CN110017793B - A dual-channel anti-vibration interferometric measurement device and method - Google Patents
A dual-channel anti-vibration interferometric measurement device and method Download PDFInfo
- Publication number
- CN110017793B CN110017793B CN201910285098.2A CN201910285098A CN110017793B CN 110017793 B CN110017793 B CN 110017793B CN 201910285098 A CN201910285098 A CN 201910285098A CN 110017793 B CN110017793 B CN 110017793B
- Authority
- CN
- China
- Prior art keywords
- light
- interference
- vibration
- measurement system
- auxiliary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 64
- 238000009826 distribution Methods 0.000 claims abstract description 14
- 238000005305 interferometry Methods 0.000 claims description 19
- 230000010287 polarization Effects 0.000 claims description 13
- 238000003384 imaging method Methods 0.000 claims description 10
- 238000001615 p wave Methods 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 2
- 238000000691 measurement method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/02075—Reduction or prevention of errors; Testing; Calibration of particular errors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
本发明公开了一种双通道式抗振动干涉测量装置及方法,装置包括依次设置的用于对光源进行扩束准直的光源扩束准直系统,用于检测被测件振动相位平面的辅助干涉测量系统,用于结合辅助干涉测量系统测量被测件相位分布的主干涉测量系统,以及被测件光路系统;光源扩束准直系统与被测件光路系统同光轴,记为第一光轴,辅助干涉测量系统与主干涉测量系统的光轴分别记为第二光轴、第三光轴,均与第一光轴垂直;光源扩束准直系统、主干涉测量系统与被测件光路系统构成主泰曼—格林干涉光路;光源扩束准直系统、辅助干涉测量系统与被测件光路系统构成辅助泰曼—格林干涉光路。本发明的装置和方法不仅抗振动效果好、测量精度高,且结构简单紧凑,成本较低。
The invention discloses a dual-channel anti-vibration interferometric measurement device and method. The device comprises a light source beam expansion and collimation system arranged in sequence for expanding and collimating a light source, and is used to detect the auxiliary vibration phase plane of a measured piece. Interferometric measurement system, the main interferometric measurement system used to measure the phase distribution of the DUT in combination with the auxiliary interferometric measurement system, and the optical path system of the DUT; the light source beam expansion and collimation system and the optical path system of the DUT are coaxial, marked as the first The optical axis, the optical axes of the auxiliary interferometric measurement system and the main interferometric measurement system are respectively recorded as the second optical axis and the third optical axis, which are all perpendicular to the first optical axis; the light source beam expansion collimation system, the main interferometric measurement system and the measured The component optical path system constitutes the main Taiman-Green interference optical path; the light source beam expansion collimation system, the auxiliary interferometric measurement system and the measured component optical path system constitute the auxiliary Taiman-Green interference optical path. The device and method of the present invention not only have good anti-vibration effect and high measurement accuracy, but also have a simple and compact structure and low cost.
Description
技术领域technical field
本发明属于光干涉计量测试领域,特别是一种双通道式抗振动干涉测量装置及方法。The invention belongs to the field of optical interferometric measurement, in particular to a dual-channel anti-vibration interference measurement device and method.
背景技术Background technique
现如今广泛使用光干涉测量技术来测量光学元件面形,传统的光干涉装置及测量方法各式各样,例如迈克尔逊干涉仪、泰曼干涉仪、斐索干涉仪等装置和移相法干涉测量、傅里叶变换法干涉测量、错位干涉测量及外差干涉测量等测量技术。但是这些方法演变至今,对测量环境的要求都十分严格,尤其是无法在振动环境下准确测量出被测相位。Nowadays, optical interferometry technology is widely used to measure the surface shape of optical components. There are various traditional optical interference devices and measurement methods, such as Michelson interferometer, Tyman interferometer, Fizeau interferometer and other devices and phase-shifting interferometer. Measurement techniques such as measurement, Fourier transform interferometry, dislocation interferometry and heterodyne interferometry. However, these methods have evolved so far, and the requirements for the measurement environment are very strict, especially the measured phase cannot be accurately measured in a vibration environment.
现有的对环境振动具有较好鲁棒性的干涉装置和测量方法主要分为两大类,一类是从数据处理算法上来解决振动问题,这类方案在干涉装置上不做任何改变,正常采集一系列干涉图样,用数据处理算法计算出由环境振动带来的误差,进而使得相位计算更加准确。这类方法中数据处理算法有很多种,但在干涉图条纹数较少的时候测量误差就会显现出来,尤其是零条纹干涉图。另一类主要是从干涉装置上来克服振动带来的影响,比较常用的是在斐索型共光路干涉仪中用同步四步移相法来解决,斐索型干涉装置本身就具有一定的抗振效果,再在光路后面将干涉光束分为四束,每束光束中通过偏振器件引入不同的移相量,便可以同时采集四副移相干涉图,能有效克服振动对测量带来的影响。在这一类方案中,各移相图之间的空间相对位置关系是未知的,且其相对位置缺少成熟可靠的标定技术,易导致位置匹配误差,影响测量精度。The existing interference devices and measurement methods with good robustness to environmental vibration are mainly divided into two categories. One is to solve the vibration problem from the data processing algorithm. This kind of scheme does not make any changes in the interference device. A series of interference patterns are collected, and the error caused by the environmental vibration is calculated by the data processing algorithm, thereby making the phase calculation more accurate. There are many kinds of data processing algorithms in this kind of method, but the measurement error will appear when the number of fringes in the interferogram is small, especially the zero fringe interferogram. The other type is mainly from the interference device to overcome the influence of vibration. The more commonly used method is to use the synchronous four-step phase shifting method in the Fizeau-type common optical path interferometer. The Fizeau-type interference device itself has a certain resistance. Then, the interference beam is divided into four beams at the back of the optical path. In each beam, a different phase-shifting amount is introduced through a polarizing device, so that four pairs of phase-shifting interferograms can be collected at the same time, which can effectively overcome the impact of vibration on the measurement. . In this type of scheme, the spatial relative positional relationship between the phase shift diagrams is unknown, and the relative positions lack mature and reliable calibration technology, which easily leads to position matching errors and affects the measurement accuracy.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种克服干涉测量时环境振动带来的影响、提高测量精度的双通道式抗振动干涉测量装置及方法。The purpose of the present invention is to provide a dual-channel anti-vibration interferometric measurement device and method that overcomes the influence of environmental vibration during interferometric measurement and improves measurement accuracy.
实现本发明目的的技术解决方案为:一种双通道式抗振动干涉测量装置,包括依次设置的:用于对光源进行扩束准直的光源扩束准直系统,用于检测被测件振动相位平面的辅助干涉测量系统,用于结合辅助干涉测量系统测量被测件相位分布的主干涉测量系统,以及被测件光路系统;The technical solution to achieve the purpose of the present invention is: a dual-channel anti-vibration interferometric measurement device, comprising: a light source beam expansion and collimation system for expanding and collimating the light source, which is arranged in sequence, and is used for detecting the vibration of the measured object The auxiliary interferometric measurement system of the phase plane, the main interferometric measurement system used to measure the phase distribution of the DUT in combination with the auxiliary interferometric system, and the optical path system of the DUT;
光源扩束准直系统与被测件光路系统同光轴,记为第一光轴,辅助干涉测量系统与主干涉测量系统的光轴分别记为第二光轴、第三光轴,均与第一光轴垂直;光源扩束准直系统、主干涉测量系统与被测件光路系统构成主泰曼—格林干涉光路;光源扩束准直系统、辅助干涉测量系统与被测件光路系统辅助构成泰曼—格林干涉光路。The optical axis of the light source beam expansion collimation system and the optical path system of the tested piece is the same as the optical axis, which is marked as the first optical axis. The first optical axis is vertical; the light source beam expansion collimation system, the main interferometric measurement system and the DUT optical path system constitute the main Taiman-Green interference optical path; the light source beam expansion collimation system, the auxiliary interferometric measurement system and the DUT optical path system are auxiliary Form the Tyman-Green interference light path.
基于上述双通道式抗振动干涉测量装置的测量方法,包括以下步骤:The measurement method based on the above-mentioned dual-channel anti-vibration interferometric measurement device includes the following steps:
步骤1、光源扩束准直系统出射线偏振光,并由辅助干涉测量系统对线偏振光进行透射和反射;Step 1. The light source beam expansion and collimation system outputs linearly polarized light, and the auxiliary interferometric measurement system transmits and reflects the linearly polarized light;
步骤2、主干涉测量系统将步骤1的透射光分为正交的p光和s光,且s光经主干涉测量系统形成与原s光正交的第一参考光;p光经被测件光路系统形成测试光并经主干涉测量系统反射和透射,分别获得第一测试光、第二测试光;Step 2. The main interferometric measurement system divides the transmitted light in step 1 into orthogonal p light and s light, and the s light passes through the main interferometric measurement system to form a first reference light that is orthogonal to the original s light; the p light is measured The component optical path system forms the test light and is reflected and transmitted by the main interferometric measurement system to obtain the first test light and the second test light respectively;
步骤3、步骤1的反射光经辅助干涉测量系统反射形成第二参考光;Step 3. The reflected light in Step 1 is reflected by the auxiliary interferometric measurement system to form a second reference light;
步骤4、第一测试光与第一参考光经主干涉测量系统合束并产生干涉,调节被测件光路系统使干涉条纹稀疏,之后采集相应的干涉图像序列;同时第二测试光与第二参考光经辅助干涉测量系统合束并产生干涉,调节辅助干涉测量系统使干涉条纹密集,之后采集相应的干涉图像序列;Step 4. The first test light and the first reference light are combined by the main interferometric measurement system to produce interference, adjust the optical path system of the tested piece to make the interference fringes sparse, and then collect the corresponding interference image sequence; at the same time, the second test light and the second The reference light is combined by the auxiliary interferometric measurement system to generate interference, and the auxiliary interferometric measurement system is adjusted to make the interference fringes dense, and then the corresponding interference image sequence is collected;
步骤5、根据步骤4获得的干涉图,解算被测件的相位分布。Step 5: Calculate the phase distribution of the DUT according to the interferogram obtained in Step 4.
本发明与现有技术相比,其显著优点为:1)本发明采用双通道式泰曼—格林干涉装置及测量方法,能同时采集两通道干涉信号,一路解算振动平面,一路解算被测相位,能实现有效而迅速地测量,且能克服振动在测量时带来的影响;2)本发明装置不仅能解决环境振动对测量的影响,且结构简单紧凑,测量方法巧妙易懂,成本低。Compared with the prior art, the present invention has the following significant advantages: 1) The present invention adopts a two-channel Taiman-Green interference device and a measuring method, which can simultaneously collect two-channel interference signals, solve the vibration plane in one way, and solve the Phase measurement can achieve effective and rapid measurement, and can overcome the influence of vibration during measurement; 2) the device of the present invention can not only solve the influence of environmental vibration on measurement, but also has a simple and compact structure, the measurement method is ingenious and easy to understand, and the cost Low.
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below with reference to the accompanying drawings.
附图说明Description of drawings
图1为本发明双通道式抗振动干涉测量装置结构示意图。FIG. 1 is a schematic structural diagram of a dual-channel anti-vibration interferometric measuring device according to the present invention.
图2为本发明实施例中主干涉测量系统采集的一幅干涉图。FIG. 2 is an interferogram collected by the main interferometric measurement system in the embodiment of the present invention.
图3为本发明实施例中辅助干涉测量系统采集的一幅干涉图。FIG. 3 is an interferogram collected by the auxiliary interferometric measurement system in the embodiment of the present invention.
图4为本发明实施例中采用本发明方案测量得到的光学元件相位分布示意图。FIG. 4 is a schematic diagram of the phase distribution of an optical element measured by adopting the solution of the present invention in an embodiment of the present invention.
图5为本发明实施例中采用传统四步移相方案测得同一光学元件相位分布示意图。FIG. 5 is a schematic diagram of the phase distribution of the same optical element measured by using a traditional four-step phase-shifting scheme in an embodiment of the present invention.
具体实施方式Detailed ways
结合图1,本发明一种双通道式抗振动干涉测量装置,包括依次设置的:用于对光源进行扩束准直的光源扩束准直系统24,用于检测被测件振动相位平面的辅助干涉测量系统25,用于结合辅助干涉测量系统25测量被测件相位分布的主干涉测量系统27,以及被测件光路系统28;1, a dual-channel anti-vibration interferometric measurement device of the present invention includes: a light source beam expansion and
光源扩束准直系统24与被测件光路系统28同光轴,记为第一光轴,辅助干涉测量系统25与主干涉测量系统27的光轴分别记为第二光轴、第三光轴,均与第一光轴垂直;光源扩束准直系统24、主干涉测量系统27与被测件光路系统28构成主泰曼—格林干涉光路;光源扩束准直系统24、辅助干涉测量系统25与被测件光路系统28构成辅助泰曼—格林干涉光路。The light source beam expansion and
进一步地,光源扩束准直系统24包括沿第一光轴依次设置的激光器组件1、半波片2、第一物镜3、第一光阑4和第二物镜5;所述激光器组件1包括线偏振激光器,或包括激光器和起偏器;Further, the light source beam expansion and
主干涉测量系统27包括沿第三光轴依次设置的第一标准参考镜12,第一四分之一波片13,偏振分光棱镜7,第一偏振片18,由第三物镜19、第二光阑20和第四物镜21组成的第一缩束成像系统,以及第一面阵探测器23;The main
辅助干涉测量系统25包括沿第二光轴依次设置的第二标准参考镜11,分束棱镜6,第二偏振片14,由第五物镜15、第三光阑16和第六物镜17组成的第二缩束成像系统,以及第二面阵探测器22;The auxiliary
偏振分光棱镜7和分束棱镜6同时位于第一光轴上;所述第二标准参考镜11和第一标准参考镜12固定于同一调整架26上,调整架26用于调节参考镜的倾斜角度;The polarizing beam splitting prism 7 and the beam splitting prism 6 are located on the first optical axis at the same time; the second
被测件光路系统28包括沿第一光轴依次设置的第二四分之一波片8、汇聚物镜组9和被测件10。The DUT
进一步优选地,入射至偏振分光棱镜7的光束被分为透射的p波和反射的s波,第一四分之一波片13的快轴与s波的夹角为45°,第二四分之一波片8的快轴与p波的夹角为22.5°。Further preferably, the light beam incident on the polarizing beam splitter prism 7 is divided into a transmitted p-wave and a reflected s-wave, the angle between the fast axis of the first quarter-
进一步优选地,第一面阵探测器23、第二面阵探测器22为CCD或CMOS相机。Further preferably, the first
基于上述双通道式抗振动干涉测量装置的测量方法,包括以下步骤:The measurement method based on the above-mentioned dual-channel anti-vibration interferometric measurement device includes the following steps:
步骤1、光源扩束准直系统24出射线偏振光,并由辅助干涉测量系统25对线偏振光进行透射和反射;Step 1. The light source beam expansion and
步骤2、主干涉测量系统27将步骤1的透射光分为正交的p光和s光,且s光经主干涉测量系统27形成与原s光正交的第一参考光;p光经被测件光路系统28形成测试光并经主干涉测量系统27反射和透射,分别获得第一测试光、第二测试光;Step 2. The main
步骤3、步骤1的反射光经辅助干涉测量系统25反射形成第二参考光;Step 3. The reflected light in Step 1 is reflected by the auxiliary
步骤4、第一测试光与第一参考光经主干涉测量系统27合束并产生干涉,调节被测件光路系统28使干涉条纹稀疏,之后采集相应的干涉图像序列;同时第二测试光与第二参考光经辅助干涉测量系统25合束并产生干涉,调节辅助干涉测量系统25使干涉条纹密集,之后采集相应的干涉图像序列;Step 4. The first test light and the first reference light are combined by the main
步骤5、根据步骤4获得的干涉图,解算被测件10的相位分布。Step 5: Calculate the phase distribution of the DUT 10 according to the interferogram obtained in Step 4 .
进一步地,步骤1具体为:Further, step 1 is specifically:
由依次设置的线偏振激光器1、半波片2、第一物镜3、第一光阑4和第二物镜5构成的光源扩束准直系统24出射线偏振光,并入射至辅助干涉测量系统25的分束棱镜6,分束棱镜6对线偏振光进行透射和反射。The light source beam expansion and
进一步地,步骤2具体为:Further, step 2 is specifically:
主干涉测量系统27的偏振分光棱镜7将步骤1的透射光分为正交的p光和s光;The polarization beam splitter prism 7 of the main
之后,s光经第一四分之一波片13成为圆偏振光,再经第一标准参考镜12反射、第一四分之一波片13形成与原s光正交的第一参考光,第一参考光入射至偏振分束镜7后透射;After that, the s light becomes circularly polarized light through the first quarter-
p光经第二四分之一波片8成为椭圆偏振光,经过汇聚物镜组9后再经被测件10反射成为测试光,该测试光原路返回经四分一波片8成为线偏振光并入射至偏振分光棱镜7,且该线偏振光与p光的方向夹角为45°;偏振分光棱镜7对线偏振光进行反射和透射,反射光束记为第一测试光,透射光束记为第二测试光。The p light passes through the second quarter-wave plate 8 to become elliptically polarized light, passes through the converging objective lens group 9 and then is reflected by the tested object 10 to become test light, the test light returns to the original path through the quarter-wave plate 8 to become linearly polarized light and Incident to the polarizing beam splitting prism 7, and the angle between the linearly polarized light and the p light is 45°; the polarizing beam splitting prism 7 reflects and transmits the linearly polarized light, the reflected beam is recorded as the first test light, and the transmitted beam is recorded as the first test light. Two test lights.
进一步地,步骤3具体为:步骤1的反射光经第二标准参考镜11反射并入射至分束棱镜6后透射形成第二参考光。Further, step 3 is specifically as follows: the reflected light in step 1 is reflected by the second
进一步地,步骤4具体为:Further, step 4 is specifically:
第一测试光与第一参考光经偏振分光棱镜7合束,并经第一偏振片18产生干涉,之后经由第三物镜19、第二光阑20和第四物镜21组成的第一缩束成像系统后入射至第一面阵探测器23的靶面;在此过程中,通过调节半波片2和第一偏振片18实现调节第一面阵探测器23接收到的干涉图条纹的对比度,调节被测件光路系统28使干涉条纹稀疏,之后采集相应的干涉图像序列;The first test light and the first reference light are combined by the polarizing beam splitter prism 7, and interfere with the
第二参考光与第二测试光经分束棱镜6合束,并经第二偏振片14产生干涉,之后经由第五物镜15、第三光阑16和第六物镜17组成的第二缩束成像系统后入射至第二面阵探测器22的靶面;在此过程中,通过调节半波片2和第二偏振片14实现调节第二面阵探测器22接收到的干涉图条纹的对比度,通过调整架26调整第二标准参考镜11的倾斜使干涉条纹密集,之后采集相应的干涉图像序列。The second reference light and the second test light are combined by the beam splitter prism 6 , interfere with the
进一步地,步骤5所述根据步骤4获得的干涉图,解算被测件10的相位分布,具体为:Further, in step 5, according to the interferogram obtained in step 4, the phase distribution of the DUT 10 is calculated, specifically:
步骤5-1、利用傅里叶变换法求取第二面阵探测器22采集到的每幅干涉图的相位其中n=1,2,3,…,N,N为第二面阵探测器22采集的干涉图的总数;Step 5-1. Use the Fourier transform method to obtain the phase of each interferogram collected by the second
步骤5-2、求取每幅干涉图的相位对应的待测件相对于第二标准参考镜11的振动相位面所用公式为:Step 5-2. Find the phase of each interferogram The vibration phase plane of the corresponding DUT relative to the second
式中,为第一幅干涉图的相位;In the formula, is the phase of the first interferogram;
步骤5-3、根据振动相位面获取无噪声的振动相位平面Pn(x,y):Step 5-3, according to the vibration phase plane Obtain the noise-free vibration phase plane P n (x,y):
Pn(x,y)=αnx+βny+γn P n (x,y)=α n x+β n y+γ n
式中,αn、βn、γn均为系数,其通过最小二乘法拟合获得;In the formula, α n , β n , γ n are all coefficients, which are fitted by the least squares method get;
步骤5-4、主干涉测量通道采集的干涉图光强表达式为:Step 5-4, the expression of the light intensity of the interferogram collected by the main interferometric measurement channel is:
In=a(x,y)+b(x,y)cos(φ(x,y)+Pn(x,y))I n =a(x,y)+b(x,y)cos(φ(x,y)+ Pn (x,y))
式中,a(x,y)为背景光强,b(x,y)为调制幅度;In the formula, a(x, y) is the background light intensity, and b(x, y) is the modulation amplitude;
结合In和Pn(x,y),利用最小二乘解相位法求解待测件相位φ(x,y)。Combining In and P n ( x , y), the phase φ(x, y) of the DUT is solved by the least squares solution phase method.
下面结合实施例对本发明作进一步详细的说明。The present invention will be described in further detail below in conjunction with the embodiments.
实施例Example
本实施例中,双通道式抗振动干涉测量装置中光源部分激光器1为输出功率5mw的氦氖激光器,波长为632.8nm,经扩束准直系统24后光束直径为10mm,汇聚物镜组9的有效焦距为50mm,待测件10为凹面镜,其曲率半径为125mm,通光孔径为25mm,第五透镜15、第六物镜17焦距分别为150mm和75mm,第三透镜19、第四物镜21焦距同样为150mm和75mm,第二面阵探测器22和第一面阵探测器23采样像素均为1920×1200,像素大小为5.8um。In this embodiment, the laser 1 of the light source part in the dual-channel anti-vibration interferometry device is a helium-neon laser with an output power of 5mw, the wavelength is 632.8nm, and the beam diameter after the beam expansion and
通过上述装置进行测量,主干涉测量系统采集的一副干涉条纹图如图2所示,辅助干涉测量系统25采集的一幅干涉条纹图如图3所示,共获得一组干涉图,利用该组干涉图计算出待测凹面镜10的相位分布如图4所示,PV=0.3306λ,RMS=0.0578λ;利用传统同步移相方案测量同一凹面镜10的相位分布如图5所示,PV=0.3718λ,RMS=0.0594λ。Measurement is performed by the above-mentioned device, a pair of interference fringe patterns collected by the main interferometric measurement system is shown in Fig. 2, and an interference fringe pattern collected by the auxiliary
图4、图5相位分布大致相同,由此验证了本发明测量的正确性。而传统的同步移相方案会出现四幅移相图对比度不一致问题,从而导致条纹误差,如图5中相位便有明显的条纹误差,而图4中没有因振动引起的条纹误差。The phase distributions in Fig. 4 and Fig. 5 are approximately the same, which verifies the correctness of the measurement of the present invention. However, the traditional synchronous phase-shifting scheme will have the problem of inconsistent contrast between the four phase-shifting images, resulting in fringe errors. As shown in Figure 5, the phase has obvious fringe errors, while in Figure 4, there is no fringe error caused by vibration.
由此可知,相比于传统方案,本发明的装置和方法不仅抗振动效果好、测量精度高,且结构简单紧凑,成本较低。It can be seen that, compared with the traditional solution, the device and method of the present invention not only have good anti-vibration effect and high measurement accuracy, but also have a simple and compact structure and low cost.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910285098.2A CN110017793B (en) | 2019-04-10 | 2019-04-10 | A dual-channel anti-vibration interferometric measurement device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910285098.2A CN110017793B (en) | 2019-04-10 | 2019-04-10 | A dual-channel anti-vibration interferometric measurement device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110017793A CN110017793A (en) | 2019-07-16 |
CN110017793B true CN110017793B (en) | 2020-09-18 |
Family
ID=67190878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910285098.2A Active CN110017793B (en) | 2019-04-10 | 2019-04-10 | A dual-channel anti-vibration interferometric measurement device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110017793B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111207844B (en) * | 2020-01-17 | 2021-07-27 | 中国科学院上海光学精密机械研究所 | Double-sided multi-plane inclined wavefront interferometer and its detection method |
CN111288955B (en) * | 2020-03-07 | 2021-06-29 | 中国计量科学研究院 | Integrated strain calibration system |
CN112033279B (en) * | 2020-07-24 | 2021-12-10 | 长沙麓邦光电科技有限公司 | White light interference system |
CN111929036B (en) * | 2020-07-28 | 2022-05-20 | 南京理工大学 | Double Fizeau cavity dynamic short coherence interferometry device and method |
CN112066909B (en) * | 2020-08-24 | 2022-04-08 | 南京理工大学 | Anti-vibration interference measurement method based on inclined plane high-precision extraction |
CN112525070B (en) * | 2020-11-18 | 2022-04-01 | 南京理工大学 | Vibration-resistant white light interference measurement method based on non-uniform sampling correction |
CN113048877A (en) * | 2021-03-16 | 2021-06-29 | 上海乾曜光学科技有限公司 | Anti-vibration phase shifting method applied to phase shifting laser interferometer |
CN113358037B (en) * | 2021-08-10 | 2021-11-09 | 中国计量科学研究院 | Laser displacement measuring device and method |
US12158340B2 (en) | 2021-08-10 | 2024-12-03 | National Institute Of Metrology, China | Device and method for measuring laser displacement |
CN115248083A (en) * | 2022-01-12 | 2022-10-28 | 浙江科技学院 | Method and device for making reference light vertically incident on detection surface in coherent detection light path |
CN119958460B (en) * | 2025-04-11 | 2025-07-15 | 深圳中科飞测科技股份有限公司 | Wafer surface type measuring equipment and measuring method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1085315A (en) * | 1993-07-29 | 1994-04-13 | 陈赋 | Common mode inhibition is floated frequently and is disturbed the heterodyne frequency-shifting-type twin laser interferometer |
US5526118A (en) * | 1993-12-07 | 1996-06-11 | Fuji Photo Film Co., Ltd. | Apparatus for obtaining refractive index distribution information of light scattering media |
CN101033939A (en) * | 2007-02-07 | 2007-09-12 | 中国科学院上海光学精密机械研究所 | Micro-displacement high-precision real-time interferometer |
CN102175141A (en) * | 2011-01-13 | 2011-09-07 | 清华大学 | Double-channel single-frequency laser interferometer |
CN102944169A (en) * | 2012-11-26 | 2013-02-27 | 中国科学院长春光学精密机械与物理研究所 | Simultaneous polarization phase-shifting interferometer |
CN103471533A (en) * | 2013-09-22 | 2013-12-25 | 浙江大学 | Surface appearance anti-vibration interferometry system |
CN106840027A (en) * | 2017-01-20 | 2017-06-13 | 南京理工大学 | The astigmatic compensation type interference checking device and detection method of freeform optics surface |
CN108955565A (en) * | 2018-07-11 | 2018-12-07 | 安徽大学 | Self-adaptive zero compensator space distance self-calibration method in free-form surface interferometer |
CN109470173A (en) * | 2018-12-29 | 2019-03-15 | 华南师范大学 | A dual-channel simultaneous phase-shift interference microscope system |
-
2019
- 2019-04-10 CN CN201910285098.2A patent/CN110017793B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1085315A (en) * | 1993-07-29 | 1994-04-13 | 陈赋 | Common mode inhibition is floated frequently and is disturbed the heterodyne frequency-shifting-type twin laser interferometer |
US5526118A (en) * | 1993-12-07 | 1996-06-11 | Fuji Photo Film Co., Ltd. | Apparatus for obtaining refractive index distribution information of light scattering media |
CN101033939A (en) * | 2007-02-07 | 2007-09-12 | 中国科学院上海光学精密机械研究所 | Micro-displacement high-precision real-time interferometer |
CN102175141A (en) * | 2011-01-13 | 2011-09-07 | 清华大学 | Double-channel single-frequency laser interferometer |
CN102944169A (en) * | 2012-11-26 | 2013-02-27 | 中国科学院长春光学精密机械与物理研究所 | Simultaneous polarization phase-shifting interferometer |
CN103471533A (en) * | 2013-09-22 | 2013-12-25 | 浙江大学 | Surface appearance anti-vibration interferometry system |
CN106840027A (en) * | 2017-01-20 | 2017-06-13 | 南京理工大学 | The astigmatic compensation type interference checking device and detection method of freeform optics surface |
CN108955565A (en) * | 2018-07-11 | 2018-12-07 | 安徽大学 | Self-adaptive zero compensator space distance self-calibration method in free-form surface interferometer |
CN109470173A (en) * | 2018-12-29 | 2019-03-15 | 华南师范大学 | A dual-channel simultaneous phase-shift interference microscope system |
Non-Patent Citations (5)
Title |
---|
Adaptive phase-shifting interferometer with optical heterodyne vibration measuring and compensating system;Wu Dong等;《Proc. of SPIE》;20050210;第451-455页 * |
Dual-channel interferometer for vibration-resistant optical measurement;Mingliang Duan等;《Optics and Lasers in Engineering》;20191212;第105981页 * |
同步移相抗振光干涉测量技术研究进展;左芬;《测试和计量》;20061130;第43-48页 * |
基于双通道剪切干涉的高光谱偏振成像方法;刘成淼等;《光学学报》;20171031;第1011002页 * |
用于相位缺陷检测的动态泰曼干涉仪;马云等;《中国激光》;20171231;第1204009页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110017793A (en) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110017793B (en) | A dual-channel anti-vibration interferometric measurement device and method | |
Brock et al. | Dynamic interferometry | |
CN101788263B (en) | Coaxial Fizeau Synchronous Phase Shifting Interferometer with Adjustable Extended Light Source Illumination | |
CN102507020B (en) | Microlens array-based synchronized phase-shifting interference test method and test device | |
TWI401413B (en) | Apparatus and method for measuring surface topography of an object | |
CN110319769B (en) | Anti-vibration Fizeau interferometry device and method | |
CN104034257A (en) | Synchronous phase shift interference measurement device and method of Fizeau quasi-common optical path structure | |
CN109855743B (en) | Device and method for measuring large-size optical plane by double-frequency laser heterodyne interference phase | |
CN110017794B (en) | Dynamic phase deformation interference measurement device and method | |
CN101776488B (en) | Method for measuring optical phase by using synchronous phase-shifting interference method and implementing device | |
CN104713494B (en) | The dual wavelength tuning interference testing device and method of Fourier transformation phase shift calibration | |
CN103398655B (en) | A kind of wavelength tuning phase shift point diffraction interference measuring method | |
CN105300273B (en) | Dynamic Point Diffraction Interferometer with Adjustable Fringe Contrast | |
CN106338333B (en) | High robust homodyne laser vibration measurer and four steppings based on wave plate yaw | |
CN110186390B (en) | Compact transient multi-wavelength phase-shifting interferometry device and its measurement method | |
CN104330021B (en) | Optical flat self-calibration interference with common path instrument based on acousto-optic heterodyne phase shift | |
CN106094234A (en) | Self-aligning optical path system with polarization beam splitting element | |
CN105300272A (en) | Dynamic point diffraction interferometer based on micro-polaroid array | |
CN102680117B (en) | Common-path radial cutting liquid crystal phase shift interference wave-front sensor | |
CN111207844A (en) | Double-sided multi-plane inclined wavefront interferometer and its detection method | |
CN111929036A (en) | Double Fizeau cavity dynamic short coherence interferometry device and method | |
CN103712554B (en) | Based on the Dual-channel space-time mixing phase shift fizeau interferometer of crossed polarized light | |
CN205942120U (en) | Self-aligning optical path system with polarization beam splitting element | |
CN103983366A (en) | Oblique incidence and reflection type point diffraction plate and interference measuring method thereof | |
CN105785386A (en) | High-precision frequency-modulation continuous wave laser ranging system based on F-P etalon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |