CN110018229A - A kind of multichannel low frequency magnetic leakage signal wireless acquisition system based on STM32 - Google Patents
A kind of multichannel low frequency magnetic leakage signal wireless acquisition system based on STM32 Download PDFInfo
- Publication number
- CN110018229A CN110018229A CN201910456251.3A CN201910456251A CN110018229A CN 110018229 A CN110018229 A CN 110018229A CN 201910456251 A CN201910456251 A CN 201910456251A CN 110018229 A CN110018229 A CN 110018229A
- Authority
- CN
- China
- Prior art keywords
- module
- stm32
- signal
- hall element
- chip microcomputer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 45
- 230000004907 flux Effects 0.000 claims abstract description 19
- 230000003750 conditioning effect Effects 0.000 claims abstract description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000011889 copper foil Substances 0.000 claims abstract description 4
- 238000005070 sampling Methods 0.000 claims description 7
- 230000005284 excitation Effects 0.000 claims description 6
- 230000005294 ferromagnetic effect Effects 0.000 claims description 6
- 230000001143 conditioned effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 18
- 230000007547 defect Effects 0.000 abstract description 10
- 230000005672 electromagnetic field Effects 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000000523 sample Substances 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001289 Manganese-zinc ferrite Inorganic materials 0.000 description 1
- JIYIUPFAJUGHNL-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] JIYIUPFAJUGHNL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/83—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
技术领域technical field
本发明属于低频漏磁信号采集系统与设备领域,具体涉及一种基于STM32的多通道低频漏磁信号无线采集系统。The invention belongs to the field of low-frequency magnetic flux leakage signal acquisition systems and equipment, and in particular relates to a multi-channel low-frequency magnetic flux leakage signal wireless acquisition system based on STM32.
背景技术Background technique
1933年,Zuschlug初次指出采用磁敏传感器探测漏磁场的概念;1947年Hanstings研制出第一代缺陷漏磁探伤系统,然后社会开始认识到漏磁检测技术的价值。In 1933, Zuschlug first pointed out the concept of using magnetic sensors to detect magnetic flux leakage; in 1947, Hanstings developed the first-generation defect magnetic flux leakage detection system, and then the society began to realize the value of magnetic flux leakage detection technology.
1980年,Yariv教授首次提出利用磁致伸缩效应测量微弱磁场的研究思想,并且通过一定的演算与实验预测最小探可测磁场能够达到1.6×10-12T。在这之后,光纤微弱磁场传感器进入了高速发展的黄金时期,大量相关研究相继见报。In 1980, Professor Yariv first proposed the research idea of using the magnetostrictive effect to measure weak magnetic fields, and predicted that the minimum detectable magnetic field could reach 1.6×10 -12 T through certain calculations and experiments. After that, the optical fiber weak magnetic field sensor entered a golden age of rapid development, and a large number of related researches have been reported.
低频漏磁检测的原理是:外接激励源的激励线圈在空间激发较低频率的电磁场。磁场穿透承压设备中铁磁性材料,从一侧传导到另一侧。在没有壁厚减薄和缺陷的位置,铁磁性试件表面磁场较弱;在存在壁厚减薄和缺陷的位置,磁力线受到缺陷阻碍,磁场发生变异,部分磁力线溢出铁磁性试件,产生漏磁场。此时可以通过对漏磁场信号的强度变化来判断缺陷的存在位置。The principle of low-frequency magnetic flux leakage detection is: the excitation coil of the external excitation source excites a lower-frequency electromagnetic field in space. The magnetic field penetrates the ferromagnetic material in the pressurized equipment and is conducted from one side to the other. In the position without wall thickness reduction and defects, the magnetic field on the surface of the ferromagnetic specimen is weak; in the position with wall thickness reduction and defects, the magnetic field lines are hindered by the defects, the magnetic field mutates, and some magnetic field lines overflow the ferromagnetic specimen, resulting in leakage magnetic field. At this time, the location of the defect can be judged by changing the intensity of the leakage magnetic field signal.
低频漏磁信号检测技术应用十分广阔,主要应用方向有锅炉、压力管道等铁磁性承压设备。The low-frequency magnetic flux leakage signal detection technology is widely used, and the main application directions are ferromagnetic pressure-bearing equipment such as boilers and pressure pipes.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明的目的在于以霍尔元件为漏磁信号检测的基础,以基于STM32单片机的系统低频信号产生、多路漏磁电信号采样以及采样数据无线传输为核心,对多通道低频漏磁信号实现无线检测。In view of the deficiencies of the prior art, the purpose of the present invention is to use the Hall element as the basis for the detection of the magnetic flux leakage signal, and to take the low-frequency signal generation of the system based on the STM32 single-chip microcomputer, the sampling of the multi-channel leakage magnetoelectric signals and the wireless transmission of the sampled data as the core. Multi-channel low-frequency magnetic flux leakage signal realizes wireless detection.
本发明通过以下技术方案实现:一种基于STM32的多通道低频漏磁信号无线采集系统,由载具(1),SD卡模块(2),STM32单片机模块(3),WiFi模块(4),C型磁芯(5),线圈(6),滑动滚轮(7),铜箔屏蔽层(8),霍尔元件阵列模块(9),信号调理模块(10),电源模块(11),上位机(12);其特征在于:载具(1)通过滑动滚轮(7)在被测的铁磁性试件上移动;STM32单片机模块(3)由电源模块(11)提供工作电压;霍尔元件阵列模块(9)通过导线与信号调理模块(10)相连接,经过调理的电信号通过导线传输到STM32单片机模块(3),由STM32单片机模块(3)进行多通道串行行扫描采样;STM32单片机模块(3)通过导线与SD卡模块(2)连接,存储数字信号;STM32单片机模块(3)通过导线与WiFi模块(4)连接,无线传输数字信号至上位机(12);STM32单片机模块(3)为线圈(6)提供20Hz交流激励信号。The present invention is realized by the following technical solutions: a multi-channel low-frequency magnetic flux leakage signal wireless acquisition system based on STM32, comprising a carrier (1), an SD card module (2), an STM32 single-chip microcomputer module (3), a WiFi module (4), C-shaped magnetic core (5), coil (6), sliding roller (7), copper foil shielding layer (8), Hall element array module (9), signal conditioning module (10), power module (11), upper position The machine (12); it is characterized in that: the carrier (1) moves on the ferromagnetic test piece to be tested through the sliding roller (7); the STM32 single-chip microcomputer module (3) is provided with a working voltage by the power supply module (11); the Hall element The array module (9) is connected with the signal conditioning module (10) through wires, the conditioned electrical signals are transmitted to the STM32 single-chip microcomputer module (3) through the wires, and the STM32 single-chip microcomputer module (3) performs multi-channel serial line scanning sampling; STM32 The single-chip microcomputer module (3) is connected to the SD card module (2) through wires to store digital signals; the STM32 single-chip microcomputer module (3) is connected to the WiFi module (4) through wires to wirelessly transmit digital signals to the host computer (12); the STM32 single-chip microcomputer module (3) Provide a 20Hz AC excitation signal for the coil (6).
所述STM32单片机模块(3)具体型号为STM32RCT6。The specific model of the STM32 microcontroller module (3) is STM32RCT6.
所述WiFi模块(4)具体型号为ESP32,与STM32单片机模块(3)使用UART进行数据通信。The specific model of the WiFi module (4) is ESP32, and uses UART for data communication with the STM32 microcontroller module (3).
所述C型磁芯(5)使用锰锌铁氧体材料。The C-shaped magnetic core (5) uses manganese-zinc ferrite material.
所述线圈(6)使用铜质漆包线。The coil (6) uses copper enameled wire.
所述霍尔元件阵列模块(9)包含2行8列(16个)霍尔元件,在载具(1)底面呈规则对称状排列,用于检测漏磁信号。The Hall element array module (9) includes 2 rows and 8 columns (16 pieces) of Hall elements, which are regularly and symmetrically arranged on the bottom surface of the carrier (1) for detecting magnetic flux leakage signals.
本发明的工作原理是:STM32单片机产生低频交流激励信号,输入磁芯上的线圈,驱动产生交变电磁场。根据磁场分布遵循磁阻最小原理,当交变电磁场遇到铁磁性材料缺陷时,由于缺陷处空气的磁导率小于铁磁性材料,磁感线首先会绕过缺陷,从缺陷下方通过,直至饱和,而又溢出材料表面,从而形成漏磁场。当漏磁场作用于霍尔元件阵列时,霍尔元件阵列产生多路输出电信号。产生的这些电信号经过放大、滤波等调理操作后,STM32单片机模块的ADC采样管脚对输入的多通道电信号进行串行扫描采样,采样数据实时发送至WiFi模块,并通过WiFi模块传输回主机,同时将也将数据发送至SD卡模块进行存储。The working principle of the invention is as follows: the STM32 single-chip microcomputer generates a low-frequency alternating current excitation signal, which is input to the coil on the magnetic core to drive the alternating electromagnetic field. According to the magnetic field distribution following the principle of minimum magnetoresistance, when the alternating electromagnetic field encounters a defect in a ferromagnetic material, since the magnetic permeability of the air at the defect is lower than that of the ferromagnetic material, the magnetic field line will first bypass the defect and pass under the defect until saturation. , and overflow the surface of the material, thereby forming a leakage magnetic field. When the leakage magnetic field acts on the Hall element array, the Hall element array generates multiple output electrical signals. After the generated electrical signals are amplified, filtered and other conditioning operations, the ADC sampling pin of the STM32 single-chip microcomputer module performs serial scanning and sampling on the input multi-channel electrical signals, and the sampled data is sent to the WiFi module in real time, and is transmitted back to the host through the WiFi module. , and will also send the data to the SD card module for storage.
本发明的有益效果是:本发明的设计中以以霍尔元件为漏磁信号检测的基础,以STM32单片机为系统低频信号产生、多路漏磁电信号采样以及采样数据无线传输为核心,对多通道低频漏磁信号实现快速无线检测。该系统具有检测效率高,检测速度快,漏检现象少,探伤能力好等优点,具有很强的创新性和实用价值,有良好的应用前景。The beneficial effects of the present invention are as follows: in the design of the present invention, the Hall element is used as the basis for the detection of the magnetic flux leakage signal, and the STM32 single-chip microcomputer is used as the system low-frequency signal generation, multi-channel leakage magnetic and electrical signal sampling and wireless transmission of the sampled data as the core. Multi-channel low frequency magnetic flux leakage signal realizes fast wireless detection. The system has the advantages of high detection efficiency, fast detection speed, less missed detection, good flaw detection ability, etc. It has strong innovation and practical value, and has good application prospects.
附图说明Description of drawings
图1是本发明的结构示意图。Figure 1 is a schematic structural diagram of the present invention.
图2是本发明的原理示意图。FIG. 2 is a schematic diagram of the principle of the present invention.
图3是本发明的霍尔元件阵列结构示意图。FIG. 3 is a schematic diagram of the structure of the Hall element array of the present invention.
图4是本发明的WiFi模块。FIG. 4 is a WiFi module of the present invention.
图5是本发明的SD卡模块。FIG. 5 is the SD card module of the present invention.
具体实施方式Detailed ways
如图2所示,一种基于STM32的多通道低频漏磁信号无线采集系统,由载具(1),SD卡模块(2),STM32单片机模块(3),WiFi模块(4),C型磁芯(5),线圈(6),滑动滚轮(7),铜箔屏蔽层(8),霍尔元件阵列模块(9),信号调理模块(10),电源模块(11),上位机(12);其特征在于:载具(1)通过滑动滚轮(7)在被测的铁磁性试件上移动;STM32单片机模块(3)由电源模块(11)提供工作电压;霍尔元件阵列模块(9)通过导线与信号调理模块(10)相连接,经过调理的电信号通过导线传输到STM32单片机模块(3),由STM32单片机模块(3)进行多通道串行行扫描采样;STM32单片机模块(3)通过导线与SD卡模块(2)连接,存储数字信号;STM32单片机模块(3)通过导线与WiFi模块(4)连接,无线传输数字信号至上位机(12);STM32单片机模块(3)为线圈(6)提供20Hz交流激励信号。解决了现有低频漏磁检测系统检测效率低,无法进行多通道测量,使用不便捷等问题。As shown in Figure 2, a multi-channel low-frequency magnetic flux leakage signal wireless acquisition system based on STM32 consists of a carrier (1), an SD card module (2), an STM32 microcontroller module (3), a WiFi module (4), a C-type Magnetic core (5), coil (6), sliding roller (7), copper foil shielding layer (8), Hall element array module (9), signal conditioning module (10), power module (11), host computer ( 12); it is characterized in that: the carrier (1) moves on the tested ferromagnetic test piece through the sliding roller (7); the STM32 single-chip microcomputer module (3) is provided with working voltage by the power supply module (11); the Hall element array module (9) Connected to the signal conditioning module (10) through wires, the conditioned electrical signal is transmitted to the STM32 single-chip microcomputer module (3) through the wires, and the STM32 single-chip microcomputer module (3) performs multi-channel serial line scanning sampling; STM32 single-chip microcomputer module (3) Connect with SD card module (2) through wires to store digital signals; STM32 single-chip microcomputer module (3) is connected with WiFi module (4) through wires, and wirelessly transmit digital signals to the host computer (12); STM32 single-chip microcomputer module (3) ) provides a 20Hz AC excitation signal for the coil (6). It solves the problems that the existing low-frequency magnetic flux leakage detection system has low detection efficiency, cannot perform multi-channel measurement, and is inconvenient to use.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910456251.3A CN110018229A (en) | 2019-05-29 | 2019-05-29 | A kind of multichannel low frequency magnetic leakage signal wireless acquisition system based on STM32 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910456251.3A CN110018229A (en) | 2019-05-29 | 2019-05-29 | A kind of multichannel low frequency magnetic leakage signal wireless acquisition system based on STM32 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110018229A true CN110018229A (en) | 2019-07-16 |
Family
ID=67194456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910456251.3A Pending CN110018229A (en) | 2019-05-29 | 2019-05-29 | A kind of multichannel low frequency magnetic leakage signal wireless acquisition system based on STM32 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110018229A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112791666A (en) * | 2021-01-29 | 2021-05-14 | 中国美术学院 | An intelligent fixed hole dredging device and method |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101458227A (en) * | 2009-01-09 | 2009-06-17 | 南京航空航天大学 | Pulse leakage railway rail detecting system and detecting method thereof |
CN101776643A (en) * | 2010-01-29 | 2010-07-14 | 华中科技大学 | Method for testing magnetic flux leakage on basis of magnetic vacuum leakage and device thereof |
KR20110025283A (en) * | 2009-09-04 | 2011-03-10 | 조선대학교산학협력단 | Hollow shaft flaw detection device using magnetic sensor array |
US20120109565A1 (en) * | 2009-07-01 | 2012-05-03 | National University Corporation Okayama University | Leakage magnetic flux flaw inspection method and device |
CN203908994U (en) * | 2014-05-27 | 2014-10-29 | 吕希东 | Pulse flux leakage flaw detector |
CN104655716A (en) * | 2013-11-25 | 2015-05-27 | 哈尔滨智晟天诚科技开发有限公司 | Monitoring system for magnetic leakage detection equipment |
CN104977352A (en) * | 2015-05-13 | 2015-10-14 | 江南大学 | Defect and stress non-destructive testing system and non-destructive testing method based on pulsed eddy current and Barkhausen |
CN106124612A (en) * | 2016-06-28 | 2016-11-16 | 中国计量大学 | A kind of Portable ferromagnetic fault in material based on low frequency electromagnetic detection device |
CN106680741A (en) * | 2016-10-17 | 2017-05-17 | 北京工业大学 | High-sensitivity scanning type low-frequency electromagnetic sensor for ferromagnetic material damage detection |
CN206270293U (en) * | 2016-12-14 | 2017-06-20 | 中国计量大学 | A metal pipeline defect detection device based on low-frequency electromagnetic |
CN109358110A (en) * | 2018-11-28 | 2019-02-19 | 中国计量大学 | An Array Electromagnetic Multi-Dimensional Detection System for Internal Defect Imaging of Steel Plates |
CN210005476U (en) * | 2019-05-29 | 2020-01-31 | 中国计量大学 | A wireless acquisition system of multi-channel low frequency magnetic flux leakage signal based on STM32 |
-
2019
- 2019-05-29 CN CN201910456251.3A patent/CN110018229A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101458227A (en) * | 2009-01-09 | 2009-06-17 | 南京航空航天大学 | Pulse leakage railway rail detecting system and detecting method thereof |
US20120109565A1 (en) * | 2009-07-01 | 2012-05-03 | National University Corporation Okayama University | Leakage magnetic flux flaw inspection method and device |
KR20110025283A (en) * | 2009-09-04 | 2011-03-10 | 조선대학교산학협력단 | Hollow shaft flaw detection device using magnetic sensor array |
CN101776643A (en) * | 2010-01-29 | 2010-07-14 | 华中科技大学 | Method for testing magnetic flux leakage on basis of magnetic vacuum leakage and device thereof |
CN104655716A (en) * | 2013-11-25 | 2015-05-27 | 哈尔滨智晟天诚科技开发有限公司 | Monitoring system for magnetic leakage detection equipment |
CN203908994U (en) * | 2014-05-27 | 2014-10-29 | 吕希东 | Pulse flux leakage flaw detector |
CN104977352A (en) * | 2015-05-13 | 2015-10-14 | 江南大学 | Defect and stress non-destructive testing system and non-destructive testing method based on pulsed eddy current and Barkhausen |
CN106124612A (en) * | 2016-06-28 | 2016-11-16 | 中国计量大学 | A kind of Portable ferromagnetic fault in material based on low frequency electromagnetic detection device |
CN106680741A (en) * | 2016-10-17 | 2017-05-17 | 北京工业大学 | High-sensitivity scanning type low-frequency electromagnetic sensor for ferromagnetic material damage detection |
CN206270293U (en) * | 2016-12-14 | 2017-06-20 | 中国计量大学 | A metal pipeline defect detection device based on low-frequency electromagnetic |
CN109358110A (en) * | 2018-11-28 | 2019-02-19 | 中国计量大学 | An Array Electromagnetic Multi-Dimensional Detection System for Internal Defect Imaging of Steel Plates |
CN210005476U (en) * | 2019-05-29 | 2020-01-31 | 中国计量大学 | A wireless acquisition system of multi-channel low frequency magnetic flux leakage signal based on STM32 |
Non-Patent Citations (6)
Title |
---|
孙燕华;康宜华;: "一种基于磁真空泄漏原理的漏磁无损检测新方法", 机械工程学报, no. 14, 20 July 2010 (2010-07-20) * |
张卫民;杨旭;王珏;高乾鹏;: "基于霍尔元件阵列的缺陷漏磁检测技术研究", 北京理工大学学报, no. 06, 15 June 2011 (2011-06-15) * |
沈功田;武新军;郭锴;万强;李建;: "无线自动爬行漏磁检测仪的开发研制", 无损检测, no. 08, 10 August 2017 (2017-08-10) * |
王韫江;王晓锋;丁克勤;: "管道腐蚀检测中新型脉冲漏磁传感器的设计与实验验证", 传感技术学报, no. 10, 20 October 2009 (2009-10-20) * |
许鹏;黄俊;朱励历;: "基于脉冲漏磁的缺陷量化评估", 无损检测, no. 10, 10 October 2015 (2015-10-10), pages 48 * |
许鹏等: "基于脉冲漏磁的缺陷量化评估", 《无损检测》, vol. 39, no. 110, 31 December 2015 (2015-12-31), pages 48 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112791666A (en) * | 2021-01-29 | 2021-05-14 | 中国美术学院 | An intelligent fixed hole dredging device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103499404B (en) | Ferromagnetic component alterante stress measurement mechanism and measuring method thereof | |
CN112985647B (en) | Pipeline bending stress detection device | |
CN104155361A (en) | Pulse eddy electromagnetism nondestructive detection method based on probe with iron core coil | |
CN102323467A (en) | A Giant Magnetoresistance Effect Current Sensor Using Amorphous Alloy Magnetic Ring Structure | |
CN202074943U (en) | Pulse eddy-current thickness meter | |
CN109682882A (en) | A kind of Eddy Current Testing Transducer of high spatial resolution | |
CN103486960A (en) | Ultrasonic, vortex and EMAT integrated lossless thickness tester and method thereof | |
CN203640727U (en) | Transient electromagnetic well-logging instrument | |
CN103955004B (en) | Four-channel nuclear magnetic resonance signal full-wave acquisition system and acquisition method | |
CN206772899U (en) | The open magnetic pumping steel wire rope damage detection apparatus that declines of one kind | |
CN105548923A (en) | Two-dimensional high-frequency rotation magnetic property sensing device | |
CN101311714A (en) | High-sensitivity vortex flow dot type probe | |
CN106707206A (en) | Metal magnetic memory triaxial array sensor based on GMR effect | |
CN101231265A (en) | An electromagnetic non-destructive testing probe | |
CN210005476U (en) | A wireless acquisition system of multi-channel low frequency magnetic flux leakage signal based on STM32 | |
CN102879462A (en) | Metal defect eddy current detection device and probe thereof | |
CN102183341A (en) | Nuclear magnetic resonance detection meter and detection method of hidden troubles of dam leakage | |
CN205879865U (en) | Nondestructive detection system based on vortex reflection and transmission | |
CN110018229A (en) | A kind of multichannel low frequency magnetic leakage signal wireless acquisition system based on STM32 | |
CN107356664A (en) | A kind of ferrimagnet defect detecting device based on low frequency leakage field | |
CN104655656A (en) | Detection imaging method and detection imaging device based on broadband magnetic wave transmission model parameter identification | |
CN106370723A (en) | Special metal equipment damage detection system based on low-frequency eddy current | |
CN203204135U (en) | U type single magnetic core magnetic flux gate probe | |
CN106646278B (en) | A kind of low noise MEMS preamplifier part using high resolution detection of magnetic field | |
CN102721981B (en) | Underground pipeline distribution detection device and method based on rectangular hollow core sensor array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |