[go: up one dir, main page]

CN110029315A - 一种超晶格材料及其制备方法和应用 - Google Patents

一种超晶格材料及其制备方法和应用 Download PDF

Info

Publication number
CN110029315A
CN110029315A CN201910354441.4A CN201910354441A CN110029315A CN 110029315 A CN110029315 A CN 110029315A CN 201910354441 A CN201910354441 A CN 201910354441A CN 110029315 A CN110029315 A CN 110029315A
Authority
CN
China
Prior art keywords
ferrimagnetic
substrate
crystal lattice
material layer
dimensional material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910354441.4A
Other languages
English (en)
Other versions
CN110029315B (zh
Inventor
金立川
贾侃成
张岱南
张怀武
钟智勇
杨青慧
唐晓莉
白飞明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910354441.4A priority Critical patent/CN110029315B/zh
Priority to US16/502,514 priority patent/US11169402B2/en
Publication of CN110029315A publication Critical patent/CN110029315A/zh
Application granted granted Critical
Publication of CN110029315B publication Critical patent/CN110029315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/091Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect based on magneto-absorption or magneto-reflection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10584Record carriers characterised by the selection of the material or by the structure or form characterised by the form, e.g. comprising mechanical protection elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10593Details for improving read-out properties, e.g. polarisation of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/28Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/30Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the intermediate layers, e.g. seed, buffer, template, diffusion preventing, cap layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3209Exchange coupling of garnet multilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3245Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being superconductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及超晶格磁光材料技术领域,尤其涉及一种超晶格材料及其制备方法和应用。根据实施例的记载,本发明提供的超晶格材料同时具有亚铁石榴石材料较好的磁性能和石墨烯等二维半导体材料良好的光电吸收特性,测试得到的磁光克尔效应数据表明,本发明所述的超晶格材料在2500Oe磁场下的饱和磁光克尔角为13mdeg,相比较未插入二维材料的非超晶格亚铁磁性薄膜材料,其磁光克尔角提高了2.5倍,实现了磁光效应的增强。

Description

一种超晶格材料及其制备方法和应用
技术领域
本发明涉及超晶格磁光材料技术领域,尤其涉及一种超晶格材料及其制备方法和应用。
背景技术
随着磁光信息存储技术的发展,传统的信息存储材料和器件架构已很难满足小型化和低功耗的存储应用需求。对磁光效应的研究发现具有固有磁矩的物质在外磁场的作用下电磁特性会发生变化,使光波在其内部的传输特性发生改变,光的自由度决定了光携带自旋和轨道角动量两种内禀特性,可作为信息载体,具有能耗低、灵敏度高和量子化输运等特性。因此,光与物质的相互作用是实现纳米光电子器件、高密度数据存储设备和光开关器件的重要科学途径。
因此,目前急需一种磁光效应强的材料。
发明内容
为了解决上述技术问题,本发明提供了一种超晶格材料及其制备方法和应用,所述超晶格材料具有很好的磁光效应。
为了实现上述发明目的,本发明提供以下具体技术方案:
本发明提供了一种超晶格材料,包括基片、在基片上设置的超晶格结构;
所述超晶格结构为[第一亚铁磁性薄膜/二维材料层/第二亚铁磁性薄膜]n,n≥1;
所述第一亚铁磁性薄膜、二维材料层和第二亚铁磁性薄膜依次层叠设置;
所述二维材料层的材料为石墨烯、拓扑绝缘体、过渡金属硫系化合物和黑磷中的一种或几种;
所述第一亚铁磁性薄膜和二维材料层之间为异质结结构;所述二维材料层和第二亚铁磁性薄膜之间为异质结结构。
优选的,所述拓扑绝缘体为Bi2Te3、Bi2Se3和Bi0.9Te0.1中的一种或几种。
优选的,所述第一亚铁磁性薄膜和第二亚铁磁性薄膜的材料独立地为石榴石型铁氧体;
所述石榴石型铁氧体为钇铁石榴石、铥铁石榴石和镥铋铁石榴石中的一种或几种。
优选的,所述第一亚铁磁性薄膜和第二亚铁磁性薄膜的厚度独立地为1nm~10μm。
优选的,所述二维材料层为原子层;所述原子层的层数≥1。
优选的,所述基片的材料为钆镓石榴石、硅单晶、砷化镓或氮化镓。
本发明还提供了上述技术方案所述超晶格材料的制备方法,包括以下步骤:
在基片上依次层叠生长第一亚铁磁性薄膜、二维材料层和第二亚铁磁性薄膜,得到超晶格材料。
优选的,生长所述第一亚铁磁性薄膜和第二亚铁磁性薄膜的方法独立地为脉冲激光沉积法、液相外延或磁控溅射。
优选的,生长所述二维材料层的方法为湿法转移法、分子束外延法或化学气相沉积法。
本发明还提供了上述技术方案所述的超晶格材料或由上述技术方案所述的制备方法制备得到的超晶格材料在磁光信息存储、光信息处理、光纤通信和量子信息领域中的应用。
本发明提供了一种超晶格材料,包括基片、在基片上设置的超晶格结构;所述超晶格结构为[第一亚铁磁性薄膜/二维材料层/第二亚铁磁性薄膜]n,n≥1;所述第一亚铁磁性薄膜、二维材料层和第二亚铁磁性薄膜依次层叠设置;所述二维材料层的材料为石墨烯、拓扑绝缘体、过渡金属硫系化合物和黑磷中的一种或几种;所述第一亚铁磁性薄膜和二维材料层之间为异质结结构;所述二维材料层和第二亚铁磁性薄膜之间为异质结结构。本发明在第一亚铁磁性薄膜和第二亚铁磁性薄膜之间设置二维材料层可以增强亚铁磁性薄膜的基态自旋轨道耦合作用,改善其带间磁光吸收性能。利用所述超晶格材料进行信息处理时,当入射光进入亚铁磁性薄膜内部,光波的传播特性,如偏振面、相位或散射特性会发生变化,对已经写入信息的亚铁磁性薄膜就可以通过透射或发射光波的特性变化将所需要的信息读出,具有更好的灵敏度和低功耗。根据实施例的记载,本发明所述的超晶格材料同时具有亚铁石榴石材料较好的磁性能和石墨烯等二维半导体材料具有良好的光电吸收特性两方面优点,测试得到的磁光克尔效应数据表明,本发明所述的超晶格材料在2500Oe的磁场下的饱和磁光克尔角为13mdeg,相比较未插入二维材料的非超晶格亚铁磁性薄膜材料,其磁光克尔角提高了2.5倍,实现了磁光效应的增强。与传统磁性存储材料相比,超晶格材料具有利用磁光效应进行信息处理的特点,并具有更好的灵敏度和低功耗特性;与传统磁光材料相比,亚铁石榴石/二维原子晶体超晶格材料具有优异的的光吸收特性等优势,本发明提供的超晶格材料将在磁光信息存储,光信息处理,光纤通信和量子信息领域有极大的应用前景。
附图说明
图1为本发明所述的超晶格材料的结构侧视图;
图2为实施例1制备得到的超晶格材料的扫描电子显微镜图;
图3为实施例1制备得到的超晶格材料和对比例1制备得到的超晶格材料的磁光克尔信号增强图;
图4为实施例1制备得到的超晶格材料和对比例1制备得到的超晶格材料的核磁共振线宽展宽图;
图5为实施例1制备得到的超晶格材料和对比例1制备得到的超晶格材料的阻尼增强图。
具体实施方式
本发明提供了一种超晶格材料,包括基片、在基片上设置的超晶格结构;
所述超晶格结构为[第一亚铁磁性薄膜/二维材料层/第二亚铁磁性薄膜]n,n≥1;
所述第一亚铁磁性薄膜、二维材料层和第二亚铁磁性薄膜依次层叠设置;
所述二维材料层的材料为石墨烯、拓扑绝缘体、过渡金属硫系化合物和黑磷中的一种或几种;
所述第一亚铁磁性薄膜和二维材料层之间为异质结结构;所述二维材料层和第二亚铁磁性薄膜之间为异质结结构。
在本发明中,所述基片的材料优选为钆镓石榴石、硅单晶砷化镓或氮化镓,更优选为钆镓石榴石;所述基片的厚度优选为500μm。
在本发明中,所述n≥1,优选为2~10,更优选为4~6。
在本发明中,所述第一亚铁磁性薄膜和第二亚铁磁性薄膜的材料独立地优选为石榴石型铁氧体;所述石榴石型铁氧体优选为钇铁石榴石、铥铁石榴石和镥铋铁石榴石中的一种或几种;当所述石榴石型铁氧体为上述具体选择中的两种以上时,本发明对所述具体物质的配比没有任何特殊的限定。所述第一亚铁磁性薄膜和第二亚铁磁性薄膜的厚度独立地优选为1nm~10μm,更优选为10~500nm。
在本发明中,所述二维材料层的材料优选为石墨烯、拓扑绝缘体、过渡金属硫系化合物和黑磷中的一种或几种;所述拓扑绝缘体优选为Bi2Te3、Bi2Se3和Bi0.9Te0.1中的一种或几种;所述过渡金属硫系化合物优选为二硫化钼。当所述二维材料层的材料为上述具体选择中的两种以上时,本发明对所述具体物质的配比没有任何特殊的限定,按任意配比进行混合即可。所述二维材料层优选原子层;所述原子层的层数≥1,优选为2~10,更优选为4~6。
本发明还提供了上述技术方案所述的超晶格材料的制备方法,包括以下步骤:
在基片上依次层叠生长第一亚铁磁性薄膜、二维材料层和第二亚铁磁性薄膜,得到超晶格材料。
在本发明中,若无特殊说明,所有原料组分均为本领域技术人员熟知的市售产品。
在本发明中,所述基片在生长第一亚铁磁性薄膜前,优选对所述基片进行预处理;所述预处理优选为依次用丙酮、酒精和去离子水进行清洗;所述清洗在超声的条件下进行;本发明对所述超声条件没有任何特殊的限定。
在本发明中,生长所述第一亚铁磁性薄膜的方法优选为脉冲激光沉积法、液相外延或磁控溅射,更优选为脉冲激光沉积法。
当生长所述第一亚铁磁性薄膜的方法为液相外延时,所述液相外延的过程优选为准确称量高纯第一亚铁磁性薄膜的材料,研磨混合后置于铂坩埚中,熔化,得到均匀熔体;将清洗后的基片放入所述均匀熔体中,进行液相外延后,清洗,得到第一亚铁磁性薄膜;所述熔化优选为先在1000~1100℃下熔化12~24h后,降温至950~1000℃,搅拌8~12h;更优选为先在1040~1060℃下熔化15~20h后,降温至960~980℃,搅拌10h;所述液相外延的温度优选为950℃,基片的转速优选为120rpm,所述液相外延的时间优选为10s~2min。
当生长所述第一亚铁磁性薄膜的方法为磁控溅射时,所述磁控溅射的氧气分压优选为1~10Pa,更优选为5Pa;所述磁控溅射的基片温度优选为700~800℃,更优选为750℃;所述磁控溅射的功率优选为20~100W,更优选为35W。
当生长所述第一亚铁磁性薄膜的方法为脉冲激光沉积法,所述脉冲激光沉积法的靶基距优选为7cm;所述脉冲激光沉积优选在氧气气氛下进行,所述氧气气氛的气压优选为0.5~1.5Pa,更优选为1.0Pa;所述脉冲激光沉积的温度优选为700~800℃,更优选为750℃;升温速率优选为8~12℃/min,更优选为10℃/min;所述脉冲激光沉积的时间优选为15~25min,更优选为20min;所述脉冲激光沉积的激光能量优选为250~350mJ,更优选为300mJ;激光频率优选为4~10Hz,更优选为5Hz。
所述脉冲激光沉积法的过程优选为在脉冲激光沉积腔体内放入基片,设置靶基距;在≤10-6Pa的真空环境下,将基片加热到700~800℃后;在腔体内通入氧气;然后,打开并设置激光器参数;打开基片挡板,进行沉积,沉积完成后关闭基片挡板;最后,以4~6℃/min的速率将基片温度降至室温,得到第一亚铁磁性薄膜。
在本发明中,生长所述二维材料层的方法优选为湿法转移、分子束外延、化学气相沉积;
当生长所述二维材料层的方法为分子束外延时,本发明对所述分子束外延的具体过程没有任何特殊的限定,采用本领域技术人员熟知的过程进行即可。
当生长所述二维材料层的方法为化学气相沉积时,本发明对所述化学气相沉积的具体过程没有任何特殊的限定,采用本领域技术人员熟知的过程进行即可。
当生长所述二维材料层的方法为湿法转移时,所述湿法转移,包括以下步骤:
将双面的铜基二维材料薄膜的一面涂覆PMMA;
将未涂覆PMMA的一面置于三氯化铁溶液表面,腐蚀3分钟后,用三氯化铁溶液冲洗掉未涂覆PMMA的二维材料薄膜后;继续置于三氯化铁溶液表面,腐蚀1小时后,将铜层全部腐蚀掉,使涂覆PMMA的二维材料薄膜漂浮在三氯化铁溶液表面;
用载玻片从下往上将涂覆PMMA的二维材料薄膜捞起来,并放入盛有去离子水的培养皿中(涂覆PMMA的二维材料薄膜漂浮在去离子水表面);
将生长有第一亚铁磁性薄膜基片从下往上将涂覆PMMA的二维材料薄膜捞起来,使涂覆PMMA的二维材料薄膜位于生长有第一亚铁磁性薄膜基片的中央,干燥(将样品放在吸水的材料上,进行自然风干),热处理后,用丙酮溶液去除PMMA,得到在第一亚铁磁性薄膜表面生长有二维材料层的基片。
在本发明中,所述热处理的温度优选为100~120℃,更优选为105~115℃,最优选为110℃;所述热处理的时间优选为0.5~1.5h,更优选为0.8~1.2h,最优选为1.0h。在本发明中,所述热处理是为了使二维材料层和第一亚铁磁性薄膜贴合更紧密,并形成异质结。
在本发明中,生长所述第二亚铁磁性薄膜的方法优选为脉冲激光沉积法、液相外延或磁控溅射,更优选为脉冲激光沉积法。
当生长所述第二亚铁磁性薄膜的方法为液相外延时,所述液相外延的过程优选为准确称量高纯第二亚铁磁性薄膜的材料,研磨混合后置于铂坩埚中,熔化,得到均匀熔体;将清洗后的基片放入所述均匀熔体中,进行液相外延后,清洗,得到第二亚铁磁性薄膜;所述熔化优选为先在1000~1100℃下熔化12~24h后,降温至950~1000℃,搅拌8~12h;更优选为先在1040~1060℃下熔化15~20h后,降温至960~980℃,搅拌10h;所述液相外延的温度优选为950℃,基片的转速优选为120rpm,所述液相外延的时间优选为10s~2min。
当生长所述第二亚铁磁性薄膜的方法为磁控溅射时,所述磁控溅射的氧气分压优选为1~10Pa,更优选为5Pa;所述磁控溅射的基片温度优选为700~800℃,更优选为750℃;所述磁控溅射的功率优选为20~100W,更优选为35W。
当生长所述第二亚铁磁性薄膜的方法为脉冲激光沉积法,所述脉冲激光沉积法的靶基距优选为7cm;所述脉冲激光沉积优选在氧气气氛下进行,所述氧气气氛的气压优选为0.5~1.5Pa,更优选为1.0Pa;所述脉冲激光沉积的温度优选为700~800℃,更优选为750℃;升温速率优选为8~12℃/min,更优选为10℃/min;所述脉冲激光沉积的时间优选为15~25min,更优选为20min;所述脉冲激光沉积的激光能量优选为250~350mJ,更优选为300mJ;激光频率优选为4~10Hz,更优选为5Hz。
所述脉冲激光沉积法的过程优选为在脉冲激光沉积腔体内放入基片,设置靶基距;在≤10-6Pa的真空环境下,将基片加热到700~800℃后;在腔体内通入氧气;然后,打开并设置激光器参数;打开基片挡板,进行沉积,沉积完成后关闭基片挡板;最后,以4~6℃/min的速率将基片温度降至室温,得到第二亚铁磁性薄膜。
本发明还提供了上述技术方案所述的超晶格材料或由上述技术方案所述的制备方法制备得到的超晶格材料在磁光信息存储、光信息处理、光纤通信和量子信息领域中的应用。
下面结合实施例对本发明提供的一种超晶格材料及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
一种超晶格材料:基片材料为钆镓石榴石(GGG)单晶衬底,第一亚铁磁性薄膜的材料为钇铁石榴石(YIG)(60nm),二维材料层的材料为单层石墨烯,第二亚铁磁性薄膜的材料为钇铁石榴石(YIG)(60nm);
制备方法:
1)依次用丙酮、酒精和去离子水,在超声的条件下清洗基片材料;
2)在脉冲激光沉积腔体内放入基片,设置靶基距(7cm);在≤10-6Pa的真空环境下,以10℃/min的升温速率,将基片加热到750℃后;在腔体内通入氧气(气压为1.0Pa);然后,打开并设置激光器参数(激光能量为300mJ;激光频率为5Hz);打开基片挡板,沉积20min,沉积完成后关闭基片挡板;最后,以5℃/min的速率将基片温度降至室温,得到钇铁石榴石(YIG)薄膜层(60nm);
3)将双面的铜基石墨烯薄膜的一面涂覆PMMA;
将未涂覆PMMA的一面置于三氯化铁溶液表面,腐蚀3分钟后,用三氯化铁溶液冲洗掉未涂覆PMMA的石墨烯薄膜后;继续置于三氯化铁溶液表面,腐蚀1小时后,将铜层全部腐蚀掉,使涂覆PMMA的石墨烯薄膜漂浮在三氯化铁溶液表面;
用载玻片从下往上将涂覆PMMA的石墨烯薄膜捞起来,并放入盛有去离子水的培养皿中(涂覆PMMA的石墨烯薄膜漂浮在去离子水表面);
将生长有钇铁石榴石(YIG)薄膜层的基片从下往上将涂覆PMMA的石墨烯薄膜捞起来,使涂覆PMMA的石墨烯薄膜位于生长有钇铁石榴石(YIG)薄膜层的基片的中央,干燥(将样品放在吸水的材料上,进行自然风干),热处理后,用丙酮溶液去除PMMA,得到在钇铁石榴石(YIG)薄膜层表面生长有石墨烯薄膜(单层石墨烯)的基片(所述钇铁石榴石(YIG)薄膜层与所述石墨烯薄膜为异质结结构);
4)在脉冲激光沉积腔体内放入步骤3)得到的基片,设置靶基距(7cm);在≤10-6Pa的真空环境下,以10℃/min的升温速率,将基片加热到750℃后;在腔体内通入氧气(气压为1.0Pa);然后,打开并设置激光器参数(激光能量为300mj;激光频率为5Hz);打开基片挡板,沉积20min,沉积完成后关闭基片挡板;最后,以5℃/min的速率将基片温度降至室温,得到钇铁石榴石(YIG)薄膜层(60nm),同时最终得到超晶格材料,记为YIG(60nm)/石墨烯/YIG(60nm)。
实施例2
一种超晶格材料:基片材料为钆镓石榴石(GGG)单晶衬底,第一亚铁磁性薄膜的材料为铥铁石榴石(TmIG)(60nm),二维材料层的材料为单层石墨烯,第二亚铁磁性薄膜的材料为铥铁石榴石(TmIG)(60nm);
制备方法参考实施例1。
实施例3
一种超晶格材料:基片材料为钆镓石榴石(GGG)单晶衬底,第一亚铁磁性薄膜的材料为镥铋铁石榴石(LuBiIG)(60nm),二维材料层的材料为单层石墨烯,第二亚铁磁性薄膜的材料为镥铋铁石榴石(LuBiIG)(60nm);
制备方法参考实施例1。
实施例4
一种超晶格材料:基片材料为钆镓石榴石(GGG)单晶衬底,第一亚铁磁性薄膜的材料为钇铁石榴石(YIG)(60nm),二维材料层的材料为拓扑绝缘体Bi2Te3(20nm),第二亚铁磁性薄膜的材料为钇铁石榴石(YIG)(60nm);
除生长拓扑绝缘体Bi2Te3层以外的其他制备方法参考实施例1;
生长拓扑绝缘体Bi2Te3层的过程(分子束外延)为:在真空度≥10-8Pa的条件下,将基片加热至高于600℃去除基片吸附气体,对高纯固态源材料Bi,Te进行加热,Bi源温度480℃,Te源温度350℃,基片温度450℃下制备得到Bi2Te3二维材料。
实施例5
一种超晶格材料,参考实施例1,区别仅在于将石墨烯膜层替换为二硫化钼(MoS2)膜层(单原子层)。
对比例1
1)依次用丙酮、酒精和去离子水,在超声的条件下清洗基片材料;
2)在脉冲激光沉积腔体内放入基片,设置靶基距(7cm);在≤10-6Pa的真空环境下,以10℃/min的升温速率,将基片加热到750℃后;在腔体内通入氧气(气压为1.0Pa);然后,打开并设置激光器参数(激光能量为300mJ;激光频率为5Hz);打开基片挡板,沉积20min,沉积完成后关闭基片挡板;最后,以5℃/min的速率将基片温度降至室温,得到钇铁石榴石(YIG)薄膜层(60nm),得到超晶格材料(记为YIG(120nm))。
测试例
将实施例1得到的超晶格材料进行扫描电子显微镜表征,测试结果如图2所示,由图可知,实施例1制备得到的超晶格材料表面能够看到明显的石墨烯边界形貌,图中左下角具有密集的多边形块状图形区域即为所转移的二维石墨烯材料,右上角平整光滑的表面即为亚铁磁性YIG薄膜区域;
将实施例1和对比例1得到的超晶格材料进行磁光克尔测试,测试结果如图3所示,由图可知,120nm厚YIG薄膜的磁光克尔角在2500Oe的磁场下达到5mdeg后饱和,而在其间插入一层二维石墨烯原子层后,其在2500Oe磁场下的饱和磁光克尔转角增大到13mdeg;
将实施例1和对比例1得到的超晶格材料进行铁磁共振测试,测试结果如图4和图5所示,由图可知,在相同厚度的120nmYIG薄膜内插入一层二维石墨烯原子层后,其铁磁共振峰向低磁场偏移,7~15GHz频率下测试铁磁共振线宽增加,Gilbert阻尼因子增大。
由以上实施例可知,本发明提供的超晶格材料在2500Oe的磁场下的饱和磁光克尔角为13mdeg,相比较未插入二维材料的非超晶格亚铁磁性薄膜材料,其磁光克尔角提高了2.5倍,实现了磁光效应的增强。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种超晶格材料,包括基片、在基片上设置的超晶格结构;
所述超晶格结构为[第一亚铁磁性薄膜/二维材料层/第二亚铁磁性薄膜]n,n≥1;
所述第一亚铁磁性薄膜、二维材料层和第二亚铁磁性薄膜依次层叠设置;
所述二维材料层的材料为石墨烯、拓扑绝缘体、过渡金属硫系化合物和黑磷中的一种或几种;
所述第一亚铁磁性薄膜和二维材料层之间为异质结结构;所述二维材料层和第二亚铁磁性薄膜之间为异质结结构。
2.如权利要求1所述的超晶格材料,其特征在于,所述拓扑绝缘体为Bi2Te3、Bi2Se3和Bi0.9Te0.1中的一种或几种。
3.如权利要求1所述的超晶格材料,其特征在于,所述第一亚铁磁性薄膜和第二亚铁磁性薄膜的材料独立地为石榴石型铁氧体;
所述石榴石型铁氧体为钇铁石榴石、铥铁石榴石和镥铋铁石榴石中的一种或几种。
4.如权利要求1或3所述的超晶格材料,其特征在于,所述第一亚铁磁性薄膜和第二亚铁磁性薄膜的厚度独立地为1nm~10μm。
5.如权利要求1所述的超晶格材料,其特征在于,所述二维材料层为原子层;所述原子层的层数≥1。
6.如权利要求1所述的超晶格材料,其特征在于,所述基片的材料为钆镓石榴石、硅单晶、砷化镓或氮化镓。
7.权利要求1~6任一项所述的超晶格材料的制备方法,包括以下步骤:
在基片上依次层叠生长第一亚铁磁性薄膜、二维材料层和第二亚铁磁性薄膜,得到超晶格材料。
8.如权利要求7所述的制备方法,其特征在于,生长所述第一亚铁磁性薄膜和第二亚铁磁性薄膜的方法独立地为脉冲激光沉积法、液相外延或磁控溅射。
9.如权利要求7所述的制备方法,其特征在于,生长所述二维材料层的方法为湿法转移法、分子束外延法或化学气相沉积法。
10.权利要求1~6任一项所述的超晶格材料或由权利要求7~9任一项所述的制备方法制备得到的超晶格材料在磁光信息存储、光信息处理、光纤通信和量子信息领域中的应用。
CN201910354441.4A 2019-04-29 2019-04-29 一种超晶格材料及其制备方法和应用 Active CN110029315B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910354441.4A CN110029315B (zh) 2019-04-29 2019-04-29 一种超晶格材料及其制备方法和应用
US16/502,514 US11169402B2 (en) 2019-04-29 2019-07-03 Superlattice material, and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910354441.4A CN110029315B (zh) 2019-04-29 2019-04-29 一种超晶格材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110029315A true CN110029315A (zh) 2019-07-19
CN110029315B CN110029315B (zh) 2020-01-31

Family

ID=67240786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910354441.4A Active CN110029315B (zh) 2019-04-29 2019-04-29 一种超晶格材料及其制备方法和应用

Country Status (2)

Country Link
US (1) US11169402B2 (zh)
CN (1) CN110029315B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240056A (zh) * 2020-01-21 2020-06-05 贵州民族大学 一种声光调制器
CN111240048A (zh) * 2020-02-25 2020-06-05 贵州民族大学 一种光调制器
CN114464729A (zh) * 2021-12-14 2022-05-10 中国科学院金属研究所 一种EuIG/SnTe异质结单晶外延薄膜及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968058B (zh) * 2021-02-04 2022-07-26 电子科技大学 一种离子调控型自旋波晶体管及其制备方法
US11817242B2 (en) * 2021-11-17 2023-11-14 Wisconsin Alumni Research Foundation Magnonic electromagnetic radiation sources with high output power at high frequencies
CN115537915B (zh) * 2022-09-30 2024-03-12 电子科技大学 一种单晶外延生长中重复使用石榴石衬底的方法
CN116282167B (zh) * 2023-03-03 2024-10-08 河北大学 一种具有摩尔超晶格结构的二硫化钼纳米带及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233494A1 (en) * 2005-04-18 2006-10-19 Jds Uniphase Corporation Electro-optic waveguide device capable of suppressing bias point DC drift and thermal bias point shift
CN105734498A (zh) * 2016-04-13 2016-07-06 张权岳 一种钴掺杂氧化镓稀磁半导体薄膜及其制备方法
CN107146761A (zh) * 2017-05-05 2017-09-08 电子科技大学 一种巨磁光效应的钇铁石榴石/铋异质薄膜及其制备方法
CN107190321A (zh) * 2017-05-11 2017-09-22 电子科技大学 非互易自旋波异质结波导材料及其制备方法和用途
CN109545956A (zh) * 2018-11-05 2019-03-29 电子科技大学 一种电压可调控的各向异性磁阻传感器及其制备方法
CN109686798A (zh) * 2018-12-24 2019-04-26 电子科技大学 一种应用于中远红外光电探测的磁性铁氧体/Bi复合薄膜

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624901A (en) * 1985-04-04 1986-11-25 Rockwell International Corporation Intermediary layers for epitaxial hexagonal ferrite films
EP0485951B1 (en) * 1990-11-14 1997-09-10 Nippon Steel Corporation Garnet polycrystalline film for magneto-optical recording medium
JP2872226B2 (ja) * 1992-03-30 1999-03-17 戸田工業株式会社 垂直磁化膜及びその製造法
US5702793A (en) * 1993-02-25 1997-12-30 Nippon Steel Corporation Magneto-optical recording medium, disk and method of manufacturing the same
US5665465A (en) * 1995-11-06 1997-09-09 Lucent Technologies Inc. Article comprising exchange-coupled magnetic materials
US5965287A (en) * 1996-10-29 1999-10-12 Fdk Corporation Magneto-optical element material and Faraday element using the same
EP1050877B1 (en) * 1998-08-28 2011-11-02 Nippon Telegraph And Telephone Corporation Opto-magnetic recording medium and its manufacturing method, and opto-magnetic information recording/reproducing device
FR2910716B1 (fr) * 2006-12-26 2010-03-26 Commissariat Energie Atomique Dispositif magnetique multicouches, procede pour sa realisation, capteur de champ magnetique, memoire magnetique et porte logique mettant en oeuvre un tel dispositif
EP2204852A4 (en) * 2007-10-25 2012-02-22 Fuji Electric Co Ltd SPIN VALVE ELEMENT AND METHOD FOR MANUFACTURING THE SAME
US9618474B2 (en) * 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9864218B2 (en) * 2016-04-18 2018-01-09 Regents Of The University Of Minnesota Spin magneto-optical modulator
US11205749B2 (en) * 2017-03-23 2021-12-21 Intel Corporation Spintronic devices, duplexers, transceivers and telecommunication devices
US11245068B2 (en) * 2018-06-14 2022-02-08 Intel Corporation Transition metal dichalcogenide based magnetoelectric memory device
US11398562B2 (en) * 2018-06-14 2022-07-26 Intel Corporation Magnetoelectric spin orbit logic transistor with a spin filter
US11393515B2 (en) * 2018-06-14 2022-07-19 Intel Corporation Transition metal dichalcogenide based spin orbit torque memory device
US11502188B2 (en) * 2018-06-14 2022-11-15 Intel Corporation Apparatus and method for boosting signal in magnetoelectric spin orbit logic
US11557717B2 (en) * 2018-11-16 2023-01-17 Intel Corporation Transition metal dichalcogenide based spin orbit torque memory device with magnetic insulator
US11573125B2 (en) * 2019-08-23 2023-02-07 University Of Wyoming Optical detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233494A1 (en) * 2005-04-18 2006-10-19 Jds Uniphase Corporation Electro-optic waveguide device capable of suppressing bias point DC drift and thermal bias point shift
CN105734498A (zh) * 2016-04-13 2016-07-06 张权岳 一种钴掺杂氧化镓稀磁半导体薄膜及其制备方法
CN107146761A (zh) * 2017-05-05 2017-09-08 电子科技大学 一种巨磁光效应的钇铁石榴石/铋异质薄膜及其制备方法
CN107190321A (zh) * 2017-05-11 2017-09-22 电子科技大学 非互易自旋波异质结波导材料及其制备方法和用途
CN109545956A (zh) * 2018-11-05 2019-03-29 电子科技大学 一种电压可调控的各向异性磁阻传感器及其制备方法
CN109686798A (zh) * 2018-12-24 2019-04-26 电子科技大学 一种应用于中远红外光电探测的磁性铁氧体/Bi复合薄膜

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240056A (zh) * 2020-01-21 2020-06-05 贵州民族大学 一种声光调制器
CN111240056B (zh) * 2020-01-21 2023-01-24 贵州民族大学 一种声光调制器
CN111240048A (zh) * 2020-02-25 2020-06-05 贵州民族大学 一种光调制器
CN111240048B (zh) * 2020-02-25 2023-01-24 贵州民族大学 一种光调制器
CN114464729A (zh) * 2021-12-14 2022-05-10 中国科学院金属研究所 一种EuIG/SnTe异质结单晶外延薄膜及其制备方法

Also Published As

Publication number Publication date
CN110029315B (zh) 2020-01-31
US20200341301A1 (en) 2020-10-29
US11169402B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
CN110029315B (zh) 一种超晶格材料及其制备方法和应用
CN110176533B (zh) 一种光响应的自旋电子器件及其制备方法
Park et al. Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO 2 thin films above room temperature
CN107146761B (zh) 一种巨磁光效应的钇铁石榴石/铋异质薄膜的制备方法
Onbasli et al. Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates
CN107190321A (zh) 非互易自旋波异质结波导材料及其制备方法和用途
CN105845824B (zh) 一种具有室温铁磁性和高紫外光透过的Ga2O3/(Ga1-xFex)2O3薄膜及其制备方法
CN101148753A (zh) 钇铁石榴石薄膜材料及制备方法
CN106887329A (zh) 一种外延生长具有垂直磁各向异性的钇铁石榴石纳米薄膜的方法
Stadler et al. Magneto-optical garnet films made by reactive sputtering
CN111733452B (zh) 柔性自支撑单晶磁性Fe3O4薄膜材料的制备、薄膜材料及应用、单晶结构
Kuanr et al. Iron and Permalloy based magnetic monolithic tunable microwave devices
Jin et al. Interface-mediated YIG/Ce: YIG bilayers structure with enhanced magneto-optical properties via pulsed laser deposition
CN101615467A (zh) 一种Cr掺杂ZnO基稀磁半导体薄膜材料的制备方法
CN112968058B (zh) 一种离子调控型自旋波晶体管及其制备方法
Li et al. Suppression of anomalous Hall effect by heavy-fermion in epitaxial antiperovskite Mn4-xGdxN films
CN110373713A (zh) 非互易自旋波波导材料及其制备方法和应用
CN114275730B (zh) 一种磁振子耦合共振型微纳称重器件与其制备方法
CN112216507B (zh) 无支撑铁氧体磁性薄膜的制备方法及其应用
CN114823882A (zh) 一种多功能自旋波晶体管及其制备方法和应用
Fujikawa et al. Magnetic field sensors using magnetophotonic crystals
CN108930017A (zh) 一种La0.7Sr0.3MnO3铁磁薄膜的制备方法
CN101899706A (zh) 采用MOCVD制备非极性GaN基稀磁半导体材料的方法
CN110846629A (zh) 一种基于yig薄膜材料的微波吸收体及其制备方法
CN118326364B (zh) 一种极化斯格明子铁电材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant