B (en) | Transient characteristic detection test system and control method for electronic transformer | |
CN109470914A (en) | A VFTO signal measuring device | |
CN202041572U (en) | A high-voltage DC switch oscillation circuit current off-line detection device | |
CN105823990A (en) | Analog load for testing SOC power source | |
CN206906466U (en) | A kind of IGCT transient state conduction voltage drop measuring circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190823 |
|
RJ01 | Rejection of invention patent application after publication |