CN101776488B - Method for measuring optical phase by using synchronous phase-shifting interference method and implementing device - Google Patents
Method for measuring optical phase by using synchronous phase-shifting interference method and implementing device Download PDFInfo
- Publication number
- CN101776488B CN101776488B CN2010100344504A CN201010034450A CN101776488B CN 101776488 B CN101776488 B CN 101776488B CN 2010100344504 A CN2010100344504 A CN 2010100344504A CN 201010034450 A CN201010034450 A CN 201010034450A CN 101776488 B CN101776488 B CN 101776488B
- Authority
- CN
- China
- Prior art keywords
- light
- prism
- reflected light
- reflected
- beam splitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000003287 optical effect Effects 0.000 title claims abstract description 31
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 18
- 230000010287 polarization Effects 0.000 claims abstract description 50
- 238000012360 testing method Methods 0.000 claims abstract description 20
- 238000005305 interferometry Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 9
- 238000012937 correction Methods 0.000 abstract description 3
- 238000004441 surface measurement Methods 0.000 abstract description 2
- 238000001444 catalytic combustion detection Methods 0.000 abstract 1
- 230000010363 phase shift Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
一种利用同步移相干涉方法获得光学相位的方法和实现光路,涉及动态检测波面信息的方法和装置。本发明采用半透半反棱镜、偏振分光棱镜对光源进行六分束,同时结合偏振干涉的方法在空域一次采集到六幅同步移相干涉条纹图,这六幅干涉条纹分别成像于六只CCD靶面上。对六幅干涉条纹图进行分析就可以得出测试波面的形状。由于振动的影响对同步移相干涉条纹图的影响是一致的,通过移相算法中相减相除的方法就可以消除振动的影响,这样就实现了适应更多工作环境的高精度波面测量,并且不需要在每次测量前进行PZT线性校正。并且本发明的方法简单,原理清晰,光路中各部件容易获得,整个装置紧凑,易于使用。
A method and device for obtaining optical phase by synchronous phase-shifting interference method and realizing optical path, relating to a method and device for dynamically detecting wave surface information. In the present invention, the semi-transparent and semi-reflective prism and the polarization beam-splitter prism are used to split the light source into six beams, and at the same time, combined with the method of polarization interference, six synchronous phase-shifting interference fringe images are collected in the air domain at one time, and the six interference fringes are respectively imaged on six CCDs. on target. The shape of the test wavefront can be obtained by analyzing the six interference fringe patterns. Since the influence of vibration is consistent with the influence of the synchronous phase-shifting interference fringe pattern, the influence of vibration can be eliminated by subtraction and division in the phase-shifting algorithm, thus realizing high-precision wave surface measurement suitable for more working environments. And there is no need to perform PZT linearity correction before each measurement. Moreover, the method of the present invention is simple, the principle is clear, each component in the optical path is easy to obtain, and the whole device is compact and easy to use.
Description
技术领域technical field
本发明涉及动态检测波面信息的方法和装置,尤其涉及一种利用同步移相干涉方法获得光学相位的方法和实现光路。The invention relates to a method and a device for dynamically detecting wavefront information, in particular to a method for obtaining an optical phase by using a synchronous phase-shifting interference method and realizing an optical path.
背景技术Background technique
在光学波面干涉测量术中,通常将激光作为相干光源,通过分振幅的方法产生两束波面,一束波面投向标准参考镜并返回后形成参考波面,一束波面投向被测件并返回后形成测试波面,参考波面与测试波面在空间相遇形成干涉场,由数字图像采集装置将干涉场以干涉条纹图的形式记录下来,对干涉条纹图进行分析就可以得出测试波面的形状。目前,在国内外商品化激光波面干涉仪中,还广泛使用光学移相测量的方法。这种方法将压电陶瓷变换器(PZT)作为光学移相的致动器件,标准参考镜通过弹性结构与PZT器件联结在一起,当给PZT加上步进电压时,PzT产生步进位移,此位移通过弹性结构传递给标准参考镜,从而可以阶梯式改变参考波面的相位亦即实现光学移相(通常移相步长为90°),在移相过程中采集干涉场可以得到若干幅移相干涉条纹图。通过对多幅移相干涉条纹图的分析可进一步提高波面测量精度。然而,这种PZT光学移相是一种时域移相,当测试环境存在振动时,不同时刻采集的移相干涉图就会引入相位误差,这种误差通常是随机变化并难以消除的,它是时域移相干涉测量中误差的主要来源。即使不考虑环境振动的影响,干涉仪在每次测量前也要对PZT的电压位移特性进行线性校正,以保证测量过程中移相的准确性。鉴于时域PZT光学移相不适合有振动的现场干涉测量,因此最直接的思路是在空域同时产生若干移相干涉场,对这些干涉场进行瞬态同步记录,就可以得到若干幅同步移相干涉条纹图。由于振动的影响对同步移相干涉条纹图的影响是一致的,通过移相算法中相减相除的方法就可以消除振动的影响,这样就实现了适应更多工作环境的高精度波面测量并且不需要在每次测量前进行PZT线性校正。根据2001年JamesE.Millerd和NealJ.Brock等人的研究,采用全息光栅对光束进行四分束,并结合偏振干涉方法,在空间同时得到了四幅移相90度的干涉条纹图,这种方法获得了较好的测量结果。但由于采用全息光栅进行分光,为了不出现不必要的衍射光、不改变入射光 的波面,对光栅制作工艺要求较高,因此这种干涉仪整体成本较高。In optical wavefront interferometry, the laser is usually used as a coherent light source, and two wavefronts are generated by dividing the amplitude. One wavefront is projected to the standard reference mirror and returned to form a reference wavefront, and the other wavefront is projected to the device under test and returned to form a reference wavefront. The test wavefront, the reference wavefront and the test wavefront meet in space to form an interference field, and the digital image acquisition device records the interference field in the form of an interference fringe pattern, and the shape of the test wavefront can be obtained by analyzing the interference fringe pattern. At present, the method of optical phase shift measurement is widely used in domestic and foreign commercialized laser wavefront interferometers. In this method, the piezoelectric ceramic transducer (PZT) is used as an actuating device for optical phase shifting. The standard reference mirror is connected to the PZT device through an elastic structure. When a step voltage is applied to the PZT, the PzT produces a step displacement. This displacement is transmitted to the standard reference mirror through the elastic structure, so that the phase of the reference wavefront can be changed in steps, that is, the optical phase shift can be realized (usually the phase shift step is 90°), and some amplitude shifts can be obtained by collecting the interference field during the phase shift process. Interference fringe pattern. The accuracy of wavefront measurement can be further improved by analyzing multiple phase-shifted interference fringe patterns. However, this PZT optical phase shift is a time-domain phase shift. When there is vibration in the test environment, the phase-shifted interferograms collected at different times will introduce phase errors. This error is usually random and difficult to eliminate. It It is the main source of error in time-domain phase-shifting interferometry. Even if the influence of environmental vibration is not considered, the interferometer must perform linear correction on the voltage displacement characteristic of PZT before each measurement to ensure the accuracy of phase shift during the measurement process. In view of the fact that time-domain PZT optical phase shifting is not suitable for on-site interferometry with vibration, the most direct idea is to generate several phase-shifting interference fields in the air domain at the same time, and record these interference fields synchronously to obtain several synchronous phase-shifting fields. Interference fringe plot. Since the influence of vibration is consistent with the influence of the synchronous phase-shifting interference fringe pattern, the influence of vibration can be eliminated by subtraction and division in the phase-shifting algorithm, thus realizing high-precision wave surface measurement suitable for more working environments and PZT linearity correction is not required before each measurement. According to the research of JamesE.Millerd and NealJ.Brock et al. in 2001, the holographic grating was used to split the beam into four beams, and combined with the polarization interference method, four interference fringe patterns with a phase shift of 90 degrees were simultaneously obtained in space. This method obtained better measurement results. However, due to the use of holographic gratings for light splitting, in order not to appear unnecessary diffracted light and not to change the wavefront of incident light, the requirements for the grating manufacturing process are relatively high, so the overall cost of this type of interferometer is relatively high.
发明内容Contents of the invention
为了克服常规移相式激光平面干涉仪时域测量原理的弊端,本发明提供一种能够利用同步移相干涉方法测量光学相位的光路装置,它采用半透半反棱镜、偏振分光棱镜对光源进行六分束,同时结合偏振干涉的方法在空域一次采集到六幅同步移相干涉条纹图,这六幅干涉条纹分别成像于六只CCD靶面上。In order to overcome the disadvantages of the time-domain measurement principle of the conventional phase-shifting laser plane interferometer, the present invention provides an optical path device that can measure the optical phase by using the synchronous phase-shifting interferometry method. The method of six split beams combined with polarization interference collects six synchronous phase-shifting interference fringe patterns at one time in the airspace, and these six interference fringes are respectively imaged on six CCD target surfaces.
为了实现上述目的,本发明采取了如下得到六幅同步移相干涉条纹图的方法和实现光路:In order to achieve the above object, the present invention adopts the following method and realizes the optical path of obtaining six synchronous phase-shifting interference fringe patterns:
利用同步移相干涉法测量光学相位的方法,通过分振幅的方法产生两束波面,一束波面投向标准参考镜并返回后形成参考波面,另一束波面投向被测件并返回后形成测试波面,参考波面与测试波面在空间相遇形成干涉场,由数字图像采集装置将干涉场以干涉条纹图的形式记录下来,对干涉条纹图进行分析就可以得出测试波面的形状。其具体方法为:以线偏振平面光源作为光源,光源由第一个半透半反棱镜分成两束互相垂直的透射光I1和反射光I2;其中透射光I1经第二个半透半反棱镜再分成两束互相垂直的透射光I11和反射光I12;其中透射光I11由被测镜反射返回,再经第二个半透半反棱镜分成两束互相垂直的透射光I111和反射光I112;其中透射光I111光返回至第一个半透半反棱镜,又由第一个半透半反棱镜分成两束互相垂直的透射光和反射光I1112;其中反射光I1112经八分之一波片由标准参考镜反射返回再次由第一个半透半反棱镜分成两束互相垂直的透射光I11121和反射光I11122;其中透射光I11121由偏振分光棱镜分成两束传播方向和偏振态都互相垂直的透射光I111211和反射光I111212,其中反射光I111212与反射光I2经偏振分光棱镜分成的反射光I22叠加发生干涉,得到第一幅干涉条纹图。透射光I111211与反射光I2经偏振分光棱镜分成的透射光I21叠加发生干涉,得到第二幅干涉条纹图。反射光I11122再次经第二个半透半反棱镜分成两束互相垂直的透射光I111221和反射光I111222;其中透射光I111221再次由被测镜反射返回,又一次经第二个半透半反棱镜分成两束互相垂直的透射光I1112211和反射光I1112212;其中反射光I1112212由偏振分光棱镜分成两束传播方向和偏振态都互相垂直的透射光I11122121和反射光I11122122,其中反射光I11122122与反射 光I112经偏振分光棱镜11分成的反射光I1122叠加发生干涉,得到第三幅干涉条纹图。透射光I11122121与反射光I112经偏振分光棱镜分成的透射光I1121叠加发生干涉,得到第四幅干涉条纹图。反射光I111222由偏振分光棱镜分成两束传播方向和偏振态都互相垂直的透射光I1112221和反射光I1112222,其中反射光I1112222与反射光I12经偏振分光棱镜11分成的反射光I122叠加发生干涉,得到第五幅干涉条纹图。透射光I1112221与反射光I12经偏振分光棱镜分成的透射光I121叠加发生干涉,得到第六幅干涉条纹图。上述第一个半透半反棱镜、第二个半透半反棱镜、偏振分光棱镜、偏振分光棱镜、偏振分光棱镜皆可将一束光分为两束互相垂直的光透射光和反射光;且第一个半透半反棱镜、第二个半透半反棱镜对被测镜反射返回的光的反射存在半波损失;偏振分光棱镜、偏振分光棱镜、偏振分光棱镜产生的透射光和反射光的偏振态相互垂直。上述六幅干涉条纹图六只CCD靶面在空域一次采集,利用移相算法对各干涉条纹图的干涉光强值进行计算得到光学相位。Using the method of synchronous phase-shifting interferometry to measure the optical phase, two beams of wavefronts are generated by the method of dividing the amplitude, one beam of wavefronts is projected to the standard reference mirror and returns to form a reference wavefront, and the other beam of wavefronts is projected to the DUT and returned to form a test wavefront , the reference wavefront and the test wavefront meet in space to form an interference field, and the digital image acquisition device records the interference field in the form of an interference fringe pattern, and the shape of the test wavefront can be obtained by analyzing the interference fringe pattern. The specific method is: using a linearly polarized plane light source as the light source, the light source is divided into two beams of transmitted light I 1 and reflected light I 2 perpendicular to each other by the first semi-transparent prism; wherein the transmitted light I 1 passes through the second semi-transparent The half-reflective prism is then divided into two beams of transmitted light I 11 and reflected light I 12 perpendicular to each other; the transmitted light I 11 is reflected back by the measured mirror, and then divided into two beams of transmitted light perpendicular to each other by the second half-reflective prism I 111 and reflected light I 112 ; wherein the transmitted light I 111 light returns to the first half-reflective prism, and is divided into two beams of mutually perpendicular transmitted light and reflected light I 1112 by the first half-reflective prism; wherein The reflected light I 1112 is reflected by the standard reference mirror through the one-eighth wave plate and returns to be divided into two beams of mutually perpendicular transmitted light I 11121 and reflected light I 11122 by the first half-transparent prism again; wherein the transmitted light I 11121 is polarized by The beam-splitting prism divides two beams of transmitted light I 111211 and reflected light I 111212 whose propagation directions and polarization states are perpendicular to each other, wherein the reflected light I 111212 and the reflected light I 22 divided by the polarization beam-splitting prism superimpose and interfere, and the first A graph of interference fringes. The transmitted light I 111211 and the reflected light I 2 are superimposed and interfered with the transmitted light I 21 split by the polarizing beam splitter, and the second interference fringe pattern is obtained. The reflected light I 11122 is divided into two beams of transmitted light I 111221 and reflected light I 111222 which are perpendicular to each other through the second half-reflective prism again; the transmitted light I 111221 is reflected back by the measured mirror again, and passes through the second semi-reflective prism again. The transflective prism is divided into two beams of mutually perpendicular transmitted light I 1112211 and reflected light I 1112212 ; wherein the reflected light I 1112212 is divided into two beams of transmitted light I 11122121 and reflected light I 11122122 whose propagation direction and polarization state are all perpendicular to each other by the polarization beam splitter , where the reflected light I 11122122 overlaps and interferes with the reflected light I 1122 split by the polarizing
上述利用同步移相干涉法测量光学相位的方法可以用如下的光路实现:采用线性偏振稳频激光器作为光源,其输出的激光首先透过可旋转的半波片,后进入扩束系统,得到线偏振平面光源。线偏振平面光源的投射方向上放置与投射光线成-45°的第一个半透半反棱镜,在其透射光线方向上放置与透射光线成+45°的第二个半透半反棱镜,并且在第二个半透半反棱镜的透射光线方向上放置与透射光线成90°的被测镜。在第一个半透半反棱镜的反射光线方向上放置与反射光线成-45°的偏振分光棱镜,并在相反方向上依次放置与反射光线成90°的八分之一波片和标准参考镜。在第二个半透半反棱镜4的反射光线方向上放置与反射光线成+45°的偏振分光棱镜,并在相反方向上放置与反射光线成-45°的偏振分光棱镜。其中,第一个半透半反棱镜设置为当光线通过第一个半透半反棱镜反射投向八分之一波片和标准参考镜及反方向投射时存在半波损失;第二个半透半反棱镜设置为当光线通过第二个半透半反棱镜反射投向偏振分光棱镜及反方向投射时存在半波损失;偏振分光棱镜、偏振分光棱镜、偏振分光棱镜皆为可使透射光和反射光的偏振态相互垂直的半透半反棱镜;八分之一波片的快轴在垂直于光线投射的方向。The above-mentioned method of measuring optical phase by synchronous phase-shifting interferometry can be realized with the following optical path: a linear polarization-stabilized laser is used as the light source, and the output laser first passes through a rotatable half-wave plate, and then enters a beam expander system to obtain a linear polarization Polarized flat light source. Place the first half-reflective prism at -45° to the projected light in the projection direction of the linearly polarized plane light source, and place the second half-reflective prism at +45° to the transmitted light in the direction of the transmitted light. And place the mirror under test at a 90° angle to the transmitted light in the direction of the transmitted light of the second half-reflective prism. Place a polarizing beamsplitter prism at -45° to the reflected light in the direction of the reflected light of the first half-reflective prism, and place an eighth-wave plate and a standard reference at 90° to the reflected light in the opposite direction mirror. In the reflected light direction of the second half-
所述扩束系统由两个凸透镜组成。The beam expander system consists of two convex lenses.
本发明的方法简单,原理清晰,光路中各部件容易获得,整个装置紧凑,易于使用。运用本发明介绍的方法和装置可以实现高精度光学干涉的高精度动态测量。The method of the invention is simple, the principle is clear, each component in the optical path is easy to obtain, and the whole device is compact and easy to use. The method and device introduced by the invention can realize high-precision dynamic measurement of high-precision optical interference.
附图说明Description of drawings
图1是本发明提出的利用同步移相干涉方法测量光学相位的分光、成像及同步移相装置的光路和结构示意图。Fig. 1 is a schematic diagram of the optical path and structure of the spectroscopic, imaging and synchronous phase shifting device for measuring the optical phase by using the synchronous phase shifting interference method proposed by the present invention.
图中:1、输出为线性偏振激光的稳频激光器,2、半波片,3、扩束系统,4、半透半反棱镜,5、偏振分光棱镜,6、标准参考镜,7、八分之一波片,8、偏振分光棱镜,9、半透半反棱镜,10、被测镜,11、偏振分光棱镜,图中(1)、(2)、(3)、(4)、(5)、(6)为由相同型号的CCD探测器测得的互相移相90度的六幅干涉条纹图的光强值。In the figure: 1. Frequency-stabilized laser whose output is linearly polarized laser, 2. Half-wave plate, 3. Beam expander system, 4. Semi-transparent and half-reflective prism, 5. Polarizing beam splitter prism, 6. Standard reference mirror, 7, 8 One-third wave plate, 8, polarization beam splitter prism, 9, semi-transparent and half mirror prism, 10, measured mirror, 11, polarization beam splitter prism, among the figure (1), (2), (3), (4), (5) and (6) are the light intensity values of the six interference fringe patterns with mutual phase shift of 90 degrees measured by the same type of CCD detector.
具体实施方式Detailed ways
下面结合附图和实施例,详细说明本发明所提出的利用同步移相干涉方法测量光学相位装置中分光、成像及同步移相的方法和装置。The method and device for measuring light splitting, imaging and synchronous phase shifting in an optical phase device using the synchronous phase shifting interference method proposed by the present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
实施例:如图1所示,稳频激光器1输出线性偏振激光,利用半波片2将其透振方向调整到水平方向上,再经过扩束系统3将激光束扩束到线性偏振平面光源,导入由半透半反棱镜4、9和偏振分光棱镜5、8、11组成的偏振干涉系统。各部件通过可调节光具座安置于光学平台,将各部件光路调于同以水平面。其中,扩束系统3由两个焦距分别为5cm和8cm的凸透镜组成,半透半反棱镜4、9和偏振分光棱镜5、8、11分别由两只直角棱镜斜边相对组成,半透半反棱镜4、9的两只直角棱镜采用不同的介质,使得从半透半反棱镜4的上表面入射的反射光存在半波损失,从半透半反棱镜9的下表面入射的反射光存在半波损失;偏振分光棱镜5、8、11使透射光和反射光的偏振态垂直。Embodiment: As shown in Figure 1, the frequency-stabilized
第一幅干涉条纹图:扩束系统3出射的激光束被半透半反棱镜4均匀分成两束,其中透射光经半透半反棱镜9后射向被测镜10,返回后再次透射半透半反棱镜9和经半透半反棱镜4反射,反射光再经过八分之一波片7后投向标准参考镜6,返回后经过八分之一波片7,最后透射半透半反棱镜4和经偏振分光棱镜5反射与扩束系统3出射经半透半反棱镜4反射和偏振分光棱镜5反射的另一部分光进行干涉得到第一幅干涉条纹图(1)。The first interference fringe diagram: the laser beam emitted by the
第二幅干涉条纹图:扩束系统3出射的激光束被半透半反棱镜4均匀分成两束,其中透射光经半透半反棱镜9后射向被测镜10,返回后再次透射半透半反棱镜9和经半透半反棱镜4反射,反射光再经过八分之一波片7后投向标准参考镜6,返回后经过八分之一波片7,最后透射半透半反棱镜4和经偏振分光棱镜5透射与扩束系统3出射经半透半反棱镜4反射和偏振分光棱镜5透射的另一部分光进行干涉得到第二幅干涉条纹图(2)。The second interference fringe diagram: the laser beam emitted by the
第三幅干涉条纹图:形成此干涉条纹图的第一束光为:扩束系统3出射的激光束经半透半反棱镜4和9后投向被测镜10,返回后再次经半透半反棱镜9透射和半透半反棱镜4反射射向八分之一波片,出射后射向标准参考镜6,返回后再次经过八分之一波片7和半透半反棱镜4反射以及半透半反棱镜9透射到被测镜10,返回后再经半透半反棱镜9反射和偏振分光棱镜11反射得到第一束光;形成干涉条纹图的第二束光为:扩束系统3出射的激光束经半透半反棱镜4和9后投向被测镜10,返回后经半透半反棱镜9反射和偏振分光棱镜11反射得到第二束光。此两束光干涉得到第三幅干涉条纹图(3)。The third interference fringe pattern: the first beam of light that forms this interference fringe pattern is: the laser beam emitted by the
第四幅干涉条纹图:形成此干涉条纹图的第一束光为:扩束系统3出射的激光束经半透半反棱镜4和9后投向被测镜10,返回后再次经半透半反棱镜9透射和半透半反棱镜4反射射向八分之一波片,出射后射向标准参考镜6,返回后再次经过八分之一波片7和半透半反棱镜4反射以及半透半反棱镜9透射到被测镜10,返回后再经半透半反棱镜9反射和偏振分光棱镜11透射得到第一束光;形成干涉条纹图的第二束光为:扩束系统3出射的激光束经半透半反棱镜4和9后投向被测镜10,返回后经半透半反棱镜9反射和偏振分光棱镜11透射得到第二束光。此两束光干涉得到第四幅干涉条纹图(4)。The fourth interference fringe pattern: the first beam of light forming this interference fringe pattern is: the laser beam emitted by the
第五幅干涉条纹图:形成此干涉条纹图的第一束光为:扩束系统3出射的激光束经半透半反棱镜4和9后投向被测镜10,返回后再次经半透半反棱镜9透射和半透半反棱镜4反射射向八分之一波片,出射后射向标准参考镜6,返回后再次经过八分之一波片7和半透半反棱镜4反射以及半透半反棱镜9反射投射到偏振分光棱镜8,经偏振分光棱镜8分光反射得到第一束光;形成干涉条纹图的第二束光为:扩束系统3出射的激光束经半透半反棱镜4反射和半透半反棱镜9反射投射到偏振分光棱镜8,经偏振分光棱镜8分光反射得到第二束 光。此两束光干涉得到第五幅干涉条纹图(5)。The fifth interference fringe diagram: the first beam of light that forms this interference fringe diagram is: the laser beam emitted by the
第六幅干涉条纹图:形成此干涉条纹图的第一束光为:扩束系统3出射的激光束经半透半反棱镜4和9后投向被测镜10,返回后再次经半透半反棱镜9透射和半透半反棱镜4反射射向八分之一波片,出射后射向标准参考镜6,返回后再次经过八分之一波片7和半透半反棱镜4反射以及半透半反棱镜9反射投射到偏振分光棱镜8,经偏振分光棱镜8分光透射得到第一束光;形成干涉条纹图的第二束光为:扩束系统3出射的激光束经半透半反棱镜4反射和半透半反棱镜9反射投射到偏振分光棱镜8,经偏振分光棱镜8分光透射得到第二束光。此两束光干涉得到第六幅干涉条纹图(6)。The sixth interference fringe pattern: the first beam of light forming this interference fringe pattern is: the laser beam emitted by the
利用CCD探测器同时采集六幅干涉条纹图。The CCD detector is used to collect six interference fringe images simultaneously.
最后可由各干涉条纹图的干涉光强值利用移相算法得到光学相位,从而分析被测镜面的情况。Finally, the optical phase can be obtained by using the phase-shift algorithm from the interference light intensity values of each interference fringe pattern, so as to analyze the situation of the measured mirror surface.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010100344504A CN101776488B (en) | 2010-01-21 | 2010-01-21 | Method for measuring optical phase by using synchronous phase-shifting interference method and implementing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010100344504A CN101776488B (en) | 2010-01-21 | 2010-01-21 | Method for measuring optical phase by using synchronous phase-shifting interference method and implementing device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101776488A CN101776488A (en) | 2010-07-14 |
CN101776488B true CN101776488B (en) | 2011-06-08 |
Family
ID=42513006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010100344504A Expired - Fee Related CN101776488B (en) | 2010-01-21 | 2010-01-21 | Method for measuring optical phase by using synchronous phase-shifting interference method and implementing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101776488B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102175333B (en) * | 2011-01-25 | 2014-06-18 | 北京工业大学 | Method and device for measuring laser pulse width and relative phase by simultaneous phase-shifting interferometry |
CN102288104B (en) * | 2011-07-22 | 2014-02-12 | 中国科学院上海光学精密机械研究所 | Six axis 4 subdivision interferometer |
CN102507020B (en) * | 2011-11-01 | 2013-05-08 | 南京理工大学 | Microlens array-based synchronized phase-shifting interference test method and test device |
CN103364090B (en) * | 2013-07-22 | 2015-10-21 | 北京工业大学 | Measure the device and method that ultra-short pulse laser propagates phase velocity in media as well |
GB201313751D0 (en) * | 2013-08-01 | 2013-09-18 | Renishaw Plc | Rotation Detection Apparatus |
CN103630336B (en) * | 2013-12-02 | 2016-04-20 | 南京理工大学 | The dynamic interferometry method of array is postponed based on random phase retardation |
CN106949853B (en) * | 2017-04-12 | 2019-02-05 | 北京理工大学 | Synchronous phase-shifting interferometry system and method based on liquid crystal computational hologram |
CN109520428B (en) * | 2018-11-09 | 2020-01-31 | 中国科学院长春光学精密机械与物理研究所 | A displacement measuring optical system |
CN109765695B (en) * | 2019-03-29 | 2021-09-24 | 京东方科技集团股份有限公司 | Display system and display device |
CN110361098B (en) * | 2019-08-26 | 2020-05-29 | 苏州大学 | A Method for Realizing Complex Coherence Measurement of Random Light Field Using Light Intensity Correlation |
CN112344878B (en) * | 2020-11-11 | 2022-02-22 | 北京理工大学 | Polarization synchronous phase-shifting interference measuring device and method |
-
2010
- 2010-01-21 CN CN2010100344504A patent/CN101776488B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101776488A (en) | 2010-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101776488B (en) | Method for measuring optical phase by using synchronous phase-shifting interference method and implementing device | |
CN100552376C (en) | Method and device for light splitting, imaging and synchronous phase shifting in optical interferometry | |
US9880377B1 (en) | Multiple wavelengths real time phase shift interference microscopy | |
CN102944169B (en) | A kind of synchronous polarization phase-shifting interferometer | |
CN104034257B (en) | Synchronous phase shift interference measurement device and method of Fizeau quasi-common optical path structure | |
CN102221342B (en) | Method for measuring object deformation by time-domain multi-wavelength heterodyne speckle interference | |
Kimbrough et al. | Low-coherence vibration insensitive Fizeau interferometer | |
CN101893429B (en) | Super-precision surface measuring system based on polarization phase-shifting microscopy interference technology | |
US20070211256A1 (en) | Linear-carrier phase-mask interferometer | |
CN104296677B (en) | Common light path heterodyne ineterferometer based on low frequency differences acousto-optic frequency shifters phase shift | |
CN108061515B (en) | Phase shift interferometer | |
CN102889853B (en) | Spectral synchronous phase-shift common-path interference microscopic-detection device and detection method | |
CN110319769B (en) | Anti-vibration Fizeau interferometry device and method | |
WO2005052502A2 (en) | Pixelated phase-mask interferometer | |
CN104330021B (en) | Optical flat self-calibration interference with common path instrument based on acousto-optic heterodyne phase shift | |
CN104713494B (en) | The dual wavelength tuning interference testing device and method of Fourier transformation phase shift calibration | |
CN109470173B (en) | Double-channel simultaneous phase shift interference microscope system | |
CN101324421A (en) | Synchronous Phase Shifting Fizeau Interferometer | |
CN110017793A (en) | A kind of Dual-channel type anti-vibration interferometric measuring means and method | |
CN104296678B (en) | Heterodyne interferometer based on phase shift of low-frequency-difference acousto-optic frequency shifter | |
CN104359397B (en) | Self-calibration interference with common path instrument in surface after collimating mirror based on acousto-optic heterodyne phase shift | |
Chen et al. | 3-D surface profilometry using simultaneous phase-shifting interferometry | |
CN103712569B (en) | Based on single image fast phase shift system and the method for detecting phases of deflection angle | |
WO2008030580A2 (en) | Synchronous frequency-shift mechanism in fizeau interferometer | |
CN103712554B (en) | Based on the Dual-channel space-time mixing phase shift fizeau interferometer of crossed polarized light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20100714 Assignee: BEIJING SWT SCIENCE & TECHNOLOGY DEVELOPMENT CO., LTD. Assignor: Beijing University of Technology Contract record no.: 2013990000375 Denomination of invention: Method for measuring optical phase by using synchronous phase-shifting interference method and implementing device Granted publication date: 20110608 License type: Exclusive License Record date: 20130704 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110608 Termination date: 20210121 |