CN110112206A - A kind of gallium oxide junction field effect transistor - Google Patents
A kind of gallium oxide junction field effect transistor Download PDFInfo
- Publication number
- CN110112206A CN110112206A CN201910417260.1A CN201910417260A CN110112206A CN 110112206 A CN110112206 A CN 110112206A CN 201910417260 A CN201910417260 A CN 201910417260A CN 110112206 A CN110112206 A CN 110112206A
- Authority
- CN
- China
- Prior art keywords
- gallium oxide
- field effect
- effect transistor
- junction field
- channel layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 229910001195 gallium oxide Inorganic materials 0.000 title claims abstract description 52
- 230000005669 field effect Effects 0.000 title claims abstract description 23
- 239000004065 semiconductor Substances 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims 1
- 229910052733 gallium Inorganic materials 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 39
- 229910001020 Au alloy Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/125—Shapes of junctions between the regions
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了一种氧化镓结型场效应晶体管,涉及半导体器件技术领域。针对现有技术中氧化镓材料的晶体管存在栅极漏电较大或者栅控特性较差的不足,提出本技术方案。在栅极和氧化镓沟道层之间设置一p型氧化物半导体层,形成异质PN结,在有效降低栅极漏电流的同时可保证良好的栅控特性。
The invention discloses a gallium oxide junction field effect transistor and relates to the technical field of semiconductor devices. Aiming at the disadvantages of large gate leakage or poor gate control characteristics in transistors made of gallium oxide in the prior art, this technical solution is proposed. A p-type oxide semiconductor layer is arranged between the gate and the gallium oxide channel layer to form a heterogeneous PN junction, which can ensure good gate control characteristics while effectively reducing gate leakage current.
Description
技术领域technical field
本发明涉及半导体器件技术领域,具体涉及一种氧化镓结型场效应晶体管。The invention relates to the technical field of semiconductor devices, in particular to a gallium oxide junction field effect transistor.
背景技术Background technique
氧化镓(Ga2O3)半导体具有高达4.8eV的超宽禁带和8MV/cm的超大临界击穿场强,远高于传统半导体材料硅、碳化硅和氮化镓,这意味着相同器件尺寸下,基于氧化镓的场效应晶体管(FET)具有更高的耐压特性。此外,氧化镓场效应晶体管还具有耐高温、抗辐照、可靠性高和成本低等优势。Gallium oxide (Ga 2 O 3 ) semiconductor has an ultra-wide bandgap of up to 4.8eV and an ultra-large critical breakdown field strength of 8MV/cm, much higher than the traditional semiconductor materials silicon, silicon carbide and gallium nitride, which means that the same device GaO-based field-effect transistors (FETs) have higher withstand voltage characteristics at a lower size. In addition, gallium oxide field effect transistors also have the advantages of high temperature resistance, radiation resistance, high reliability and low cost.
但是,现有的氧化镓场效应晶体管均采用肖特基栅极或者金属-绝缘体-半导体(MIS)结构栅极(参见文献M.Higashiwaki,et al.,Gallium oxide(Ga2O3)metal-semiconductor field-effect transistors on single-crystalβ-Ga2O3(010)substrates,Applied Physics Letters 100(1),013504,2011、文献N.Moser,et al.,Ge-Dopedβ-Ga2O3 MOSFETs,IEEE Electron Device letters 38(6),775,2017和中国专利CN107742647A),存在栅极漏电较大或者栅控特性较差的不足。However, the existing gallium oxide field effect transistors all use Schottky gates or metal-insulator-semiconductor (MIS) structure gates (see literature M. Higashiwaki, et al., Gallium oxide (Ga 2 O 3 ) metal- semiconductor field-effect transistors on single-crystalβ-Ga 2 O 3 (010) substrates, Applied Physics Letters 100(1), 013504, 2011, literature N. Moser, et al., Ge-Dopedβ-Ga2O3 MOSFETs, IEEE Electron Device letters 38(6), 775,2017 and Chinese patent CN107742647A), there are disadvantages of large gate leakage or poor gate control characteristics.
发明内容Contents of the invention
为了解决上述现有技术存在的问题,本发明目的在于提供一种氧化镓结型场效应晶体管,通过采用异质PN结的栅极结构,实现器件的低栅极漏电和良好的栅控特性。In order to solve the above-mentioned problems in the prior art, the object of the present invention is to provide a gallium oxide junction field effect transistor, which realizes low gate leakage and good gate control characteristics of the device by adopting a heterogeneous PN junction gate structure.
本发明所述的一种氧化镓结型场效应晶体管,包括依次层叠设置的衬底和氧化镓沟道层,所述的氧化镓沟道层远离衬底的一侧设有源极和漏极;所述的源极和漏极之间还设有p型氧化物半导体层,使得p型氧化物半导体层和氧化镓沟道层形成异质PN结;所述的p型氧化物半导体层一侧与氧化镓沟道层连接,另一侧设有栅极。A gallium oxide junction field effect transistor according to the present invention comprises a substrate and a gallium oxide channel layer which are sequentially stacked, and the side of the gallium oxide channel layer away from the substrate is provided with a source and a drain A p-type oxide semiconductor layer is also provided between the source and the drain, so that the p-type oxide semiconductor layer and the gallium oxide channel layer form a heterogeneous PN junction; the p-type oxide semiconductor layer- One side is connected to the gallium oxide channel layer, and the other side is provided with a gate.
优选地,所述的p型氧化物半导体层和栅极为欧姆接触或肖特基接触。Preferably, the p-type oxide semiconductor layer and the gate are Ohmic contacts or Schottky contacts.
优选地,所述的p型氧化物半导体层为非晶或多晶结构。Preferably, the p-type oxide semiconductor layer has an amorphous or polycrystalline structure.
优选地,所述的p型氧化物半导体层为单层或多层结构。Preferably, the p-type oxide semiconductor layer has a single-layer or multi-layer structure.
优选地,所述的p型氧化物半导体层的空穴浓度为1×1017/cm3~1×1020/cm3。Preferably, the hole concentration of the p-type oxide semiconductor layer is 1×10 17 /cm 3 to 1×10 20 /cm 3 .
优选地,所述的p型氧化物半导体层由NiO或Cu2O制成。Preferably, the p-type oxide semiconductor layer is made of NiO or Cu 2 O.
优选地,所述的氧化镓沟道层为单晶结构。Preferably, the gallium oxide channel layer has a single crystal structure.
优选地,所述的氧化镓沟道层的掺杂浓度为5×1015cm-3~1×1018cm-3。Preferably, the doping concentration of the gallium oxide channel layer is 5×10 15 cm -3 to 1×10 18 cm -3 .
优选地,所述的氧化镓沟道层的厚度为10nm~10μm。Preferably, the gallium oxide channel layer has a thickness of 10 nm˜10 μm.
优选地,所述的源极与氧化镓沟道层为欧姆接触,所述的漏极与氧化镓沟道层为欧姆接触。Preferably, the source is in ohmic contact with the gallium oxide channel layer, and the drain is in ohmic contact with the gallium oxide channel layer.
本发明所述的一种氧化镓结型场效应晶体管,其优点在于,通过在栅极采用非晶或多晶的p型氧化物半导体层与单晶的氧化镓沟道层形成异质PN结,在有效降低栅极漏电流的同时可保证良好的栅控特性。A gallium oxide junction field effect transistor according to the present invention has the advantage of forming a heterogeneous PN junction by using an amorphous or polycrystalline p-type oxide semiconductor layer and a single crystal gallium oxide channel layer at the gate , while effectively reducing the gate leakage current, it can ensure good gate control characteristics.
附图说明Description of drawings
图1是本发明所述氧化镓结型场效应晶体管的结构示意图。FIG. 1 is a schematic structural diagram of a gallium oxide junction field effect transistor according to the present invention.
附图说明:101-衬底;102-氧化镓沟道层;103-源极;104-漏极;105-p型氧化物半导体层;106-栅极。Description of drawings: 101-substrate; 102-gallium oxide channel layer; 103-source; 104-drain; 105-p-type oxide semiconductor layer; 106-gate.
具体实施方式Detailed ways
如图1所示,本发明所述的一种氧化镓结型场效应晶体管包括依次层叠设置的衬底101和氧化镓沟道层102,所述的氧化镓沟道层102远离衬底101的一侧设有源极103和漏极104。所述的源极103和漏极104之间还设有p型氧化物半导体层105,使得p型氧化物半导体层105和氧化镓沟道层102形成异质PN结。所述的p型氧化物半导体层105一侧与氧化镓沟道层102连接,另一侧设有栅极106。As shown in FIG. 1 , a gallium oxide junction field effect transistor according to the present invention includes a substrate 101 and a gallium oxide channel layer 102 stacked in sequence, and the gallium oxide channel layer 102 is far away from the substrate 101 A source 103 and a drain 104 are provided on one side. A p-type oxide semiconductor layer 105 is further provided between the source electrode 103 and the drain electrode 104, so that the p-type oxide semiconductor layer 105 and the gallium oxide channel layer 102 form a heterogeneous PN junction. One side of the p-type oxide semiconductor layer 105 is connected to the gallium oxide channel layer 102 , and the other side is provided with a gate 106 .
所述的p型氧化物半导体层105可为采用磁控溅射、溶液法、氧化金属法、物理或化学气相沉积等方法制备。材料可采用NiO、Cu2O或其他单层或多层的p型氧化物半导体,也可采用非晶或多晶结构。p型氧化物半导体层105的空穴浓度为1×1017/cm3~1×1020/cm3。The p-type oxide semiconductor layer 105 can be prepared by magnetron sputtering, solution method, metal oxide method, physical or chemical vapor deposition and other methods. The material can be NiO, Cu 2 O or other single-layer or multi-layer p-type oxide semiconductors, or amorphous or polycrystalline structure. The hole concentration of the p-type oxide semiconductor layer 105 is 1×10 17 /cm 3 to 1×10 20 /cm 3 .
氧化镓沟道层102为单晶结构,厚度为10nm至10μm,其n型的掺杂浓度为5×1015cm-3~1×1018cm-3。The gallium oxide channel layer 102 has a single crystal structure with a thickness of 10 nm to 10 μm, and its n-type doping concentration is 5×10 15 cm −3 to 1×10 18 cm −3 .
衬底101为绝缘衬底,可以是氧化镓、氧化铝、金刚石、碳化硅或硅等材料。The substrate 101 is an insulating substrate, which may be materials such as gallium oxide, aluminum oxide, diamond, silicon carbide, or silicon.
源极103和漏极104可以采用磁控溅射或电子束蒸发的方法沉积Ti/Au合金或Ti/Al/Ni/Au合金制得,分别与氧化镓沟道层102表面形成欧姆接触。The source 103 and the drain 104 can be manufactured by depositing Ti/Au alloy or Ti/Al/Ni/Au alloy by magnetron sputtering or electron beam evaporation, respectively forming ohmic contacts with the surface of the gallium oxide channel layer 102 .
栅极106可以采用磁控溅射或电子束蒸发的方法沉积Ni/Au合金或Pt/Au合金制得,与p型氧化物半导体层105表面形成欧姆接触或肖特基接触。The gate 106 can be made by depositing Ni/Au alloy or Pt/Au alloy by means of magnetron sputtering or electron beam evaporation, and forms an ohmic or Schottky contact with the surface of the p-type oxide semiconductor layer 105 .
本发明提出的一种氧化镓结型场效应晶体管,通过在采用非晶或多晶的p型氧化物半导体层105与单晶的氧化镓沟道层102形成异质PN结,构成结型栅极结构。当栅极106施加负电压时,异质PN结反偏,氧化镓沟道层102被耗尽,晶体管被关断;当栅极106施加正电压时,异质PN结正偏,氧化镓沟道层102耗尽深度减小,实现对晶体管电流的有效调控;采用结型栅极结构,可以在有效降低栅极106漏电流的同时可保证晶体管具有良好的栅控特性。A gallium oxide junction field effect transistor proposed in the present invention forms a heterogeneous PN junction by using an amorphous or polycrystalline p-type oxide semiconductor layer 105 and a single crystal gallium oxide channel layer 102 to form a junction gate pole structure. When a negative voltage is applied to the gate 106, the heterogeneous PN junction is reverse-biased, the gallium oxide channel layer 102 is depleted, and the transistor is turned off; when a positive voltage is applied to the gate 106, the heterogeneous PN junction is forward-biased, and the gallium oxide channel layer 102 is turned off. The depletion depth of the channel layer 102 is reduced to realize effective control of the transistor current; the junction gate structure can effectively reduce the leakage current of the gate 106 while ensuring that the transistor has good gate control characteristics.
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。For those skilled in the art, various other corresponding changes and deformations can be made according to the technical solutions and ideas described above, and all these changes and deformations should fall within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910417260.1A CN110112206A (en) | 2019-05-20 | 2019-05-20 | A kind of gallium oxide junction field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910417260.1A CN110112206A (en) | 2019-05-20 | 2019-05-20 | A kind of gallium oxide junction field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110112206A true CN110112206A (en) | 2019-08-09 |
Family
ID=67490938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910417260.1A Pending CN110112206A (en) | 2019-05-20 | 2019-05-20 | A kind of gallium oxide junction field effect transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110112206A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110416090A (en) * | 2019-08-19 | 2019-11-05 | 中国科学技术大学 | Method for forming gallium oxide device isolation and gallium oxide isolation device |
CN110600366A (en) * | 2019-09-20 | 2019-12-20 | 西安交通大学 | (100) Crystal orientation diamond n-channel junction field effect transistor and preparation method thereof |
CN111129122A (en) * | 2019-12-13 | 2020-05-08 | 中国科学技术大学 | Heterojunction semiconductor structures based on gallium oxide and their devices |
WO2020186699A1 (en) * | 2019-03-19 | 2020-09-24 | 南方科技大学 | Field-effect transistor and manufacturing method therefor |
CN112038409A (en) * | 2020-09-15 | 2020-12-04 | 西安电子科技大学 | Double-heterojunction enhanced metal oxide field effect transistor and preparation method thereof |
CN112133756A (en) * | 2020-10-07 | 2020-12-25 | 西安电子科技大学 | PN junction gate-controlled gallium oxide field effect transistor based on T-type gate structure and preparation method thereof |
CN112133757A (en) * | 2020-10-07 | 2020-12-25 | 西安电子科技大学 | Gate-controlled gallium oxide field effect transistor based on p-i-n structure and preparation method thereof |
CN112164724A (en) * | 2020-10-07 | 2021-01-01 | 西安电子科技大学 | A kind of PN junction gate-controlled gallium oxide field effect transistor and preparation method thereof |
CN112951918A (en) * | 2021-01-29 | 2021-06-11 | 中国电子科技集团公司第十三研究所 | Inclined grid type gallium oxide field effect transistor and preparation method |
WO2021139040A1 (en) * | 2020-01-07 | 2021-07-15 | 中国电子科技集团公司第十三研究所 | Gallium oxide field effect transistor and manufacturing method therefor |
CN114005868A (en) * | 2021-10-26 | 2022-02-01 | 中山大学 | A structure and preparation method for optimizing the surface electric field of a lateral gallium oxide power device |
CN114497232A (en) * | 2022-01-25 | 2022-05-13 | 湖南大学 | A kind of abrupt NN type junction field effect transistor and preparation method thereof |
CN116759458A (en) * | 2023-08-17 | 2023-09-15 | 苏州燎塬半导体有限公司 | Gallium oxide junction field effect transistor and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101097966A (en) * | 2006-06-28 | 2008-01-02 | 三星电子株式会社 | JFET |
JP2019036593A (en) * | 2017-08-10 | 2019-03-07 | 株式会社タムラ製作所 | diode |
WO2019065751A1 (en) * | 2017-09-29 | 2019-04-04 | 株式会社タムラ製作所 | Field effect transistor |
-
2019
- 2019-05-20 CN CN201910417260.1A patent/CN110112206A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101097966A (en) * | 2006-06-28 | 2008-01-02 | 三星电子株式会社 | JFET |
JP2019036593A (en) * | 2017-08-10 | 2019-03-07 | 株式会社タムラ製作所 | diode |
WO2019065751A1 (en) * | 2017-09-29 | 2019-04-04 | 株式会社タムラ製作所 | Field effect transistor |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020186699A1 (en) * | 2019-03-19 | 2020-09-24 | 南方科技大学 | Field-effect transistor and manufacturing method therefor |
CN110416090A (en) * | 2019-08-19 | 2019-11-05 | 中国科学技术大学 | Method for forming gallium oxide device isolation and gallium oxide isolation device |
CN110600366B (en) * | 2019-09-20 | 2021-06-18 | 西安交通大学 | (100) Crystalline diamond n-channel junction field effect transistor and method for making the same |
CN110600366A (en) * | 2019-09-20 | 2019-12-20 | 西安交通大学 | (100) Crystal orientation diamond n-channel junction field effect transistor and preparation method thereof |
CN111129122A (en) * | 2019-12-13 | 2020-05-08 | 中国科学技术大学 | Heterojunction semiconductor structures based on gallium oxide and their devices |
WO2021139040A1 (en) * | 2020-01-07 | 2021-07-15 | 中国电子科技集团公司第十三研究所 | Gallium oxide field effect transistor and manufacturing method therefor |
CN112038409A (en) * | 2020-09-15 | 2020-12-04 | 西安电子科技大学 | Double-heterojunction enhanced metal oxide field effect transistor and preparation method thereof |
CN112133757B (en) * | 2020-10-07 | 2022-03-04 | 西安电子科技大学 | Gate-controlled gallium oxide field effect transistor based on p-i-n structure and preparation method thereof |
CN112164724A (en) * | 2020-10-07 | 2021-01-01 | 西安电子科技大学 | A kind of PN junction gate-controlled gallium oxide field effect transistor and preparation method thereof |
CN112133757A (en) * | 2020-10-07 | 2020-12-25 | 西安电子科技大学 | Gate-controlled gallium oxide field effect transistor based on p-i-n structure and preparation method thereof |
CN112133756A (en) * | 2020-10-07 | 2020-12-25 | 西安电子科技大学 | PN junction gate-controlled gallium oxide field effect transistor based on T-type gate structure and preparation method thereof |
CN112951918A (en) * | 2021-01-29 | 2021-06-11 | 中国电子科技集团公司第十三研究所 | Inclined grid type gallium oxide field effect transistor and preparation method |
CN112951918B (en) * | 2021-01-29 | 2023-06-27 | 中国电子科技集团公司第十三研究所 | Inclined gate type gallium oxide field effect transistor and preparation method thereof |
CN114005868A (en) * | 2021-10-26 | 2022-02-01 | 中山大学 | A structure and preparation method for optimizing the surface electric field of a lateral gallium oxide power device |
CN114005868B (en) * | 2021-10-26 | 2025-02-28 | 中山大学 | A structure and preparation method for optimizing the surface electric field of a lateral gallium oxide power device |
CN114497232A (en) * | 2022-01-25 | 2022-05-13 | 湖南大学 | A kind of abrupt NN type junction field effect transistor and preparation method thereof |
CN114497232B (en) * | 2022-01-25 | 2022-11-04 | 湖南大学 | Mutation NN type junction field effect transistor and preparation method thereof |
CN116759458A (en) * | 2023-08-17 | 2023-09-15 | 苏州燎塬半导体有限公司 | Gallium oxide junction field effect transistor and preparation method thereof |
CN116759458B (en) * | 2023-08-17 | 2023-10-13 | 苏州燎塬半导体有限公司 | Gallium oxide junction field effect transistor and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110112206A (en) | A kind of gallium oxide junction field effect transistor | |
Ma et al. | Zinc oxide thin film transistors with Schottky source barriers | |
CN107104140B (en) | A two-dimensional material/semiconductor heterojunction tunneling transistor and its preparation method | |
CN108305834B (en) | A kind of preparation method of enhancement mode gallium nitride field effect device | |
CN107248530B (en) | A two-dimensional material/semiconductor heterojunction vertical tunneling transistor and its preparation method | |
EP2920814A1 (en) | Semiconductor structure and recess formation etch technique | |
CN102386223A (en) | High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method | |
CN104241378B (en) | Double-graphene-layer tunneling field effect transistor and manufacturing method thereof | |
CN110148625A (en) | A kind of gallium oxide verticle noded type field effect transistor and preparation method thereof | |
WO2022188694A1 (en) | Field effect transistor, manufacturing method therefor, and switching circuit | |
CN109244130A (en) | Self aligning grid structure GaN MIS-HEMT device and preparation method thereof based on p-GaN and SiN layer | |
CN110571275A (en) | Preparation method of gallium oxide MOSFET | |
CN113972263B (en) | An enhanced AlGaN/GaN HEMT device and its preparation method | |
CN109935637A (en) | A high voltage thin film transistor | |
CN104393045B (en) | A kind of new GaN base enhancement mode HEMT device and preparation method thereof | |
CN104752517A (en) | Thin film transistor as well as preparation method and application of thin film transistor | |
CN106549041A (en) | A kind of high thin film transistor (TFT) of effective power | |
CN116072706A (en) | Gallium oxide heterojunction tunneling field effect transistor and preparation method thereof | |
Lu et al. | GaN power electronics | |
CN114843337A (en) | Gallium nitride high electron mobility transistor with double-gate structure and manufacturing method thereof | |
CN106783996A (en) | A kind of HEMT and preparation method thereof | |
JP2017092398A (en) | Diamond electronic element | |
Im et al. | First demonstration of heterojunction-free GaN nanochannel FinFETs | |
US20190035918A1 (en) | Tunneling Junction Transistor | |
CN117577680B (en) | GaN bidirectional power devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190809 |