CN110098150A - Semiconductor structure and forming method thereof - Google Patents
Semiconductor structure and forming method thereof Download PDFInfo
- Publication number
- CN110098150A CN110098150A CN201810094678.9A CN201810094678A CN110098150A CN 110098150 A CN110098150 A CN 110098150A CN 201810094678 A CN201810094678 A CN 201810094678A CN 110098150 A CN110098150 A CN 110098150A
- Authority
- CN
- China
- Prior art keywords
- source
- substrate
- area
- drain doping
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 111
- 239000004065 semiconductor Substances 0.000 title claims abstract description 43
- 239000010410 layer Substances 0.000 claims abstract description 138
- 239000000758 substrate Substances 0.000 claims abstract description 110
- 239000011241 protective layer Substances 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims description 45
- 229920002120 photoresistant polymer Polymers 0.000 claims description 32
- 150000002500 ions Chemical group 0.000 claims description 20
- 238000002955 isolation Methods 0.000 claims description 19
- 230000001681 protective effect Effects 0.000 claims description 17
- 238000001039 wet etching Methods 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- 238000005468 ion implantation Methods 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000010348 incorporation Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 6
- -1 boron ions Chemical class 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 5
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910001449 indium ion Inorganic materials 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/853—Complementary IGFETs, e.g. CMOS comprising FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
一种半导体结构及其形成方法,其中方法包括:提供基底,所述基底包括第一区和第二区,所述第一区基底内具有第一源漏掺杂区;在所述第一区基底和第一源漏掺杂区上形成第一保护层;形成所述第一保护层之后,在所述第二区的基底内形成第二源漏掺杂区;形成所述第二源漏掺杂区之后,去除第一保护层;去除第一保护层之后,在所述基底、第一源漏掺杂区和第二源漏掺杂区上形成介质层;去除部分所述介质层,直至暴露出第一源漏掺杂区和第二源漏掺杂区的顶部表面,在所述介质层内形成接触孔。所述方法形成接触孔时能够降低对第二源漏掺杂区顶部表面的损伤。
A semiconductor structure and a method for forming the same, wherein the method includes: providing a substrate, the substrate includes a first region and a second region, the first region has a first source-drain doped region in the substrate; in the first region forming a first protective layer on the base and the first source-drain doped region; after forming the first protective layer, forming a second source-drain doped region in the base of the second region; forming the second source-drain After doping the region, removing the first protective layer; after removing the first protective layer, forming a dielectric layer on the substrate, the first source-drain doped region and the second source-drain doped region; removing part of the dielectric layer, A contact hole is formed in the dielectric layer until the top surfaces of the first source-drain doped region and the second source-drain doped region are exposed. The method can reduce damage to the top surface of the second source-drain doped region when forming the contact hole.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a semiconductor structure and a forming method thereof.
背景技术Background technique
随着半导体技术的不断发展,集成电路性能的提高主要是通过不断缩小集成电路器件的尺寸以提高它的速度来实现的。目前,由于在追求高器件密度、高性能和低成本中半导体工艺以及进步到纳米技术工艺节点,半导体器件的制备受到各种物理极限的限制。With the continuous development of semiconductor technology, the improvement of integrated circuit performance is mainly achieved by continuously shrinking the size of integrated circuit devices to increase its speed. Currently, the fabrication of semiconductor devices is constrained by various physical limits due to the pursuit of high device density, high performance, and low cost in semiconductor processes and progress to nanotechnology process nodes.
随着CMOS器件的不断缩小来自制造和设计方面的挑战促使三维设计如鳍式场效应晶体管(FinFET)的发展。相对于现有的平面晶体管,所述鳍式场效应晶体管在沟道控制以及降低浅沟道效应等方面具有更加优越的性能;平面栅极结构设置于所述沟道上方,而在鳍式场效应晶体管中所述栅极结构环绕所述鳍部设置,因此,能够从三个面来控制静电,在静电控制方面的性能更加突出。Manufacturing and design challenges as CMOS devices continue to shrink have prompted the development of three-dimensional designs such as Fin Field Effect Transistors (FinFETs). Compared with the existing planar transistors, the fin field effect transistor has more superior performance in terms of channel control and reducing shallow channel effects; the planar gate structure is arranged above the channel, and the fin field effect transistor In the effect transistor, the gate structure is arranged around the fin, therefore, static electricity can be controlled from three sides, and the performance in static electricity control is more prominent.
然而,现有技术制备的鳍式场效应晶体管的性能仍较差。However, the performance of fin field effect transistors prepared in the prior art is still poor.
发明内容Contents of the invention
本发明解决的技术问题是提供一种半导体结构及其形成方法,以提高半导体器件的性能。The technical problem solved by the invention is to provide a semiconductor structure and its forming method to improve the performance of semiconductor devices.
为解决上述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底包括第一区和第二区,所述第一区基底内具有第一源漏掺杂区;在所述第一区基底和第一源漏掺杂区上形成第一保护层;形成所述第一保护层之后,在所述第二区的基底内形成第二源漏掺杂区;形成所述第二源漏掺杂区之后,去除第一保护层;去除第一保护层之后,在所述基底、第一源漏掺杂区和第二源漏掺杂区上形成介质层;去除部分所述介质层,直至暴露出第一源漏掺杂区和第二源漏掺杂区的顶部表面,在所述介质层内形成接触孔。In order to solve the above technical problems, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a substrate, the substrate includes a first region and a second region, and the first region has a first source-drain doping in the substrate region; forming a first protective layer on the substrate of the first region and the first source-drain doped region; after forming the first protective layer, forming a second source-drain doped region in the substrate of the second region ; After forming the second source-drain doped region, removing the first protective layer; after removing the first protective layer, forming a dielectric layer on the substrate, the first source-drain doped region and the second source-drain doped region and removing part of the dielectric layer until the top surfaces of the first source-drain doped region and the second source-drain doped region are exposed, and forming a contact hole in the dielectric layer.
可选的,所述第一保护层的厚度为:3纳米~5纳米。Optionally, the thickness of the first protective layer is 3 nanometers to 5 nanometers.
可选的,所述第二源漏掺杂区沿垂直于第一源漏掺杂区和第二源漏掺杂区连线方向上的尺寸为:100纳米~120纳米。Optionally, the size of the second doped source and drain region along the direction perpendicular to the line connecting the first doped source and drain region and the second doped source and drain region is: 100 nm to 120 nm.
可选的,所述第一区基底上还具有第一栅极结构,所述第一栅极结构两侧的基底内具有所述第一源漏掺杂区;所述第二区基底上还具有第二栅极结构,所述第二栅极结构两侧的基底内具有所述第二源漏掺杂区。Optionally, the substrate of the first region further has a first gate structure, and the substrates on both sides of the first gate structure have the first source-drain doped regions; the substrate of the second region also has It has a second gate structure, and the substrate on both sides of the second gate structure has the second source-drain doping region.
可选的,所述第一保护层还覆盖第二栅极结构的侧壁;所述第一保护层的形成步骤包括:在所述基底和第一源漏掺杂区上、第一栅极结构的侧壁和顶部表面、以及第二栅极结构的侧壁和顶部表面形成第一保护膜;去除第二区基底和第二栅极结构顶部表面的第一保护膜,形成所述第一保护层。Optionally, the first protective layer also covers the sidewall of the second gate structure; the step of forming the first protective layer includes: on the substrate and the first source-drain doped region, the first gate The sidewall and top surface of the structure, and the sidewall and top surface of the second gate structure form a first protective film; remove the first protective film on the base of the second region and the top surface of the second gate structure, and form the first The protective layer.
可选的,所述第一源漏掺杂区和第二源漏掺杂区的形成步骤包括:在所述第一栅极结构两侧的基底内形成第一外延层;在所述第一区基底和第一外延层上、第一栅极结构的侧壁和顶部表面、以及第二栅极结构的侧壁形成第一保护层;形成所述第一保护层之后,在所述第二栅极结构两侧的基底内形成第二外延层;在所述第二区基底和第二外延层上、以及第二栅极结构的侧壁和顶部表面形成第一光刻胶;以所述第一光刻胶为掩膜,在所述第一外延层内掺入第一掺杂离子,形成第一源漏掺杂区;形成所述第一源漏掺杂区之后,去除第一光刻胶;去除所述第一光刻胶之后,在所述第一区基底和第一源漏掺杂区上、以及第一栅极结构的侧壁和顶部表面形成第二光刻胶;以所述第二光刻胶为掩膜,在所述第二外延层内掺入第二掺杂离子,形成第二源漏掺杂区。Optionally, the step of forming the first source-drain doped region and the second source-drain doped region includes: forming a first epitaxial layer in the substrate on both sides of the first gate structure; A first protective layer is formed on the base of the region and the first epitaxial layer, on the sidewall and top surface of the first gate structure, and on the sidewall of the second gate structure; after the formation of the first protective layer, the second forming a second epitaxial layer in the substrates on both sides of the gate structure; forming a first photoresist on the substrate of the second region and the second epitaxial layer, as well as the sidewall and top surface of the second gate structure; The first photoresist is a mask, and first dopant ions are doped into the first epitaxial layer to form a first source-drain doped region; after the first source-drain doped region is formed, the first photoresist is removed resist; after removing the first photoresist, form a second photoresist on the base of the first region and the first source-drain doped region, and on the sidewall and top surface of the first gate structure; The second photoresist is a mask, and second doping ions are doped into the second epitaxial layer to form a second source-drain doping region.
可选的,形成所述第二外延层之后,形成第一光刻胶之前,所述形成方法还包括:在所述基底、第一保护层、第二外延层和第二栅极结构上形成氧化层。Optionally, after forming the second epitaxial layer and before forming the first photoresist, the forming method further includes: forming oxide layer.
可选的,形成第一光刻胶之后,在所述第一外延层内掺入第一掺杂离子之前,所述形成方法还包括:去除第一区氧化层,暴露出第一保护层。Optionally, after forming the first photoresist and before doping the first dopant ions into the first epitaxial layer, the forming method further includes: removing the oxide layer in the first region to expose the first protection layer.
可选的,所述氧化层的材料包括:氧化硅;所述氧化层的厚度为:20埃~40埃。Optionally, the material of the oxide layer includes: silicon oxide; the thickness of the oxide layer is: 20 angstroms-40 angstroms.
可选的,所述第一保护层的材料包括:氮化硅。Optionally, the material of the first protection layer includes: silicon nitride.
可选的,去除所述第一保护层的工艺包括:湿法刻蚀工艺;所述湿法刻蚀工艺的参数包括:刻蚀剂包括磷酸。Optionally, the process of removing the first protective layer includes: a wet etching process; parameters of the wet etching process include: the etchant includes phosphoric acid.
可选的,所述基底上还具有隔离结构;所述隔离结构的材料包括:氧化硅。Optionally, the substrate further has an isolation structure; the material of the isolation structure includes: silicon oxide.
可选的,形成所述接触孔之后,所述形成方法还包括:在所述接触孔内形成插塞。Optionally, after forming the contact hole, the forming method further includes: forming a plug in the contact hole.
可选的,所述第一区用于PMOS晶体管,所述第二区用于形成NMOS晶体管。Optionally, the first region is used for PMOS transistors, and the second region is used for forming NMOS transistors.
本发明还提供一种半导体结构,其特征在于,包括:基底,所述基底包括第一区和第二区,所述第一区的基底内具有第一源漏掺杂区;位于第二区的基底内的第二源漏掺杂区;位于基底上的介质层,所述介质层内具有暴露出第一源漏掺杂区和第二源漏掺杂区顶部表面的接触孔。The present invention also provides a semiconductor structure, which is characterized in that it includes: a base, the base includes a first region and a second region, the base of the first region has a first source-drain doped region; The second source-drain doped region in the substrate; the dielectric layer on the substrate, the dielectric layer has a contact hole exposing the top surface of the first source-drain doped region and the second source-drain doped region.
可选的,所述第二源漏掺杂区沿垂直于第一源漏掺杂区和第二源漏掺杂区连线方向上的尺寸为:100纳米~120纳米。Optionally, the size of the second doped source and drain region along the direction perpendicular to the line connecting the first doped source and drain region and the second doped source and drain region is: 100 nm to 120 nm.
可选的,所述半导体结构还包括:位于所述接触孔内的插塞。Optionally, the semiconductor structure further includes: a plug located in the contact hole.
可选的,所述第一区用于PMOS晶体管,所述第二区用于形成NMOS晶体管。Optionally, the first region is used for PMOS transistors, and the second region is used for forming NMOS transistors.
与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:
本发明技术方案提供的半导体结构的形成方法中,所述第一区用于形成PMOS晶体管,所述第二区用于形成NMOS晶体管,为了同时提高第一区和第二区晶体管沟道内载流子的迁移率,形成第一源漏掺杂区之后,形成所述第二源漏掺杂区。在形成第二源漏掺杂区的过程中,为了保护第一区器件,形成所述第二源漏掺杂区之前,在所述第一区基底和第一源漏掺杂区上形成第一保护层。形成所述第二源漏掺杂区之后,去除第一保护层,能够减小第一源漏掺杂区和第二源漏掺杂区的顶部表面材料的厚度差,则后续去除第一源漏掺杂区和第二源漏掺杂区的部分介质层时,能够避免对第二源漏掺杂区进行过刻蚀,有利于提高第二区器件的性能。In the method for forming a semiconductor structure provided by the technical solution of the present invention, the first region is used to form a PMOS transistor, and the second region is used to form an NMOS transistor. Mobility of electrons, after forming the first source-drain doped region, the second source-drain doped region is formed. In the process of forming the second source-drain doped region, in order to protect the devices in the first region, before forming the second source-drain doped region, a first A protective layer. After forming the second source-drain doped region, removing the first protective layer can reduce the thickness difference between the first source-drain doped region and the top surface material of the second source-drain doped region, and then remove the first source-drain region subsequently. When part of the dielectric layer in the drain doped region and the second source-drain doped region can avoid over-etching the second source-drain doped region, it is beneficial to improve the performance of the device in the second region.
进一步,去除所述第一保护层的过程中,部分隔离结构也被去除。形成所述第二外延层之后,形成第一光刻胶之前,在所述基底、第一保护层、第二外延层和第二栅极结构上形成氧化层。所述氧化层用于补充隔离结构的损失量,则后续进行第一离子注入工艺和第二离子注入工艺时,能够防止隔离结构被击穿,而对隔离结构底部的基底造成损伤。Further, in the process of removing the first protection layer, part of the isolation structure is also removed. After forming the second epitaxial layer and before forming the first photoresist, an oxide layer is formed on the substrate, the first protective layer, the second epitaxial layer and the second gate structure. The oxide layer is used to supplement the loss of the isolation structure, and when the first ion implantation process and the second ion implantation process are subsequently performed, the isolation structure can be prevented from being broken down and causing damage to the substrate at the bottom of the isolation structure.
附图说明Description of drawings
图1至图3是一种半导体结构的形成方法各步骤的结构示意图;1 to 3 are structural schematic diagrams of each step of a method for forming a semiconductor structure;
图4至图19是本发明半导体结构的形成方法一实施例各步骤的结构示意图。4 to 19 are structural schematic diagrams of each step of an embodiment of a method for forming a semiconductor structure of the present invention.
具体实施方式Detailed ways
正如背景技术所述,鳍式场效应晶体管的性能仍较差。As mentioned in the background, the performance of FinFETs is still poor.
图1至图3是一种半导体结构的形成方法各步骤的结构示意图。1 to 3 are structural schematic diagrams of steps in a method for forming a semiconductor structure.
请参考图1,提供基底100,所述基底100包括PMOS区和NMOS区,所述PMOS区基底100上具有第一栅极结构101,所述NMOS区基底100上具有第二栅极结构102;在基底100上形成第一保护膜(图中未示出);去除PMOS区基底100上和第一栅极结构101上的第一保护膜,在所述第一栅极结构101侧壁和NMOS区基底100上形成第一保护层103;形成所述第一保护层103之后,在所述第一栅极结构101两侧的基底100内形成第一源漏掺杂区104。Referring to FIG. 1, a substrate 100 is provided, the substrate 100 includes a PMOS region and an NMOS region, the PMOS region has a first gate structure 101 on the substrate 100, and the NMOS region has a second gate structure 102 on the substrate 100; Form a first protective film (not shown in the figure) on the substrate 100; remove the first protective film on the substrate 100 and the first gate structure 101 in the PMOS region, and the side walls of the first gate structure 101 and the NMOS A first protective layer 103 is formed on the substrate 100 ; after the first protective layer 103 is formed, a first source-drain doped region 104 is formed in the substrate 100 on both sides of the first gate structure 101 .
请参考图2,在所述基底100上、第一源漏掺杂区104、第一栅极结构101和第二栅极结构102上形成第二保护膜(图中未示处);去除NMOS区基底100和第二栅极结构102上的第二保护膜,在所述第二栅极结构102的侧壁和PMOS区基底100上形成第二保护层105;形成所述第二保护层105之后,在所述第二栅极结构102两侧的基底100内形成第二源漏掺杂区106。Referring to FIG. 2 , a second protective film (not shown in the figure) is formed on the substrate 100, the first source-drain doped region 104, the first gate structure 101 and the second gate structure 102; remove the NMOS The second protection film on the region substrate 100 and the second gate structure 102, forming a second protection layer 105 on the sidewall of the second gate structure 102 and the PMOS region substrate 100; forming the second protection layer 105 Afterwards, a second source-drain doped region 106 is formed in the substrate 100 on both sides of the second gate structure 102 .
请参考图3,在所述基底100、第一源漏掺杂区104、第二源漏掺杂区106、第一栅极结构101和第二栅极结构102上形成介质层107;去除第一源漏掺杂区104和第二源漏掺杂区106上的部分介质层107,形成接触孔108,所述接触孔108底部暴露出第一源漏掺杂区104和第二源漏掺杂区106的顶部表面。Referring to FIG. 3 , a dielectric layer 107 is formed on the substrate 100 , the first source-drain doped region 104 , the second source-drain doped region 106 , the first gate structure 101 and the second gate structure 102 ; A source-drain doped region 104 and a part of the dielectric layer 107 on the second source-drain doped region 106 form a contact hole 108, and the bottom of the contact hole 108 exposes the first source-drain doped region 104 and the second source-drain doped region 104. The top surface of the impurity region 106.
上述方法中,所述第一保护层103用于定义第一源漏掺杂区104的位置,所述第一保护层103和第二保护层105用于定义第二源漏掺杂区106的位置,所述第一栅极结构101底部第一源漏掺杂区104之间为第一沟道,所述第二栅极结构102底部第二源漏掺杂区106之间具有第二沟道,因此第一沟道的长度小于第二沟道长度。所述PMOS区用于形成PMOS晶体管,所述NMOS区用于形成NMOS晶体管,所述第一沟道内的载流子为空穴,所述第二沟道内的载流子为电子,电子的迁移率大于空穴的迁移率。因此,为了同时提高PMOS区和NMOS区载流子的迁移率,形成所述第一源漏掺杂区104之后,形成所述第二源漏掺杂区106。In the above method, the first protective layer 103 is used to define the position of the first source-drain doped region 104, and the first protective layer 103 and the second protective layer 105 are used to define the position of the second source-drain doped region 106. position, the first channel is formed between the first source-drain doped region 104 at the bottom of the first gate structure 101, and the second channel is formed between the second source-drain doped region 106 at the bottom of the second gate structure 102. Therefore, the length of the first channel is smaller than the length of the second channel. The PMOS region is used to form a PMOS transistor, the NMOS region is used to form an NMOS transistor, the carriers in the first channel are holes, the carriers in the second channel are electrons, and the transfer of electrons rate is greater than the mobility of holes. Therefore, in order to increase the mobility of carriers in the PMOS region and the NMOS region at the same time, after the first source-drain doped region 104 is formed, the second source-drain doped region 106 is formed.
然而,所述第二保护层105仅覆盖于第一源漏掺杂区104的顶部表面,而不覆盖第二源漏掺杂区106的顶部表面,使得第一源漏掺杂区104和第二源漏掺杂区106顶部具有不同的厚度差,则后续去除第一源漏掺杂区104和第二源漏掺杂区106顶部的介质层107形成接触孔108的过程中,当第二源漏掺杂区106的顶部已被暴露出时,所述第一源漏掺杂区104的顶部还覆盖第二保护层105。为了暴露出第一源漏掺杂区104的顶部表面,需继续刻蚀第二保护层105。在刻蚀所述第二保护层105的过程中,所述第二源漏掺杂区106被过刻蚀,使得第二源漏掺杂区106的性能较差,不利于提高NMOS区器件的性能。However, the second protective layer 105 only covers the top surface of the first source-drain doped region 104, but does not cover the top surface of the second source-drain doped region 106, so that the first source-drain doped region 104 and the second The tops of the two source-drain doped regions 106 have different thickness differences, then in the process of removing the dielectric layer 107 at the tops of the first source-drain doped regions 104 and the second source-drain doped regions 106 to form contact holes 108, when the second When the top of the source-drain doped region 106 is exposed, the top of the first source-drain doped region 104 also covers the second protection layer 105 . In order to expose the top surface of the first source-drain doped region 104 , the second protection layer 105 needs to be etched continuously. In the process of etching the second protection layer 105, the second source-drain doped region 106 is over-etched, so that the performance of the second source-drain doped region 106 is poor, which is not conducive to improving the performance of devices in the NMOS region. performance.
为解决所述技术问题,本发明提供了一种半导体结构的形成方法,包括:在所述第一区基底和第一源漏掺杂区上形成第一保护层;形成所述第一保护层之后,在所述第二区基底内形成第二源漏掺杂区;形成所述第二源漏掺杂区之后,去除第一保护层。所述方法能够降低后续形成插塞时对第二源漏掺杂区顶部造成损伤。In order to solve the above technical problem, the present invention provides a method for forming a semiconductor structure, comprising: forming a first protection layer on the base of the first region and the first source-drain doped region; forming the first protection layer Afterwards, forming a second source-drain doped region in the substrate of the second region; after forming the second source-drain doped region, removing the first protection layer. The method can reduce damage to the top of the second source-drain doped region when the plug is subsequently formed.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图4至图19是本发明半导体结构的形成方法一实施例各步骤的结构示意图。4 to 19 are structural schematic diagrams of each step of an embodiment of a method for forming a semiconductor structure of the present invention.
请参考图4,提供基底200,所述基底200包括第一区A和第二区B。Referring to FIG. 4 , a substrate 200 including a first region A and a second region B is provided.
所述第一区A用于形成PMOS晶体管,所述第二区B用于形成NMOS晶体管。The first region A is used to form a PMOS transistor, and the second region B is used to form an NMOS transistor.
在本实施例中,所述基底200包括:衬底201和位于衬底201上的鳍部202。在其它实施例中,当所述半导体器件为平面式的MOS晶体管时,所述基底为平面式的半导体基底。In this embodiment, the base 200 includes: a substrate 201 and a fin 202 on the substrate 201 . In other embodiments, when the semiconductor device is a planar MOS transistor, the substrate is a planar semiconductor substrate.
所述基底200的形成步骤包括:提供初始衬底,所述初始基底上具有第一掩膜层,所述第一掩膜层暴露出部分初始衬底的顶部表面;以所述第一掩膜层为掩膜,刻蚀所述初始衬底,形成衬底201和位于衬底201上的鳍部202。The forming step of the substrate 200 includes: providing an initial substrate, on which a first mask layer is provided, and the first mask layer exposes a part of the top surface of the initial substrate; The layer is a mask, and the initial substrate is etched to form a substrate 201 and fins 202 on the substrate 201 .
在本实施例中,所述初始衬底的材料为硅。相应的,所述衬底201和鳍部202的材料为硅。在其他实施例中,所述初始衬底的材料包括:锗、硅锗、绝缘体上硅或绝缘体上锗。相应的,衬底的材料包括:锗、硅锗、绝缘体上硅或绝缘体上锗。鳍部的材料包括:锗、硅锗、绝缘体上硅或绝缘体上锗。In this embodiment, the material of the initial substrate is silicon. Correspondingly, the material of the substrate 201 and the fin portion 202 is silicon. In other embodiments, the material of the initial substrate includes: germanium, silicon germanium, silicon-on-insulator, or germanium-on-insulator. Correspondingly, the material of the substrate includes: germanium, silicon germanium, silicon-on-insulator or germanium-on-insulator. Materials for the fins include germanium, silicon germanium, silicon-on-insulator, or germanium-on-insulator.
所述第一掩膜层的材料包括氮化硅,所述第一掩膜层的形成工艺包括:化学气相沉积工艺。所述第一掩膜层用于形成衬底201和鳍部202的掩膜。The material of the first mask layer includes silicon nitride, and the formation process of the first mask layer includes: a chemical vapor deposition process. The first mask layer is used to form a mask for the substrate 201 and the fin portion 202 .
以所述第一掩膜层为掩膜,刻蚀所述初始衬底的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种。Using the first mask layer as a mask, the process of etching the initial substrate includes: one or both of a dry etching process and a wet etching process.
所述基底200上还具有覆盖所述鳍部202的隔离结构(图中未标出),所述隔离结构的顶部表面低于所述鳍部202的顶部表面,且覆盖鳍部202的部分侧壁。The base 200 also has an isolation structure (not shown in the figure) covering the fin 202 , the top surface of the isolation structure is lower than the top surface of the fin 202 and covers part of the sides of the fin 202 wall.
所述隔离结构的材料包括:氧化硅。在其他实施例中,所述隔离结构的材料还可以为氮氧化硅、氮化硅。The material of the isolation structure includes: silicon oxide. In other embodiments, the material of the isolation structure may also be silicon oxynitride, silicon nitride.
所述隔离结构用于实现半导体不同器件之间的电绝缘。The isolation structure is used to realize electrical isolation between different semiconductor devices.
请参考图5,形成横跨第一区A鳍部202的第一栅极结构203;形成横跨第二区B鳍部202的第二栅极结构204。Referring to FIG. 5 , a first gate structure 203 is formed across the fin 202 in the first region A; a second gate structure 204 is formed across the fin 202 in the second region B. Referring to FIG.
在本实施例中,所述第一栅极结构203和第二栅极结构204同时形成,所述第一栅极结构203和第二栅极结构204的形成步骤包括:在所述基底200上形成栅介质膜;在所述栅介质膜上形成栅极膜,所述栅极膜上具有第二掩膜层,所述第二掩膜层暴露出部分栅极膜;以所述第二掩膜层为掩膜,刻蚀所述栅极膜和栅介质膜,在所述第一区A基底200上形成第一栅极结构203,在所述第二区B基底200上形成第二栅极结构204。In this embodiment, the first gate structure 203 and the second gate structure 204 are formed simultaneously, and the forming steps of the first gate structure 203 and the second gate structure 204 include: on the substrate 200 Forming a gate dielectric film; forming a gate film on the gate dielectric film, having a second mask layer on the gate film, and the second mask layer exposes a part of the gate film; using the second mask The film layer is a mask, the gate film and the gate dielectric film are etched, the first gate structure 203 is formed on the substrate 200 in the first region A, and the second gate structure 203 is formed on the substrate 200 in the second region B. pole structure 204 .
所述栅介质膜的材料包括氧化硅,所述栅介质膜的形成工艺包括:化学气相沉积工艺。The material of the gate dielectric film includes silicon oxide, and the formation process of the gate dielectric film includes: chemical vapor deposition process.
所述栅极膜的材料包括硅,所述栅极膜的形成工艺包括:化学气相沉积工艺。The material of the gate film includes silicon, and the forming process of the gate film includes: a chemical vapor deposition process.
请参考图6,在所述基底200、第一栅极结构203的侧壁和顶部表面、以及第二栅极结构204的侧壁和顶部表面形成第二保护膜205。Referring to FIG. 6 , a second protection film 205 is formed on the substrate 200 , sidewalls and top surfaces of the first gate structure 203 , and sidewalls and top surfaces of the second gate structure 204 .
所述第二保护膜205的材料包括:氮化硅,所述第二保护膜205的形成工艺包括:原子层沉积工艺。The material of the second protection film 205 includes: silicon nitride, and the formation process of the second protection film 205 includes: an atomic layer deposition process.
所述第二保护膜205用于后续形成第二保护层。The second protection film 205 is used for subsequent formation of a second protection layer.
请参考图7,去除第一区A基底200和第一栅极结构203上的第二保护膜205(如图6所示),在所述第一栅极结构203的侧壁和第二区B基底200、以及第二栅极结构204的侧壁和顶部表面形成第二保护层206。Please refer to FIG. 7 , remove the second protective film 205 (as shown in FIG. 6 ) on the substrate 200 and the first gate structure 203 in the first region A, and the sidewall and the second region of the first gate structure 203 The sidewalls and top surfaces of the B substrate 200 and the second gate structure 204 form a second protection layer 206 .
去除第一区A基底200和第一栅极结构203上的第二保护膜205的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the second protection film 205 on the substrate 200 and the first gate structure 203 in the first region A includes: one or a combination of a dry etching process and a wet etching process.
在本实施例中,在去除第一区A基底200和第一栅极结构203上的第一保护膜205的过程中,部分隔离结构被去除。In this embodiment, during the process of removing the first protective film 205 on the substrate 200 and the first gate structure 203 in the first region A, part of the isolation structure is removed.
所述第二保护层206的材料包括氮化硅。The material of the second protection layer 206 includes silicon nitride.
位于第一栅极结构203侧壁的第二保护层206用于定义后续形成第一源漏掺杂区的位置。The second protection layer 206 located on the sidewall of the first gate structure 203 is used to define the position where the first source-drain doped region will be formed later.
位于第二栅极结构204侧壁的第二保护层206和后续形成的第一保护层作为后续形成第二源漏掺杂区的位置。The second protective layer 206 located on the sidewall of the second gate structure 204 and the subsequently formed first protective layer serve as positions for subsequent formation of the second source-drain doped region.
请参考图8,在所述第一栅极结构203和第一保护层206两侧的基底200内形成第一源漏开口(图中未标出);在所述第一源漏开口内形成第一外延层207。Please refer to FIG. 8 , a first source and drain opening (not shown in the figure) is formed in the substrate 200 on both sides of the first gate structure 203 and the first protection layer 206; The first epitaxial layer 207 .
在形成所述第一外延层207的过程中,所述第二保护层206用于保护第二区B基底200、以及第二栅极结构204的侧壁和顶部表面。In the process of forming the first epitaxial layer 207 , the second protective layer 206 is used to protect the substrate 200 in the second region B and the sidewall and top surface of the second gate structure 204 .
所述第一源漏开口的形成工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The forming process of the first source-drain opening includes: one or a combination of a dry etching process and a wet etching process.
所述第一外延层207的材料与晶体管的类型相关。The material of the first epitaxial layer 207 is related to the type of transistor.
在本实施例中,所述第一区A用于形成PMOS晶体管,因此,所述第一外延层207的材料包括:硅锗或者硅。In this embodiment, the first region A is used to form a PMOS transistor, therefore, the material of the first epitaxial layer 207 includes: silicon germanium or silicon.
在其它实施例中,所述第一区用于形成NMOS晶体管,因此,所述第一外延层的材料包括:碳化硅或者硅。In other embodiments, the first region is used to form an NMOS transistor, therefore, the material of the first epitaxial layer includes: silicon carbide or silicon.
所述第一外延层207的形成工艺包括:外延生长工艺。The forming process of the first epitaxial layer 207 includes: an epitaxial growth process.
请参考图9,在所述基底200、第一外延层207、第一栅极结构203和第一保护层206上形成第一保护膜208。Referring to FIG. 9 , a first protection film 208 is formed on the substrate 200 , the first epitaxial layer 207 , the first gate structure 203 and the first protection layer 206 .
所述第一保护膜208的材料包括:氮化硅,所述第一保护膜208的形成工艺包括:原子层沉积工艺。The material of the first protective film 208 includes: silicon nitride, and the formation process of the first protective film 208 includes: an atomic layer deposition process.
所述第一保护膜208用于后续形成第一保护层。The first protection film 208 is used for subsequent formation of a first protection layer.
所述第一保护膜208的厚度为3纳米~5纳米。所述第一保护膜208用于后续形成第一保护层,所述第一保护膜208的厚度决定后续形成的第一保护层的厚度。The thickness of the first protective film 208 is 3 nanometers to 5 nanometers. The first protective film 208 is used to subsequently form a first protective layer, and the thickness of the first protective film 208 determines the thickness of the subsequently formed first protective layer.
请参考图10,去除第二区B基底200和第二栅极结构204上的第一保护膜208(如图9所示),在第二栅极结构204侧壁、第一区A基底200、第一外延层207、以及第一栅极结构203的侧壁和顶部表面形成第一保护层209。Please refer to FIG. 10 , remove the first protection film 208 on the substrate 200 and the second gate structure 204 in the second region B (as shown in FIG. , the first epitaxial layer 207 , and the sidewalls and top surfaces of the first gate structure 203 form a first protection layer 209 .
去除第二区B基底200和第二栅极结构204上的第二保护膜208的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the second protective film 208 on the substrate 200 and the second gate structure 204 in the second region B includes: one or a combination of a dry etching process and a wet etching process.
在去除第二区B基底200和第二栅极结构204上的第一保护膜208的过程中,部分隔离结构被去除。During the process of removing the first protection film 208 on the substrate 200 and the second gate structure 204 in the second region B, part of the isolation structure is removed.
所述第二栅极结构204侧壁的第二保护层206和第一保护层209用于后续定义第二源漏掺杂区的位置。所述第一区A的第一保护层209用于保护第一区A基底200、第一外延层207的表面、以及第一栅极结构203的侧壁和顶部表面。The second protection layer 206 and the first protection layer 209 on the sidewall of the second gate structure 204 are used to subsequently define the position of the second source-drain doped region. The first protective layer 209 in the first region A is used to protect the substrate 200 , the surface of the first epitaxial layer 207 , and the sidewall and top surface of the first gate structure 203 in the first region A.
所述第一保护层209的厚度为3纳米~5纳米。The thickness of the first protective layer 209 is 3 nanometers to 5 nanometers.
请参考图11,在所述第二栅极结构204、第二保护层206和第一保护层209两侧的基底200内形成第二外延层210。Referring to FIG. 11 , a second epitaxial layer 210 is formed in the substrate 200 on both sides of the second gate structure 204 , the second passivation layer 206 and the first passivation layer 209 .
在形成所述第二外延层210的过程中,所述第一保护层209用于保护第一区A器件。During the process of forming the second epitaxial layer 210 , the first protective layer 209 is used to protect the device in the first region A.
所述第二外延层210的材料与晶体管的类型相关。The material of the second epitaxial layer 210 is related to the type of transistor.
在本实施例中,所述第二区A用于形成NMOS晶体管,因此,所述第二外延层210的材料包括:碳化硅或者硅。In this embodiment, the second region A is used to form an NMOS transistor, therefore, the material of the second epitaxial layer 210 includes: silicon carbide or silicon.
在其它实施例中,所述第二区用于形成PMOS晶体管,因此,所述第二外延层的材料包括:硅锗或者硅。In other embodiments, the second region is used to form a PMOS transistor, therefore, the material of the second epitaxial layer includes: silicon germanium or silicon.
所述第二外延层210的形成工艺包括:外延生长工艺。The formation process of the second epitaxial layer 210 includes: an epitaxial growth process.
请参考图12,在所述基底200、隔离结构、第二外延层210、第一保护层209和第二栅极结构204上形成氧化膜211。Referring to FIG. 12 , an oxide film 211 is formed on the substrate 200 , the isolation structure, the second epitaxial layer 210 , the first protective layer 209 and the second gate structure 204 .
所述氧化膜211的材料包括:氧化硅,所述氧化膜211的形成工艺包括:流体化学气相沉积工艺。The material of the oxide film 211 includes: silicon oxide, and the formation process of the oxide film 211 includes: a fluid chemical vapor deposition process.
所述氧化膜211用于补偿隔离结构在去除第二保护膜205和第一保护膜208过程中的损失量,防止后续进行第一离子注入工艺和第二离子注入工艺时,由于隔离结构过薄而损伤基底200,有利于提高半导体器件的性能。The oxide film 211 is used to compensate the loss of the isolation structure during the process of removing the second protective film 205 and the first protective film 208, so as to prevent the isolation structure from being too thin when the first ion implantation process and the second ion implantation process are subsequently performed. Damage to the substrate 200 is beneficial to improve the performance of the semiconductor device.
所述氧化膜211的厚度为:20埃~40埃。The thickness of the oxide film 211 is: 20 Ř40 Å.
所述氧化膜211用于后续形成氧化层。The oxide film 211 is used for subsequent formation of an oxide layer.
请参考图13,在所述第二区B基底200上形成第一光刻胶212;以所述第一光刻胶212为掩膜,刻蚀第一区A氧化膜211,直至暴露出第一区A基底200上的第一保护层209,在所述第二区B基底2000上形成氧化层213。Please refer to FIG. 13 , a first photoresist 212 is formed on the substrate 200 in the second region B; using the first photoresist 212 as a mask, the oxide film 211 in the first region A is etched until the first region A is exposed. The first protection layer 209 on the substrate 200 in the first region A, and the oxide layer 213 is formed on the substrate 2000 in the second region B.
所述第一光刻胶212用于保护第二区B基底200、第二外延层210和第二栅极结构204。The first photoresist 212 is used to protect the substrate 200 , the second epitaxial layer 210 and the second gate structure 204 in the second region B.
以所述第一光刻胶212为掩膜,刻蚀第一区A氧化膜211的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。Using the first photoresist 212 as a mask, the process of etching the oxide film 211 in the first region A includes: one or a combination of a dry etching process and a wet etching process.
去除第一区A氧化膜211,有利于暴露出第一区A上第一保护层209,进而有利于后续去除第一区A上第一保护层209。Removing the oxide film 211 in the first region A is beneficial to expose the first protection layer 209 on the first region A, and further facilitates subsequent removal of the first protection layer 209 on the first region A.
所述氧化层213的材料包括氧化硅。所述氧化层213的厚度为:20埃~40埃。The material of the oxide layer 213 includes silicon oxide. The thickness of the oxide layer 213 is: 20 Ř40 Å.
请参考图14,形成所述氧化层213之后,以第一光刻胶212为掩膜,对第一外延层207(见图13)进行第一离子注入工艺,形成第一源漏掺杂区214。Please refer to FIG. 14 , after the oxide layer 213 is formed, a first ion implantation process is performed on the first epitaxial layer 207 (see FIG. 13 ) using the first photoresist 212 as a mask to form a first source-drain doped region. 214.
所述第一离子注入工艺包括第一掺杂离子,所述第一掺杂离子的导电类型与晶体管的导电类型相关。The first ion implantation process includes first dopant ions, and the conductivity type of the first dopant ions is related to the conductivity type of the transistor.
在本实施例中,所述第一区A用于形成PMOS晶体管,因此,所述第一掺杂离子为P型离子,如:硼离子或者铟离子。In this embodiment, the first region A is used to form a PMOS transistor, therefore, the first dopant ions are P-type ions, such as boron ions or indium ions.
在其它实施例中,所述第一区用于形成NMOS晶体管,因此,所述第一掺杂离子为N型离子,如:磷离子或者砷离子。In other embodiments, the first region is used to form an NMOS transistor, therefore, the first dopant ions are N-type ions, such as phosphorous ions or arsenic ions.
在形成所述第一源漏掺杂区214的过程中,所述第一光刻胶2112用于保护第二外延层210不被第一离子注入,使得第一掺杂离子不影响第二区B器件的性能。In the process of forming the first source-drain doped region 214, the first photoresist 2112 is used to protect the second epitaxial layer 210 from being implanted with the first ions, so that the first doping ions do not affect the second region B device performance.
请参考图15,形成所述第一源漏掺杂区214之后,去除第一光刻胶212(如图14所示);去除所述第一光刻胶212之后,在所述第一区A基底200上形成第二光刻胶215;以所述第二光刻胶215为掩膜,对第二外延层210进行第二离子注入工艺,形成第二源漏掺杂区216。Please refer to FIG. 15, after forming the first source-drain doped region 214, remove the first photoresist 212 (as shown in FIG. 14); after removing the first photoresist 212, in the first region A second photoresist 215 is formed on the substrate 200 ; using the second photoresist 215 as a mask, a second ion implantation process is performed on the second epitaxial layer 210 to form a second source-drain doped region 216 .
去除第一光刻胶212的工艺包括:灰化工艺。The process of removing the first photoresist 212 includes: an ashing process.
所述第二光刻胶215用于保护第一区A基底200、第一源漏掺杂区214和第一栅极结构203。The second photoresist 215 is used to protect the substrate 200 in the first region A, the first source-drain doped region 214 and the first gate structure 203 .
所述第二离子注入工艺包括第二掺杂离子,所述第二掺杂离子的导电类型与晶体管的导电类型相关。The second ion implantation process includes second doping ions, and the conductivity type of the second doping ions is related to the conductivity type of the transistor.
在本实施例中,所述第二区A用于形成NMOS晶体管,因此,所述第二掺杂离子为N型离子,如:磷离子或者砷离子。In this embodiment, the second region A is used to form an NMOS transistor, therefore, the second dopant ions are N-type ions, such as phosphorus ions or arsenic ions.
在其它实施例中,所述第二区用于形成PMOS晶体管,因此,所述第二掺杂离子为P型离子,如:硼离子或者铟离子。In other embodiments, the second region is used to form a PMOS transistor, therefore, the second dopant ions are P-type ions, such as boron ions or indium ions.
所述第二源漏掺杂区沿垂直于基底表面方向上的尺寸为:100纳米~120纳米。The size of the second source-drain doped region along the direction perpendicular to the surface of the substrate is: 100nm-120nm.
请参考图16,形成所述第二源漏掺杂区216之后,去除第二光刻胶215;去除第二光刻胶215之后,去除第一区A基底200、第一源漏掺杂区214和第一栅极结构203上的第一保护层209。Please refer to FIG. 16, after forming the second source-drain doped region 216, remove the second photoresist 215; after removing the second photoresist 215, remove the first region A substrate 200, the first source-drain doped region 214 and the first protection layer 209 on the first gate structure 203 .
去除所述光刻胶215的工艺包括:灰化工艺。The process of removing the photoresist 215 includes: an ashing process.
所述第一保护层209的材料与第一源漏掺杂区214的材料不同,则第一保护层209和第一源漏掺杂区214具有不同的刻蚀选择比,因此,去除第一源漏掺杂区214上的第一保护层209时,能够减小对第一源漏掺杂区214顶部表面的损伤。The material of the first protection layer 209 is different from the material of the first source-drain doped region 214, and the first protection layer 209 and the first source-drain doped region 214 have different etching selectivity ratios. Therefore, the removal of the first When the first protective layer 209 is formed on the source-drain doped region 214 , the damage to the top surface of the first source-drain doped region 214 can be reduced.
去除第一区A基底200、第一源漏掺杂区214和第一栅极结构203上的第一保护层209的工艺包括:湿法刻蚀工艺;当所述第一保护层的材料为氮化硅时,所述湿法刻蚀工艺的参数包括:刻蚀剂包括磷酸。The process of removing the first protective layer 209 on the substrate 200 in the first region A, the first source-drain doped region 214 and the first gate structure 203 includes: a wet etching process; when the material of the first protective layer is When silicon nitride is used, the parameters of the wet etching process include: the etchant includes phosphoric acid.
在去除第一源漏掺杂区214顶部表面的第一保护层209时,位于第二源漏掺杂区216顶部的氧化层213也被去除,此时,所述第一源漏掺杂区214和第二源漏掺杂区216顶部均不无材料层的覆盖,则所述后续位于第一源漏掺杂区214和第二源漏掺杂区216上材料层的厚度差异较小。则后续去除第一源漏掺杂区和第二源漏掺杂区的部分介质层时,能够避免对第二源漏掺杂区进行过刻蚀,有利于提高第二源漏掺杂区的性能。When the first protective layer 209 on the top surface of the first source-drain doped region 214 is removed, the oxide layer 213 located on the top of the second source-drain doped region 216 is also removed. At this time, the first source-drain doped region 214 and the top of the second source-drain doped region 216 are not free of material layer coverage, then the difference in thickness of the subsequent material layer located on the first source-drain doped region 214 and the second source-drain doped region 216 is relatively small. Then, when removing part of the dielectric layer of the first source-drain doped region and the second source-drain doped region, over-etching the second source-drain doped region can be avoided, which is beneficial to improve the density of the second source-drain doped region. performance.
请参考图17,去除第一区A基底200、第一源漏掺杂区214和第一栅极结构203上的第一保护层209之后,在所述基底200、第一源漏掺杂区214、第二源漏掺杂区216、第一栅极结构203的侧壁和顶部表面、以及第二栅极结构204的侧壁和顶部表面形成停止层217;在所述停止层217上形成介质层218。Please refer to FIG. 17 , after removing the first protective layer 209 on the substrate 200 , the first source-drain doped region 214 and the first gate structure 203 in the first region A, in the substrate 200 , the first source-drain doped region 214, the second source-drain doped region 216, the sidewall and top surface of the first gate structure 203, and the sidewall and top surface of the second gate structure 204 form a stop layer 217; dielectric layer 218 .
所述停止层217的材料包括:氮化硅,所述停止层217的形成工艺包括:化学气相沉积工艺。The material of the stop layer 217 includes: silicon nitride, and the formation process of the stop layer 217 includes: a chemical vapor deposition process.
所述停止层217用于后续形成开口时的停止层。The stop layer 217 is used as a stop layer when openings are subsequently formed.
所述介质层218的材料包括:氧化硅,所述介质层218的形成工艺包括:流体化学气相沉积工艺。The material of the dielectric layer 218 includes: silicon oxide, and the formation process of the dielectric layer 218 includes: a fluid chemical vapor deposition process.
请参考图18,去除部分介质层218,形成开口(图中未标出),所述开口暴露出第一源漏掺杂区214和第二源漏掺杂区216顶部的停止层217;去除开口底部的停止层217,形成接触孔219。Please refer to FIG. 18 , remove part of the dielectric layer 218 to form an opening (not shown in the figure), the opening exposes the stop layer 217 on the top of the first source-drain doped region 214 and the second source-drain doped region 216; The stop layer 217 at the bottom of the opening forms a contact hole 219 .
形成所述开口的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process for forming the opening includes: one or a combination of a dry etching process and a wet etching process.
去除所述开口底部停止层217的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the bottom stop layer 217 of the opening includes: one or a combination of a dry etching process and a wet etching process.
位于第一源漏掺杂区214和第二源漏掺杂区216顶部的停止层217和介质层218的厚度差异较小,则形成所述接触孔219的过程中,对第一源漏掺杂区214和第二源漏掺杂区216顶部表面的损伤较小,所述第一区A和第二区B器件的性能均较好。The difference in thickness between the stopper layer 217 and the dielectric layer 218 at the top of the first source-drain doped region 214 and the second source-drain doped region 216 is small, so in the process of forming the contact hole 219, the first source-drain doped The top surfaces of the impurity region 214 and the second source-drain doped region 216 are less damaged, and the performance of the device in the first region A and the second region B is better.
请参考图19,在所述接触孔219(如图18所示)内形成插塞220。Referring to FIG. 19 , a plug 220 is formed in the contact hole 219 (shown in FIG. 18 ).
所述插塞220的形成步骤包括:在所述接触孔219和介质层218上形成插塞材料层;平坦化所述插塞材料层,直至暴露出介质层218的顶部表面,在所述接触孔219内形成插塞220。The forming step of the plug 220 includes: forming a plug material layer on the contact hole 219 and the dielectric layer 218; planarizing the plug material layer until the top surface of the dielectric layer 218 is exposed, and the contact A plug 220 is formed in the hole 219 .
所述插塞材料层的材料为金属。The material of the plug material layer is metal.
在本实施例中,所述插塞材料层的材料为钨。在其他实施例中,所述插塞材料层的材料包括:铝、铜、钛、银、金、铅或者镍。In this embodiment, the material of the plug material layer is tungsten. In other embodiments, the material of the plug material layer includes: aluminum, copper, titanium, silver, gold, lead or nickel.
平坦化所述插塞材料层的工艺包括:化学机械研磨工艺。The process of planarizing the plug material layer includes: a chemical mechanical polishing process.
相应的,本发明还提供一种采用上述方法形成的半导体结构,请继续参考图18,包括:Correspondingly, the present invention also provides a semiconductor structure formed by the above method, please continue to refer to FIG. 18 , including:
基底200,所述基底200包括第一区A和第二区B,所述第一区A基底200内具有第一源漏掺杂区214;A substrate 200, the substrate 200 includes a first region A and a second region B, the first region A has a first source-drain doped region 214 in the substrate 200;
位于第二区B基底200内的第二源漏掺杂区216;A second source-drain doped region 216 located in the second region B of the substrate 200;
位于基底200上的介质层218,所述介质层218内具有暴露出第一源漏掺杂区214和第二源漏掺杂区216顶部表面的接触孔219。The dielectric layer 218 on the substrate 200 has a contact hole 219 exposing top surfaces of the first source-drain doped region 214 and the second source-drain doped region 216 in the dielectric layer 218 .
所述第二源漏掺杂区216沿第一源漏掺杂区214和第二源漏掺杂区216连线方向上的尺寸为:100纳米~120纳米所述半导体结构还包括:位于所述接触孔219内的插塞。The size of the second source-drain doped region 216 along the direction of connecting the first source-drain doped region 214 and the second source-drain doped region 216 is: 100 nanometers to 120 nanometers. The semiconductor structure further includes: plugs in the contact holes 219.
所述第一区A用于PMOS晶体管,所述第二区B用于形成NMOS晶体管。The first region A is used for PMOS transistors, and the second region B is used for forming NMOS transistors.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810094678.9A CN110098150B (en) | 2018-01-31 | 2018-01-31 | Semiconductor structure and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810094678.9A CN110098150B (en) | 2018-01-31 | 2018-01-31 | Semiconductor structure and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110098150A true CN110098150A (en) | 2019-08-06 |
CN110098150B CN110098150B (en) | 2021-07-13 |
Family
ID=67442577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810094678.9A Active CN110098150B (en) | 2018-01-31 | 2018-01-31 | Semiconductor structure and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110098150B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113972166A (en) * | 2020-07-24 | 2022-01-25 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor structure |
CN113972164A (en) * | 2020-07-24 | 2022-01-25 | 中芯国际集成电路制造(上海)有限公司 | Method of forming a semiconductor structure |
US20220208979A1 (en) * | 2020-12-31 | 2022-06-30 | Hyundai Motor Company | Semiconductor device and method of manufacturing the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218224B1 (en) * | 1999-03-26 | 2001-04-17 | Advanced Micro Devices, Inc. | Nitride disposable spacer to reduce mask count in CMOS transistor formation |
CN101355054A (en) * | 2007-07-27 | 2009-01-28 | 联华电子股份有限公司 | Method for manufacturing complementary metal oxide semiconductor transistor |
US20110037125A1 (en) * | 2009-08-17 | 2011-02-17 | International Business Machines Corporation | Extremely thin silicon on insulator (etsoi) complementary metal oxide semiconductor (cmos) with in-situ doped source and drain regions formed by a single mask |
US20130015525A1 (en) * | 2011-07-11 | 2013-01-17 | International Business Machines Corporation | Cmos with dual raised source and drain for nmos and pmos |
US9105742B1 (en) * | 2014-03-27 | 2015-08-11 | International Business Machines Corporation | Dual epitaxial process including spacer adjustment |
CN105408994A (en) * | 2013-08-06 | 2016-03-16 | 德州仪器公司 | Improved Hardmask for Source/Drain Epitaxy Control |
US9390981B1 (en) * | 2015-02-05 | 2016-07-12 | Globalfoundries Inc. | Method of forming a complementary metal oxide semiconductor structure with N-type and P-type field effect transistors having symmetric source/drain junctions and optional dual silicides |
CN106158797A (en) * | 2014-10-22 | 2016-11-23 | 意法半导体公司 | For the technique including there is the production of integrated circuits of the liner silicide of low contact resistance |
CN107546176A (en) * | 2016-06-28 | 2018-01-05 | 西安电子科技大学 | Direct band gap Ge channel CMOS integrated devices that SiGeC stress introduces and preparation method thereof |
-
2018
- 2018-01-31 CN CN201810094678.9A patent/CN110098150B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218224B1 (en) * | 1999-03-26 | 2001-04-17 | Advanced Micro Devices, Inc. | Nitride disposable spacer to reduce mask count in CMOS transistor formation |
CN101355054A (en) * | 2007-07-27 | 2009-01-28 | 联华电子股份有限公司 | Method for manufacturing complementary metal oxide semiconductor transistor |
US20110037125A1 (en) * | 2009-08-17 | 2011-02-17 | International Business Machines Corporation | Extremely thin silicon on insulator (etsoi) complementary metal oxide semiconductor (cmos) with in-situ doped source and drain regions formed by a single mask |
US20130015525A1 (en) * | 2011-07-11 | 2013-01-17 | International Business Machines Corporation | Cmos with dual raised source and drain for nmos and pmos |
CN105408994A (en) * | 2013-08-06 | 2016-03-16 | 德州仪器公司 | Improved Hardmask for Source/Drain Epitaxy Control |
US9105742B1 (en) * | 2014-03-27 | 2015-08-11 | International Business Machines Corporation | Dual epitaxial process including spacer adjustment |
CN106158797A (en) * | 2014-10-22 | 2016-11-23 | 意法半导体公司 | For the technique including there is the production of integrated circuits of the liner silicide of low contact resistance |
US9390981B1 (en) * | 2015-02-05 | 2016-07-12 | Globalfoundries Inc. | Method of forming a complementary metal oxide semiconductor structure with N-type and P-type field effect transistors having symmetric source/drain junctions and optional dual silicides |
CN107546176A (en) * | 2016-06-28 | 2018-01-05 | 西安电子科技大学 | Direct band gap Ge channel CMOS integrated devices that SiGeC stress introduces and preparation method thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113972166A (en) * | 2020-07-24 | 2022-01-25 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor structure |
CN113972164A (en) * | 2020-07-24 | 2022-01-25 | 中芯国际集成电路制造(上海)有限公司 | Method of forming a semiconductor structure |
US20220208979A1 (en) * | 2020-12-31 | 2022-06-30 | Hyundai Motor Company | Semiconductor device and method of manufacturing the same |
US11990527B2 (en) * | 2020-12-31 | 2024-05-21 | Hyundai Motor Company | Semiconductor device and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN110098150B (en) | 2021-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI622129B (en) | Semiconductor structure and method of manufacturing same | |
US10541238B2 (en) | FinFET and fabrication method thereof | |
US10971590B2 (en) | Transistor layout to reduce kink effect | |
CN107958873B (en) | Fin-type field effect transistor and method of forming the same | |
CN108122976B (en) | Semiconductor structure and method of forming the same, and SRAM | |
CN110534433B (en) | Semiconductor structure and forming method thereof | |
TW201905982A (en) | Semiconductor structure and manufacturing method thereof | |
CN111200011B (en) | Semiconductor device and method of forming the same | |
CN109560046B (en) | Semiconductor structure and method of forming the same | |
CN110098150B (en) | Semiconductor structure and method of forming the same | |
TW202137572A (en) | Integrated chip | |
CN109148447B (en) | Semiconductor structure and forming method thereof | |
CN109003899B (en) | Semiconductor structure and method for forming the same, and method for forming a fin field effect transistor | |
CN102832135A (en) | Method for preparing FinFET on germanium and III-V semiconductor material substrate | |
CN113903810B (en) | Semiconductor structure and forming method thereof | |
CN106449404A (en) | Semiconductor structure and formation method thereof | |
CN109841507B (en) | Semiconductor device and method of forming the same | |
CN107591327B (en) | Method for forming fin field effect transistor | |
CN107579108B (en) | Method for forming semiconductor structure | |
CN111384172A (en) | Semiconductor device and method of forming the same | |
CN109285811A (en) | Semiconductor structure and method of forming the same | |
CN109427679B (en) | Semiconductor structure and method of forming the same | |
CN108305830A (en) | Semiconductor structure and forming method thereof | |
CN110581172B (en) | Semiconductor structures and methods of forming them | |
CN114792728A (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |