CN109059909A - Satellite based on neural network aiding/inertial navigation train locating method and system - Google Patents
Satellite based on neural network aiding/inertial navigation train locating method and system Download PDFInfo
- Publication number
- CN109059909A CN109059909A CN201810813630.9A CN201810813630A CN109059909A CN 109059909 A CN109059909 A CN 109059909A CN 201810813630 A CN201810813630 A CN 201810813630A CN 109059909 A CN109059909 A CN 109059909A
- Authority
- CN
- China
- Prior art keywords
- satellite
- data
- train
- neural network
- inertial navigation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/47—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/50—Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
Abstract
本发明提供一种基于神经网络辅助的卫星/惯导列车定位方法与系统,其中的方法包括:对采集的卫星数据进行检测,若定位精度良好,则传输到数据融合模块进行数据融合,若定位精度不满足要求,则舍弃这组卫星数据;然后,惯导解算模块对采集到的惯性测量单元的数据进行解算,将解算结果与卫星的定位结果进行融合处理。最后,将融合处理后的结果输出,融入车载计算机中。利用本发明,能够解决现有列车定位系统中数据可靠性低、精度低等问题。
The present invention provides a satellite/inertial navigation train positioning method and system based on neural network assistance, wherein the method includes: detecting the collected satellite data, if the positioning accuracy is good, then transmitting to the data fusion module for data fusion, if the positioning If the accuracy does not meet the requirements, the set of satellite data is discarded; then, the inertial navigation calculation module performs calculation on the collected data of the inertial measurement unit, and fuses the calculation result with the positioning result of the satellite. Finally, output the result after fusion processing and integrate it into the on-board computer. The invention can solve the problems of low data reliability and low precision in the existing train positioning system.
Description
技术领域technical field
本发明涉及车辆定位技术领域,更为具体地,涉及一种基于神经网络辅 助的卫星/惯导列车定位方法与系统。The present invention relates to the technical field of vehicle positioning, and more specifically, relates to a satellite/inertial-guided train positioning method and system assisted by a neural network.
背景技术Background technique
目前现有的列车定位方法主要有以下几种:里程计、查询应答器、多普 勒雷达、轨道电路。其中里程计成本低,位置通过速度积分获得,存在误差 积累;多普勒雷达主要用于测速,精度较高,但同样存在误差积累,成本也 较高;地面上大量铺设应答器与轨道电路用以消除定位累积误差,同时需要 在列车上增加相应的接收装置,但需要大量的成本,且地面设备需要定期维 修,维修工程量大,效率低。列车速度与位置信息是列控系统的主要研究对 象,其测量误差将直接影响到列车安全防护距离,追踪间隔,闭塞控制方式 等等,误差过大将直接触动列车制动,影响列车效率和乘客舒适度,严重时 甚至危及列车驾驶安全。At present, the existing train positioning methods mainly contain the following: odometer, query transponder, Doppler radar, track circuit. Among them, the cost of the odometer is low, and the position is obtained by speed integration, and there is error accumulation; Doppler radar is mainly used for speed measurement, and the accuracy is high, but there is also error accumulation and high cost; a large number of transponders and track circuits are laid on the ground. In order to eliminate the cumulative error of positioning, it is necessary to add a corresponding receiving device on the train, but it requires a lot of cost, and the ground equipment needs regular maintenance, which requires a large amount of maintenance work and low efficiency. The train speed and position information is the main research object of the train control system. The measurement error will directly affect the train safety protection distance, tracking interval, block control mode, etc. If the error is too large, it will directly touch the train brake, affecting the train efficiency and passenger comfort. In severe cases, it even endangers the safety of train driving.
近年来,卫星导航定位技术逐渐在列车定位领域研究与应用,卫星导航 定位技术具有全天候,连续、实时、长期精度高的优点,可以提供列车的精 确定位,然而卫星信号容易受到环境的干扰而导致定位精度迅速下降,因此 只以卫星作为定位的信息源,安全性与可靠性不足。惯性导航具有不依赖外 界环境完全自主性工作,导航信息完整(姿态、速度、位置)、动态性与连续 性好等的特点,可以短时间内提供高精度的定位信息,但惯性导航需要列车 的初始信息,定位误差随时间发散,两种导航方式组合可以达到优缺互补, 因此卫星/惯导是目前应用最为广泛的组合导航方式之一。In recent years, satellite navigation and positioning technology has gradually been researched and applied in the field of train positioning. Satellite navigation and positioning technology has the advantages of all-weather, continuous, real-time, and long-term high precision, and can provide precise positioning of trains. However, satellite signals are easily interfered by the environment and cause The positioning accuracy drops rapidly, so only using satellites as the information source for positioning has insufficient security and reliability. Inertial navigation has the characteristics of complete autonomous work independent of the external environment, complete navigation information (attitude, speed, position), good dynamics and continuity, etc., and can provide high-precision positioning information in a short time, but inertial navigation requires trains. Initial information and positioning errors diverge over time, and the combination of the two navigation methods can achieve complementary advantages and disadvantages. Therefore, satellite/inertial navigation is one of the most widely used integrated navigation methods at present.
卫星/惯导列车定位系统精度主要依赖于卫星信号,当卫星良好时,系统 能长时间不间断的输出高精度的定位数据,为列车的安全驾驶等提供可靠的 位置信息,而当卫星信号不好,比如列车经过城市,森林等有高楼或者树木 遮挡的地方,有多径效应导致卫星定位效果存在较大误差,影响系统输出, 甚至在山洞,隧道等环境下卫星完全失锁时,此时系统输出由惯性测量单元 采集数据后解算输出,由于惯性测量单元的误差积累,使得系统的输出精度 逐渐下降,而在山洞、隧道等卫星失锁的环境正是事故多发的地区,因此在 这些环境下,可靠准确的列车位置信息对于列车的安全驾驶更为重要。因此, 提高了卫星失锁情况下列车的定位精度,也就意味着提高了列车定位系统的 可靠性与安全性。The accuracy of the satellite/inertial navigation train positioning system mainly depends on the satellite signal. When the satellite is good, the system can output high-precision positioning data for a long time without interruption, providing reliable position information for the safe driving of the train. When the satellite signal is not Well, for example, when a train passes through cities, forests and other places covered by tall buildings or trees, the multipath effect will cause large errors in the satellite positioning effect and affect the system output. Even when the satellite is completely out of lock in caves, tunnels and other environments, then The output of the system is calculated by the inertial measurement unit after collecting data. Due to the accumulation of errors in the inertial measurement unit, the output accuracy of the system gradually decreases, and the environment where satellites are out of lock, such as caves and tunnels, is the area where accidents occur frequently. Therefore, in these In this environment, reliable and accurate train location information is more important for the safe driving of trains. Therefore, improving the positioning accuracy of the train in the case of satellite loss of lock also means improving the reliability and safety of the train positioning system.
为解决现有列车定位系统中数据可靠性低、精度低的问题,本发明提供 了一种基于神经网络辅助的卫星/惯导列车定位方法与系统。In order to solve the problems of low data reliability and low precision in the existing train positioning system, the present invention provides a satellite/inertial navigation train positioning method and system based on neural network assistance.
发明内容Contents of the invention
鉴于上述问题,本发明的目的是提供一种基于神经网络辅助的卫星/惯导 列车定位方法与系统,以解决现有列车定位系统中数据可靠性低、精度低等 问题。In view of the above problems, the object of the present invention is to provide a satellite/inertial navigation train positioning method and system based on neural network assistance, to solve the problems of low data reliability and low precision in the existing train positioning system.
本发明提供一种基于神经网络辅助的卫星/惯导列车定位方法,包括:The present invention provides a satellite/inertial navigation train positioning method based on neural network assistance, comprising:
获取传感器实时数据,其中,所述传感器实时数据包括惯性测量单元数 据和卫星数据;Obtain sensor real-time data, wherein the sensor real-time data includes inertial measurement unit data and satellite data;
通过惯导解算模块对所述惯性测量单元数据进行解算,获取列车的姿态、 速度和位置;The inertial measurement unit data is calculated by the inertial navigation calculation module to obtain the attitude, speed and position of the train;
对所述卫星数据进行检测,其中,检测卫星星历观测数据与卫星定位精 度因子值是否满足设定的条件,如果满足条件,则此卫星数据可用,如果不 满足条件,则此卫星数据不可用;Detecting the satellite data, wherein, detecting whether the satellite ephemeris observation data and the satellite positioning precision factor value meet the set condition, if the condition is met, the satellite data is available, and if the condition is not met, the satellite data is unavailable ;
当卫星数据可用时,将所述卫星数据与通过所述惯导解算模块解算后获 取的列车的姿态、速度和位置信息进行融合处理,获取修正后列车的速度和 位置;When the satellite data is available, the satellite data and the attitude, speed and position information of the train obtained after the calculation by the inertial navigation calculation module are fused to obtain the corrected speed and position of the train;
同时,将所述卫星数据与通过所述惯导解算模块解算后获取的列车的姿 态、速度和位置信息作为神经网络输入,将系统计算误差值作为神经网络输 出,对神经网络进行训练;Simultaneously, the attitude, speed and position information of the train obtained after the satellite data and the calculation by the inertial navigation module are input as the neural network, and the system calculation error value is output as the neural network, and the neural network is trained;
当卫星数据不可用时,将神经网络训练后的输出值与通过所述惯导解算 模块解算后获取的列车的姿态、速度和位置信息进行融合处理,获取修正后 列车的速度和位置。When the satellite data is not available, the output value after the training of the neural network and the attitude, speed and position information of the train obtained after the calculation of the inertial navigation calculation module are fused to obtain the corrected speed and position of the train.
本发明还提供一种基于神经网络辅助的卫星/惯导列车定位系统,包括:The present invention also provides a satellite/inertial navigation train positioning system based on neural network assistance, including:
惯导解算模块,用于实时获取惯性测量单元数据,获取列车的姿态、速 度和位置;The inertial navigation calculation module is used to obtain the inertial measurement unit data in real time, and obtain the attitude, speed and position of the train;
卫星信号接收模块,用于实时获取卫星数据,并对所述卫星数据进行检 测,其中,检测卫星星历观测数据与卫星定位精度因子值是否满足设定的条 件,如果满足条件,则此卫星数据可用,如果不满足条件,则此卫星数据不 可用;The satellite signal receiving module is used to obtain satellite data in real time, and detect the satellite data, wherein, detect whether the satellite ephemeris observation data and the satellite positioning precision factor value meet the set conditions, and if the conditions are met, the satellite data Available, if the condition is not met, this satellite data is not available;
数据融合模块,用于当卫星数据可用时,将所述卫星数据与通过所述惯 导解算模块解算后获取的列车的姿态、速度和位置信息进行融合处理,获取 修正后列车的速度和位置;The data fusion module is used to fuse the satellite data with the attitude, speed and position information of the train obtained after the calculation by the inertial navigation calculation module when the satellite data is available, and obtain the corrected speed and position information of the train. Location;
同时,将所述卫星数据与通过所述惯导解算模块解算后获取的列车的姿 态、速度和位置信息作为神经网络输入,将系统计算误差值作为神经网络输 出,对神经网络进行训练;Simultaneously, the attitude, speed and position information of the train obtained after the satellite data and the calculation by the inertial navigation module are input as the neural network, and the system calculation error value is output as the neural network, and the neural network is trained;
当卫星数据不可用时,将神经网络训练后的输出值与通过所述惯导解算 模块解算后获取的列车的姿态、速度和位置信息进行融合处理,获取修正后 列车的速度和位置。When the satellite data is not available, the output value after the training of the neural network and the attitude, speed and position information of the train obtained after the calculation of the inertial navigation calculation module are fused to obtain the corrected speed and position of the train.
从上面的技术方案可知,本发明提供的基于神经网络辅助的卫星/惯导列 车定位方法及系统,能够取得以下有益效果:As can be seen from the above technical scheme, the satellite/inertial navigation train positioning method and system based on neural network assistance provided by the present invention can obtain the following beneficial effects:
1、本发明提出的列车定位方法不仅能够在卫星信号良好的情况下提高列 车的精度,而且能够在卫星信号异常的条件下提供较高精度的列车定位结果。1, the train positioning method that the present invention proposes can not only improve the precision of train under the good situation of satellite signal, and can provide the train positioning result of higher precision under the abnormal condition of satellite signal.
2、本发明提出的列车定位方法采用神经网络辅助的数据融合,能够有效 抑制卫星异常的情况下系统定位误差的发散,还能够提高卫星/惯导列车定位 系统的可靠性与安全性。2. The train positioning method proposed by the present invention adopts neural network-assisted data fusion, which can effectively suppress the divergence of system positioning errors under the abnormal situation of satellites, and can also improve the reliability and safety of the satellite/inertial navigation train positioning system.
3、本发明提出的列车定位系统各模块之间独立工作,互不影响,能够提 高系统的稳定性和抗干扰性。3. Each module of the train positioning system proposed by the present invention works independently without affecting each other, which can improve the stability and anti-interference of the system.
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细 说明的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然 而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。 此外,本发明旨在包括所有这些方面以及它们的等同物。To the accomplishment of the above and related ends, one or more aspects of the invention include the features hereinafter described in detail. The following description and accompanying drawings detail certain exemplary aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Furthermore, the invention is intended to include all such aspects and their equivalents.
附图说明Description of drawings
通过参考以下结合附图的说明,并且随着对本发明的更全面理解,本发 明的其它目的及结果将更加明白及易于理解。在附图中:By referring to the following description in conjunction with the accompanying drawings, and with a more comprehensive understanding of the present invention, other objects and results of the present invention will be more clear and easy to understand. In the attached picture:
图1为根据本发明实施例的基于神经网络辅助的卫星/惯导列车定位方法 流程示意图;Fig. 1 is the schematic flow chart of satellite/inertial navigation train positioning method based on neural network assistance according to an embodiment of the present invention;
图2为根据本发明实施例的基于神经网络辅助的卫星/惯导列车定位系统 结构示意图;Fig. 2 is the satellite/inertial navigation train positioning system structural representation based on neural network assistance according to an embodiment of the present invention;
图3为根据本发明实施例的基于神经网络辅助卫星/惯导列车定位解算算 法框图;Fig. 3 is a block diagram of algorithmic block diagram based on neural network assisted satellite/inertial navigation train positioning solution according to an embodiment of the present invention;
图4为根据本发明实施例的惯导更新算法示意图;4 is a schematic diagram of an inertial navigation update algorithm according to an embodiment of the present invention;
图5为根据本发明实施例的数据融合算法流程示意图;5 is a schematic flow diagram of a data fusion algorithm according to an embodiment of the present invention;
图6为根据本发明实施例的神经网络模型示意图;6 is a schematic diagram of a neural network model according to an embodiment of the present invention;
图7为根据本发明实施例的神经网络训练逻辑示意图;7 is a schematic diagram of neural network training logic according to an embodiment of the present invention;
图8为根据本发明实施例的神经网络在系统中预测滤波量测值逻辑示意 图。Fig. 8 is a logical schematic diagram of a neural network predicting a filtering measurement value in a system according to an embodiment of the present invention.
在所有附图中相同的标号指示相似或相应的特征或功能。The same reference numerals indicate similar or corresponding features or functions throughout the drawings.
具体实施方式Detailed ways
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全 面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节 的情况下实现这些实施例。In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments. It is evident, however, that these embodiments may be practiced without these specific details.
针对前述提出的现有的列车定位系统中数据可靠性低、精度低等问题, 本发明提供了一种基于神经网络辅助的卫星/惯导列车定位方法与系统。In view of the problems of low data reliability and low precision in the existing train positioning system proposed above, the present invention provides a satellite/inertial navigation train positioning method and system based on neural network assistance.
以下将结合附图对本发明的具体实施例进行详细描述。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
为了说明本发明提供的基于神经网络辅助的卫星/惯导列车定位方法,图 1示出了根据本发明实施例的基于神经网络辅助的卫星/惯导列车定位方法流 程。In order to illustrate the neural network-based satellite/inertial navigation train positioning method provided by the present invention, Fig. 1 shows the process of the neural network-based satellite/inertial navigation train positioning method according to an embodiment of the present invention.
如图1所示,本发明提供的基于神经网络辅助的卫星/惯导列车定位方法 包括:S110:获取传感器实时数据,其中,传感器实时数据包括惯性测量单 元数据和卫星数据;As shown in Figure 1, the satellite/inertial navigation train positioning method based on neural network assistance provided by the present invention comprises: S110: obtain sensor real-time data, wherein, sensor real-time data comprises inertial measurement unit data and satellite data;
S120:通过惯导解算模块对惯性测量单元数据进行解算,获取列车的姿 态、速度和位置;S120: through the inertial navigation calculation module, the inertial measurement unit data is calculated to obtain the attitude, speed and position of the train;
S130:对卫星数据进行检测,其中,检测卫星星历观测数据与卫星定位 精度因子值是否满足设定的条件,如果满足条件,则此卫星数据可用,如果 不满足条件,则此卫星数据不可用;S130: Detect the satellite data, wherein, detect whether the satellite ephemeris observation data and the satellite positioning precision factor value meet the set condition, if the condition is met, the satellite data is available, and if the condition is not met, the satellite data is unavailable ;
S140:当卫星数据可用时,将卫星数据与通过惯导解算模块解算后获取 的列车的姿态、速度和位置信息进行融合处理,获取修正后列车的速度和位 置;S140: When the satellite data is available, the satellite data is fused with the attitude, speed and position information of the train obtained through the inertial navigation calculation module to obtain the corrected speed and position of the train;
S150:同时,将所述卫星数据与通过惯导解算模块解算后获取的列车的 姿态、速度和位置信息作为神经网络输入,将系统计算误差值作为神经网络 输出,对神经网络进行训练;S150: At the same time, the satellite data and the attitude, speed and position information of the train acquired after the inertial navigation calculation module are used as the neural network input, and the system calculation error value is used as the neural network output to train the neural network;
S160:当卫星数据不可用时,将神经网络训练后的输出值与通过惯导解 算模块解算后获取的列车的姿态、速度和位置信息进行融合处理,获取修正 后列车的速度和位置。S160: When the satellite data is not available, the output value after the training of the neural network is fused with the attitude, speed and position information of the train obtained through the calculation of the inertial navigation calculation module, and the corrected speed and position of the train are obtained.
图1结合图3,本发明提供的基于神经网络辅助的卫星/惯导列车定位方 法的详细步骤如下:步骤1:IMU数据采集S101、卫星数据接收S102;Fig. 1 in conjunction with Fig. 3, the detailed steps of the satellite/inertial navigation train positioning method based on neural network assistance provided by the present invention are as follows: Step 1: IMU data collection S101, satellite data reception S102;
步骤2:卫星信号检测,卫星信号检测算法是指检测卫星星历观测数据与 卫星定位精度因子值是否满足设定的条件,如果满足条件,则此卫星数据可 用,如果不满足条件,则此卫星数据不可用;如果不满足条件,采用神经网 络输出作为数据融合的量测值S106,如果满足条件,则将这组卫星数据输出 S105。Step 2: Satellite signal detection. The satellite signal detection algorithm refers to detecting whether the satellite ephemeris observation data and the satellite positioning precision factor value meet the set conditions. If the conditions are met, the satellite data is available. If the conditions are not met, the satellite data The data is unavailable; if the condition is not met, the output of the neural network is used as the measured value of data fusion S106, and if the condition is met, the set of satellite data is output S105.
其中,需要说明的是,根据应用的实际需求在本发明中设定的条件是: 卫星数目>6或者HDOP<10,就是说,当满足两者之一或者两者都满足的条件 的情况,卫星数据可用S105,如果两者之一的条件都不满足,则此卫星数据 不能用S106。卫星数目为6时,则可以满足卫星数据检测的精度,大于6时, 则能更好的满足卫星数据检测的精度,所以在本发明中设定的其中一个条件 为卫星数目>6。Among them, it should be noted that, according to the actual requirements of the application, the conditions set in the present invention are: the number of satellites > 6 or HDOP < 10, that is, when either or both of the conditions are satisfied , the satellite data can be used in S105, if one of the two conditions is not satisfied, then the satellite data cannot be used in S106. When the number of satellites is 6, the accuracy of satellite data detection can be satisfied, and when it is greater than 6, the accuracy of satellite data detection can be better satisfied, so one of the conditions set in the present invention is that the number of satellites>6.
步骤3:惯导解算S103,所述惯导解算是指利用采集到的惯性测量单元 的数据进行解算,得到载体的姿态、速度与位置,将惯导解算的结果输出S104;Step 3: inertial navigation calculation S103, the inertial navigation calculation refers to the use of the data of the collected inertial measurement unit for calculation to obtain the attitude, speed and position of the carrier, and the result of the inertial navigation calculation is output S104;
步骤4:数据融合S107。将卫星接收机输出的信息(卫星数据可用时)、 神经网络预测值(卫星数据不可用时)与惯导解算的结果进行融合处理,得 到修正的列车位置估计;Step 4: data fusion S107. The information output by the satellite receiver (when the satellite data is available), the neural network prediction value (when the satellite data is not available) and the result of the inertial navigation solution are fused to obtain a corrected train position estimate;
步骤5:将步骤4的结果输出到车载计算机中S108;Step 5: output the result of step 4 to the vehicle-mounted computer S108;
步骤6:神经网络训练S109。将系统中传感器信息与解算的信息作为神 经网络输入,将系统计算误差值作为期望输出值,训练神经网络一直到达到 满足要求的精度。Step 6: neural network training S109. The sensor information and calculated information in the system are used as the input of the neural network, and the calculated error value of the system is used as the expected output value, and the neural network is trained until the required precision is reached.
其中,获取传感器实时数据进一步包括:陀螺仪输出的三轴(x,y,z)角速 率,加速度计输出的三轴(x,y,z)加速度,卫星接收机输出的经度、纬度、高 度、东向速度、北向速度和天向速度。Among them, the acquisition of real-time sensor data further includes: the three-axis (x, y, z) angular rate output by the gyroscope, the three-axis (x, y, z) acceleration output by the accelerometer, and the longitude, latitude, and altitude output by the satellite receiver. , eastward velocity, northward velocity, and skyward velocity.
如图3所示,本发明提供的一种基于神经网络辅助的卫星/惯导列车定位 方法,惯导解算算法具体流程如下:As shown in Figure 3, a kind of satellite/inertial navigation train positioning method based on neural network assistance provided by the present invention, the specific process of inertial navigation solution algorithm is as follows:
(1)速度更新(1) Speed update
速度更新方程为:The speed update equation is:
其中,in,
Δvm是加速度计在时间段[tm-1,tm]内输出的比力增量,实际中采用比力输出 乘以采样间隔进行近似。Δθm为陀螺在时间段[tm-1,tm]内输出的角增量,将其乘 以采样间隔Ts即可近似变换为角增量。Δv m is the specific force increment output by the accelerometer in the time period [t m-1 , t m ], which is approximated by multiplying the specific force output by the sampling interval in practice. Δθ m is the angular increment output by the gyroscope in the time period [t m-1 ,t m ], which can be approximately transformed into an angular increment by multiplying it by the sampling interval T s .
(2)地球参数计算(2) Earth parameter calculation
计算子午圈主曲率半径与卯酉圈主曲率半径,计算公式如下:To calculate the principal radius of curvature of the meridian circle and the principal radius of curvature of the Maoyou circle, the calculation formula is as follows:
其中,e为椭圆偏心率,f为椭圆扁率,f=1/298.257,Re为地球半径,RM为子午圈主曲率半径,RN为卯酉圈主曲率半径。Among them, e is the eccentricity of the ellipse, f is the oblateness of the ellipse, f=1/298.257, R e is the radius of the earth, R M is the main curvature radius of the meridian circle, and R N is the main curvature radius of the meridian circle.
(3)位置更新(3) Location update
位置更新方程为:The position update equation is:
其中,T为采样周期,λ为列车所在位置的经度,L为列车所在位置的纬 度,h为列车所在位置的高度。Among them, T is the sampling period, λ is the longitude of the train location, L is the latitude of the train location, and h is the height of the train location.
(4)姿态更新(4) Posture update
利用陀螺仪测量的角速度作为四元数更新,以重力加速度作为四元数的 观测,实时解算姿态角。The angular velocity measured by the gyroscope is used as the quaternion update, and the gravity acceleration is used as the observation of the quaternion to calculate the attitude angle in real time.
姿态四元数微分方程的矩阵形式为:The matrix form of the attitude quaternion differential equation is:
其中,T为采样间隔,q0、q1、q2、q3表示姿态的四元数;Among them, T is the sampling interval, q 0 , q 1 , q 2 , and q 3 represent the quaternion of the attitude;
ωx、ωy、ωz表示陀螺仪的三轴(x,y,z)输出。ω x , ω y , and ω z represent the three-axis (x, y, z) output of the gyroscope.
对更新后的姿态四元数进行归一化处理:Normalize the updated attitude quaternion:
其中,下标i=0,1,2,3,分别代表姿态四元数中的各值。Wherein, the subscripts i=0, 1, 2, 3 respectively represent the values in the attitude quaternion.
根据归一化后的四元数可以求出载体的姿态角。The attitude angle of the carrier can be calculated according to the normalized quaternion.
如图5所示,本发明提供的一种基于神经网络辅助的卫星/惯导列车定位 方法,数据融合算法具体流程如下:As shown in Figure 5, a kind of satellite/inertial navigation train positioning method based on neural network assistance provided by the present invention, the specific flow of data fusion algorithm is as follows:
(1)建立卫星/惯导列车定位系统数学模型:(1) Establish the satellite/inertial navigation train positioning system mathematical model:
系统状态方程为:The state equation of the system is:
Xk=Φk/k-1Xk-1+Γk/k-1Wk-1 X k =Φ k/k-1 X k-1 +Γ k/k-1 W k-1
其中,Xk表示k时刻的状态向量,Φk/k-1表示15×15维的状态一步转移矩阵, Γk/k-1表示15×15维的系统噪声分配矩阵,Wk-1表示15×1维的系统噪声向量,它 是零均值的高斯白噪声向量序列。Among them, X k represents the state vector at time k, Φ k/k-1 represents the 15×15-dimensional state one-step transition matrix, Γ k/k-1 represents the 15×15-dimensional system noise allocation matrix, W k-1 represents A 15×1-dimensional system noise vector, which is a zero-mean Gaussian white noise vector sequence.
系统量测方程为:The measurement equation of the system is:
Zk=HkXk+Vk Z k =H k X k +V k
其中,Zk表示系统量测向量,Hk表示6×15维的量测矩阵,Vk表示6×1维 的量测噪声向量,它是零均值的高斯白噪声向量序列。Among them, Z k represents the system measurement vector, H k represents the 6×15-dimensional measurement matrix, and V k represents the 6×1-dimensional measurement noise vector, which is a zero-mean Gaussian white noise vector sequence.
(2)建立系统误差方程(2) Establish the system error equation
根据系统状态矩阵建立简化的系统误差的方程为:The equation for establishing a simplified system error based on the system state matrix is:
其中,与分别表示n系相对于i系的角速率及其误差, 与分别表示n系相对于e系的角速率及其误差,与分别表示e系相 对于i系的角速率及其误差,为b系相对于n系的方向余弦矩阵。由上式可 得到状态一步转移矩阵Φk/k-1。in, and Respectively represent the angular velocity and error of the n system relative to the i system, and Respectively represent the angular velocity and error of the n system relative to the e system, and Respectively represent the angular velocity and error of the e system relative to the i system, is the direction cosine matrix of the b system relative to the n system. The state one-step transition matrix Φ k/k-1 can be obtained from the above formula.
(3)数据融合:(3) Data fusion:
数据融合算法分为两个部分,预测更新与量测更新,预测更新是指通过 建立的系统模型与前一时刻的系统状态更新此时刻的系统状态,量测更新是 指经过预测更新后,利用量测值对系统状态进行更新,得出最终的系统状态 值。经过预测更新后,检测是否有新的量测值,如果有,则进行量测更新, 如果没有,则直接用预测更新的值对惯导的解算值进行修正。The data fusion algorithm is divided into two parts, prediction update and measurement update. Prediction update refers to updating the system state at this moment through the established system model and the system state at the previous moment. Measurement update refers to the use of The measured value updates the system state to obtain the final system state value. After the forecast update, check whether there is a new measurement value, if there is, perform the measurement update, if not, directly use the forecast update value to correct the inertial navigation calculation value.
(4)利用数据融合后的系统状态向量对系统的速度位置值修正:(4) Use the system state vector after data fusion to correct the speed and position value of the system:
其中,分别为系统三方向(东-北-天)的速度误差估 计值,分别为系统纬度、经度、高度误差估计值。in, are the estimated velocity errors in the three directions (east-north-day) of the system, respectively, are the system latitude, longitude, and altitude error estimates, respectively.
(5)将修正后的数据输出。(5) Output the corrected data.
如图6所示,本发明提供的一种基于神经网络辅助的卫星/惯导列车定位 方法,神经网络拓扑结构为三层,即输入层、隐藏层、输出层。在图6中,φ1、 φ2…φk表示隐含层各节点的径向基函数值,ω1、ω2、ω3…ωk表示隐含层各节 点到输出层的权值信息。x为网络的输入,y为神经网络的输出。As shown in Fig. 6, a neural network-based satellite/inertial navigation train positioning method provided by the present invention has a neural network topology of three layers, namely an input layer, a hidden layer, and an output layer. In Figure 6, φ 1 , φ 2 ... φ k represent the radial basis function values of each node in the hidden layer, and ω 1 , ω 2 , ω 3 ... ω k represent the weight information from each node in the hidden layer to the output layer . x is the input of the network and y is the output of the neural network.
如图7与图8所示,本发明提供的一种基于神经网络辅助的卫星/惯导列 车定位方法,神经网络辅助列车定位的方案如下:当卫星信号正常时,采用 卫星与惯导解算输出的速度位置信息进行融合后估计出列车的位置与速度信 息,同时采用选取的神经网络输入与输出训练神经网络;当卫星信号不可用 时,采用神经网络的输出值作为数据融合的量测值,使得滤波器继续为惯导 系统提供修正值,获得满意的定位数据。As shown in Figure 7 and Figure 8, a neural network-assisted satellite/inertial navigation train positioning method provided by the present invention, the neural network-assisted train positioning scheme is as follows: when the satellite signal is normal, use satellite and inertial navigation to solve The output speed and position information is fused to estimate the position and speed information of the train, and the selected neural network input and output are used to train the neural network; when the satellite signal is not available, the output value of the neural network is used as the measurement value of the data fusion. Make the filter continue to provide correction values for the inertial navigation system to obtain satisfactory positioning data.
综上所述,本发明提供的一种基于神经网络辅助的卫星/惯导列车定位方 法,神经网络辅助列车定位的方案为:当卫星信号正常时,采用卫星与惯导 解算输出的速度位置信息进行融合后估计出列车的位置与速度信息,同时采 用选取的神经网络输入与输出训练神经网络;当卫星数据不可用时,采用神 经网络的输出值作为数据融合的量测值,使得惯导系统继续获得修正值。In summary, the present invention provides a neural network-assisted satellite/inertial navigation train positioning method. The neural network-assisted train positioning scheme is: when the satellite signal is normal, use the satellite and inertial navigation to calculate the output speed and position After the information is fused, the position and speed information of the train is estimated, and the selected neural network input and output are used to train the neural network; when the satellite data is not available, the output value of the neural network is used as the measurement value of the data fusion, so that the inertial navigation system Continue to get corrections.
与上述方法相对应,本发明还提供一种基于神经网络辅助的卫星/惯导列 车定位系统,图2示出了根据本发明实施例的基于神经网络辅助的卫星/惯导 列车定位系统逻辑结构。Corresponding to the above method, the present invention also provides a neural network-assisted satellite/inertial navigation train positioning system, and Fig. 2 shows the logical structure of the neural network-based satellite/inertial navigation train positioning system according to an embodiment of the present invention .
如图2所示,本发明提供的一种基于神经网络辅助的卫星/惯导列车定位 系统包括安全电源模块1、惯导解算模块2、卫星信号接收模块3、数据融合 模块4、数据输出模块5、车载计算机6。As shown in Figure 2, a kind of neural network-assisted satellite/inertial navigation train positioning system provided by the present invention includes a safety power supply module 1, an inertial navigation calculation module 2, a satellite signal receiving module 3, a data fusion module 4, and a data output module Module 5, on-board computer 6.
其中,惯导解算模块2由IMU数据采集21与数据解算22两个子模块组 成,其负责将采集到的IMU数据解算,得到载体的速度、位置与姿态信息, 建立载体坐标系到导航坐标系的姿态转移矩阵。Among them, the inertial navigation calculation module 2 is composed of two sub-modules: IMU data collection 21 and data calculation 22. It is responsible for solving the collected IMU data, obtaining the speed, position and attitude information of the carrier, and establishing the carrier coordinate system to navigate. The pose transition matrix of the coordinate system.
卫星信号接收模块3由卫星数据接收31与数据检测32两个子模块组成, 其负责接收卫星的数据,并对卫星的数据进行检测,输出符合检测条件的卫 星数据。Satellite signal receiving module 3 is made up of two submodules of satellite data receiving 31 and data detection 32, and it is responsible for receiving the data of satellite, and the data of satellite is detected, and output meets the satellite data of detection condition.
数据融合模块4由数据融合41、数据修正42、神经网络训练与预测43 三个子模块组成,其负责对惯导解算的数据与卫星的数据进行融合处理,将 融合得到的修正值对惯导解算的数据进行修正,得到列车的位置估计值。The data fusion module 4 is composed of three sub-modules: data fusion 41, data correction 42, and neural network training and prediction 43. The calculated data is corrected to obtain the estimated value of the train's position.
车载计算机包括数据显示61与数据保存62。数据显示子模块61负责将 传输到车载计算机的数据进行实时显示,显示的数据包括:卫星/惯导列车定 位数据、列车行车轨迹曲线、卫星星历观测数据与精度因子,列车姿态角实 时解算曲线,列车三轴速度实时解算曲线。数据保存子模块将传输到车载计 算机的数据保存在车载计算机中,供日后查阅。The onboard computer includes data display 61 and data storage 62 . The data display sub-module 61 is responsible for real-time display of the data transmitted to the on-board computer. The displayed data includes: satellite/inertial navigation train positioning data, train trajectory curve, satellite ephemeris observation data and precision factor, and real-time calculation of train attitude angle Curve, train three-axis speed real-time solution curve. The data storage sub-module saves the data transmitted to the on-board computer in the on-board computer for future reference.
上述模块连接关系如下:惯导解算模块2电连接数据融合模块4;卫星信 号接收模块3电连接数据融合模块4;数据融合模块4电连接数据输出模块5; 数据输出模块5电连接车载计算机6;安全电源模块1分别与惯导解算模块2、 卫星信号接收模块3、数据融合模块4以及数据输出模块5电连接。The connection relationship of the above modules is as follows: the inertial navigation calculation module 2 is electrically connected to the data fusion module 4; the satellite signal receiving module 3 is electrically connected to the data fusion module 4; the data fusion module 4 is electrically connected to the data output module 5; the data output module 5 is electrically connected to the on-board computer 6. The safety power supply module 1 is electrically connected to the inertial navigation calculation module 2, the satellite signal receiving module 3, the data fusion module 4 and the data output module 5 respectively.
如图2所示,本发明提供的一种基于神经网络辅助的卫星/惯导列车定位 方法的核心是神经网络辅助的列车组合定位算法,该列车定位方法可大致分 为惯导解算算法、卫星信号检测算法、数据融合算法三个模块,这三个模块 在结构上是独立的,但在每个计算周期中是相互关联的,系统的输入包括: 来自惯性测量单元输出的三轴加速度信息与三轴角速率信息以及卫星接收机 的卫星星历观测数据、水平精度因子、经度、纬度、高度、东向速度、北向 速度、天向速度,系统输出的是估计的列车速度与位置。As shown in Figure 2, the core of a kind of satellite/inertial navigation train positioning method based on neural network assistance provided by the present invention is a neural network-assisted train combination positioning algorithm, and this train positioning method can be roughly divided into inertial navigation calculation algorithm, There are three modules of satellite signal detection algorithm and data fusion algorithm. These three modules are independent in structure, but are interrelated in each calculation cycle. The input of the system includes: The three-axis acceleration information output from the inertial measurement unit Together with the three-axis angular rate information and the satellite ephemeris observation data, horizontal precision factor, longitude, latitude, altitude, eastward speed, northward speed, and skyward speed of the satellite receiver, the system outputs the estimated train speed and position.
其中,惯导解算模块包括惯性测量单元(IMU)信号采集与惯导数据解 算,惯性测量单元(IMU)传感器型号为3DM-IMU200A,进行惯导解算所用 的微处理器型号为STM32F103C6T6。Among them, the inertial navigation calculation module includes inertial measurement unit (IMU) signal acquisition and inertial navigation data calculation. The inertial measurement unit (IMU) sensor model is 3DM-IMU200A, and the microprocessor model used for inertial navigation calculation is STM32F103C6T6.
卫星信号接收模块包括卫星数据采集与数据检测,卫星数据采集传感器 采用的是GNSS接收机K700。The satellite signal receiving module includes satellite data acquisition and data detection, and the satellite data acquisition sensor uses GNSS receiver K700.
数据融合模块包括数据融合,神经网络训练与预测模块,数据修正,数 据融合模块采用的微处理器型号为STM32F103C6T6。The data fusion module includes data fusion, neural network training and prediction module, data correction, and the microprocessor model used by the data fusion module is STM32F103C6T6.
车载计算机包括数据显示与数据保存,显示的数据为:卫星/惯导列车定 位数据、列车行车轨迹曲线、卫星星历观测数据与精度因子,列车姿态角实 时解算曲线,列车三轴速度(xyz三轴)实时解算曲线。保存的数据有:列车 位置估计值、卫星接收机输出的位置数据、IMU原始信号以及对应的时间信 息。数据输出模块与车载计算机电连接采用RS422串行通信连接。The on-board computer includes data display and data storage. The displayed data are: satellite/inertial navigation train positioning data, train trajectory curve, satellite ephemeris observation data and precision factor, real-time solution curve of train attitude angle, train three-axis speed (xyz Three-axis) solve the curve in real time. The saved data include: estimated train position, position data output by satellite receiver, IMU original signal and corresponding time information. The electrical connection between the data output module and the vehicle-mounted computer adopts RS422 serial communication connection.
通过上述实施方式可以看出,本发明提供的基于神经网络辅助的卫星/惯 导列车定位方法及系统,不仅能够在卫星信号良好的情况下提高列车的精度, 而且能够在卫星信号异常的条件下提供较高精度的列车定位结果;采用神经 网络辅助的数据融合,能够有效抑制卫星异常的情况下系统定位误差的发散, 还能够提高卫星/惯导列车定位系统的可靠性与安全性;列车定位系统各模块 之间独立工作,互不影响,能够提高系统的稳定性和抗干扰性。It can be seen from the above embodiments that the neural network-assisted satellite/inertial navigation train positioning method and system provided by the present invention can not only improve the accuracy of the train when the satellite signal is good, but also can improve the accuracy of the train when the satellite signal is abnormal. Provide higher-precision train positioning results; the use of neural network-assisted data fusion can effectively suppress the divergence of system positioning errors in the case of satellite abnormalities, and can also improve the reliability and safety of satellite/inertial navigation train positioning systems; train positioning Each module of the system works independently without affecting each other, which can improve the stability and anti-interference of the system.
如上参照附图以示例的方式描述了根据本发明提出的基于神经网络辅助 的卫星/惯导列车定位方法及系统。但是,本领域技术人员应当理解,对于上 述本发明所提出的基于神经网络辅助的卫星/惯导列车定位方法及系统,还可 以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应 当由所附的权利要求书的内容确定。The satellite/inertial navigation train positioning method and system based on the neural network assistance proposed according to the present invention have been described by way of example with reference to the accompanying drawings. However, those skilled in the art should understand that various improvements can also be made on the basis of not departing from the content of the present invention for the neural network-assisted satellite/inertial train positioning method and system proposed by the present invention. Therefore, the protection scope of the present invention should be determined by the contents of the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810813630.9A CN109059909A (en) | 2018-07-23 | 2018-07-23 | Satellite based on neural network aiding/inertial navigation train locating method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810813630.9A CN109059909A (en) | 2018-07-23 | 2018-07-23 | Satellite based on neural network aiding/inertial navigation train locating method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109059909A true CN109059909A (en) | 2018-12-21 |
Family
ID=64835137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810813630.9A Pending CN109059909A (en) | 2018-07-23 | 2018-07-23 | Satellite based on neural network aiding/inertial navigation train locating method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109059909A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109781099A (en) * | 2019-03-08 | 2019-05-21 | 兰州交通大学 | A Navigation Method and System for Adaptive UKF Algorithm |
CN109975851A (en) * | 2019-04-04 | 2019-07-05 | 河南思维轨道交通技术研究院有限公司 | A kind of train line fault point accurate positioning method and system |
CN110395297A (en) * | 2019-07-29 | 2019-11-01 | 兰州交通大学 | train positioning method |
CN110553644A (en) * | 2019-09-20 | 2019-12-10 | 鞍钢集团矿业有限公司 | Accurate positioning system and method for mining electric shovel |
CN112083465A (en) * | 2020-09-18 | 2020-12-15 | 德明通讯(上海)有限责任公司 | Location information acquisition system and method |
CN112113566A (en) * | 2020-09-24 | 2020-12-22 | 电子科技大学 | An Inertial Navigation Data Correction Method Based on Neural Network |
CN112363196A (en) * | 2020-10-20 | 2021-02-12 | 北京嘀嘀无限科技发展有限公司 | Vehicle attribute determination method and device, storage medium and electronic equipment |
CN113124884A (en) * | 2021-04-16 | 2021-07-16 | 智道网联科技(北京)有限公司 | Vehicle positioning method and device based on LSTM neural network model |
CN113431550A (en) * | 2021-07-06 | 2021-09-24 | 中国矿业大学 | Anti-impact drilling robot drilling tool attitude determination method based on redundant inertial unit |
CN113810877A (en) * | 2021-08-11 | 2021-12-17 | 上海商泰汽车信息系统有限公司 | Vehicle, vehicle speed determination method and device, storage medium and terminal |
CN115855066A (en) * | 2023-02-22 | 2023-03-28 | 湖南迈克森伟电子科技有限公司 | High-speed rail coordinate positioning correction method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101871782A (en) * | 2010-05-19 | 2010-10-27 | 北京航空航天大学 | GPS/MEMS-INS Integrated Navigation System Positioning Error Prediction Method Based on SET2FNN |
CN102768361A (en) * | 2012-07-09 | 2012-11-07 | 东南大学 | GPS/INS combined positioning method based on genetic particle filtering and fuzzy neural network |
CN106595652A (en) * | 2016-11-30 | 2017-04-26 | 西北工业大学 | Vehicle MCA (motion constraints aided) backtracking type aligning-on-the-move method |
CN106980133A (en) * | 2017-01-18 | 2017-07-25 | 中国南方电网有限责任公司超高压输电公司广州局 | GPS INS integrated navigation method and system using neural network algorithm compensation and correction |
CN107390246A (en) * | 2017-07-06 | 2017-11-24 | 电子科技大学 | A kind of GPS/INS Combinated navigation methods based on genetic neural network |
-
2018
- 2018-07-23 CN CN201810813630.9A patent/CN109059909A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101871782A (en) * | 2010-05-19 | 2010-10-27 | 北京航空航天大学 | GPS/MEMS-INS Integrated Navigation System Positioning Error Prediction Method Based on SET2FNN |
CN102768361A (en) * | 2012-07-09 | 2012-11-07 | 东南大学 | GPS/INS combined positioning method based on genetic particle filtering and fuzzy neural network |
CN106595652A (en) * | 2016-11-30 | 2017-04-26 | 西北工业大学 | Vehicle MCA (motion constraints aided) backtracking type aligning-on-the-move method |
CN106980133A (en) * | 2017-01-18 | 2017-07-25 | 中国南方电网有限责任公司超高压输电公司广州局 | GPS INS integrated navigation method and system using neural network algorithm compensation and correction |
CN107390246A (en) * | 2017-07-06 | 2017-11-24 | 电子科技大学 | A kind of GPS/INS Combinated navigation methods based on genetic neural network |
Non-Patent Citations (2)
Title |
---|
崔留争: ""神经网络辅助卡尔曼滤波在组合导航中的应用"", 《光学精密工程》 * |
戴邵武: ""北斗双星/SINS组合导航中的捷联惯导算法研究"", 《计算机与数字工程》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109781099A (en) * | 2019-03-08 | 2019-05-21 | 兰州交通大学 | A Navigation Method and System for Adaptive UKF Algorithm |
CN109975851A (en) * | 2019-04-04 | 2019-07-05 | 河南思维轨道交通技术研究院有限公司 | A kind of train line fault point accurate positioning method and system |
CN110395297B (en) * | 2019-07-29 | 2021-08-10 | 兰州交通大学 | Train positioning method |
CN110395297A (en) * | 2019-07-29 | 2019-11-01 | 兰州交通大学 | train positioning method |
CN110553644A (en) * | 2019-09-20 | 2019-12-10 | 鞍钢集团矿业有限公司 | Accurate positioning system and method for mining electric shovel |
CN112083465A (en) * | 2020-09-18 | 2020-12-15 | 德明通讯(上海)有限责任公司 | Location information acquisition system and method |
CN112113566A (en) * | 2020-09-24 | 2020-12-22 | 电子科技大学 | An Inertial Navigation Data Correction Method Based on Neural Network |
CN112363196A (en) * | 2020-10-20 | 2021-02-12 | 北京嘀嘀无限科技发展有限公司 | Vehicle attribute determination method and device, storage medium and electronic equipment |
CN112363196B (en) * | 2020-10-20 | 2023-10-31 | 北京嘀嘀无限科技发展有限公司 | Vehicle attribute determining method, device, storage medium and electronic equipment |
CN113124884A (en) * | 2021-04-16 | 2021-07-16 | 智道网联科技(北京)有限公司 | Vehicle positioning method and device based on LSTM neural network model |
CN113431550A (en) * | 2021-07-06 | 2021-09-24 | 中国矿业大学 | Anti-impact drilling robot drilling tool attitude determination method based on redundant inertial unit |
CN113810877A (en) * | 2021-08-11 | 2021-12-17 | 上海商泰汽车信息系统有限公司 | Vehicle, vehicle speed determination method and device, storage medium and terminal |
CN113810877B (en) * | 2021-08-11 | 2023-08-18 | 上海商泰汽车信息系统有限公司 | Vehicle and vehicle speed determining method and device, storage medium and terminal |
CN115855066A (en) * | 2023-02-22 | 2023-03-28 | 湖南迈克森伟电子科技有限公司 | High-speed rail coordinate positioning correction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109059909A (en) | Satellite based on neural network aiding/inertial navigation train locating method and system | |
US11002859B1 (en) | Intelligent vehicle positioning method based on feature point calibration | |
CN108196289B (en) | A kind of train combined positioning method under satellite-signal confined condition | |
EP4382864A1 (en) | Positioning method and positioning apparatus | |
US9921065B2 (en) | Unit and method for improving positioning accuracy | |
CN109946732B (en) | Unmanned vehicle positioning method based on multi-sensor data fusion | |
CN103217157B (en) | A kind of inertial navigation/odometer independent combined navigation method | |
KR101454153B1 (en) | Navigation system for unmanned ground vehicle by sensor fusion with virtual lane | |
CN101858748B (en) | Fault-tolerance autonomous navigation method of multi-sensor of high-altitude long-endurance unmanned plane | |
CN107560612B (en) | Method and device for determining the angular position of a vehicle | |
CN110208842A (en) | Vehicle high-precision locating method under a kind of car networking environment | |
CN112505737A (en) | GNSS/INS combined navigation method based on Elman neural network online learning assistance | |
CN107247275B (en) | Bus-based urban GNSS vulnerability monitoring system and method | |
CN109471144A (en) | Combined localization method of multi-sensor compact train based on pseudorange/pseudorange rate | |
KR102331312B1 (en) | 3D vehicular navigation system using vehicular internal sensor, camera, and GNSS terminal | |
CN109917440A (en) | A kind of Combinated navigation method, system and vehicle | |
CN114415224B (en) | Vehicle fusion positioning system and method in complex limited environment | |
Gao et al. | Development of precise GPS/INS/wheel speed sensor/yaw rate sensor integrated vehicular positioning system | |
CN110579786A (en) | Positioning method and system, navigation method and system, and a vehicle management terminal | |
CN109813306A (en) | A kind of unmanned vehicle planned trajectory satellite location data confidence level calculation method | |
CN108974054A (en) | Seamless train locating method and its system | |
Yu et al. | GPS/INS/Odometer/DR integrated navigation system aided with vehicular dynamic characteristics for autonomous vehicle application | |
CN104316716B (en) | A Method of Improving Vehicular Speedometer Using GPS Speed Information | |
US12202531B2 (en) | Method for calculating an instantaneous velocity vector of a rail vehicle and corresponding system | |
CN108254775A (en) | Onboard navigation system and its implementation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181221 |
|
RJ01 | Rejection of invention patent application after publication |