CN110070712A - A kind of low speed sweeper Global localization system and method - Google Patents
A kind of low speed sweeper Global localization system and method Download PDFInfo
- Publication number
- CN110070712A CN110070712A CN201910295360.1A CN201910295360A CN110070712A CN 110070712 A CN110070712 A CN 110070712A CN 201910295360 A CN201910295360 A CN 201910295360A CN 110070712 A CN110070712 A CN 110070712A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- module
- information
- local
- lane line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/04—Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/09623—Systems involving the acquisition of information from passive traffic signs by means mounted on the vehicle
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/09626—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages where the origin of the information is within the own vehicle, e.g. a local storage device, digital map
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0968—Systems involving transmission of navigation instructions to the vehicle
- G08G1/096805—Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0968—Systems involving transmission of navigation instructions to the vehicle
- G08G1/0969—Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/123—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/161—Decentralised systems, e.g. inter-vehicle communication
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明涉及一种低速清扫车全局定位系统及方法,系统包括信号源子系统、地图子系统和融合子系统,信号源子系统中视觉模块提供车辆相对车道线的航向和距车道线的距离信息,单轴角速度计提供车辆横摆角速度信息,车辆信息模块提供轮速信息,低精度GNSS模块提供全局初始位置信息和全局航向信息;地图子系统提供车道线的局部地图信息;融合子系统中初始化模块根据车辆的初始位置进行初始区域判定,车辆区域判断模块则根据初始化的信息进行车辆行驶区域判断;航向融合模块对航向信息进行融合得到最优航向值,位置融合模块融合得到最优位置。与现有技术相比,本发明无需价格昂贵的GNSS定位设备及激光雷达设备,成本低,能够在固定区域内实现定位。
The invention relates to a global positioning system and method for a low-speed sweeper. The system includes a signal source subsystem, a map subsystem and a fusion subsystem. A vision module in the signal source subsystem provides the heading of the vehicle relative to the lane line and the distance information from the lane line. , the single-axis angular velocity meter provides vehicle yaw rate information, the vehicle information module provides wheel speed information, and the low-precision GNSS module provides global initial position information and global heading information; the map subsystem provides local map information of lane lines; initialization in the fusion subsystem The module determines the initial area according to the initial position of the vehicle, and the vehicle area determination module determines the driving area of the vehicle according to the initialized information; the heading fusion module fuses the heading information to obtain the optimal heading value, and the position fusion module fuses to obtain the optimal position. Compared with the prior art, the present invention does not need expensive GNSS positioning equipment and laser radar equipment, has low cost, and can realize positioning in a fixed area.
Description
技术领域technical field
本发明涉及一种低速清扫车局部定位方法,尤其是涉及一种低速清扫车全局定位系统及方法。The invention relates to a local positioning method for a low-speed sweeper, in particular to a global positioning system and method for a low-speed sweeper.
背景技术Background technique
无人驾驶清扫车能够在封闭园区内按照固定路线和固定区域独立自主地完成清扫作业,而定位模块则为清扫车的正常运行提供位置信息。一般的定位系统采用GNSS定位设备实现对车辆的准确定位,而清扫车在作业过程当中经常会遇到树荫等遮挡工况进而导致GNSS信号减弱或失效,不能够实现准确的定位。因此如何在无人驾驶清扫车上实现准确的定位成为研究的重难点。The unmanned sweeper can independently complete the cleaning operation according to the fixed route and fixed area in the closed park, and the positioning module provides the location information for the normal operation of the sweeper. The general positioning system uses GNSS positioning equipment to achieve accurate positioning of the vehicle, while the sweeper often encounters shading conditions such as tree shades during the operation process, which leads to the weakening or failure of the GNSS signal, and cannot achieve accurate positioning. Therefore, how to achieve accurate positioning on the unmanned sweeper has become a difficult point of research.
目前车辆上常用的定位方法主要有:1、GNSS与惯导融合进行定位,在空旷环境GNSS信号良好的情况下定位效果较好,但是当GNSS信号失效时,定位效果较差;2、激光雷达建图定位,不受GNSS信号的影响,但是需要昂贵的激光雷达设备,且需要采用具有接收差分信号进行RTK定位功能的GNSS接收机,该设备精度高但是价格昂贵,而价格便宜的低精度GNSS板卡通常不具有差分定位功能,但精度较低。At present, the commonly used positioning methods on vehicles mainly include: 1. GNSS and inertial navigation fusion for positioning, the positioning effect is better when the GNSS signal is good in an open environment, but when the GNSS signal fails, the positioning effect is poor; 2. Lidar Mapping positioning is not affected by GNSS signals, but requires expensive lidar equipment, and needs to use a GNSS receiver with the function of receiving differential signals for RTK positioning. The board usually does not have differential positioning function, but the accuracy is low.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种低速清扫车全局定位系统及方法。The purpose of the present invention is to provide a global positioning system and method for a low-speed sweeper in order to overcome the above-mentioned defects of the prior art.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种低速清扫车全局定位系统,用以对低速清扫车进行局部定位,该系统包括信号源子系统、地图子系统和融合子系统。其中:A low-speed sweeper global positioning system is used for local positioning of the low-speed sweeper. The system includes a signal source subsystem, a map subsystem and a fusion subsystem. in:
信号源子系统包括:The signal source subsystem includes:
视觉模块,用于获取车道线的航向以及距车道线距离的信息;The vision module is used to obtain information on the heading of the lane line and the distance from the lane line;
单轴角速度计,用于获取清扫车的横摆角速度信息;Single-axis angular velocity meter, used to obtain the yaw angular velocity information of the sweeper;
车辆信息模块,用于获取清扫车的轮速信息;The vehicle information module is used to obtain the wheel speed information of the sweeper;
低精度GNSS模块,用于获取清扫车的全局初始位置信息和全局航向信息;The low-precision GNSS module is used to obtain the global initial position information and global heading information of the sweeper;
地图子系统包括:The map subsystem includes:
局部车道线坐标采集模块,用于采集车道线全局坐标;The local lane line coordinate collection module is used to collect the global coordinates of the lane line;
局部坐标与全局坐标转换模块,用于根据全局坐标点选取合适的局部平面直角坐标系的原点,并在该坐标系下得到所采集车道线各个点的坐标;The local coordinate and global coordinate conversion module is used to select the origin of the appropriate local plane rectangular coordinate system according to the global coordinate point, and obtain the coordinates of each point of the collected lane line in this coordinate system;
局部车道线地图建立模块,用于根据车道线各个点的坐标建立车道线局部地图并划分行驶区域;The local lane line map building module is used to build a local lane line map and divide the driving area according to the coordinates of each point of the lane line;
融合子系统包括:The fusion subsystem includes:
初始化模块,用于根据给定车辆的初始位置和粗略航向的信息、地图子系统提供的车道线信息对车辆进行初始区域判定,并获取车辆初始的局部航向值;The initialization module is used to determine the initial area of the vehicle according to the information of the initial position and rough heading of the given vehicle and the lane line information provided by the map subsystem, and obtain the initial local heading value of the vehicle;
车辆区域判断模块,用于根据初始化模块提供的局部航向信息和初始区域信息,结合地图子系统提供的车道线地图与行驶区域划分的信息,对车辆行驶的区域进行检测,获取局部航向的测量值,并将该区域内视觉模块能够检测到的车道线作为反馈车道线;The vehicle area judgment module is used to detect the area where the vehicle travels and obtain the measured value of the local heading according to the local heading information and initial area information provided by the initialization module, combined with the lane line map and the driving area division information provided by the map subsystem. , and take the lane lines that can be detected by the vision module in this area as the feedback lane lines;
航向融合模块,用于根据车辆区域判断模块提供的局部航向的测量值对清扫车的航向进行修正;The heading fusion module is used to correct the heading of the sweeper according to the measured value of the local heading provided by the vehicle area judgment module;
位置融合模块,用于根据航向融合模块修正后的航向值以及车速获取车辆的最优全局位置信息和航向信息;The position fusion module is used to obtain the optimal global position information and heading information of the vehicle according to the heading value corrected by the heading fusion module and the speed of the vehicle;
局部坐标与全局坐标转换模块:用以将车道线局部地图转换成全局位置及航向信息。Local coordinate and global coordinate conversion module: used to convert the local map of lane lines into global position and heading information.
所述的视觉模块为清扫车辆上用于检测行人与障碍物的摄像头,所述的单轴角速度计为车辆横摆角速度传感器,所述的低精度GNSS模块采用不具备差分定位功能的低精度GNSS板卡,所述的车辆信息模块获取的车辆信息由车辆CAN总线上获得。The vision module is a camera used to detect pedestrians and obstacles on the cleaning vehicle, the single-axis angular velocity meter is a vehicle yaw rate sensor, and the low-precision GNSS module adopts a low-precision GNSS without differential positioning function. The vehicle information obtained by the vehicle information module is obtained from the vehicle CAN bus.
一种低速清扫车全局定位方法,包括下列步骤:A global positioning method for a low-speed sweeper, comprising the following steps:
(一)、地图子系统对车道线坐标进行采集,建立局部地图并对局部地图进行划分,具体包括下列步骤:(1) The map subsystem collects the coordinates of the lane lines, establishes a local map and divides the local map, which specifically includes the following steps:
11)局部车道线绝对坐标采集模块对车道线的坐标进行采集,获取车道线的全局坐标;11) The absolute coordinate collection module of the local lane line collects the coordinates of the lane line, and obtains the global coordinates of the lane line;
12)全局坐标和局部坐标转换模块根据采集的全局坐标点选取合适的局部平面直角坐标系的原点,并在该坐标系下得到所采集车道线各个点的坐标;12) The global coordinate and local coordinate conversion module selects the origin of a suitable local plane rectangular coordinate system according to the collected global coordinate points, and obtains the coordinates of each point of the collected lane line in this coordinate system;
13)采用最小二乘拟合的方法,对清扫车行驶区域内的不同的车道线分别进行建模,获取车道线在局部坐标系下的方程;13) Using the method of least squares fitting, model the different lane lines in the driving area of the sweeper respectively, and obtain the equation of the lane lines in the local coordinate system;
14)局部车道线地图建立模块根据车道线各个点的坐标建立车道线地图,并根据清扫车的行驶区域,对局部地图进行区域划分。14) The local lane line map establishment module establishes a lane line map according to the coordinates of each point of the lane line, and divides the local map according to the driving area of the sweeper.
(二)、地图子系统将车道线的局部地图信息发送至融合子系统。(2) The map subsystem sends the local map information of the lane lines to the fusion subsystem.
(三)、低精度GNSS模块将精度较低的全局位置信息发送至融合子系统,视觉模块将获取的车道线的航向以及距车道线距离的信息发送至融合子系统,单轴角速度计将车辆横摆角速度信息发送至融合子系统,车辆信息模块将获取的轮速信息发送至融合子系统。(3) The low-precision GNSS module sends the global position information with lower precision to the fusion subsystem, the vision module sends the acquired information of the heading of the lane line and the distance from the lane line to the fusion subsystem, and the single-axis angular velocity meter sends the vehicle to the fusion subsystem. The yaw rate information is sent to the fusion subsystem, and the vehicle information module sends the acquired wheel speed information to the fusion subsystem.
(四)、融合子系统根据获取的各项信息进行融合,获取最优全局位置和航向信息。具体包括以下步骤:(4) The fusion subsystem performs fusion according to the obtained information to obtain the optimal global position and heading information. Specifically include the following steps:
41)当车辆正常行驶后,初始化模块根据低精度GNSS模块获取车辆的全局位置信息和全局航向信息获取车辆初始局部航向φL,ini和车辆初始局部位置xL,ini,yL,ini,并完成车辆初始区域的判定,其中,车辆初始局部位置xL,ini,yL,ini由静止时低精度GNSS模块获取的全局位置信息取平均得到;41) When the vehicle runs normally, the initialization module obtains the vehicle's global position information and global heading information according to the low-precision GNSS module to obtain the vehicle's initial local heading φ L,ini and the vehicle's initial local position x L,ini ,y L,ini , and Complete the determination of the initial area of the vehicle, wherein the initial local position of the vehicle x L,ini , y L,ini is obtained by averaging the global position information obtained by the low-precision GNSS module at rest;
42)车辆区域判断模块根据初始化模块提供的车辆初始局部航向φL,ini和车辆初始局部位置xL,ini,yL,ini,结合地图子系统提供的车道线地图与行驶区域划分的信息,对车辆行驶的区域进行检测,并选择在该区域内视觉模块能够检测到的车道线作为反馈车道线;42) The vehicle area judgment module is based on the initial local heading φ L,ini and the initial local position x L,ini ,y L,ini of the vehicle provided by the initialization module, combined with the lane line map and the driving area division information provided by the map subsystem, Detect the area where the vehicle is traveling, and select the lane line that the vision module can detect in this area as the feedback lane line;
43)车辆区域判断模块将局部航向的测量值φL,Mea发送至航向融合模块,并将当前时刻用作测量的车道线Lactive以及测得的距车道线Lactive的距离dr发送至位置融合模块。43) The vehicle area judgment module sends the measured value φ L, Mea of the local heading to the heading fusion module, and sends the measured lane line L active at the current moment and the measured distance d r from the lane line L active to the position Fusion module.
测得的距车道线Lactive的距离dr的表达式为:The expression for the measured distance d r from the lane line L active is:
φL,Mea=φL,Line+φr φ L, Mea = φ L, Line + φ r
式中,φL,Line为车道线Lactive在局部地图坐标系下的航向值,Φr为视觉模块测得的相对车道线的航向值。In the formula, φ L,Line is the heading value of the lane line L active in the local map coordinate system, and Φ r is the heading value relative to the lane line measured by the vision module.
航向融合模块以局部航向的测量值φL,Mea作为量测值,对清扫车的航向进行修正,当不存在航向测量值φL,Mea时,则根据车辆的横摆角速度ωz积分得到航向值φL,Fus:The heading fusion module uses the local heading measurement value φ L, Mea as the measurement value to correct the heading of the sweeper. When there is no heading measurement value φ L, Mea , the heading is obtained by integrating the yaw rate ω z of the vehicle. Value φ L,Fus :
φL,Fus=φL,INS+kφ·Δφ,φ L, Fus = φ L, INS +k φ ·Δφ,
Δφ=φL,Mea-φL,INS,Δφ=φ L,Mea -φ L,INS ,
式中,Δφ为航向测量值φL,Mea和INS积分航向值ΦL,INS的差值,kφ为航向误差的反馈增益,取值范围为0~1。In the formula, Δφ is the difference between the heading measurement value φ L, Mea and the INS integral heading value Φ L, INS , k φ is the feedback gain of the heading error, and the value ranges from 0 to 1.
在无GNSS信号时,位置融合模块根据航向融合模块的航向值φL,Fus以及车速V,通过积分获取k时刻车辆在局部坐标系下的位置xL,k和yL,k分别为:When there is no GNSS signal, the position fusion module obtains the position x L, k and y L, k of the vehicle in the local coordinate system at time k through integration according to the heading value φ L, Fus and the vehicle speed V of the heading fusion module, respectively:
xL,k=xL,k-1+Vx·ΔT,x L,k =x L,k-1 +V x ·ΔT,
yL,k=yL,k-1+Vy·ΔT,y L,k =y L,k-1 +V y ·ΔT,
式中,ΔT为离散系统的采样时间,Vx和Vy分别为车辆在局部坐标系下的沿x和y方向的速度,其计算公式如下:In the formula, ΔT is the sampling time of the discrete system, V x and V y are the velocities of the vehicle along the x and y directions in the local coordinate system, respectively. The calculation formula is as follows:
Vx=V·cos(φL),V x =V·cos(φ L ),
Vy=V·sin(φL).V y =V·sin(φ L ).
式中,φL为车辆在局部坐标系下真实的航向值,实际计算时用最优估计值φL,Fus作为真实值;In the formula, φ L is the real heading value of the vehicle in the local coordinate system, and the optimal estimated value φ L, Fus is used as the real value in the actual calculation;
当存在GNSS信号时,位置融合模块根据航向融合模块的航向值,以及车速V积分获取车辆的位置信息,同时与低精度的滤波后的局部位置信息进行融合,此时获取k时刻车辆在局部坐标系下的位置xL,k和yL,k分别为:When there is a GNSS signal, the position fusion module obtains the position information of the vehicle according to the heading value of the heading fusion module and the vehicle speed V integral, and fuses it with the low-precision filtered local position information. At this time, the local coordinates of the vehicle at time k are obtained. The positions x L,k and y L,k under the system are:
xL,k=(1-kG)·(xL,k-1+Vx·ΔT)+kG·xL,GNSS,x L,k =(1-k G )·(x L,k-1 +V x ·ΔT)+k G ·x L,GNSS ,
yL,k=(1-kG)·(yL,k-1+Vy·ΔT)+kG·yL,GNSS,y L,k =(1-k G )·(y L,k-1 +V y ·ΔT)+k G ·y L,GNSS ,
其中,xL,GNSS,yL,GNSS为低精度全局位置转换为局部位置,kG为GNSS位置反馈的权重系数;Among them, x L, GNSS , y L, GNSS is the conversion of low-precision global position to local position, and k G is the weight coefficient of GNSS position feedback;
计算当前车辆位置到用作测量的车道线Lactive的距离dINS,假设车道线Lactive在局部坐标系下的方程为yLine-kLinexLine-bLine=0,则dINS的表达式为:Calculate the distance d INS from the current vehicle position to the lane line L active used for measurement, assuming that the equation of the lane line L active in the local coordinate system is y Line -k Line x Line -b Line =0, then the expression of d INS for:
式中,xL和yL分别为车辆的真实位置,实际计算时采用最优估计值xL,Fus和yL,Fus替代,以视觉模块测得的侧向距离作为dr量测值,对车辆的侧向距离进行修正,得到融合后的车辆距车道线的侧向距离dFus:In the formula, x L and y L are the real positions of the vehicle, respectively, and the optimal estimated values x L, Fus and y L, Fus are used instead in the actual calculation, and the lateral distance measured by the vision module is used as the measured value of d r , Correct the lateral distance of the vehicle to obtain the lateral distance d Fus between the vehicle and the lane line after fusion:
dFus=dINS+kd·Δd,d Fus =d INS +k d ·Δd,
Δd=dr-dINS,Δd=d r -d INS ,
式中,Δd为侧向距离测量值和INS积分位置计算得到的侧向距离之间的差值,kd为侧向距离误差的反馈增益。In the formula, Δd is the difference between the lateral distance measurement value and the lateral distance calculated from the INS integral position, and k d is the feedback gain of the lateral distance error.
将融合后的侧向距离误差ΔdFus=dFus-dr,采用融合后的侧向距离误差ΔdFus对位置进行修正得到最优的融合位置:Set the fused lateral distance error Δd Fus =d Fus -d r , and use the fused lateral distance error Δd Fus to correct the position to obtain the optimal fusion position:
xL,Fus=xL,k+ΔdFus·sin(φL,Fus),x L,Fus =x L,k +Δd Fus ·sin(φ L,Fus ),
yL,Fus=yL,k+ΔdFus·cos(φL,Fus)。y L,Fus =y L,k +Δd Fus ·cos(φ L,Fus ).
式中,ΦK,Fus为融合后的局部航向值。In the formula, Φ K, Fus is the local heading value after fusion.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
一、本发明通过融合低精度GNSS、视觉、轮速与惯导的信号对车辆进行定位,无需昂贵的具有RTK定位功能的GNSS高精度定位设备,成本较低,且能够实现无GNSS信号或者GNSS信号较弱情况下对车辆的局部和全局定位;1. The present invention locates the vehicle by integrating the signals of low-precision GNSS, vision, wheel speed and inertial navigation, without the need for expensive GNSS high-precision positioning equipment with RTK positioning function, the cost is low, and it can realize no GNSS signal or GNSS Local and global positioning of vehicles in weak signal conditions;
二、本发明在无人清扫车现有传感器方案的基础之上对信息进行了融合,低精度GNSS模块采用现有不具有差分定位功能的低精度GNSS板卡,价格便宜且能够提供位置信息,视觉模块为智能清扫车辆上用于检测行人与障碍物的摄像头,单轴角速度计为车辆横摆角速度传感器,车辆信息则可以直接由车辆CAN总线上获得,计算量小,采用多源信息融合可得到高可靠性的定位信息,可广泛应用于具有上述传感器设备的车辆上;2. The present invention fuses information on the basis of the existing sensor scheme of the unmanned sweeper. The low-precision GNSS module adopts the existing low-precision GNSS board without differential positioning function, which is cheap and can provide position information. The vision module is the camera used to detect pedestrians and obstacles on the intelligent cleaning vehicle, the single-axis angular velocity meter is the vehicle yaw rate sensor, and the vehicle information can be obtained directly from the vehicle CAN bus. Obtain high-reliability positioning information, which can be widely used in vehicles with the above-mentioned sensor equipment;
三、本发明的融合子系统中设有局部坐标与全局坐标转换模块,该模块可将车道线局部地图转换成全局下的地图信息,得到与现有技术的标准定为模块输出一致的位置和航向信息,在节约成本的情况下能够保证获取的位置和航向信息的精准度,且方便使用者使用。3. The fusion subsystem of the present invention is provided with a local coordinate and global coordinate conversion module, which can convert the local map of the lane line into the global map information, and obtain the position and output consistent with the standard of the prior art as the module output. The heading information can ensure the accuracy of the obtained position and heading information in the case of saving costs, and is convenient for users to use.
附图说明Description of drawings
图1为本发明低速清扫车全局定位方法的原理框图;Fig. 1 is the principle block diagram of the global positioning method of the low-speed sweeper of the present invention;
图中标号所示:The numbers in the figure show:
1、地图子系统,2、信号源子系统,3、融合子系统。1. Map subsystem, 2. Signal source subsystem, 3. Fusion subsystem.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. Obviously, the described embodiments are some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
本发明涉及一种低速清扫车全局定位系统,该系统包括信号源子系统、地图子系统以及融合子系统三部分。The invention relates to a global positioning system for a low-speed sweeper, which comprises three parts: a signal source subsystem, a map subsystem and a fusion subsystem.
信号源子系统包括视觉模块、单轴角速度计、车辆信息模块和低精度GNSS模块。视觉模块用于获取车道线的航向以及距车道线距离的信息,视觉模块为清扫车辆上用于检测行人与障碍物的摄像头。单轴角速度计提供车辆横摆角速度信息,单轴角速度计为车辆横摆角速度传感器。车辆信息模块用于获取清扫车的轮速信息,车辆信息由车辆CAN总线上获得。低精度GNSS模块用于获取清扫车的初始全局位置信息。The signal source subsystem includes a vision module, a single-axis angular velocity meter, a vehicle information module, and a low-precision GNSS module. The vision module is used to obtain information on the heading of the lane line and the distance from the lane line. The vision module is a camera on the cleaning vehicle used to detect pedestrians and obstacles. The single-axis angular velocity meter provides vehicle yaw angular velocity information, and the single-axis angular velocity meter is the vehicle yaw angular velocity sensor. The vehicle information module is used to obtain the wheel speed information of the sweeper, and the vehicle information is obtained from the vehicle CAN bus. A low-precision GNSS module is used to obtain the initial global position information of the sweeper.
地图子系统包括局部车道线绝对坐标采集模块、局部坐标与全局坐标转换模块以及局部车道线地图建立模块。局部车道线绝对坐标采集模块用于采集车道线全局坐标;局部坐标与全局坐标转换模块用于根据全局坐标点选取合适的局部平面直角坐标系的原点,并在该坐标系下得到所采集车道线各个点的坐标;局部车道线地图建立模块用于根据车道线各个点的坐标建立车道线地图并划分行驶区域。The map subsystem includes a local lane line absolute coordinate acquisition module, a local coordinate and global coordinate conversion module, and a local lane line map building module. The absolute coordinate acquisition module of the local lane line is used to collect the global coordinates of the lane line; the local coordinate and global coordinate conversion module is used to select the origin of the appropriate local plane rectangular coordinate system according to the global coordinate point, and obtain the collected lane line in this coordinate system. The coordinates of each point; the local lane line map building module is used to build a lane line map and divide the driving area according to the coordinates of each point of the lane line.
融合子系统包括初始化模块、车辆区域判断模块、航向融合模块、位置融合模块、局部坐标与全局坐标转换模块。The fusion subsystem includes an initialization module, a vehicle area judgment module, a heading fusion module, a position fusion module, and a local coordinate and global coordinate conversion module.
初始化模块用于根据给定车辆的初始位置和粗略航向的信息、局部地图子系统提供的车道线信息对车辆进行初始区域判定,并获取车辆初始的局部航向值;The initialization module is used to determine the initial area of the vehicle according to the information of the initial position and rough heading of the given vehicle and the lane line information provided by the local map subsystem, and obtain the initial local heading value of the vehicle;
车辆区域判断模块用于根据初始化模块提供的局部航向信息和初始区域信息,结合局部地图子系统提供的车道线地图与行驶区域划分的信息,对车辆行驶的区域进行检测,获取局部航向的测量值,并将该区域内视觉模块能够检测到的车道线作为反馈车道线;The vehicle area judgment module is used to detect the area where the vehicle travels and obtain the measured value of the local heading according to the local heading information and initial area information provided by the initialization module, combined with the lane line map and the driving area division information provided by the local map subsystem. , and take the lane lines that can be detected by the vision module in this area as the feedback lane lines;
航向融合模块用于根据车辆区域判断模块提供的局部航向的测量值对清扫车的航向进行修正;The heading fusion module is used to correct the heading of the sweeper according to the measured value of the local heading provided by the vehicle area judgment module;
位置融合模块用于根据航向融合模块修正后的航向值以及车速获取车辆的最优融合位置信息。The position fusion module is used to obtain the optimal fusion position information of the vehicle according to the heading value corrected by the heading fusion module and the vehicle speed.
本发明还涉及一种融合视觉、轮速与惯导的清扫车局部定位方法,该方法包括如下步骤:The present invention also relates to a local positioning method of a sweeper that integrates vision, wheel speed and inertial navigation, the method comprising the following steps:
步骤一、地图子系统向融合子系统提供车道线的局部地图信息。Step 1: The map subsystem provides local map information of lane lines to the fusion subsystem.
地图子系统首先需要对车道线的坐标进行采集,此时采集的为车道线的全局坐标,之后根据采集的坐标点,通过全局坐标和局部坐标转换模块,选取合适的局部平面直角坐标系的原点,并在该坐标系下得到所采集车道线各个点的坐标,之后采用最小二乘拟合的方法,对清扫车行驶区域内的不同的车道线分别进行建模,得到车道线在局部坐标系下的方程,并根据清扫车的行驶区域,对局部地图进行区域划分。The map subsystem first needs to collect the coordinates of the lane lines. At this time, the global coordinates of the lane lines are collected. Then, according to the collected coordinate points, through the global coordinate and local coordinate conversion module, the origin of the appropriate local plane rectangular coordinate system is selected. , and obtain the coordinates of each point of the collected lane line in this coordinate system, and then use the least squares fitting method to model the different lane lines in the driving area of the sweeper respectively, and obtain the lane line in the local coordinate system. The following equation is used, and the local map is divided according to the driving area of the sweeper.
步骤二、低精度GNSS模块将精度较低的全局位置信息发送至融合子系统,视觉模块向融合子系统提供相对车道线的航向以及距车道线距离的信息,单轴角速度计提供车辆横摆角速度信息,车辆信息模块提供给融合模块轮速信息。Step 2. The low-precision GNSS module sends the low-precision global position information to the fusion subsystem. The vision module provides the fusion subsystem with information about the heading relative to the lane line and the distance from the lane line. The single-axis angular velocity meter provides the vehicle yaw rate. information, the vehicle information module provides wheel speed information to the fusion module.
步骤三、融合子系统综合融合以上信息得到最优的全局位置和航向信息。具体内容包括:Step 3: The fusion subsystem synthesizes and fuses the above information to obtain the optimal global position and heading information. Specific content includes:
整个融合子系统开始工作之前,需要外界给定车辆的初始位置和粗略航向的信息,此时初始化模块根据以上的信息和地图子系统提供的车道线信息,对车辆进行初始区域判定,并得到车辆初始的局部航向值φL,ini和位置值xL,ini,yL,ini。Before the whole fusion subsystem starts to work, it needs the information of the initial position and rough heading of the vehicle given by the outside world. At this time, the initialization module determines the initial area of the vehicle according to the above information and the lane line information provided by the map subsystem, and obtains the vehicle. Initial local heading values φ L,ini and position values x L,ini ,y L,ini .
车辆首次初始化以后,车辆区域判断模块根据初始化模块提供的局部航向信息φL,ini和初始位置信息xL,ini,yL,ini,结合地图子系统提供的车道线地图与行驶区域划分的信息,对车辆行驶的区域进行检测,并选择在该区域内视觉模块能够检测到的车道线作为反馈车道线;而当车辆正常运行时,根据融合子系统上一时刻融合得到的最优航向值φL,Fus和位置xL,Fus,yL,Fus,结合地图子系统提供的车道线地图与行驶区域划分的信息,对车辆当前时刻所在的区域进行检测,并选择在该区域内视觉模块能够检测到的车道线作为反馈车道线。最终车辆区域判断模块提供给航向融合模块局部航向的测量值φL,Mea,提供给位置融合模块当前时刻用作测量的车道线Lactive,以及测得的距车道线Lactive的距离dr:After the vehicle is initialized for the first time, the vehicle area judgment module combines the lane line map and the driving area division information provided by the map subsystem according to the local heading information φ L,ini and the initial position information x L,ini ,y L,ini provided by the initialization module. , detect the area where the vehicle is traveling, and select the lane line that can be detected by the vision module in this area as the feedback lane line; and when the vehicle is running normally, according to the optimal heading value φ obtained by the fusion subsystem at the last moment fusion L,Fus and position x L,Fus ,y L,Fus , combined with the lane line map and driving area division information provided by the map subsystem, detect the area where the vehicle is at the current moment, and select the area where the vision module can The detected lane lines are used as feedback lane lines. Finally, the vehicle area judgment module provides the measured value φ L,Mea of the local heading to the heading fusion module, the lane line L active used for measurement at the current moment of the position fusion module, and the measured distance d r from the lane line L active :
φL,Mea=φL,Line+φr φ L, Mea = φ L, Line + φ r
其中,φL,Line为车道线Lactive在局部地图坐标系下的航向值,Φr为视觉模块测得的相对车道线的航相值。Among them, φ L,Line is the heading value of the lane line L active in the local map coordinate system, and Φ r is the heading value of the relative lane line measured by the vision module.
航向融合模块以局部航向的测量值φL,Mea作为量测值,对清扫车的航向进行修正,而当由于不存在车道线或者因其他原因导致不存再航向测量值φL,Mea时,则根据车辆横摆角速度ωz积分得到航向值φL,Fus。The heading fusion module uses the measured value φ L, Mea of the local heading as the measured value to correct the heading of the sweeper, and when the measured value φ L, Mea of the re-course does not exist due to the absence of lane lines or other reasons, Then, the heading value φ L,Fus is obtained by integrating the vehicle yaw rate ω z .
φL,Fus=φL,INS+kφ·Δφ,φ L, Fus = φ L, INS +k φ ·Δφ,
Δφ=φL,Mea-φL,INS,Δφ=φ L,Mea -φ L,INS ,
其中,Δφ为航向测量值φL,Mea和INS积分航向值ΦL,INS的差值,称之为航向误差;kφ为航向误差的反馈增益,取值范围为0~1。Among them, Δφ is the difference between the heading measurement value φ L, Mea and the INS integrated heading value Φ L, INS , which is called the heading error; k φ is the feedback gain of the heading error, and the value ranges from 0 to 1.
在无GNSS信号时,位置融合模块根据航向融合模块的航向值φL,Fus,以及车速V,积分得到车辆的位置信息:When there is no GNSS signal, the position fusion module integrates the position information of the vehicle according to the heading value φ L, Fus of the heading fusion module, and the vehicle speed V:
xL,k=xL,k-1+Vx·ΔT,x L,k =x L,k-1 +V x ·ΔT,
yL,k=yL,k-1+Vy·ΔT,y L,k =y L,k-1 +V y ·ΔT,
其中,xL,k和yL,k分别为k时刻车辆在局部坐标系下的位置,xL,k-1和yL,k-1分别为k-1时刻车辆在局部坐标系下的位置,ΔT为离散系统的采样时间,Vx和Vy分别为车辆在局部坐标系下的沿x和y方向的速度,其计算公式如下:Among them, x L, k and y L, k are the positions of the vehicle in the local coordinate system at time k, respectively, and x L, k-1 and y L, k-1 are the positions of the vehicle in the local coordinate system at time k-1, respectively. position, ΔT is the sampling time of the discrete system, V x and V y are the velocities of the vehicle in the local coordinate system along the x and y directions, respectively, and the calculation formula is as follows:
Vx=V·cos(φL),V x =V·cos(φ L ),
Vy=V·sin(φL).V y =V·sin(φ L ).
其中,φL为车辆在局部坐标系下真实的航向值,实际计算时用最优估计值φL,Fus作为真实值。Among them, φ L is the real heading value of the vehicle in the local coordinate system, and the optimal estimated value φ L, Fus is used as the real value in the actual calculation.
当存在GNSS信号时,位置融合模块根据航向融合模块的航向值,以及车速V积分获取车辆的位置信息,同时与低精度的滤波后的局部位置信息进行融合,此时获取k时刻车辆在局部坐标系下的位置xL,k和yL,k分别为:When there is a GNSS signal, the position fusion module obtains the position information of the vehicle according to the heading value of the heading fusion module and the vehicle speed V integral, and fuses it with the low-precision filtered local position information. At this time, the local coordinates of the vehicle at time k are obtained. The positions x L,k and y L,k under the system are:
xL,k=(1-kG)·(xL,k-1+Vx·ΔT)+kG·xL,GNSS,x L,k =(1-k G )·(x L,k-1 +V x ·ΔT)+k G ·x L,GNSS ,
yL,k=(1-kG)·(yL,k-1+Vy·ΔT)+kG·yL,GNSS,y L,k =(1-k G )·(y L,k-1 +V y ·ΔT)+k G ·y L,GNSS ,
其中,xL,GNSS,yL,GNSS为低精度全局位置转换为局部位置,kG为GNSS位置反馈的权重系数;取值范围为0~1,其值根据GNSS卫星的状态进行判断。Among them, x L, GNSS , y L, GNSS is the conversion of low-precision global position to local position, and k G is the weight coefficient of GNSS position feedback;
计算当前车辆位置到用作测量的车道线Lactive的距离dINS,假设车道线Lactive在局部坐标系下的方程为yLine-kLinexLine-bLine=0,则dINS的表达式为:Calculate the distance d INS from the current vehicle position to the lane line L active used for measurement, assuming that the equation of the lane line L active in the local coordinate system is y Line -k Line x Line -b Line =0, then the expression of d INS for:
其中,xL和yL分别为车辆的真实位置,实际计算时用最优估计值xL,Fus和yL,Fus替代。以视觉模块测得的侧向距离作为dr量测值,对车辆的侧向距离进行修正,得到融合后的车辆距车道线的侧向距离dFus:Among them, x L and y L are the real positions of the vehicle, respectively, and are replaced by the optimal estimated values x L,Fus and y L,Fus in the actual calculation. Taking the lateral distance measured by the vision module as the measured value of d r , the lateral distance of the vehicle is corrected to obtain the lateral distance d Fus between the vehicle and the lane line after fusion:
dFus=dINS+kd·Δd,d Fus =d INS +k d ·Δd,
Δd=dr-dINS,Δd=d r -d INS ,
其中,Δd为侧向距离测量值和INS积分位置计算得到的侧向距离之间的差值,称之为侧向距离误差;kd为侧向距离误差的反馈增益,取值范围为0~1。最终得到融合后的侧向距离误差ΔdFus=dFus-dr,采用融合后的侧向距离误差ΔdFus对位置进行修正得到最优的融合位置:Among them, Δd is the difference between the lateral distance measurement value and the lateral distance calculated by the INS integral position, which is called the lateral distance error; k d is the feedback gain of the lateral distance error, and the value range is 0~ 1. Finally, the fused lateral distance error Δd Fus =d Fus -d r is obtained, and the fused lateral distance error Δd Fus is used to correct the position to obtain the optimal fusion position:
xL,Fus=xL,k+ΔdFus·sin(φL,Fus),x L,Fus =x L,k +Δd Fus ·sin(φ L,Fus ),
yL,Fus=yL,k+ΔdFus·cos(φL,Fus)。y L,Fus =y L,k +Δd Fus ·cos(φ L,Fus ).
式中,ΦL,Fus为融合后的局部航向值。In the formula, Φ L, Fus is the local heading value after fusion.
本发明通过融合低精度GNSS、视觉、轮速与惯导的信号对车辆进行定位,无需昂贵的具有RTK定位功能的GNSS高精度定位设备,成本较低,且能够实现无GNSS信号或者GNSS信号较弱情况下对车辆的局部和全局定位。The present invention locates the vehicle by fusing low-precision GNSS, vision, wheel speed and inertial navigation signals, does not require expensive GNSS high-precision positioning equipment with RTK positioning function, has low cost, and can realize no GNSS signal or GNSS signal comparison. Local and global localization of vehicles in weak cases.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的工作人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person familiar with the technical field can easily think of various equivalents within the technical scope disclosed by the present invention. Modifications or substitutions should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910295360.1A CN110070712A (en) | 2019-04-12 | 2019-04-12 | A kind of low speed sweeper Global localization system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910295360.1A CN110070712A (en) | 2019-04-12 | 2019-04-12 | A kind of low speed sweeper Global localization system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110070712A true CN110070712A (en) | 2019-07-30 |
Family
ID=67367694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910295360.1A Pending CN110070712A (en) | 2019-04-12 | 2019-04-12 | A kind of low speed sweeper Global localization system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110070712A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110749328A (en) * | 2019-08-30 | 2020-02-04 | 华为技术有限公司 | Positioning method and system, electronic device, vehicle and storage medium |
CN113551686A (en) * | 2021-08-03 | 2021-10-26 | 上海淞泓智能汽车科技有限公司 | Internet automobile track monitoring method based on high-precision map information fusion |
CN113687403A (en) * | 2021-09-09 | 2021-11-23 | 北京斯年智驾科技有限公司 | Vehicle fusion positioning system and method |
CN114018284A (en) * | 2021-10-13 | 2022-02-08 | 上海师范大学 | A Vision-Based Correction Method for Wheel Speed Odometer |
CN116559899A (en) * | 2023-07-12 | 2023-08-08 | 蘑菇车联信息科技有限公司 | Fusion positioning method and device for automatic driving vehicle and electronic equipment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160306361A1 (en) * | 2014-01-30 | 2016-10-20 | Mobileye Vision Technologies Ltd. | Systems and methods for determining the status and details of a traffic light |
CN106643701A (en) * | 2017-01-16 | 2017-05-10 | 深圳优地科技有限公司 | Robot inter-detection method and robot inter-detection device |
CN106767853A (en) * | 2016-12-30 | 2017-05-31 | 中国科学院合肥物质科学研究院 | A kind of automatic driving vehicle high-precision locating method based on Multi-information acquisition |
CN106842269A (en) * | 2017-01-25 | 2017-06-13 | 北京经纬恒润科技有限公司 | Localization method and system |
JP2017120238A (en) * | 2015-12-28 | 2017-07-06 | トヨタ自動車株式会社 | NAVI INFORMATION PROVIDING SYSTEM AND NAVI INFORMATION PROVIDING DEVICE |
CN107229063A (en) * | 2017-06-26 | 2017-10-03 | 奇瑞汽车股份有限公司 | A kind of pilotless automobile navigation and positioning accuracy antidote merged based on GNSS and visual odometry |
CN108827292A (en) * | 2018-06-27 | 2018-11-16 | 四川大学 | The accurate method for locating speed measurement of combined navigation and system based on GNSS and ground base station |
CN109405824A (en) * | 2018-09-05 | 2019-03-01 | 武汉契友科技股份有限公司 | A kind of multi-source perceptual positioning system suitable for intelligent network connection automobile |
CN109556615A (en) * | 2018-10-10 | 2019-04-02 | 吉林大学 | The driving map generation method of Multi-sensor Fusion cognition based on automatic Pilot |
-
2019
- 2019-04-12 CN CN201910295360.1A patent/CN110070712A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160306361A1 (en) * | 2014-01-30 | 2016-10-20 | Mobileye Vision Technologies Ltd. | Systems and methods for determining the status and details of a traffic light |
JP2017120238A (en) * | 2015-12-28 | 2017-07-06 | トヨタ自動車株式会社 | NAVI INFORMATION PROVIDING SYSTEM AND NAVI INFORMATION PROVIDING DEVICE |
CN106767853A (en) * | 2016-12-30 | 2017-05-31 | 中国科学院合肥物质科学研究院 | A kind of automatic driving vehicle high-precision locating method based on Multi-information acquisition |
CN106643701A (en) * | 2017-01-16 | 2017-05-10 | 深圳优地科技有限公司 | Robot inter-detection method and robot inter-detection device |
CN106842269A (en) * | 2017-01-25 | 2017-06-13 | 北京经纬恒润科技有限公司 | Localization method and system |
CN107229063A (en) * | 2017-06-26 | 2017-10-03 | 奇瑞汽车股份有限公司 | A kind of pilotless automobile navigation and positioning accuracy antidote merged based on GNSS and visual odometry |
CN108827292A (en) * | 2018-06-27 | 2018-11-16 | 四川大学 | The accurate method for locating speed measurement of combined navigation and system based on GNSS and ground base station |
CN109405824A (en) * | 2018-09-05 | 2019-03-01 | 武汉契友科技股份有限公司 | A kind of multi-source perceptual positioning system suitable for intelligent network connection automobile |
CN109556615A (en) * | 2018-10-10 | 2019-04-02 | 吉林大学 | The driving map generation method of Multi-sensor Fusion cognition based on automatic Pilot |
Non-Patent Citations (1)
Title |
---|
JAE KYU SUHR: "Sensor Fusion-Based Low-Cost Vehicle Localization System for Complex Urban Environments", 《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110749328A (en) * | 2019-08-30 | 2020-02-04 | 华为技术有限公司 | Positioning method and system, electronic device, vehicle and storage medium |
CN110749328B (en) * | 2019-08-30 | 2021-12-28 | 华为技术有限公司 | Positioning method and system, electronic device, vehicle and storage medium |
CN113551686A (en) * | 2021-08-03 | 2021-10-26 | 上海淞泓智能汽车科技有限公司 | Internet automobile track monitoring method based on high-precision map information fusion |
CN113687403A (en) * | 2021-09-09 | 2021-11-23 | 北京斯年智驾科技有限公司 | Vehicle fusion positioning system and method |
CN114018284A (en) * | 2021-10-13 | 2022-02-08 | 上海师范大学 | A Vision-Based Correction Method for Wheel Speed Odometer |
CN114018284B (en) * | 2021-10-13 | 2024-01-23 | 上海师范大学 | Wheel speed odometer correction method based on vision |
CN116559899A (en) * | 2023-07-12 | 2023-08-08 | 蘑菇车联信息科技有限公司 | Fusion positioning method and device for automatic driving vehicle and electronic equipment |
CN116559899B (en) * | 2023-07-12 | 2023-10-03 | 蘑菇车联信息科技有限公司 | Fusion positioning method and device for automatic driving vehicle and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110070712A (en) | A kind of low speed sweeper Global localization system and method | |
Rose et al. | An integrated vehicle navigation system utilizing lane-detection and lateral position estimation systems in difficult environments for GPS | |
CN110081880A (en) | A kind of sweeper local positioning system and method merging vision, wheel speed and inertial navigation | |
Tao et al. | Lane marking aided vehicle localization | |
KR101241171B1 (en) | Method for correcting gps position information by image sensor | |
US9162682B2 (en) | Method and device for determining the speed and/or position of a vehicle | |
CN109443350B (en) | Bluetooth/photoelectric/INS integrated navigation device and method based on neural network | |
KR101878685B1 (en) | System and method for positioning vehicle using local dynamic map | |
TWI522258B (en) | Based on electronic map, global navigation satellite system and vehicle motion detection technology Lane identification method | |
CN105865461B (en) | A kind of car position system and method based on Multi-sensor Fusion algorithm | |
CN109059909A (en) | Satellite based on neural network aiding/inertial navigation train locating method and system | |
CN107389064A (en) | A kind of unmanned vehicle based on inertial navigation becomes channel control method | |
CN113029139B (en) | Airport flight area vehicle differential Beidou/SINS combined navigation method based on motion detection | |
CN107247275B (en) | Bus-based urban GNSS vulnerability monitoring system and method | |
CN109752725A (en) | A low-speed commercial robot, positioning and navigation method and positioning and navigation system | |
CN105136153B (en) | A kind of lane line exact position harvester and acquisition method | |
WO2012041109A1 (en) | Mobile terminal having gps navigation function and method for forming three-dimensional location information with mobile terminal | |
CN104061899A (en) | Kalman filtering based method for estimating roll angle and pitching angle of vehicle | |
CN113405560B (en) | Unified modeling method for vehicle positioning and path planning | |
CN103808316A (en) | Indoor-flying intelligent body inertial system and laser range finder combination type navigation improving method | |
JP7203805B2 (en) | Analysis of localization errors of moving objects | |
CN114739425A (en) | Coal mining machine positioning calibration system based on RTK-GNSS and total station and application method | |
KR100525517B1 (en) | Car navigation system and control method thereof | |
CN110133694A (en) | Vehicle positioning method and system based on dual-antenna GNSS heading and wheel speed assistance | |
CN110095793A (en) | A kind of automatic Pilot low speed sweeper localization method adaptive based on tire radius |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190730 |