[go: up one dir, main page]

CN110112206A - A kind of gallium oxide junction field effect transistor - Google Patents

A kind of gallium oxide junction field effect transistor Download PDF

Info

Publication number
CN110112206A
CN110112206A CN201910417260.1A CN201910417260A CN110112206A CN 110112206 A CN110112206 A CN 110112206A CN 201910417260 A CN201910417260 A CN 201910417260A CN 110112206 A CN110112206 A CN 110112206A
Authority
CN
China
Prior art keywords
gallium oxide
field effect
effect transistor
junction field
channel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910417260.1A
Other languages
Chinese (zh)
Inventor
卢星
王钢
裴艳丽
陈梓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201910417260.1A priority Critical patent/CN110112206A/en
Publication of CN110112206A publication Critical patent/CN110112206A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • H10D62/125Shapes of junctions between the regions

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种氧化镓结型场效应晶体管,涉及半导体器件技术领域。针对现有技术中氧化镓材料的晶体管存在栅极漏电较大或者栅控特性较差的不足,提出本技术方案。在栅极和氧化镓沟道层之间设置一p型氧化物半导体层,形成异质PN结,在有效降低栅极漏电流的同时可保证良好的栅控特性。

The invention discloses a gallium oxide junction field effect transistor and relates to the technical field of semiconductor devices. Aiming at the disadvantages of large gate leakage or poor gate control characteristics in transistors made of gallium oxide in the prior art, this technical solution is proposed. A p-type oxide semiconductor layer is arranged between the gate and the gallium oxide channel layer to form a heterogeneous PN junction, which can ensure good gate control characteristics while effectively reducing gate leakage current.

Description

一种氧化镓结型场效应晶体管A gallium oxide junction field effect transistor

技术领域technical field

本发明涉及半导体器件技术领域,具体涉及一种氧化镓结型场效应晶体管。The invention relates to the technical field of semiconductor devices, in particular to a gallium oxide junction field effect transistor.

背景技术Background technique

氧化镓(Ga2O3)半导体具有高达4.8eV的超宽禁带和8MV/cm的超大临界击穿场强,远高于传统半导体材料硅、碳化硅和氮化镓,这意味着相同器件尺寸下,基于氧化镓的场效应晶体管(FET)具有更高的耐压特性。此外,氧化镓场效应晶体管还具有耐高温、抗辐照、可靠性高和成本低等优势。Gallium oxide (Ga 2 O 3 ) semiconductor has an ultra-wide bandgap of up to 4.8eV and an ultra-large critical breakdown field strength of 8MV/cm, much higher than the traditional semiconductor materials silicon, silicon carbide and gallium nitride, which means that the same device GaO-based field-effect transistors (FETs) have higher withstand voltage characteristics at a lower size. In addition, gallium oxide field effect transistors also have the advantages of high temperature resistance, radiation resistance, high reliability and low cost.

但是,现有的氧化镓场效应晶体管均采用肖特基栅极或者金属-绝缘体-半导体(MIS)结构栅极(参见文献M.Higashiwaki,et al.,Gallium oxide(Ga2O3)metal-semiconductor field-effect transistors on single-crystalβ-Ga2O3(010)substrates,Applied Physics Letters 100(1),013504,2011、文献N.Moser,et al.,Ge-Dopedβ-Ga2O3 MOSFETs,IEEE Electron Device letters 38(6),775,2017和中国专利CN107742647A),存在栅极漏电较大或者栅控特性较差的不足。However, the existing gallium oxide field effect transistors all use Schottky gates or metal-insulator-semiconductor (MIS) structure gates (see literature M. Higashiwaki, et al., Gallium oxide (Ga 2 O 3 ) metal- semiconductor field-effect transistors on single-crystalβ-Ga 2 O 3 (010) substrates, Applied Physics Letters 100(1), 013504, 2011, literature N. Moser, et al., Ge-Dopedβ-Ga2O3 MOSFETs, IEEE Electron Device letters 38(6), 775,2017 and Chinese patent CN107742647A), there are disadvantages of large gate leakage or poor gate control characteristics.

发明内容Contents of the invention

为了解决上述现有技术存在的问题,本发明目的在于提供一种氧化镓结型场效应晶体管,通过采用异质PN结的栅极结构,实现器件的低栅极漏电和良好的栅控特性。In order to solve the above-mentioned problems in the prior art, the object of the present invention is to provide a gallium oxide junction field effect transistor, which realizes low gate leakage and good gate control characteristics of the device by adopting a heterogeneous PN junction gate structure.

本发明所述的一种氧化镓结型场效应晶体管,包括依次层叠设置的衬底和氧化镓沟道层,所述的氧化镓沟道层远离衬底的一侧设有源极和漏极;所述的源极和漏极之间还设有p型氧化物半导体层,使得p型氧化物半导体层和氧化镓沟道层形成异质PN结;所述的p型氧化物半导体层一侧与氧化镓沟道层连接,另一侧设有栅极。A gallium oxide junction field effect transistor according to the present invention comprises a substrate and a gallium oxide channel layer which are sequentially stacked, and the side of the gallium oxide channel layer away from the substrate is provided with a source and a drain A p-type oxide semiconductor layer is also provided between the source and the drain, so that the p-type oxide semiconductor layer and the gallium oxide channel layer form a heterogeneous PN junction; the p-type oxide semiconductor layer- One side is connected to the gallium oxide channel layer, and the other side is provided with a gate.

优选地,所述的p型氧化物半导体层和栅极为欧姆接触或肖特基接触。Preferably, the p-type oxide semiconductor layer and the gate are Ohmic contacts or Schottky contacts.

优选地,所述的p型氧化物半导体层为非晶或多晶结构。Preferably, the p-type oxide semiconductor layer has an amorphous or polycrystalline structure.

优选地,所述的p型氧化物半导体层为单层或多层结构。Preferably, the p-type oxide semiconductor layer has a single-layer or multi-layer structure.

优选地,所述的p型氧化物半导体层的空穴浓度为1×1017/cm3~1×1020/cm3Preferably, the hole concentration of the p-type oxide semiconductor layer is 1×10 17 /cm 3 to 1×10 20 /cm 3 .

优选地,所述的p型氧化物半导体层由NiO或Cu2O制成。Preferably, the p-type oxide semiconductor layer is made of NiO or Cu 2 O.

优选地,所述的氧化镓沟道层为单晶结构。Preferably, the gallium oxide channel layer has a single crystal structure.

优选地,所述的氧化镓沟道层的掺杂浓度为5×1015cm-3~1×1018cm-3Preferably, the doping concentration of the gallium oxide channel layer is 5×10 15 cm -3 to 1×10 18 cm -3 .

优选地,所述的氧化镓沟道层的厚度为10nm~10μm。Preferably, the gallium oxide channel layer has a thickness of 10 nm˜10 μm.

优选地,所述的源极与氧化镓沟道层为欧姆接触,所述的漏极与氧化镓沟道层为欧姆接触。Preferably, the source is in ohmic contact with the gallium oxide channel layer, and the drain is in ohmic contact with the gallium oxide channel layer.

本发明所述的一种氧化镓结型场效应晶体管,其优点在于,通过在栅极采用非晶或多晶的p型氧化物半导体层与单晶的氧化镓沟道层形成异质PN结,在有效降低栅极漏电流的同时可保证良好的栅控特性。A gallium oxide junction field effect transistor according to the present invention has the advantage of forming a heterogeneous PN junction by using an amorphous or polycrystalline p-type oxide semiconductor layer and a single crystal gallium oxide channel layer at the gate , while effectively reducing the gate leakage current, it can ensure good gate control characteristics.

附图说明Description of drawings

图1是本发明所述氧化镓结型场效应晶体管的结构示意图。FIG. 1 is a schematic structural diagram of a gallium oxide junction field effect transistor according to the present invention.

附图说明:101-衬底;102-氧化镓沟道层;103-源极;104-漏极;105-p型氧化物半导体层;106-栅极。Description of drawings: 101-substrate; 102-gallium oxide channel layer; 103-source; 104-drain; 105-p-type oxide semiconductor layer; 106-gate.

具体实施方式Detailed ways

如图1所示,本发明所述的一种氧化镓结型场效应晶体管包括依次层叠设置的衬底101和氧化镓沟道层102,所述的氧化镓沟道层102远离衬底101的一侧设有源极103和漏极104。所述的源极103和漏极104之间还设有p型氧化物半导体层105,使得p型氧化物半导体层105和氧化镓沟道层102形成异质PN结。所述的p型氧化物半导体层105一侧与氧化镓沟道层102连接,另一侧设有栅极106。As shown in FIG. 1 , a gallium oxide junction field effect transistor according to the present invention includes a substrate 101 and a gallium oxide channel layer 102 stacked in sequence, and the gallium oxide channel layer 102 is far away from the substrate 101 A source 103 and a drain 104 are provided on one side. A p-type oxide semiconductor layer 105 is further provided between the source electrode 103 and the drain electrode 104, so that the p-type oxide semiconductor layer 105 and the gallium oxide channel layer 102 form a heterogeneous PN junction. One side of the p-type oxide semiconductor layer 105 is connected to the gallium oxide channel layer 102 , and the other side is provided with a gate 106 .

所述的p型氧化物半导体层105可为采用磁控溅射、溶液法、氧化金属法、物理或化学气相沉积等方法制备。材料可采用NiO、Cu2O或其他单层或多层的p型氧化物半导体,也可采用非晶或多晶结构。p型氧化物半导体层105的空穴浓度为1×1017/cm3~1×1020/cm3The p-type oxide semiconductor layer 105 can be prepared by magnetron sputtering, solution method, metal oxide method, physical or chemical vapor deposition and other methods. The material can be NiO, Cu 2 O or other single-layer or multi-layer p-type oxide semiconductors, or amorphous or polycrystalline structure. The hole concentration of the p-type oxide semiconductor layer 105 is 1×10 17 /cm 3 to 1×10 20 /cm 3 .

氧化镓沟道层102为单晶结构,厚度为10nm至10μm,其n型的掺杂浓度为5×1015cm-3~1×1018cm-3The gallium oxide channel layer 102 has a single crystal structure with a thickness of 10 nm to 10 μm, and its n-type doping concentration is 5×10 15 cm −3 to 1×10 18 cm −3 .

衬底101为绝缘衬底,可以是氧化镓、氧化铝、金刚石、碳化硅或硅等材料。The substrate 101 is an insulating substrate, which may be materials such as gallium oxide, aluminum oxide, diamond, silicon carbide, or silicon.

源极103和漏极104可以采用磁控溅射或电子束蒸发的方法沉积Ti/Au合金或Ti/Al/Ni/Au合金制得,分别与氧化镓沟道层102表面形成欧姆接触。The source 103 and the drain 104 can be manufactured by depositing Ti/Au alloy or Ti/Al/Ni/Au alloy by magnetron sputtering or electron beam evaporation, respectively forming ohmic contacts with the surface of the gallium oxide channel layer 102 .

栅极106可以采用磁控溅射或电子束蒸发的方法沉积Ni/Au合金或Pt/Au合金制得,与p型氧化物半导体层105表面形成欧姆接触或肖特基接触。The gate 106 can be made by depositing Ni/Au alloy or Pt/Au alloy by means of magnetron sputtering or electron beam evaporation, and forms an ohmic or Schottky contact with the surface of the p-type oxide semiconductor layer 105 .

本发明提出的一种氧化镓结型场效应晶体管,通过在采用非晶或多晶的p型氧化物半导体层105与单晶的氧化镓沟道层102形成异质PN结,构成结型栅极结构。当栅极106施加负电压时,异质PN结反偏,氧化镓沟道层102被耗尽,晶体管被关断;当栅极106施加正电压时,异质PN结正偏,氧化镓沟道层102耗尽深度减小,实现对晶体管电流的有效调控;采用结型栅极结构,可以在有效降低栅极106漏电流的同时可保证晶体管具有良好的栅控特性。A gallium oxide junction field effect transistor proposed in the present invention forms a heterogeneous PN junction by using an amorphous or polycrystalline p-type oxide semiconductor layer 105 and a single crystal gallium oxide channel layer 102 to form a junction gate pole structure. When a negative voltage is applied to the gate 106, the heterogeneous PN junction is reverse-biased, the gallium oxide channel layer 102 is depleted, and the transistor is turned off; when a positive voltage is applied to the gate 106, the heterogeneous PN junction is forward-biased, and the gallium oxide channel layer 102 is turned off. The depletion depth of the channel layer 102 is reduced to realize effective control of the transistor current; the junction gate structure can effectively reduce the leakage current of the gate 106 while ensuring that the transistor has good gate control characteristics.

对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。For those skilled in the art, various other corresponding changes and deformations can be made according to the technical solutions and ideas described above, and all these changes and deformations should fall within the protection scope of the claims of the present invention.

Claims (10)

1. a kind of gallium oxide junction field effect transistor, including the substrate (101) being cascading and gallium oxide channel layer (102), the gallium oxide channel layer (102) is equipped with source electrode (103) and drain electrode (104) far from the side of substrate (101);It is special Sign is, is additionally provided with p-type oxide semiconductor layer (105) between the source electrode (103) and drain electrode (104), so that p-type aoxidizes Object semiconductor layer (105) and gallium oxide channel layer (102) form PN heterojunction;The p-type oxide semiconductor layer (105) one Side is connect with gallium oxide channel layer (102), and the other side is equipped with grid (106).
2. gallium oxide junction field effect transistor according to claim 1, which is characterized in that the p-type oxide is partly led Body layer (105) and grid (106) are Ohmic contact or Schottky contacts.
3. gallium oxide junction field effect transistor according to claim 1 or claim 2, which is characterized in that the p-type oxide half Conductor layer (105) is amorphous or polycrystalline structure.
4. gallium oxide junction field effect transistor according to claim 3, which is characterized in that the p-type oxide is partly led Body layer (105) is single or multi-layer structure.
5. according to claim 1 or the 4 gallium oxide junction field effect transistors, which is characterized in that the p-type oxide half The hole concentration of conductor layer (105) is 1 × 1017/cm3~1 × 1020/cm3
6. according to any gallium oxide junction field effect transistor of claim 5, which is characterized in that the p-type oxide Semiconductor layer (105) is by NiO or Cu2O is made.
7. gallium oxide junction field effect transistor according to claim 1, which is characterized in that the gallium oxide channel layer It (102) is mono-crystalline structures.
8. gallium oxide junction field effect transistor according to claim 7, which is characterized in that the gallium oxide channel layer (102) doping concentration is 5 × 1015cm-3~1 × 1018cm-3
9. gallium oxide junction field effect transistor according to claim 7, which is characterized in that the gallium oxide channel layer (102) with a thickness of 10nm~10 μm.
10. gallium oxide junction field effect transistor according to claim 1, which is characterized in that the source electrode (103) and oxygen Changing gallium channel layer (102) is Ohmic contact, and the drain electrode (104) and gallium oxide channel layer (102) are Ohmic contact.
CN201910417260.1A 2019-05-20 2019-05-20 A kind of gallium oxide junction field effect transistor Pending CN110112206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910417260.1A CN110112206A (en) 2019-05-20 2019-05-20 A kind of gallium oxide junction field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910417260.1A CN110112206A (en) 2019-05-20 2019-05-20 A kind of gallium oxide junction field effect transistor

Publications (1)

Publication Number Publication Date
CN110112206A true CN110112206A (en) 2019-08-09

Family

ID=67490938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910417260.1A Pending CN110112206A (en) 2019-05-20 2019-05-20 A kind of gallium oxide junction field effect transistor

Country Status (1)

Country Link
CN (1) CN110112206A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416090A (en) * 2019-08-19 2019-11-05 中国科学技术大学 Method for forming gallium oxide device isolation and gallium oxide isolation device
CN110600366A (en) * 2019-09-20 2019-12-20 西安交通大学 (100) Crystal orientation diamond n-channel junction field effect transistor and preparation method thereof
CN111129122A (en) * 2019-12-13 2020-05-08 中国科学技术大学 Heterojunction semiconductor structures based on gallium oxide and their devices
WO2020186699A1 (en) * 2019-03-19 2020-09-24 南方科技大学 Field-effect transistor and manufacturing method therefor
CN112038409A (en) * 2020-09-15 2020-12-04 西安电子科技大学 Double-heterojunction enhanced metal oxide field effect transistor and preparation method thereof
CN112133756A (en) * 2020-10-07 2020-12-25 西安电子科技大学 PN junction gate-controlled gallium oxide field effect transistor based on T-type gate structure and preparation method thereof
CN112133757A (en) * 2020-10-07 2020-12-25 西安电子科技大学 Gate-controlled gallium oxide field effect transistor based on p-i-n structure and preparation method thereof
CN112164724A (en) * 2020-10-07 2021-01-01 西安电子科技大学 A kind of PN junction gate-controlled gallium oxide field effect transistor and preparation method thereof
CN112951918A (en) * 2021-01-29 2021-06-11 中国电子科技集团公司第十三研究所 Inclined grid type gallium oxide field effect transistor and preparation method
WO2021139040A1 (en) * 2020-01-07 2021-07-15 中国电子科技集团公司第十三研究所 Gallium oxide field effect transistor and manufacturing method therefor
CN114005868A (en) * 2021-10-26 2022-02-01 中山大学 A structure and preparation method for optimizing the surface electric field of a lateral gallium oxide power device
CN114497232A (en) * 2022-01-25 2022-05-13 湖南大学 A kind of abrupt NN type junction field effect transistor and preparation method thereof
CN116759458A (en) * 2023-08-17 2023-09-15 苏州燎塬半导体有限公司 Gallium oxide junction field effect transistor and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101097966A (en) * 2006-06-28 2008-01-02 三星电子株式会社 JFET
JP2019036593A (en) * 2017-08-10 2019-03-07 株式会社タムラ製作所 diode
WO2019065751A1 (en) * 2017-09-29 2019-04-04 株式会社タムラ製作所 Field effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101097966A (en) * 2006-06-28 2008-01-02 三星电子株式会社 JFET
JP2019036593A (en) * 2017-08-10 2019-03-07 株式会社タムラ製作所 diode
WO2019065751A1 (en) * 2017-09-29 2019-04-04 株式会社タムラ製作所 Field effect transistor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020186699A1 (en) * 2019-03-19 2020-09-24 南方科技大学 Field-effect transistor and manufacturing method therefor
CN110416090A (en) * 2019-08-19 2019-11-05 中国科学技术大学 Method for forming gallium oxide device isolation and gallium oxide isolation device
CN110600366B (en) * 2019-09-20 2021-06-18 西安交通大学 (100) Crystalline diamond n-channel junction field effect transistor and method for making the same
CN110600366A (en) * 2019-09-20 2019-12-20 西安交通大学 (100) Crystal orientation diamond n-channel junction field effect transistor and preparation method thereof
CN111129122A (en) * 2019-12-13 2020-05-08 中国科学技术大学 Heterojunction semiconductor structures based on gallium oxide and their devices
WO2021139040A1 (en) * 2020-01-07 2021-07-15 中国电子科技集团公司第十三研究所 Gallium oxide field effect transistor and manufacturing method therefor
CN112038409A (en) * 2020-09-15 2020-12-04 西安电子科技大学 Double-heterojunction enhanced metal oxide field effect transistor and preparation method thereof
CN112133757B (en) * 2020-10-07 2022-03-04 西安电子科技大学 Gate-controlled gallium oxide field effect transistor based on p-i-n structure and preparation method thereof
CN112164724A (en) * 2020-10-07 2021-01-01 西安电子科技大学 A kind of PN junction gate-controlled gallium oxide field effect transistor and preparation method thereof
CN112133757A (en) * 2020-10-07 2020-12-25 西安电子科技大学 Gate-controlled gallium oxide field effect transistor based on p-i-n structure and preparation method thereof
CN112133756A (en) * 2020-10-07 2020-12-25 西安电子科技大学 PN junction gate-controlled gallium oxide field effect transistor based on T-type gate structure and preparation method thereof
CN112951918A (en) * 2021-01-29 2021-06-11 中国电子科技集团公司第十三研究所 Inclined grid type gallium oxide field effect transistor and preparation method
CN112951918B (en) * 2021-01-29 2023-06-27 中国电子科技集团公司第十三研究所 Inclined gate type gallium oxide field effect transistor and preparation method thereof
CN114005868A (en) * 2021-10-26 2022-02-01 中山大学 A structure and preparation method for optimizing the surface electric field of a lateral gallium oxide power device
CN114005868B (en) * 2021-10-26 2025-02-28 中山大学 A structure and preparation method for optimizing the surface electric field of a lateral gallium oxide power device
CN114497232A (en) * 2022-01-25 2022-05-13 湖南大学 A kind of abrupt NN type junction field effect transistor and preparation method thereof
CN114497232B (en) * 2022-01-25 2022-11-04 湖南大学 Mutation NN type junction field effect transistor and preparation method thereof
CN116759458A (en) * 2023-08-17 2023-09-15 苏州燎塬半导体有限公司 Gallium oxide junction field effect transistor and preparation method thereof
CN116759458B (en) * 2023-08-17 2023-10-13 苏州燎塬半导体有限公司 Gallium oxide junction field effect transistor and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110112206A (en) A kind of gallium oxide junction field effect transistor
Ma et al. Zinc oxide thin film transistors with Schottky source barriers
CN107104140B (en) A two-dimensional material/semiconductor heterojunction tunneling transistor and its preparation method
CN108305834B (en) A kind of preparation method of enhancement mode gallium nitride field effect device
CN107248530B (en) A two-dimensional material/semiconductor heterojunction vertical tunneling transistor and its preparation method
EP2920814A1 (en) Semiconductor structure and recess formation etch technique
CN102386223A (en) High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method
CN104241378B (en) Double-graphene-layer tunneling field effect transistor and manufacturing method thereof
CN110148625A (en) A kind of gallium oxide verticle noded type field effect transistor and preparation method thereof
WO2022188694A1 (en) Field effect transistor, manufacturing method therefor, and switching circuit
CN109244130A (en) Self aligning grid structure GaN MIS-HEMT device and preparation method thereof based on p-GaN and SiN layer
CN110571275A (en) Preparation method of gallium oxide MOSFET
CN113972263B (en) An enhanced AlGaN/GaN HEMT device and its preparation method
CN109935637A (en) A high voltage thin film transistor
CN104393045B (en) A kind of new GaN base enhancement mode HEMT device and preparation method thereof
CN104752517A (en) Thin film transistor as well as preparation method and application of thin film transistor
CN106549041A (en) A kind of high thin film transistor (TFT) of effective power
CN116072706A (en) Gallium oxide heterojunction tunneling field effect transistor and preparation method thereof
Lu et al. GaN power electronics
CN114843337A (en) Gallium nitride high electron mobility transistor with double-gate structure and manufacturing method thereof
CN106783996A (en) A kind of HEMT and preparation method thereof
JP2017092398A (en) Diamond electronic element
Im et al. First demonstration of heterojunction-free GaN nanochannel FinFETs
US20190035918A1 (en) Tunneling Junction Transistor
CN117577680B (en) GaN bidirectional power devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190809