CN110116409A - A kind of four-way remote operating bilateral control method based on disturbance observer - Google Patents
A kind of four-way remote operating bilateral control method based on disturbance observer Download PDFInfo
- Publication number
- CN110116409A CN110116409A CN201910437931.0A CN201910437931A CN110116409A CN 110116409 A CN110116409 A CN 110116409A CN 201910437931 A CN201910437931 A CN 201910437931A CN 110116409 A CN110116409 A CN 110116409A
- Authority
- CN
- China
- Prior art keywords
- represent
- disturbance observer
- teleoperation
- robot
- method based
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1689—Teleoperation
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种基于扰动观测器的四通道遥操作双边控制方法。通过建立双边遥操作系统的非线性系统动力学模型,提出了一种全局稳定的基于扰动观测器的非线性滑模控制器设计方法,以解决遥操作系统的非线性、不确定性和外干扰等主要问题。针对双边遥操作系统的非线性问题,本发明设计了一种适用于非线性双边遥操作系统的四通道结构,通过主端位置、操作者的操作力矩、从端位置、环境作业力矩信号在通信通道间的传输,获得了较好的系统透明性。针对双边遥操作系统的不确定性、外干扰问题,本发明分别在主端和从端设计了理想轨迹生成器,以及基于扰动观测器的非线性滑模控制器,并基于李雅普诺夫理论保证了系统的全局稳定性。
The invention discloses a four-channel teleoperation bilateral control method based on a disturbance observer. By establishing the nonlinear system dynamics model of the bilateral teleoperation system, a globally stable nonlinear sliding mode controller design method based on a disturbance observer is proposed to solve the nonlinearity, uncertainty and external disturbance of the teleoperation system and other major issues. Aiming at the nonlinear problem of the bilateral teleoperation system, the present invention designs a four-channel structure suitable for the nonlinear bilateral teleoperation system, through the position of the master end, the operator's operating torque, the position of the slave end, and the environmental operation torque signal in the communication The transmission between channels achieves better system transparency. Aiming at the uncertainty and external interference problems of the bilateral teleoperation system, the present invention designs ideal trajectory generators at the master end and slave end respectively, and a nonlinear sliding mode controller based on a disturbance observer, and guarantees based on Lyapunov theory the global stability of the system.
Description
技术领域technical field
本发明属于遥操作控制领域,具体来说是一种基于扰动观测器的四通道遥操作双边控制方法,旨在提升非线性遥操作系统的透明性。The invention belongs to the field of teleoperation control, and specifically relates to a four-channel teleoperation bilateral control method based on a disturbance observer, aiming at improving the transparency of a nonlinear teleoperation system.
背景技术Background technique
随着自动化与机器人技术的发展,依靠人机交互的遥操作技术,即通过操作者操作主机器人可实现对从机器人的运动控制,实现远程作业。鉴于遥操作技术具备高临场感、近实时同步操作的特性,其在空间探索、水下作业、核环境监测、远程手术等领域都有广阔的应用前景。With the development of automation and robot technology, relying on the teleoperation technology of human-computer interaction, that is, the operator can operate the master robot to realize the motion control of the slave robot and realize remote operation. In view of the characteristics of high presence and near-real-time synchronous operation of teleoperation technology, it has broad application prospects in space exploration, underwater operations, nuclear environment monitoring, remote surgery and other fields.
透明性作为遥操作系统的一项重要指标而被广泛研究。其中,四通道结构是一种提升遥操作系统透明性的有效方法,通过匹配主从端的阻抗系数,得到理想透明性条件。然而,目前存在的四通道结构大多用于线性遥操作系统,随着作业任务的复杂化、精细化,这类基于四通道结构的线性遥操作系统不能很好地开展作业任务。因此,为应对复杂、精细的作业任务,考虑多自由度主从机器人存在的非线性、不确定性和外干扰等问题,本发明专利提出一种基于扰动观测器的四通道遥操作双边控制方法,克服了主从机器人的非线性、不确定性以及外干扰对遥操作系统性能的影响,并提升了遥操作系统的透明性。Transparency has been widely studied as an important index of teleoperation system. Among them, the four-channel structure is an effective method to improve the transparency of the remote control system. By matching the impedance coefficients of the master and slave ends, the ideal transparency conditions are obtained. However, most of the currently existing four-channel structures are used for linear teleoperation systems. With the complexity and refinement of tasks, this type of linear teleoperation system based on four-channel structures cannot perform tasks well. Therefore, in order to cope with complex and delicate tasks, considering the nonlinearity, uncertainty and external interference of multi-degree-of-freedom master-slave robots, the patent of this invention proposes a four-channel teleoperation bilateral control method based on disturbance observers , overcome the influence of the nonlinearity, uncertainty and external interference of the master-slave robot on the performance of the teleoperation system, and improve the transparency of the teleoperation system.
发明内容Contents of the invention
本发明的目的在于提出一种基于扰动观测器的四通道遥操作双边控制方法,以解决传统遥操作系统存在的透明性、非线性和不确定性等技术问题。The purpose of the present invention is to propose a four-channel teleoperation bilateral control method based on a disturbance observer to solve technical problems such as transparency, nonlinearity and uncertainty in traditional teleoperation systems.
为实现上述目的,该发明的技术方案具体内容如下:In order to achieve the above object, the specific content of the technical solution of the invention is as follows:
一种基于扰动观测器的四通道遥操作双边控制方法,包括以下步骤:A four-channel teleoperation bilateral control method based on a disturbance observer, comprising the following steps:
1)建立双边遥操作系统的非线性系统动力学模型,具体为:1) Establish the nonlinear system dynamics model of the bilateral teleoperation system, specifically:
1-1)建立主从机器人的动力学模型1-1) Establish the dynamic model of the master-slave robot
其中,θm,和θs,表示主从机器人的位置、速度和加速度信号,Mm0和Ms0表示已知的质量惯性矩阵,Cm0和Cs0表示已知的科氏力/向心力矩阵,Gm0和Gs0表示已知的重力矩阵,dm和ds表示外干扰和模型误差,um和us表示控制输入,τh和τe表示操作者的操作力矩或者环境作业力矩。Among them, θ m , and θ s , Represents the position, velocity and acceleration signals of the master-slave robot, M m0 and M s0 represent the known mass inertia matrix, C m0 and C s0 represent the known Coriolis force/centripetal force matrix, G m0 and G s0 represent the known Gravity matrix, d m and d s represent external disturbance and model error, u m and u s represent control input, τ h and τ e represent the operator's operating torque or environmental operating torque.
上述主从机器人的动力学模型具有如下特性:The dynamic model of the above-mentioned master-slave robot has the following characteristics:
①和为斜对称矩阵;① and is a skew symmetric matrix;
② ②
③ ③
1-2)建立质量-弹簧-阻尼的环境动力学模型1-2) Establish a mass-spring-damping environmental dynamics model
其中,Me,Ce,Ge表示环境参数。Among them, M e , C e , and G e represent environmental parameters.
2)基于扰动观测器设计主机器人的滑模控制器,具体为:2) Design the sliding mode controller of the main robot based on the disturbance observer, specifically:
2-1)设计主端理想轨迹生成器如下:2-1) Design the ideal trajectory generator at the master end as follows:
其中,avrg{·}表示·的平均值,kfm表示比例参数,Mdm,Cdm,Gdm表示规划参数。Among them, avrg{·} represents the average value of ·, k fm represents the scale parameter, M dm , C dm , G dm represent the planning parameters.
通过将θs输入公式(4),能够得到参考轨迹θmr,再通过选取合适的Mdm,Cdm,Gdm,公式(5)和(6)能够得到理想轨迹θmd, By inputting θ s into formula (4), the reference trajectory θ mr can be obtained, Then by selecting appropriate M dm , C dm , G dm , formulas (5) and (6) can get the ideal trajectory θ md ,
2-2)定义主机器人控制器的滑模面sm如下:2-2) Define the sliding mode surface s m of the main robot controller as follows:
其中,em=θm-θmd,λm=diag{λm1,...,λmi,...,λmw},i=1,2,...,w表示主机器人的自由度数目。Among them, e m =θ m -θ md , λ m =diag{λ m1 ,...,λ mi ,...,λ mw }, i=1,2,...,w represent the freedom of the main robot number of degrees.
2-3)计算sm的一阶导如下:2-3) Calculate the first derivative of s m as follows:
2-4)根据(8)设计主控制器,保证主机器人的渐进稳定性,设计的控制器um为:2-4) Design the main controller according to (8) to ensure the asymptotic stability of the main robot. The designed controller u m is:
其中,νm=diag{νm1,...,νmi,...,νmw}, in, ν m =diag{ν m1 ,...,ν mi ,...,ν mw },
νmi0>0。ν mi0 >0.
在控制器(9)中,sat(sm)表示一种避免滑模控制器抖振的饱和函数,可定义为:In the controller (9), sat(s m ) represents a saturation function to avoid chattering of the sliding mode controller, which can be defined as:
其中,β表示边界层;Among them, β represents the boundary layer;
表示一种非线性扰动观测器,可定义为: Represents a nonlinear disturbance observer, which can be defined as:
其中,Hm表示可逆矩阵,可由线性矩阵不等式计算得到。in, H m represents a reversible matrix, which can be calculated by linear matrix inequality.
3)基于扰动观测器设计从机器人的滑模控制器,具体为:3) Design the sliding mode controller of the slave robot based on the disturbance observer, specifically:
3-1)设计从端理想轨迹生成器如下:3-1) Design the ideal trajectory generator from the end as follows:
其中,avrg{·}表示·的平均值,kfs表示比例参数,Mds,Cds,Gds表示规划参数。Among them, avrg{·} represents the average value of ·, k fs represents the scale parameter, M ds , C ds , G ds represent the planning parameters.
通过将θm输入公式(12),能够得到参考轨迹θsr,再通过选取合适的Mds,Cds,Gds,公式(13)和(14)能够得到理想轨迹θsd, By inputting θ m into formula (12), the reference trajectory θ sr can be obtained, Then by selecting appropriate M ds , C ds , G ds , formulas (13) and (14) can get the ideal trajectory θ sd ,
3-2)定义从机器人控制器的滑模面ss如下:3-2) Define the sliding mode surface s from the robot controller as follows:
其中,es=θs-θsd,λs=diag{λs1,...,λsi,...,λsw},i=1,2,...,w表示从机器人的自由度数目。Among them, e s =θ s -θ sd , λ s =diag{λ s1 ,...,λ si ,...,λ sw }, i=1,2,...,w represent the freedom from the robot number of degrees.
3-3)计算ss的一阶导如下:3-3) Calculate the first derivative of s s as follows:
3-4)根据(16)设计从控制器,保证从机器人的渐进稳定性,设计的控制器us为:3-4) Design the slave controller according to (16) to ensure the asymptotic stability of the slave robot. The designed controller u s is:
其中,νs=diag{νs1,...,νsi,...,νsw},νsi0>0。in, ν s =diag{ν s1 ,...,ν si ,...,ν sw }, ν si0 >0.
在控制器(17)中,sat(ss)表示一种避免滑模控制器抖振的饱和函数,可定义为:In the controller (17), sat(s s ) represents a saturation function to avoid chattering of the sliding mode controller, which can be defined as:
其中,β表示边界层;Among them, β represents the boundary layer;
表示一种非线性扰动观测器,可定义为: Represents a nonlinear disturbance observer, which can be defined as:
其中,Hs表示可逆矩阵,可由线性矩阵不等式计算得到。in, H s represents a reversible matrix, which can be calculated by linear matrix inequality.
4)基于主从机器人的滑模控制器设计李雅普诺夫函数,保证遥操作系统的全局稳定性,具体为:4) Design the Lyapunov function based on the sliding mode controller of the master-slave robot to ensure the global stability of the teleoperating system, specifically:
4—1)设计全局李雅普诺夫函数V如下:4-1) Design the global Lyapunov function V as follows:
V=Vm+Vs+Vm0+Vs0(20)V=V m +V s +V m0 +V s0 (20)
其中, in,
4-2)当||sm||,||ss||≤β时,全局李雅普诺夫函数V将收敛于:4-2) When ||s m ||,||s s ||≤β, the global Lyapunov function V will converge to:
其中, 和表示主从观测器的观测误差值。in, and Indicates the observation error value of the master-slave observer.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、设计扰动观测器,通过观测和补偿遥操作系统的模型误差和外干扰,提升了非线性双边遥操作系统的抗干扰性能;1. Design a disturbance observer to improve the anti-interference performance of the nonlinear bilateral teleoperation system by observing and compensating the model error and external disturbance of the teleoperation system;
2、设计饱和函数,消除了传统滑模控制器中存在的抖振问题;2. Design the saturation function to eliminate the chattering problem existing in the traditional sliding mode controller;
2、基于扰动观测器的非线性滑模控制方法可以使从机器人实时跟踪主机器人的位置信号,克服了非线性、不确定性以及外干扰对双边遥操作系统性能的影响,提升了系统的透明性;2. The nonlinear sliding mode control method based on the disturbance observer can enable the slave robot to track the position signal of the master robot in real time, overcome the influence of nonlinearity, uncertainty and external interference on the performance of the bilateral remote control system, and improve the transparency of the system sex;
4、利用李雅普诺夫函数,保证了所有信号的有界性,从而保证了非线性双边遥操作系统的稳定性和收敛性。4. Using the Lyapunov function, the boundedness of all signals is guaranteed, thereby ensuring the stability and convergence of the nonlinear bilateral teleoperation system.
附图说明Description of drawings
图1是本发明提出的基于扰动观测器的四通道遥操作双边控制框图;Fig. 1 is a four-channel teleoperation bilateral control block diagram based on disturbance observer proposed by the present invention;
图2是本发明提出的主机器人和从机器人的位置跟踪和力反馈曲线。Fig. 2 is the position tracking and force feedback curves of the master robot and the slave robot proposed by the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
现结合实施例、附图对本发明作进一步描述:Now in conjunction with embodiment, accompanying drawing, the present invention will be further described:
本发明的实施技术方案为:Implementation technical scheme of the present invention is:
(一)建立双边遥操作系统的非线性系统动力学模型(1) Establishment of nonlinear system dynamics model of bilateral teleoperation system
主从机器人的动力学模型如下:The dynamic model of the master-slave robot is as follows:
其中,θm,和θs,表示主从机器人的位置、速度和加速度信号,Mm0和Ms0表示已知的质量惯性矩阵,Cm0和Cs0表示已知的科氏力/向心力矩阵,Gm0和Gs0表示已知的重力矩阵,dm和ds表示外干扰和模型误差,um和us表示控制输入,τh和τe表示操作者的操作力矩或者环境作业力矩。Among them, θ m , and θ s , Represents the position, velocity and acceleration signals of the master-slave robot, M m0 and M s0 represent the known mass inertia matrix, C m0 and C s0 represent the known Coriolis force/centripetal force matrix, G m0 and G s0 represent the known Gravity matrix, d m and d s represent external disturbance and model error, u m and u s represent control input, τ h and τ e represent the operator's operating torque or environmental operating torque.
上述主从机器人的动力学模型具有如下特性:The dynamic model of the above-mentioned master-slave robot has the following characteristics:
①和为斜对称矩阵;① and is a skew symmetric matrix;
② ②
③ ③
基于质量-弹簧-阻尼的环境动力学模型如下:The environmental dynamics model based on mass-spring-damping is as follows:
其中,Me,Ce,Ge表示环境参数。Among them, M e , C e , and G e represent environmental parameters.
(二)设计基于扰动观测器设计主机器人的滑模控制器(2) Design the sliding mode controller of the main robot based on the disturbance observer
设计主端理想轨迹生成器如下:The ideal trajectory generator at the master end is designed as follows:
其中,avrg{·}表示·的平均值,kfm表示比例参数,Mdm,Cdm,Gdm表示规划参数。Among them, avrg{·} represents the average value of ·, k fm represents the scale parameter, M dm , C dm , G dm represent the planning parameters.
通过将θs输入公式(4),能够得到参考轨迹θmr,再通过选取合适的Mdm,Cdm,Gdm,公式(5)和(6)能够得到理想轨迹θmd, By inputting θ s into formula (4), the reference trajectory θ mr can be obtained, Then by selecting appropriate M dm , C dm , G dm , formulas (5) and (6) can get the ideal trajectory θ md ,
定义主机器人控制器的滑模面sm如下:The sliding mode surface s m of the main robot controller is defined as follows:
其中,em=θm-θmd,λm=diag{λm1,...,λmi,...,λmw},i=1,2,...,w表示主机器人的自由度数目。Among them, e m =θ m -θ md , λ m =diag{λ m1 ,...,λ mi ,...,λ mw }, i=1,2,...,w represent the freedom of the main robot number of degrees.
于是,计算sm的一阶导如下:Then, calculate the first derivative of s m as follows:
根据(8)设计主控制器,保证主机器人的渐进稳定性,设计的控制器um为:Design the main controller according to (8) to ensure the asymptotic stability of the main robot. The designed controller u m is:
其中,νm=diag{νm1,...,νmi,...,νmw}, in, ν m =diag{ν m1 ,...,ν mi ,...,ν mw },
νmi0>0。ν mi0 >0.
在控制器(9)中,sat(sm)表示一种避免滑模控制器抖振的饱和函数,可定义为:In the controller (9), sat(s m ) represents a saturation function to avoid chattering of the sliding mode controller, which can be defined as:
其中,β表示边界层;Among them, β represents the boundary layer;
表示一种非线性扰动观测器,可定义为: Represents a nonlinear disturbance observer, which can be defined as:
其中,Hm表示可逆矩阵,可由线性矩阵不等式计算得到。in, H m represents a reversible matrix, which can be calculated by linear matrix inequality.
(三)设计基于扰动观测器设计从机器人的滑模控制器(3) Design the sliding mode controller of the robot based on the disturbance observer design
设计从端理想轨迹生成器如下:Design the ideal trajectory generator from the end as follows:
其中,avrg{·}表示·的平均值,kfs表示比例参数,Mds,Cds,Gds表示规划参数。Among them, avrg{·} represents the average value of ·, k fs represents the scale parameter, M ds , C ds , G ds represent the planning parameters.
通过将θm输入公式(12),能够得到参考轨迹θsr,再通过选取合适的Mds,Cds,Gds,公式(13)和(14)能够得到理想轨迹θsd, By inputting θ m into formula (12), the reference trajectory θ sr can be obtained, Then by selecting appropriate M ds , C ds , G ds , formulas (13) and (14) can get the ideal trajectory θ sd ,
定义从机器人控制器的滑模面ss如下:Define the sliding mode surface s from the robot controller as follows:
其中,es=θs-θsd,λs=diag{λs1,...,λsi,...,λsw},i=1,2,...,w表示从机器人的自由度数目。Among them, e s =θ s -θ sd , λ s =diag{λ s1 ,...,λ si ,...,λ sw }, i=1,2,...,w represent the freedom from the robot number of degrees.
于是,计算ss的一阶导如下:Then, calculate the first derivative of s s as follows:
根据(16)设计从控制器,保证从机器人的渐进稳定性,设计的控制器us为:According to (16), the slave controller is designed to ensure the asymptotic stability of the slave robot. The designed controller u s is:
其中,νs=diag{νs1,...,νsi,...,νsw},νsi0>0。in, ν s =diag{ν s1 ,...,ν si ,...,ν sw }, ν si0 >0.
在控制器(17)中,sat(ss)表示一种避免滑模控制器抖振的饱和函数,可定义为:In the controller (17), sat(s s ) represents a saturation function to avoid chattering of the sliding mode controller, which can be defined as:
其中,β表示边界层;Among them, β represents the boundary layer;
表示一种非线性扰动观测器,可定义为: Represents a nonlinear disturbance observer, which can be defined as:
其中,Hs表示可逆矩阵,可由线性矩阵不等式计算得到。in, H s represents a reversible matrix, which can be calculated by linear matrix inequality.
(四)设计基于主从机器人的滑模控制器的李雅普诺夫函数(4) Designing the Lyapunov function of the sliding mode controller based on the master-slave robot
设计全局李雅普诺夫函数V如下:Design the global Lyapunov function V as follows:
V=Vm+Vs+Vm0+Vs0 (20)V=V m +V s +V m0 +V s0 (20)
其中, in,
当||sm||,||ss||≤β时,全局李雅普诺夫函数V将收敛于:When ||s m ||,||s s ||≤β, the global Lyapunov function V will converge to:
其中, 和表示主从观测器的观测误差值。in, and Indicates the observation error value of the master-slave observer.
基于(21),sm,ss,是有界的,从而em,es,和um,us是有界的。因此,非线性遥操作系统中的所有信号是有界的,且系统是全局稳定的。Based on (21), s m , s s , is bounded, so that e m , e s , and u m , u s are bounded. Therefore, all signals in the nonlinear teleoperation system are bounded, and the system is globally stable.
(五)进行仿真实验验证(5) Carry out simulation experiment verification
为了验证上述理论的可行性,在MATLAB下进行仿真实验,仿真实验验证了基于扰动观测器的四通道遥操作双边控制方法的效果。In order to verify the feasibility of the above theory, a simulation experiment was carried out under MATLAB, and the simulation experiment verified the effect of the four-channel teleoperation bilateral control method based on the disturbance observer.
仿真参数选取如下:The simulation parameters are selected as follows:
取主控制器(9)和扰动观测器(11),其中λm=diag{10,10},νm=diag{0.2,0.2},β=0.05,Mdm=diag{4.0,4.0},Cdm=diag{0,0},Gdm=diag{4.9,4.9}*θmd,τfm=0.025,Hm=diag{0.28,0.38}。Take the main controller (9) and the disturbance observer (11), where λ m =diag{10,10}, ν m =diag{0.2,0.2}, β=0.05, M dm =diag{4.0,4.0}, C dm =diag{0,0}, G dm =diag{4.9,4.9}* θmd , τ fm =0.025, H m =diag{0.28,0.38}.
取从控制器(17)和扰动观测器(19),其中,λs=diag{10,10},νs=diag{0.2,0.2},β=0.05,Mds=diag{4.0,4.0},Cds=diag{0,0},Gds=diag{5.8,5.8}*θsd,τfs=0.025,Hs=diag{0.28,0.38}。Take the slave controller (17) and the disturbance observer (19), where, λ s =diag{10,10}, ν s =diag{0.2,0.2}, β=0.05, M ds =diag{4.0,4.0} , C ds =diag{0,0}, G ds =diag{5.8,5.8}*θ sd , τ fs =0.025, H s =diag{0.28,0.38}.
取环境参数为Me=diag{-2.0,-2.0},Ce=diag{0,0},Ge=diag{-0.9,-0.9}*θs。The environmental parameters are taken as M e =diag{-2.0,-2.0}, C e =diag{0,0}, G e =diag{-0.9,-0.9}*θ s .
取操作者操作力矩为τh=[-2 sin t 4 sin t]T。Take the operator's operating torque as τ h =[-2 sin t 4 sin t] T .
定义主从机器人为具有2自由度的机械臂,参数为:Define the master-slave robot as a mechanical arm with 2 degrees of freedom, and the parameters are:
其中,j=m,s分别表示主机器人和从机器人,g=9.8m/s2。Wherein, j=m, s represent the master robot and the slave robot respectively, and g=9.8m/s 2 .
图2为主机器人和从机器人的位置跟踪和力反馈曲线,从图中可以看出,从机器人可以较好地跟踪主机器人的位置信号,操作者可以感受到的力反馈信号,并通过公式(6)为主机器人提供理想的跟踪轨迹。因此,该非线性遥操作系统是透明的。Figure 2 is the position tracking and force feedback curves of the master robot and the slave robot. It can be seen from the figure that the slave robot can track the position signal of the master robot well, and the operator can feel the force feedback signal, and pass the formula ( 6) Provide an ideal tracking trajectory for the main robot. Therefore, the nonlinear teleoperation system is transparent.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910437931.0A CN110116409B (en) | 2019-05-24 | 2019-05-24 | Four-channel teleoperation bilateral control method based on disturbance observer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910437931.0A CN110116409B (en) | 2019-05-24 | 2019-05-24 | Four-channel teleoperation bilateral control method based on disturbance observer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110116409A true CN110116409A (en) | 2019-08-13 |
CN110116409B CN110116409B (en) | 2021-02-26 |
Family
ID=67523166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910437931.0A Active CN110116409B (en) | 2019-05-24 | 2019-05-24 | Four-channel teleoperation bilateral control method based on disturbance observer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110116409B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111427264A (en) * | 2020-03-15 | 2020-07-17 | 中国地质大学(武汉) | Neural self-adaptive fixed time control method of complex teleoperation technology |
CN111745643A (en) * | 2020-05-28 | 2020-10-09 | 西华大学 | Master robot and slave robot teleoperating system position control method |
CN113485120A (en) * | 2021-08-01 | 2021-10-08 | 西北工业大学 | Robot teleoperation trajectory planning method based on control behavior detection |
CN114102636A (en) * | 2021-12-31 | 2022-03-01 | 华中科技大学 | Weld grinding control system of teleoperated robot and its design method and application |
CN114488791A (en) * | 2021-12-15 | 2022-05-13 | 西北工业大学 | Teleoperation event trigger fixed time control method based on operator intention understanding |
CN114800487A (en) * | 2022-03-14 | 2022-07-29 | 中国科学院自动化研究所 | Underwater robot operation control method based on disturbance observation technology |
CN115421378A (en) * | 2022-07-13 | 2022-12-02 | 中华人民共和国南京海关 | Pharyngeal swab detection bilateral teleoperation control method based on nonlinear disturbance observer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102848391A (en) * | 2012-09-20 | 2013-01-02 | 北京邮电大学 | Four-channel bilateral teleoperation control system based on actual force feedback |
CN105138754A (en) * | 2015-05-13 | 2015-12-09 | 西北工业大学 | Design method of variable-structure controller for double teleoperation with feature of time-varying delay |
CN108500983A (en) * | 2018-06-26 | 2018-09-07 | 西华大学 | A kind of non-linear remote operating bilateral control system |
CN108646569A (en) * | 2018-07-09 | 2018-10-12 | 燕山大学 | The control method of remote control system under discrete-time state |
CN109085749A (en) * | 2018-08-07 | 2018-12-25 | 浙江大学 | A kind of non-linear remote operating bilateral control method based on adaptive fuzzy inverting |
CN109240086A (en) * | 2018-10-16 | 2019-01-18 | 浙江大学 | A kind of adaptive robust control method of non-linear bilateral teleoperation system |
-
2019
- 2019-05-24 CN CN201910437931.0A patent/CN110116409B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102848391A (en) * | 2012-09-20 | 2013-01-02 | 北京邮电大学 | Four-channel bilateral teleoperation control system based on actual force feedback |
CN105138754A (en) * | 2015-05-13 | 2015-12-09 | 西北工业大学 | Design method of variable-structure controller for double teleoperation with feature of time-varying delay |
CN108500983A (en) * | 2018-06-26 | 2018-09-07 | 西华大学 | A kind of non-linear remote operating bilateral control system |
CN108646569A (en) * | 2018-07-09 | 2018-10-12 | 燕山大学 | The control method of remote control system under discrete-time state |
CN109085749A (en) * | 2018-08-07 | 2018-12-25 | 浙江大学 | A kind of non-linear remote operating bilateral control method based on adaptive fuzzy inverting |
CN109240086A (en) * | 2018-10-16 | 2019-01-18 | 浙江大学 | A kind of adaptive robust control method of non-linear bilateral teleoperation system |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111427264A (en) * | 2020-03-15 | 2020-07-17 | 中国地质大学(武汉) | Neural self-adaptive fixed time control method of complex teleoperation technology |
CN111427264B (en) * | 2020-03-15 | 2021-12-14 | 中国地质大学(武汉) | A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology |
CN111745643A (en) * | 2020-05-28 | 2020-10-09 | 西华大学 | Master robot and slave robot teleoperating system position control method |
CN113485120A (en) * | 2021-08-01 | 2021-10-08 | 西北工业大学 | Robot teleoperation trajectory planning method based on control behavior detection |
CN113485120B (en) * | 2021-08-01 | 2022-07-05 | 西北工业大学 | A Robot Teleoperation Trajectory Planning Method Based on Manipulation Behavior Detection |
CN114488791A (en) * | 2021-12-15 | 2022-05-13 | 西北工业大学 | Teleoperation event trigger fixed time control method based on operator intention understanding |
CN114488791B (en) * | 2021-12-15 | 2023-07-21 | 西北工业大学 | A teleoperation event-triggered fixed-time control method based on operator intention understanding |
CN114102636A (en) * | 2021-12-31 | 2022-03-01 | 华中科技大学 | Weld grinding control system of teleoperated robot and its design method and application |
CN114102636B (en) * | 2021-12-31 | 2024-03-19 | 华中科技大学 | Welding seam polishing control system of teleoperation robot and design method and application thereof |
CN114800487A (en) * | 2022-03-14 | 2022-07-29 | 中国科学院自动化研究所 | Underwater robot operation control method based on disturbance observation technology |
CN114800487B (en) * | 2022-03-14 | 2024-02-02 | 中国科学院自动化研究所 | Underwater robot operation control method based on disturbance observation technology |
CN115421378A (en) * | 2022-07-13 | 2022-12-02 | 中华人民共和国南京海关 | Pharyngeal swab detection bilateral teleoperation control method based on nonlinear disturbance observer |
Also Published As
Publication number | Publication date |
---|---|
CN110116409B (en) | 2021-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110116409B (en) | Four-channel teleoperation bilateral control method based on disturbance observer | |
CN109240086B (en) | An Adaptive Robust Control Method for a Nonlinear Bilateral Teleoperating System | |
CN109085749B (en) | A Nonlinear Teleoperation Bilateral Control Method Based on Adaptive Fuzzy Inversion | |
CN106647281B (en) | A Finite Time Compensation Method for Telecontrol System Interference Based on Terminal Sliding Mode | |
CN110083179B (en) | A Consistent Tracking Control Method for Multi-Agent Systems with Predetermined Time | |
CN103838145B (en) | VTOL aircraft Robust Fault-Tolerant Control Systems based on cascade observer and method | |
CN110262256B (en) | Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system | |
CN103831831B (en) | There is non-linear remote control system position and the force tracing control system of time-vary delay system | |
CN108803326A (en) | Industrial machinery arm linear active disturbance rejection tracking and controlling method with interference and time delay | |
CN112223275B (en) | Control Method of Collaborative Robot Based on Finite Time Tracking Control | |
CN110340894B (en) | Teleoperation system self-adaptive multilateral control method based on fuzzy logic | |
CN108241292B (en) | A sliding mode control method for underwater robot based on extended state observer | |
CN102848391A (en) | Four-channel bilateral teleoperation control system based on actual force feedback | |
CN110794678B (en) | A four-channel teleoperated force feedback control method with limited hysteresis nonlinearity | |
CN103728988B (en) | SCARA robot trajectory tracking control method based on internal model | |
CN108549226A (en) | A kind of continuous finite-time control method of remote control system under time-vary delay system | |
CN114114928A (en) | A fixed-time adaptive event-triggered control method for a piezoelectric micropositioning platform | |
CN113031434B (en) | Fractional order self-adaptive control method and device for time-lag multi-flexible swing arm system | |
CN109062240A (en) | A kind of rigid aircraft set time Adaptive Attitude Tracking control method based on neural network estimation | |
CN116339141A (en) | A global fixed-time trajectory tracking sliding mode control method for manipulators | |
CN117506896A (en) | Control method for single-connecting-rod mechanical arm embedded with direct-current motor | |
Hua et al. | Extended-state-observer-based finite-time synchronization control design of teleoperation with experimental validation | |
CN110000788B (en) | A finite-time fault-tolerant control method for remote operating systems | |
CN112904713B (en) | High-precision strong-robustness control method of spatial motion servo mechanism | |
CN108582019B (en) | Control method for flexible teleoperation system under asymmetric structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |