[go: up one dir, main page]

CN110095723A - A kind of Li-ion battery model parameter and SOC online joint estimation method - Google Patents

A kind of Li-ion battery model parameter and SOC online joint estimation method Download PDF

Info

Publication number
CN110095723A
CN110095723A CN201810105457.7A CN201810105457A CN110095723A CN 110095723 A CN110095723 A CN 110095723A CN 201810105457 A CN201810105457 A CN 201810105457A CN 110095723 A CN110095723 A CN 110095723A
Authority
CN
China
Prior art keywords
soc
value
algorithm
battery
computing module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810105457.7A
Other languages
Chinese (zh)
Inventor
朴昌浩
孙亚青
马艺玮
苏岭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201810105457.7A priority Critical patent/CN110095723A/en
Publication of CN110095723A publication Critical patent/CN110095723A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

本发明属于电动汽车动力电池管理领域,涉及一种电池模型参数与SOC的在线联合估计方法。该方法主要包括以下步骤:首先采集实验数据,建立电池模型;其次利用两个SOC计算模块并行估计SOC,一个采用扩展卡尔曼滤波(EKF)算法,另一个先利用EKF算法,一段时间后加入突变扰动,再利用无迹卡尔曼滤波(UKF)算法进行SOC估算。然后将两个模块的估算结果进行加权平均,获得当前SOC估计结果。最后采用遗忘因子最小二乘法(FFRLS)对电池模型参数进行在线辨识,从而融合了EKF、UKF和FFRLS算法,实现模型参数的实时更新与SOC的在线估计,有效消除模型误差的影响,提高SOC估算精度和算法稳定性。

The invention belongs to the field of electric vehicle power battery management, and relates to an online joint estimation method of battery model parameters and SOC. The method mainly includes the following steps: firstly collect experimental data and build a battery model; secondly, use two SOC calculation modules to estimate SOC in parallel, one uses the extended Kalman filter (EKF) algorithm, the other uses the EKF algorithm first, and then adds mutation after a period of time Disturbance, and then use the unscented Kalman filter (UKF) algorithm to estimate the SOC. Then the estimation results of the two modules are weighted and averaged to obtain the current SOC estimation result. Finally, the forgetting factor least squares (FFRLS) method is used to identify the battery model parameters online, and the EKF, UKF and FFRLS algorithms are integrated to realize real-time update of model parameters and online estimation of SOC, effectively eliminating the influence of model errors and improving SOC estimation. Accuracy and Algorithmic Stability.

Description

一种锂离子电池模型参数与SOC在线联合估计方法An online joint estimation method of lithium-ion battery model parameters and SOC

技术领域technical field

本发明属于电动汽车电池管理领域,涉及一种电池模型参数与SOC在线联合估计方法。The invention belongs to the field of electric vehicle battery management, and relates to an online joint estimation method for battery model parameters and SOC.

背景技术Background technique

近年来,新能源汽车不断发展,作为其核心部件的动力电池已成为各国研究的热点。在动力电池的管理环节中,电池的荷电状态(SOC)是反映电池剩余容量和做功能力的一项重要指标,SOC估算则是电池管理系统开发最核心的技术,准确的估计SOC对于电池的安全可靠性、提高电池能量利用率、延长使用寿命具有重要的理论意义和应用价值。In recent years, with the continuous development of new energy vehicles, the power battery as its core component has become a research hotspot in various countries. In the management of power batteries, the state of charge (SOC) of the battery is an important indicator to reflect the remaining capacity and working capability of the battery, and SOC estimation is the core technology of battery management system development. It has important theoretical significance and application value to improve the safety and reliability of the battery, improve the energy utilization rate of the battery, and prolong the service life.

SOC作为动力电池的内部状态,无法直接测取,只能通过对电池电压、电流、内阻等参数检测来估算。目前,典型的动力电池SOC估算方法主要有:安时积分法、开路电压法、神经网络法、卡尔曼滤波法等。其中,安时积分法实现简单,但积分过程中的累积误差无法消除,对估算精度影响较大;开路电压法需要电池静置一段时间才能测量估算,不适用于在线实时估算;神经网络法需要大量数据进行训练,使用复杂难以实现;卡尔曼滤波法的核心思想是对动态系统的状态做出最小均方意义上的最优估计,误差纠正能力较强,但估计精度对电池模型的准确性依赖较高,而电池是个复杂的非线性系统,使用过程中电池模型参数实时变化,模型不确定导致卡尔曼滤波精度低。As the internal state of the power battery, SOC cannot be measured directly, but can only be estimated by testing parameters such as battery voltage, current, and internal resistance. At present, the typical power battery SOC estimation methods mainly include: ampere-hour integration method, open circuit voltage method, neural network method, Kalman filter method, etc. Among them, the ampere-hour integration method is simple to implement, but the accumulated error in the integration process cannot be eliminated, which has a great impact on the estimation accuracy; the open-circuit voltage method requires the battery to stand for a period of time to measure and estimate, and is not suitable for online real-time estimation; the neural network method requires A large amount of data is used for training, which is complex and difficult to achieve; the core idea of the Kalman filter method is to make the optimal estimation of the state of the dynamic system in the sense of the least mean square, and the error correction ability is strong, but the estimation accuracy is very important to the accuracy of the battery model. The battery is a complex nonlinear system, and the parameters of the battery model change in real time during use, and the model uncertainty leads to low Kalman filter accuracy.

发明内容SUMMARY OF THE INVENTION

本发明的目的是针对上述现有技术的不足,提供了一种锂离子电池模型参数与SOC在线联合估计方法,以消除电池模型误差,解决SOC在线估计难的问题。The purpose of the present invention is to provide a method for on-line joint estimation of lithium-ion battery model parameters and SOC in view of the above-mentioned deficiencies of the prior art, so as to eliminate the battery model error and solve the problem of difficulty in SOC on-line estimation.

本发明的目的可以通过如下技术方案实现:一种锂离子电池模型参数与SOC在线联合估计方法,用于电池模型参数的在线辨识与SOC的实时估计,包括步骤:The object of the present invention can be achieved by the following technical solutions: a method for online joint estimation of lithium-ion battery model parameters and SOC, which is used for online identification of battery model parameters and real-time estimation of SOC, including steps:

S1:对电池进行放电静置实验,获得开路电压(OCV)与SOC的关系式;根据电压、电流、温度等基本实验数据离线辨识出模型参数的初值并建立电池1-RC等效电路模型,设定状态空间方程的匹配系数初值A0、B0、C0、D0S1: Carry out a discharge static experiment on the battery to obtain the relationship between the open circuit voltage (OCV) and SOC; according to the basic experimental data such as voltage, current, temperature, etc., identify the initial values of the model parameters offline and establish the battery 1-RC equivalent circuit model , set the initial values of the matching coefficients of the state space equation A 0 , B 0 , C 0 , D 0 ;

S2:SOC计算模块1,运用扩展卡尔曼滤波(EKF)算法估算当前电池的荷电状态SOC1S2: SOC calculation module 1, using the extended Kalman filter (EKF) algorithm to estimate the current state of charge SOC 1 of the battery;

S3:判断时间是否超过设定值T(突变间隔),如果没有超过时间T,第一个SOC计算模块继续计算,如果超过时间T,则在SOC计算模块1继续计算的同时,进入下一步;S3: Determine whether the time exceeds the set value T (sudden change interval), if it does not exceed the time T, the first SOC calculation module continues to calculate, if it exceeds the time T, while the SOC calculation module 1 continues to calculate, go to the next step;

S4:当时间t=T时,根据SOC计算模块1所计算出的当前SOC值SOCT,通过加入突变扰动的方式,得到一个新的SOC值SOCm,并将SOCm作为第二个SOC计算模块的初始值。其中,所用的突变方法为:S4: When time t=T, according to the current SOC value SOC T calculated by the SOC calculation module 1, a new SOC value SOC m is obtained by adding sudden disturbance, and SOC m is calculated as the second SOC The initial value of the module. Among them, the mutation method used is:

其中R是服从正态分布N(0,1)的随机数,“||”表示取绝对值。Among them, R is a random number that obeys the normal distribution N(0, 1), and "||" means to take the absolute value.

S5:SOC计算模块2,运用无迹卡尔曼滤波(UKF)算法开始估算当前电池的荷电状态SOC2,同时SOC计算模块1继续利用扩展卡尔曼滤波(EKF)算法估算当前SOC值;S5: SOC calculation module 2, using the unscented Kalman filter (UKF) algorithm to start to estimate the current state of charge SOC2 of the battery, while the SOC calculation module 1 continues to use the extended Kalman filter (EKF) algorithm to estimate the current SOC value;

S6:判断SOC计算模块2运用无迹卡尔曼滤波算法估计SOC时,电池的预测电压与实测电压的差值ΔU是否超过设定阈值Uth,如果没有超过阈值Uth,SOC计算模块2继续计算,如果超过了Uth,则进入下一步;S6: Determine whether the difference ΔU between the predicted voltage and the measured voltage of the battery exceeds the set threshold U th when the SOC calculation module 2 uses the unscented Kalman filter algorithm to estimate the SOC. If it does not exceed the threshold U th , the SOC calculation module 2 continues to calculate , if it exceeds U th , go to the next step;

S7:将此时SOC计算模块1与计算模块2的估算结果进行加权平均,得到修正后的SOC值:SOCw=W1*SOC1+W2*SOC2,其中W1、W2为相应的权值;S7: Perform a weighted average of the estimation results of the SOC calculation module 1 and the calculation module 2 at this time to obtain a revised SOC value: SOC w =W 1 *SOC 1 +W 2 *SOC 2 , where W 1 and W 2 are corresponding weight;

S8:判断修正后的SOC值SOCw是否有效,如果有效,将电池当前SOC设定为修正后的SOC值SOCw,如果无效,则将电池当前SOC设定为SOC计算模块1的估计结果SOC1S8: Determine whether the revised SOC value SOC w is valid, if valid, set the current SOC of the battery as the revised SOC value SOC w , if invalid, set the current SOC of the battery as the estimated result SOC of the SOC calculation module 1 1 ;

S9:根据上一步计算出的电池当前SOC值以及开路电压与SOC关系,利用遗忘因子最小二乘法(FFRLS)在线辨识模型参数R0、R1、C1并更新系统状态方程中的Ak、Bk、Ck、DkS9: According to the current SOC value of the battery and the relationship between the open circuit voltage and SOC calculated in the previous step, use the forgetting factor least squares (FFRLS) to identify the model parameters R 0 , R 1 , C 1 online and update the A k , R 1 and C 1 in the system state equation. B k , C k , D k .

所述步骤S7中,修正SOC值时权值的确定方法为:W1=D2/(D1+D2),W2=D1/(D1+D2),D1=(ZEKF-U)2,D2=(ZUKF-U)2。其中,ZEKF表示当前时刻SOC计算模块1采用扩展卡尔曼滤波(EKF)算法预测电压值,ZUKF表示当前时刻SOC计算模块2采用无迹卡尔曼滤波(UKF)算法预测电压值,U表示当前时刻电池实测电压,D1与D2分别表示ZEKF和ZUKF与U的偏移程度。In the step S7, the method for determining the weight when correcting the SOC value is: W 1 =D 2 /(D 1 +D 2 ), W 2 =D 1 /(D 1 +D 2 ), D 1 =(Z EKF -U) 2 , D 2 =(Z UKF -U) 2 . Among them, Z EKF represents the current moment SOC calculation module 1 uses the extended Kalman filter (EKF) algorithm to predict the voltage value, Z UKF represents the current moment SOC calculation module 2 uses the unscented Kalman filter (UKF) algorithm to predict the voltage value, U represents the current moment The measured voltage of the battery at time, D 1 and D 2 represent the degree of offset between Z EKF and Z UKF and U, respectively.

所述步骤S8中,判断修正后的SOC值有效性的方法为:比较修正后的SOC值与开路电压法计算的SOC值,如果修正后的SOC值与开路电压法计算的SOC值相差在规定范围内,修正后的SOC值是有效的,否则无效。In the step S8, the method for judging the validity of the corrected SOC value is: comparing the corrected SOC value with the SOC value calculated by the open circuit voltage method, if the difference between the corrected SOC value and the SOC value calculated by the open circuit voltage method is within a specified range Within the range, the corrected SOC value is valid, otherwise it is invalid.

本发明的有益效果在于:The beneficial effects of the present invention are:

1.通过加入突变扰动的方式,可以快速对超出范围的SOC值进行处理,避免了由于数据异常导致的滤波发散现象;同时,通过判定算法预测电压与实测电压的差值是否超过阈值,进一步降低滤波发散的可能性,提高算法的稳定性。1. By adding abrupt disturbance, the out-of-range SOC value can be quickly processed, avoiding the filter divergence phenomenon caused by abnormal data; at the same time, by judging whether the difference between the predicted voltage and the measured voltage exceeds the threshold value, further reducing the The possibility of filtering divergence improves the stability of the algorithm.

2.电池模型利用遗忘因子最小二乘法进行在线辨识,有效的保证了模型的精度,避免了模型参数变化对算法估算精度的影响,提高了算法的鲁棒性。2. The battery model is identified online by the forgetting factor least square method, which effectively ensures the accuracy of the model, avoids the influence of model parameter changes on the estimation accuracy of the algorithm, and improves the robustness of the algorithm.

3.本发明采用的电池模型参数与SOC在线联合估计算法能够避免无迹卡尔曼滤波算法的高计算复杂度以及扩展卡尔曼滤波算法的低收敛速度,能够同时拥有高精度、低计算复杂度以及快收敛速度。3. The battery model parameters and SOC online joint estimation algorithm adopted in the present invention can avoid the high computational complexity of the unscented Kalman filter algorithm and the low convergence speed of the extended Kalman filter algorithm, and can simultaneously have high precision, low computational complexity and Fast convergence speed.

附图说明Description of drawings

图1:锂离子电池模型参数与SOC联合估计算法流程图Figure 1: The flow chart of the joint estimation algorithm of lithium-ion battery model parameters and SOC

图2:锂离子电池1-RC等效电路模型图Figure 2: Lithium-ion battery 1-RC equivalent circuit model diagram

具体实施方式Detailed ways

下面,结合附图对本发明的具体实施方式作进一步的说明。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings.

本发明提供了一种锂离子电池模型参数与SOC联合在线估计方法,该方法流程图如图1所示,包括步骤S1-S9,下面对各实施步骤进行详细说明:The present invention provides a method for joint online estimation of lithium-ion battery model parameters and SOC. The flow chart of the method is shown in FIG. 1 and includes steps S1-S9. Each implementation step is described in detail below:

S1:对电池进行放电静置实验,获得开路电压(OCV)与SOC的关系式;根据电压、电流、温度等基本实验数据离线辨识出模型参数的初值并建立电池1-RC等效电路模型,设定状态空间方程的匹配系数初值A0、B0、C0、D0S1: Carry out a discharge static experiment on the battery to obtain the relationship between the open circuit voltage (OCV) and SOC; according to the basic experimental data such as voltage, current, temperature, etc., identify the initial values of the model parameters offline and establish the battery 1-RC equivalent circuit model , set the initial values of the matching coefficients of the state space equation A 0 , B 0 , C 0 , D 0 ;

基于电化学原理,建立的1-RC电池等效电路模型如图2所示,由理想电压源UOC,欧姆内阻R0和一个反映电池极化特性的RC网络构成。电流I为输入量(充电为正),端电压U为输出量,系统离散化状态方程为:Based on the electrochemical principle, the established 1-RC battery equivalent circuit model is shown in Figure 2, which is composed of an ideal voltage source U OC , an ohmic internal resistance R 0 and an RC network that reflects the polarization characteristics of the battery. The current I is the input quantity (charging is positive), the terminal voltage U is the output quantity, and the system discretized state equation is:

输出方程为:The output equation is:

U(k)=Uoc(k)+U1(k)+R0I(k);U(k)=U oc (k)+U 1 (k)+R 0 I(k);

其中Δt为采样间隔,Qv为电池实际容量,τ=R1C1,w和v分别表示过程噪声和测量噪声;选取状态变量x=[SOC,U1]T,对应状态方程的匹配系数为:where Δt is the sampling interval, Q v is the actual capacity of the battery, τ=R 1 C 1 , w and v represent the process noise and measurement noise, respectively; the state variable x=[SOC, U 1 ] T is selected, corresponding to the matching coefficient of the state equation for:

S2:SOC计算模块1,运用扩展卡尔曼滤波(EKF)算法估算当前电池的荷电状态SOC1;其中EKF算法主要步骤如下:S2: SOC calculation module 1, using the extended Kalman filter (EKF) algorithm to estimate the current state of charge SOC 1 of the battery; the main steps of the EKF algorithm are as follows:

S201:算法初始化S201: Algorithm initialization

设定初始状态x0、初始状态误差协方差P0、过程噪声协方差Q和测量噪声协方差R;Set the initial state x 0 , the initial state error covariance P 0 , the process noise covariance Q and the measurement noise covariance R;

S202:由k-1的状态及其误差协方差对k时刻进行时间更新S202: Time update at time k by the state of k-1 and its error covariance

S203:卡尔曼滤波增益计算S203: Kalman filter gain calculation

S204:用k时刻的测量值对状态及其误差协方差进行测量更新S204: measure and update the state and its error covariance with the measured value at time k

式中表示电池端电压测量值与预测值之间的误差;in the formula Indicates the error between the measured value of the battery terminal voltage and the predicted value;

S205:输出k时刻状态的最优估计值 S205: Output the optimal estimated value of the state at time k

S3:判断时间是否超过设定值T,如果没有超过时间T,第一个SOC计算模块继续计算,如果超过时间T,则在SOC计算模块1继续计算的同时,进入下一步;其中,T=6τ是与系统结构有关的参数。S3: determine whether the time exceeds the set value T, if it does not exceed the time T, the first SOC calculation module continues to calculate, if it exceeds the time T, the next step is entered while the SOC calculation module 1 continues to calculate; where T= 6τ is a parameter related to the system structure.

S4:当时间t=T时,根据SOC计算模块1所计算出的当前SOC值SOCT,通过加入突变扰动的方式,得到一个新的SOC值SOCm,并将SOCm作为SOC计算模块2的初始值。其中,所用的突变方法为:S4: When time t=T, according to the current SOC value SOC T calculated by the SOC calculation module 1, a new SOC value SOC m is obtained by adding sudden disturbance, and SOC m is used as the SOC calculation module 2 initial value. Among them, the mutation method used is:

其中R是服从正态分布N(0,1)的随机数,“||”表示取绝对值。Among them, R is a random number that obeys the normal distribution N(0, 1), and "||" means to take the absolute value.

由于SOC是[O,1]之间的变量,如果T时刻SOC计算模块1的估算值0<SOCT<1,表示在正常范围内,将此值直接作为UKF算法的状态初始值;如果SOCT≥1或SOCT≤0,属于超出范围的异常值,利用公式SOCm=|SOCT+R-max(SOCT,R)|,迅速将异常值恢复至[0,1]之间,保证UKF算法的正确运行,同时降低了两个SOC计算模块滤波发散的可能性。Since SOC is a variable between [0, 1], if the estimated value of SOC calculation module 1 at time T is 0 < SOC T < 1, it means that it is within the normal range, and this value is directly used as the initial state value of the UKF algorithm; if SOC If T ≥ 1 or SOC T ≤ 0, it belongs to the abnormal value out of range. Using the formula SOC m =|SOC T +R-max(SOC T , R)|, the abnormal value is quickly restored to [0, 1], The correct operation of the UKF algorithm is guaranteed, and the possibility of filter divergence of the two SOC calculation modules is reduced.

S5:SOC计算模块2,运用无迹卡尔曼滤波(UKF)算法开始估算当前电池的荷电状态SOC2,同时SOC计算模块1继续利用扩展卡尔曼滤波(EKF)算法估算当前SOC值;其中,UKF算法的主要步骤为:S5: SOC calculation module 2, using the unscented Kalman filter (UKF) algorithm to start estimating the current state of charge SOC 2 of the battery, while the SOC calculation module 1 continues to use the extended Kalman filter (EKF) algorithm to estimate the current SOC value; wherein, The main steps of the UKF algorithm are:

S501:初始化状态变量均值x0和均方误差P0 S501: Initialize state variable mean x 0 and mean square error P 0

这里的状态变量对步骤S1中的状态变量进行了扩展,即x=[SOC,U1,w,v]T,扩展状态的维数为n。The state variable here expands the state variable in step S1, that is, x=[SOC, U 1 , w, v] T , and the dimension of the expanded state is n.

S502:获取采样点xi及对应权重w。S502: Obtain sampling points x i and corresponding weights w.

式中,λ=α2(n+κ)-n,wm,wc分别是粒子点均值和方差相对应的权重,α、β分别控制采样点中粒子点分布距离和高阶项误差大小。In the formula, λ=α 2 (n+κ)-n, w m , w c are the weights corresponding to the mean and variance of the particle points, respectively, and α and β control the distribution distance of the particle points in the sampling points and the error size of the higher-order terms respectively. .

S503:状态估计及均方误差的时间更新S503: Time update of state estimation and mean square error

状态估计时间更新:Status estimate time update:

式中,f(*)表示状态方程的非线性函数;In the formula, f( * ) represents the nonlinear function of the state equation;

均方误差时间更新:Mean squared error time update:

系统输出时间更新:System output time update:

式中,g(*)表示测量方程的非线性函数;In the formula, g(*) represents the nonlinear function of the measurement equation;

S504:计算滤波增益矩阵S504: Calculate the filter gain matrix

Lk=Pxy,kPy,k -1 L k =P xy,k P y,k -1

式中,In the formula,

S505:状态估计及均方误差的测量更新S505: State estimation and measurement update of mean square error

状态估计测量更新:State estimation measurement update:

均方误差测量更新:Mean squared error measurement update:

Pk=Pk/k-1-LkPy,kLk T P k =P k/k-1 -L k P y,k L k T

S506:输出k时刻状态的最优估计值 S506: Output the optimal estimated value of the state at time k

S6:判断SOC计算模块2运用无迹卡尔曼滤波算法估计SOC时,电池的预测电压与实测电压的差值ΔU是否超过设定阈值Uth,如果没有超过阈值Uth,SOC计算模块2继续计算,如果超过了Uth,则进入下一步;其中阈值Uth设定为0.05,即预测电压误差不能超过0.05V。S6: Determine whether the difference ΔU between the predicted voltage and the measured voltage of the battery exceeds the set threshold U th when the SOC calculation module 2 uses the unscented Kalman filter algorithm to estimate the SOC. If it does not exceed the threshold U th , the SOC calculation module 2 continues to calculate , if it exceeds U th , go to the next step; the threshold U th is set to 0.05, that is, the predicted voltage error cannot exceed 0.05V.

S7:将此时SOC计算模块1与计算模块2的估算结果进行加权平均,得到修正后的SOC值:SOCw=W1*SOC1+W2*SOC2,其中W1、W2为相应的权值;权值的确定方法为:W1=D2/(D1+D2),W2=D1/(D1+D2),D1=(ZEKF-U)2,D2=(ZUKF-U)2,XEKF表示当前时刻SOC计算模块1采用扩展卡尔曼滤波(EKF)算法预测电压值,ZUKF表示当前时刻SOC计算模块2采用无迹卡尔曼滤波(UKF)算法预测电压值,U表示当前时刻电池实测电压,D1与D2分别表示ZEKF和ZUKF与U的偏移程度。S7: Perform a weighted average of the estimation results of the SOC calculation module 1 and the calculation module 2 at this time to obtain a revised SOC value: SOC w =W 1 *SOC 1 +W 2 *SOC 2 , where W 1 and W 2 are corresponding The weights are determined as follows: W 1 =D 2 /(D 1 +D 2 ), W 2 =D 1 /(D 1 +D 2 ), D 1 =(Z EKF -U) 2 , D 2 =(Z UKF -U) 2 , X EKF indicates that the SOC calculation module 1 at the current moment uses the extended Kalman filter (EKF) algorithm to predict the voltage value, and Z UKF indicates that the SOC calculation module 2 adopts the unscented Kalman filter (UKF) at the current moment ) algorithm predicts the voltage value, U represents the measured voltage of the battery at the current moment, and D 1 and D 2 represent the degree of deviation between Z EKF and Z UKF and U, respectively.

S8:判断修正后的SOC值SOCw是否有效,如果有效,将电池当前SOC设定为SOCw,如果无效,则将电池当前SOC设定为SOC计算模块1的估计结果SOC1;判断修正后的SOC值有效性的方法为:比较修正后的SOC值与开路电压法计算的SOC值,如果修正后的SOC值与开路电压法计算的SOC值相差在规定范围内,修正后的SOC值是有效的,否则无效。S8: Determine whether the corrected SOC value SOC w is valid, if valid, set the current SOC of the battery as SOC w , if invalid, set the current SOC of the battery as the estimation result SOC 1 of the SOC calculation module 1; The method for the validity of the SOC value is: compare the corrected SOC value with the SOC value calculated by the open circuit voltage method. If the difference between the corrected SOC value and the SOC value calculated by the open circuit voltage method is within the specified range, the corrected SOC value is valid, otherwise invalid.

S9:根据上一步计算出的电池当前SOC值以及开路电压与SOC关系,利用遗忘因子最小二乘法(FFRLS)在线辨识模型参数R0、R1、C1并更新系统状态方程中的Ak、Bk、Ck、DkS9: According to the current SOC value of the battery and the relationship between the open circuit voltage and SOC calculated in the previous step, use the forgetting factor least squares (FFRLS) to identify the model parameters R 0 , R 1 , C 1 online and update the A k , R 1 and C 1 in the system state equation. B k , C k , D k .

图2所示的电池等效电路可以表示为:U=[R1/(R1C1s+1)+R0]I+Uoc,利用后向差分变换可以转化为:y(k)=a1y(k-1)+b0I(k)+b1I(k-1),其中输出量y=U-Uoc表示电池端电压与开路电压之差,电流I为输入量,令Φ(k)=[y(k-1),I(k),I(k-1)],则θ=[a1,b0,b1]T为待辨识的参数。然后利用FFRLS算法辨识出θ,更新模型参数以及状态方程匹配系数Ak、Bk、Ck、Dk。其中,FFRLS算法的主要步骤为:The battery equivalent circuit shown in Figure 2 can be expressed as: U=[R 1 /(R 1 C 1 s+1)+R 0 ]I+U oc , which can be transformed into: y(k) =a 1 y(k-1)+b 0 I(k)+b 1 I(k-1), where the output quantity y=UU oc represents the difference between the battery terminal voltage and the open circuit voltage, the current I is the input quantity, let Φ(k)=[y(k-1), I(k), I(k-1)], then θ=[a 1 , b 0 , b 1 ] T is the parameter to be identified. Then use the FFRLS algorithm to identify θ and update the model parameters and equation of state matching coefficients A k , B k , C k , D k . Among them, the main steps of the FFRLS algorithm are:

S901:确定最小二乘协方差P0和参数矩阵的初值θ0 S901: Determine the least squares covariance P 0 and the initial value θ 0 of the parameter matrix

S902:计算最小二乘增益矩阵K(k)S902: Calculate the least square gain matrix K(k)

K(k)=P(k-1)Φ(k)[λ+ΦT(k)P(k-1)Φ(k)]-1 K(k)=P(k-1)Φ(k)[λ+Φ T (k)P(k-1)Φ(k)] -1

式中λ为最小二乘加权因子,取λ=0.98;where λ is the least squares weighting factor, take λ=0.98;

S903:计算参数估计矩阵S903: Calculate the parameter estimation matrix

S904:协方差矩阵更新S904: Covariance matrix update

P(k)=[I-K(k)ΦT(k)]P(k-1)P(k)=[IK(k)Φ T (k)]P(k-1)

S905:输出k时刻状态估计值 S905: Output the estimated state value at time k

以上给出了本发明涉及的具体实施方式,但本发明不局限于所描述的实施方式。凡在本发明的精神和原则之内,采用本领域技术人员容易想到的方式,进行任何的修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments to which the present invention relates are given above, but the present invention is not limited to the described embodiments. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention and in a manner easily conceived by those skilled in the art should be included within the protection scope of the present invention.

Claims (6)

1. a kind of Li-ion battery model parameter and SOC online joint estimation method, the on-line identification for battery model parameter With the real-time estimation of SOC, comprising steps of
S1: battery carries out electric discharge and stands experiment, obtains the relational expression of open-circuit voltage (OCV) and SOC;According to voltage, electric current, temperature Etc. basic experiments off-line data pick out the initial value of model parameter and establish battery 1-RC equivalent-circuit model, set state space The matching factor initial value A of equation0、B0、C0、D0
S2:SOC computing module 1 starts the state-of-charge for estimating current time battery with Extended Kalman filter (EKF) algorithm SOC1
S3: judging whether the time is more than (the mutation interval) setting value T, if being not above time T, first SOC computing module Continue to calculate, if it exceeds time T, then while SOC computing module 1 continues to calculate, into next step;
S4: as time t=T, according to the 1 calculated current SOC value SOC of institute of SOC computing moduleT, by the way that mutation disturbance is added Mode obtains a new SOC value SOCm, and by SOCmInitial value as SOC computing module 2;Wherein, mutation side used Method are as follows:
R is the random number of (0,1) Normal Distribution N, " | | " indicate to take absolute value;
S5:SOC computing module 2 starts the state-of-charge SOC for estimating present battery with Unscented kalman filtering (UKF) algorithm2, SOC computing module 1 continues with Extended Kalman filter (EKF) algorithm and estimates current SOC value simultaneously;
S6: when judging SOC computing module 2 with Unscented kalman filtering algorithm estimation SOC, the predicted voltage and actual measurement electricity of battery Whether the difference DELTA U of pressure is more than given threshold UthIf being not above threshold value Uth, SOC computing module 2 continues to calculate, if super U is crossedth, then enter in next step;
S7: SOC computing module 1 at this time and the estimation result of computing module 2 are weighted and averaged, revised SOC value is obtained: SOCW=W1*SOC1+W2*SOC2, wherein W1、W2For corresponding weight;
S8: judge revised SOC value SOCwWhether effectively, if effectively, the current SOC of battery is set as revised SOC value SOCwIf in vain, the current SOC of battery to be set as to the estimated result SOC of SOC computing module 11
S9: according to the current SOC value of the calculated battery of previous step and open-circuit voltage and SOC relationship, forgetting factor minimum is utilized Square law (FFRLS) on-line identification model parameter R0、R1、C1And update the A in system state equationk、Bk、Ck、Dk
2. a kind of Li-ion battery model parameter according to claim 1 and SOC online joint estimation method, feature exist In in the step S3, when with EKF algorithm estimation SOC, mutation interval T=6 τ is and system structure SOC computing module 1 Related parameter, system model parameter is real-time update, therefore T is also real-time update.
3. a kind of Li-ion battery model parameter according to claim 1 and SOC online joint estimation method, feature exist In in the step S4, the mode of mutation disturbance is added in the t=T moment are as follows:
R is the random number of (0,1) Normal Distribution N, " | | " indicate to take absolute value;Since SOC is the variable between [0,1], If the 0 < SOC of estimated value of T moment SOC computing module 1T< 1, indicates in the normal range, this value is calculated directly as UKF The state initial value of method, is effectively reduced the initial error of algorithm;If SOCT>=1 or SOCT≤ 0, belong to off-limits exception Value, utilizes formula S OCm=| SOCT+R-max(SOCT, R) |, exceptional value is restored between [0,1] rapidly, guarantees UKF algorithm Correct operation, while improving the stability of algorithm.
4. a kind of Li-ion battery model parameter according to claim 1 and SOC online joint estimation method, feature exist In in the step S5, two SOC computing modules are run parallel, and first module is estimated with EKF algorithm always It calculates, second module first uses EKF algorithm, after T after a period of time, mutation disturbance is added, then estimated with UKF algorithm It calculates, then the calculated result of two modules is weighted and averaged, is effectively guaranteed the stabilization of SOC estimation precision and algorithm Property;Weighting algorithm used in it are as follows: SOCW=W1*SOC1+W2*SOC2, wherein weight W1=D2/(D1+D2), W2=D1/(D1+ D2), D1=(ZEKF-U)2, D2=(ZUKF-U)2, ZEKFIndicate that current time SOC computing module 1 uses EKF algorithm predicted voltage value, ZUKFIndicate that current time SOC computing module 2 uses UKF algorithm predicted voltage value, U indicates current time battery measurement voltage, D1 With D2Respectively indicate ZEKFAnd ZUKFWith the degrees of offset of U.
5. a kind of Li-ion battery model parameter according to claim 1 and SOC online joint estimation method, feature exist In judging the method for revised SOC value validity are as follows: more revised SOC value and open circuit voltage method in the step S8 The SOC value of calculating, it is revised if revised SOC value differs within the specified scope with the SOC value that open circuit voltage method calculates Effectively, otherwise in vain SOC value is;The method for obtaining current time SOC optimal estimation value are as follows: if repaired obtained in step S7 Positive value SOCwEffectively, current SOC is set as SOCwIf in vain, current SOC to be set as to the estimation of SOC computing module 1 As a result SOC1
6. a kind of Li-ion battery model parameter according to claim 1 and SOC online joint estimation method, feature exist In utilizing forgetting factor least squares algorithm (FFRLS) on-line identification model parameter R in the step S90、R1、C1And it updates and is The matching factor A of system state equationk、Bk、Ck、Dk, then repeatedly step S1-S9, so that EKF, UKF and FFRLS algorithm are merged, Realize the real-time update of battery model parameter and the On-line Estimation of SOC.
CN201810105457.7A 2018-01-26 2018-01-26 A kind of Li-ion battery model parameter and SOC online joint estimation method Pending CN110095723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810105457.7A CN110095723A (en) 2018-01-26 2018-01-26 A kind of Li-ion battery model parameter and SOC online joint estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810105457.7A CN110095723A (en) 2018-01-26 2018-01-26 A kind of Li-ion battery model parameter and SOC online joint estimation method

Publications (1)

Publication Number Publication Date
CN110095723A true CN110095723A (en) 2019-08-06

Family

ID=67443463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810105457.7A Pending CN110095723A (en) 2018-01-26 2018-01-26 A kind of Li-ion battery model parameter and SOC online joint estimation method

Country Status (1)

Country Link
CN (1) CN110095723A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308363A (en) * 2020-02-17 2020-06-19 中南大学 Lithium battery state of charge estimation device and method based on self-adaptive model
CN112630661A (en) * 2020-12-28 2021-04-09 广州橙行智动汽车科技有限公司 Battery state of charge (SOC) estimation method and device
CN113030741A (en) * 2019-12-24 2021-06-25 比亚迪股份有限公司 Method, device and medium for estimating battery model parameters and SOC (state of charge) based on AUKF (autonomous Underwater Kalman Filter)
CN113125969A (en) * 2020-01-14 2021-07-16 比亚迪股份有限公司 Battery data processing method, device and medium based on AUKF
CN113420444A (en) * 2021-06-23 2021-09-21 南通大学 Lithium ion battery SOC estimation method based on parameter online identification
CN114487865A (en) * 2020-10-28 2022-05-13 比亚迪股份有限公司 Battery SOC estimation method, battery management system and computer readable storage medium
CN112327183B (en) * 2020-09-18 2023-11-28 国联汽车动力电池研究院有限责任公司 Lithium ion battery SOC estimation method and device
CN118409215A (en) * 2024-04-15 2024-07-30 昆明理工大学 A Lithium-ion Battery SOC Estimation Method Based on Multi-model Fusion and Online Parameter Identification

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744028A (en) * 2013-12-25 2014-04-23 广西科技大学 UKF-based storage battery SOC (state of charge) estimation method
CN105205298A (en) * 2014-06-16 2015-12-30 重庆邮电大学 Mutation-based SOC estimation correction method
CN105353314A (en) * 2015-09-30 2016-02-24 盐城工学院 Estimation method of state of charge of parallel-connected battery system
CN106772108A (en) * 2017-03-08 2017-05-31 天津大学 A kind of lithium battery SOC Forecasting Methodologies
CN107064811A (en) * 2017-03-01 2017-08-18 华南理工大学 A kind of lithium battery SOC On-line Estimation methods
CN107153163A (en) * 2017-06-20 2017-09-12 福建工程学院 A kind of lithium battery SOC estimation method based on adaptive UKF

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744028A (en) * 2013-12-25 2014-04-23 广西科技大学 UKF-based storage battery SOC (state of charge) estimation method
CN105205298A (en) * 2014-06-16 2015-12-30 重庆邮电大学 Mutation-based SOC estimation correction method
CN105353314A (en) * 2015-09-30 2016-02-24 盐城工学院 Estimation method of state of charge of parallel-connected battery system
CN107064811A (en) * 2017-03-01 2017-08-18 华南理工大学 A kind of lithium battery SOC On-line Estimation methods
CN106772108A (en) * 2017-03-08 2017-05-31 天津大学 A kind of lithium battery SOC Forecasting Methodologies
CN107153163A (en) * 2017-06-20 2017-09-12 福建工程学院 A kind of lithium battery SOC estimation method based on adaptive UKF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张兵: "基于突变扰动的SOC估算研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030741A (en) * 2019-12-24 2021-06-25 比亚迪股份有限公司 Method, device and medium for estimating battery model parameters and SOC (state of charge) based on AUKF (autonomous Underwater Kalman Filter)
CN113030741B (en) * 2019-12-24 2022-07-15 比亚迪股份有限公司 Method, device and medium for estimating battery model parameters and SOC (state of charge) based on AUKF (autonomous Underwater Kalman Filter)
CN113125969A (en) * 2020-01-14 2021-07-16 比亚迪股份有限公司 Battery data processing method, device and medium based on AUKF
CN113125969B (en) * 2020-01-14 2022-07-15 比亚迪股份有限公司 Battery data processing method, device and medium based on AUKF
CN111308363A (en) * 2020-02-17 2020-06-19 中南大学 Lithium battery state of charge estimation device and method based on self-adaptive model
CN112327183B (en) * 2020-09-18 2023-11-28 国联汽车动力电池研究院有限责任公司 Lithium ion battery SOC estimation method and device
CN114487865A (en) * 2020-10-28 2022-05-13 比亚迪股份有限公司 Battery SOC estimation method, battery management system and computer readable storage medium
CN112630661A (en) * 2020-12-28 2021-04-09 广州橙行智动汽车科技有限公司 Battery state of charge (SOC) estimation method and device
CN112630661B (en) * 2020-12-28 2022-12-09 广州橙行智动汽车科技有限公司 Battery state of charge (SOC) estimation method and device
CN113420444A (en) * 2021-06-23 2021-09-21 南通大学 Lithium ion battery SOC estimation method based on parameter online identification
CN118409215A (en) * 2024-04-15 2024-07-30 昆明理工大学 A Lithium-ion Battery SOC Estimation Method Based on Multi-model Fusion and Online Parameter Identification

Similar Documents

Publication Publication Date Title
CN110095723A (en) A kind of Li-ion battery model parameter and SOC online joint estimation method
CN110596593B (en) Lithium ion battery SOC estimation method based on intelligent adaptive extended Kalman filtering
CN101604005B (en) Estimation method of battery dump energy based on combined sampling point Kalman filtering
CN110398691B (en) Lithium ion power battery SoC estimation method based on improved self-adaptive double unscented Kalman filter
CN105717460B (en) A kind of power battery SOC methods of estimation and system based on nonlinear observer
CN102289557B (en) Battery model parameter and residual battery capacity joint asynchronous online estimation method
CN101625397B (en) Mixed rapid estimation method for residual energy of battery
CN111220920B (en) State of charge calculation method for decommissioned lithium-ion batteries based on H∞ unscented Kalman filter algorithm
CN109633479B (en) On-line estimation method of lithium battery SOC based on embedded volumetric Kalman filter
CN107831448B (en) A kind of state-of-charge estimation method of parallel connection type battery system
CN111428433B (en) Lithium ion battery state calculation method based on hybrid filtering
CN107219466A (en) A kind of lithium battery SOC estimation method for mixing EKF
CN105572596B (en) Lithium battery SOC estimation method and system
CN101598769A (en) A Method for Estimating the Remaining Battery Power Based on Sampling Point Kalman Filter
CN107153163A (en) A kind of lithium battery SOC estimation method based on adaptive UKF
CN111707953A (en) An online SOC estimation method for lithium batteries based on a backward smoothing filter framework
CN108169687A (en) A kind of accumulator SOC estimation method based on cloud platform
CN111781503A (en) A method for online estimation of SOC of lithium-ion energy storage battery
CN105353314A (en) Estimation method of state of charge of parallel-connected battery system
CN109375111A (en) A UHF-based method for estimating remaining battery power
CN112858920B (en) A SOC estimation method for all-vanadium redox flow battery fusion model based on adaptive unscented Kalman filter
CN116298913A (en) A lithium battery state of charge estimation method based on the combination of online and offline identification
CN115494398A (en) A battery SOC estimation method and system based on fusion filtering strategy
CN102298118A (en) On-line synchronous estimating method for model parameters and remaining power of battery
CN103901294A (en) Super capacitor set charge state testing method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190806

RJ01 Rejection of invention patent application after publication