[go: up one dir, main page]

CN110014829B - Double-overrunning clutch mechanical shaft end output self-adaptive automatic speed-changing electric drive system - Google Patents

Double-overrunning clutch mechanical shaft end output self-adaptive automatic speed-changing electric drive system Download PDF

Info

Publication number
CN110014829B
CN110014829B CN201910305591.6A CN201910305591A CN110014829B CN 110014829 B CN110014829 B CN 110014829B CN 201910305591 A CN201910305591 A CN 201910305591A CN 110014829 B CN110014829 B CN 110014829B
Authority
CN
China
Prior art keywords
shaft
transmission
gear
power
overrunning clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910305591.6A
Other languages
Chinese (zh)
Other versions
CN110014829A (en
Inventor
薛荣生
陈俊杰
邓天仪
谭志康
邱光印
王靖
邓云帆
梁品权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201910305591.6A priority Critical patent/CN110014829B/en
Publication of CN110014829A publication Critical patent/CN110014829A/en
Priority to PCT/CN2020/084066 priority patent/WO2020211695A1/en
Application granted granted Critical
Publication of CN110014829B publication Critical patent/CN110014829B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing of change-speed gearing of mechanical type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by parallel flow paths, e.g. dual clutch transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structure Of Transmissions (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

The invention discloses a double-overrunning clutch mechanical shaft end output self-adaptive automatic speed change electric drive system which comprises a speed change system, a shaft sleeve and a third shaft, wherein the speed change system comprises a low-speed gear transmission mechanism, a reverse gear transmission mechanism and a self-adaptive speed change assembly; the reverse gear transmission mechanism is provided with a transmission ratio I for transmitting reverse gear power from the auxiliary shaft to the main shaft, the low-speed gear transmission mechanism is provided with a transmission ratio II for transmitting low-speed gear power from the auxiliary shaft to the main shaft, the transmission ratio I is larger than or equal to the transmission ratio II, and the power is output through the power output shaft; the invention utilizes the reasonable matching of the two overrunning clutches and reasonably sets the transmission ratio, so that the whole structure is simple and compact, the reverse gear transmission and the low-speed and high-speed gear transmissions share a transmission route, no interference occurs, the whole performance is ensured, and the power is output by the power output shaft sleeve through the third shaft, thereby being not only suitable for the field of electric vehicles, but also suitable for the field of other torque-variable mechanical transmissions; meanwhile, the shaft sleeve output can also ensure that the output torque is larger.

Description

双超越离合机械式轴端输出自适应自动变速电驱动系统Double overrunning clutch mechanical shaft end output adaptive automatic transmission electric drive system

技术领域technical field

本发明涉及一种变速器,特别涉及一种双超越离合机械式轴端输出自适应自动变速电驱动系统。The invention relates to a transmission, in particular to a double overrunning clutch mechanical shaft end output self-adaptive automatic transmission electric drive system.

背景技术Background technique

机械传动系统一般使用工况复杂,需要分配扭矩实现不同负载和转速的传动,以电动车为例,行驶环境复杂多变。且现有的电动汽车普遍采用的电驱动方法是电机驱动定速比,高效率合理区间狭窄有限,造成恶性循环,由此产生下列问题:The mechanical transmission system generally has complex working conditions, and needs to allocate torque to realize the transmission of different loads and speeds. Taking electric vehicles as an example, the driving environment is complex and changeable. In addition, the electric drive method commonly used in the existing electric vehicles is that the motor drives the fixed speed ratio, and the high efficiency and reasonable range are narrow and limited, resulting in a vicious circle, resulting in the following problems:

1.只能满足在某一工况的转矩的范围内工作。1. It can only work within the torque range of a certain working condition.

2.在定速比情况下为满足道路工况,只能提高电机的转速,增加电机制造成本。2. In order to meet the road conditions under the condition of constant speed ratio, the speed of the motor can only be increased, and the manufacturing cost of the motor can be increased.

3.电机发热,使用效率和寿命下降;3. The motor heats up, and the use efficiency and life are reduced;

4.如要满足电动汽车复杂工况对转矩的要求,只能通过不断增大电机电流和转速,只能不顾及大电流放电对电池的危害,只能利用电机的峰值功率、峰值扭矩和峰值大电流来驱动电机,完全不遵循动力电池组的放电特性;4. To meet the torque requirements of electric vehicles in complex working conditions, we can only increase the motor current and speed by continuously increasing the motor current and speed. We can only ignore the harm of high current discharge to the battery, and we can only use the peak power, peak torque and The motor is driven by a high peak current, which does not follow the discharge characteristics of the power battery pack at all;

5.由于大电流放电持续时间长,动力电池组电容量急剧下降,峰值大电流放电使电池急剧升温、升温引起电芯内阻急剧增大,电池受到极大的冲击而又带来无法挽回的损害,蓄电容量和电芯寿命锐减,充电循环次数快速减少,会带来续航里程越来越短的问题;5. Due to the long duration of high-current discharge, the capacity of the power battery pack drops sharply, and the peak high-current discharge causes the battery to heat up rapidly, and the temperature rises causes a sharp increase in the internal resistance of the cell, and the battery is greatly impacted and irreparable. Damage, storage capacity and battery life are sharply reduced, and the number of charging cycles is rapidly reduced, which will bring about the problem of shorter and shorter cruising range;

6.能量回收效率低;6. Low energy recovery efficiency;

7.采用高速电机加减速机构本质是增功增矩,不能实现高效率转换,在低速重载工况下,会带来电机性能迅速恶化、阻转下效率低的问题;大电流供电和频繁大电流冲击,过载引起的电池、控制器、电器和线缆不挡损坏,尤其是大大电池缩短循环使命,经济性差;7. The use of high-speed motor acceleration and deceleration mechanism is essentially to increase power and torque, and cannot achieve high-efficiency conversion. Under low-speed and heavy-load conditions, it will bring about the problems of rapid deterioration of motor performance and low efficiency under resistance to rotation; high current power supply and frequent High current impact, the battery, controller, electrical appliances and cables caused by overload will not be damaged, especially if the battery greatly shortens the cycle mission, the economy is poor;

但是,现有技术由以上利用定速比的驱动方法和技术路线存在致命缺陷而又无法克服。However, the prior art has fatal flaws that cannot be overcome due to the above driving method and technical route utilizing a constant speed ratio.

现有的自动变速器为多属性控制,采用电磁阀和伺服电机,通过同步器、拨叉和齿环等机械零部件实现升挡和降挡。机抅组成零部件多,必须切断动力、这时电机速度瞬间升到最高,而汽车行驶动力突然消失,车速在行驶阻力作用下速降,算法复杂难以实现适时同步控制,且要求切断转换时间在短时间内,顿挫感强,可靠性差等;存在着安全性、舒适性、可靠性等问题。The existing automatic transmission is multi-attribute control, using solenoid valves and servo motors to achieve upshifts and downshifts through mechanical parts such as synchronizers, shift forks and gear rings. There are many parts and components in the machine, and the power must be cut off. At this time, the speed of the motor rises to the highest instantaneously, and the driving power of the car suddenly disappears, and the speed of the vehicle drops rapidly under the action of driving resistance. In a short period of time, there is a strong sense of frustration and poor reliability; there are problems such as safety, comfort, and reliability.

为了解决以上问题,本申请发明人发明了一系列的凸轮自适应自动变速装置,能根据行驶阻力检测驱动扭矩—转速以及行驶阻力—车速信号,使电机或发动机输出功率与车辆行驶状况始终处于最佳匹配状态,实现车辆驱动力矩与综合行驶阻力的平衡控制,凸轮自适应自动变速装置负荷随行驶力变化改变传动比,在不切断驱动力的情况下自适应随行驶阻力变化自动进行换挡变速,使电机或发动机始终在高效率区高速输出扭矩;可以满足山区、丘陵和重负荷条件下机动车辆运行平稳,提高安全性;采用摩擦盘形成分离结合的结构,具有反应灵敏的优点,且轴向尺寸较小,很好的解决了电动车存在的上述问题。虽然具有上述优点,凸轮自适应自动变速装置由于采用机械式自动变速结构上,适宜电动摩托车和电动自行车的单向传递动力,不适宜需要双向驱动的机动车和机械装置的变速器,若采用传统倒挡传动机构,不但会增加变速器整体的体积以及结构的复杂程度,而且与凸轮自适应自动变速装置不能很好地融合。In order to solve the above problems, the inventors of the present application have invented a series of cam adaptive automatic transmission devices, which can detect the driving torque-rotation speed and the driving resistance-vehicle speed signal according to the driving resistance, so that the output power of the motor or engine and the driving conditions of the vehicle are always in the best position. The optimal matching state realizes the balanced control of the driving torque of the vehicle and the comprehensive driving resistance. The load of the cam adaptive automatic transmission changes the transmission ratio with the change of the driving force, and automatically performs gear shifting according to the change of the driving resistance without cutting off the driving force. , so that the motor or engine can always output torque at high speed in the high-efficiency area; it can meet the requirements of stable operation of motor vehicles in mountainous areas, hills and heavy loads, and improve safety; the friction disc is used to form a separate and combined structure, which has the advantages of sensitive response, and the shaft The size is small, which solves the above-mentioned problems of electric vehicles very well. Although it has the above advantages, the cam adaptive automatic transmission device is suitable for the one-way power transmission of electric motorcycles and electric bicycles due to the mechanical automatic transmission structure, and is not suitable for the transmission of motor vehicles and mechanical devices that require two-way drive. The reverse gear transmission mechanism will not only increase the overall volume of the transmission and the complexity of the structure, but also cannot be well integrated with the cam adaptive automatic transmission device.

因此,需要一种对上述凸轮自适应自动变速装置进行改进,增加适应能力较强的倒挡传动机构,装置不但能够自适应随行驶阻力变化不切断驱动力的情况下自动进行换挡变速,而且能解决双向驱动工况下,均能满足复杂条件下高效率道路正向和反向行驶的问题,且设置简单紧凑、与凸轮自适应自动变速机构配合顺畅自然,降低制造成本,保证传动的稳定性。Therefore, there is a need to improve the above-mentioned cam adaptive automatic transmission device and add a reverse gear transmission mechanism with strong adaptability. It can solve the problem of forward and reverse driving on high-efficiency roads under complex conditions under two-way driving conditions, and the setting is simple and compact, and the cam adaptive automatic transmission mechanism cooperates smoothly and naturally, reducing manufacturing costs and ensuring transmission stability. sex.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明的目的是提供一种双超越离合机械式轴端输出自适应自动变速电驱动系统,增加适应能力较强的倒挡传动机构,装置不但能够自适应随行驶阻力变化不切断驱动力的情况下自动进行换挡变速,而且能解决双向驱动工况下,均能满足复杂条件下高效率道路正向和反向行驶的问题,且设置简单紧凑、与凸轮自适应自动变速机构配合顺畅自然,降低制造成本,保证传动的稳定性。In view of this, the purpose of the present invention is to provide a double overrunning clutch mechanical shaft end output self-adaptive automatic transmission electric drive system, adding a reverse gear transmission mechanism with strong adaptability, the device can not only adapt to the change of driving resistance without cutting off. Under the condition of driving force, the gear shift is automatically performed, and it can solve the problem of forward and reverse driving on high-efficiency roads under complex conditions under two-way driving conditions, and the setting is simple and compact, and the cam adaptive automatic transmission mechanism Smooth and natural coordination, reducing manufacturing costs and ensuring transmission stability.

本发明的双超越离合机械式轴端输出自适应自动变速电驱动系统,包括主轴和主轴上的变速系统,所述变速系统包括低速挡传动机构、倒挡传动机构和自适应变速组件;The dual overrunning clutch mechanical shaft end output adaptive automatic transmission electric drive system of the present invention includes a main shaft and a transmission system on the main shaft, and the transmission system includes a low-speed transmission mechanism, a reverse transmission mechanism and an adaptive transmission assembly;

自适应变速组件包括从动摩擦件、主动摩擦件和变速弹性元件;The adaptive shifting assembly includes a driven friction piece, an active friction piece and a shift elastic element;

主动摩擦件和从动摩擦件以摩擦面相互配合的方式形成摩擦传动副,所述从动摩擦件以可轴向滑动圆周方向传动的方式设置于主轴,变速弹性元件施加使从动摩擦件与主动摩擦件贴合传动的预紧力,所述从动摩擦件通过轴向凸轮副将动力输出,所述轴向凸轮副将动力输出时,对从动摩擦件施加与变速弹性元件预紧力相反的轴向分力;驱动动力通过一第一超越离合器将动力输入至所述主动摩擦件;The active friction piece and the driven friction piece form a friction transmission pair in a way that the friction surfaces cooperate with each other. The driven friction piece is arranged on the main shaft in a manner that can be axially slid and transmitted in the circumferential direction. In accordance with the pre-tightening force of the transmission, the driven friction piece outputs power through the axial cam pair, and when the axial cam pair outputs the power, an axial component force opposite to the pre-tightening force of the shifting elastic element is applied to the driven friction piece; The driving power is input to the active friction member through a first overrunning clutch;

还包括副轴,所述驱动动力还输入副轴;It also includes a secondary shaft, and the driving power is also input to the secondary shaft;

所述低速挡传动机构包括第二超越离合器,所述副轴通过第二超越离合器将低速挡动力传递至主轴;The low-speed gear transmission mechanism includes a second overrunning clutch, and the secondary shaft transmits the low-speed gear power to the main shaft through the second overrunning clutch;

所述倒挡传动机构以可将倒挡动力传递至主轴或者断开倒挡动力;The reverse gear transmission mechanism can transmit the reverse gear power to the main shaft or disconnect the reverse gear power;

所述倒挡传动机构具有将倒挡动力从副轴传递至主轴的传动比Ⅰ,所述低速挡传动机构具有将低速挡动力从副轴传递至主轴的传动比Ⅱ,传动比Ⅰ大于等于传动比Ⅱ;The reverse gear transmission mechanism has a transmission ratio I for transmitting the reverse gear power from the auxiliary shaft to the main shaft, and the low-speed gear transmission mechanism has a transmission ratio II for transmitting the low-speed gear power from the auxiliary shaft to the main shaft, and the transmission ratio I is greater than or equal to the transmission. ratio II;

与所述轴向凸轮副传动连接设有将动力输出的动力输出轴。A power output shaft for outputting power is provided in driving connection with the axial cam pair.

进一步,所述驱动动力由一驱动过渡套输入,所述驱动过渡套传动连接第一超越离合器的外圈,所述第一超越离合器的内圈与主动摩擦件传动连接;所述驱动过渡套还将动力通过第一超越离合器外圈输入副轴。Further, the driving power is input by a driving transition sleeve, the driving transition sleeve is drivingly connected to the outer ring of the first overrunning clutch, and the inner ring of the first overrunning clutch is drivingly connected to the active friction member; the driving transition sleeve is also The power is input to the countershaft through the outer ring of the first overrunning clutch.

进一步,所述轴向凸轮副由带有端面凸轮的凸轮轴套和从动摩擦件带有的端面凸轮配合形成,所述凸轮轴套转动配合外套于主轴,所述从动摩擦件传动配合且轴向可滑动的外套于主轴,凸轮轴套传动配合设有将动力输出的第一动力输出主动齿轮,同时,凸轮轴套还将动力输出至副轴。Further, the axial cam pair is formed by a cam shaft sleeve with an end face cam and an end face cam carried by the driven friction piece, the cam shaft sleeve is rotatably fitted over the main shaft, and the driven friction piece is drive-fitted and axially fitted. The slidable outer sleeve is on the main shaft, and the camshaft sleeve is equipped with a first power output driving gear for outputting power, and at the same time, the camshaft sleeve also outputs the power to the auxiliary shaft.

还包括动力输出齿轮组,所述动力输出齿轮组包括中间轴、与第一动力输出主动齿轮啮合传动且与中间轴传动配合的第一动力输出从动齿轮、与中间轴传动配合的第二动力输出主动齿轮和与第二动力输出主动齿轮传动啮合的第二动力输出从动齿轮,所述第二动力输出从动齿轮与动力输出轴传动配合。It also includes a power output gear set, the power output gear set includes an intermediate shaft, a first power output driven gear that meshes with the first power output driving gear and is drivingly matched with the intermediate shaft, and a second power output that cooperates with the intermediate shaft. an output driving gear and a second power output driven gear in driving engagement with the second power output driving gear, the second power output driven gear is in driving cooperation with the power output shaft.

进一步,所述低速挡传动机构还包括低速挡从动齿轮和与低速挡从动齿轮啮合的低速挡主动齿轮,所述第二超越离合器的内圈传动配合设置于主轴,外圈传动配合设置或者直接形成低速挡从动齿轮,所述副轴上传动配合设置低速挡主动齿轮;所述倒挡传动机构包括倒挡主动齿轮和与倒挡主动齿轮啮合的倒挡从动齿轮,所述倒挡主动齿轮可接合或分离的方式设置于副轴,倒挡从动齿轮传动配合设置于主轴;所述传动比Ⅰ大于传动比Ⅱ。Further, the low-speed transmission mechanism also includes a low-speed driven gear and a low-speed driving gear meshed with the low-speed driven gear, the inner ring of the second overrunning clutch is arranged in cooperation with the main shaft, and the outer ring is arranged with or A low-speed driven gear is directly formed, and a low-speed driving gear is arranged on the secondary shaft in cooperation with the transmission; the reverse gear transmission mechanism includes a reverse gear driving gear and a reverse gear driven gear meshing with the reverse gear driving gear. The driving gear is arranged on the secondary shaft in a way that it can be engaged or disengaged, and the reverse driven gear is arranged on the main shaft in cooperation with the transmission; the transmission ratio I is greater than the transmission ratio II.

进一步,所述凸轮轴套通过转动配合于主轴的传动轴套将动力输出至动力输出件,所述凸轮轴套与传动轴套通过第二轴向凸轮副传动配合;Further, the cam shaft sleeve outputs the power to the power output member through a transmission shaft sleeve that is rotatably fitted with the main shaft, and the cam shaft sleeve and the transmission shaft sleeve are driven and matched by a second axial cam pair;

与所述第一超越离合器外圈传动配合且转动配合外套于传动轴套设有中间主动齿轮,所述副轴传动配合设置有与中间主动齿轮传动配合的中间从动齿轮。An intermediate driving gear is provided on the outer ring of the first overrunning clutch and is rotatably matched with the outer ring of the first overrunning clutch.

进一步,所述倒挡主动齿轮通过电磁换挡机构可接合或分离的方式设置于副轴,所述电磁换挡机构同时用于切换动力正反转输入;所述电磁换挡机构包括电磁换挡器、主动摆臂、换挡转轴和换挡拨叉,所述电磁换挡器为两个分列于主动摆臂两侧用于驱动主动摆臂绕换挡转轴的轴线摆动且带动换挡转轴绕所述轴线转动,所述换挡转轴带动换挡拨叉绕所述轴线摆动并完成换挡;Further, the reverse gear driving gear is provided on the countershaft in a manner that can be engaged or disengaged by an electromagnetic shifting mechanism, and the electromagnetic shifting mechanism is used to switch the forward and reverse power input at the same time; the electromagnetic shifting mechanism includes an electromagnetic shifting mechanism. There are two electromagnetic shifters arranged on both sides of the active swing arm to drive the active swing arm to swing around the axis of the shift shaft and drive the shift shaft Rotating around the axis, the shifting shaft drives the shifting fork to swing around the axis and complete the shifting;

所述电磁换挡机构还设有定位机构,所述定位机构包括设置于主动摆臂动力端的具有预紧力的定位弹子和设置于箱体的定位基座,所述定位基座上设置与定位弹子对应配合的定位凹坑;所述电磁换挡机构还设有用于检测挡位换挡是否到位的位置传感组件。The electromagnetic shifting mechanism is further provided with a positioning mechanism, the positioning mechanism includes a positioning pin with a pre-tightening force arranged on the power end of the active swing arm and a positioning base arranged on the box body, on which the positioning base is arranged and positioned. The marbles correspond to the matching positioning pits; the electromagnetic shifting mechanism is also provided with a position sensing component for detecting whether the gear shift is in place.

进一步,所述变速弹性元件为变速碟簧,所述变速碟簧外套于主轴并且一端通过平面轴承抵住从动摩擦件,另一端抵住预紧力调节组件,所述平面轴承为沿径向双排小滚珠的平面滚动轴承,所述预紧力调节组件包括调节环和调节螺母,所述调节螺母螺纹配合设置于主轴,调节环轴向可滑动的外套于主轴且两端分别抵住调节螺母和变速碟簧,所述调节螺母还设有将其轴向锁紧的锁紧组件。Further, the speed change elastic element is a speed change disc spring, the speed change disc spring is sleeved on the main shaft, one end is pressed against the driven friction member through a plane bearing, and the other end is against the preload adjustment component, and the plane bearing is a double radial bearing. A plane rolling bearing with small balls arranged, the pre-tightening force adjustment assembly includes an adjustment ring and an adjustment nut, the adjustment nut is threadedly arranged on the main shaft, the adjustment ring is axially slidable. For the speed change disc spring, the adjusting nut is also provided with a locking assembly for axially locking the adjusting nut.

进一步,所述传动轴套外圆靠近第一动力输出齿轮设有用于转动配合支撑于变速器箱体的第一径向轴承;所述中间主动齿轮一端与第一超越离合器外圈传动配合,另一端形成轴颈且该轴颈外圆设有用于转动配合支撑于变速器箱体的第二径向轴承;所述第二超越离合器内圈分别向左、右延伸形成外延伸轴段和内延伸轴段,外延伸轴段外圆和内延伸轴段外圆分别对应设有用于转动支撑于变速器箱体的第三径向轴承和第四径向轴承;所述倒挡从动齿轮传动配合外套于第二超越离合器内圈向内端延伸延伸的轴段外圆,且所述第四径向轴承位于倒挡从动齿轮右侧。Further, the outer circle of the transmission shaft sleeve is provided with a first radial bearing for rotating and supporting the transmission case close to the first power output gear; A journal is formed, and the outer circle of the journal is provided with a second radial bearing that is rotatably supported on the transmission case; the inner ring of the second overrunning clutch extends to the left and right to form an outer extension shaft segment and an inner extension shaft segment. , the outer circle of the outer extension shaft segment and the outer circle of the inner extension shaft segment are respectively provided with a third radial bearing and a fourth radial bearing that are rotatably supported on the transmission case; The inner ring of the two overrunning clutches extends toward the inner end of the outer circle of the shaft segment, and the fourth radial bearing is located on the right side of the reverse driven gear.

进一步,所述中间主动齿轮右侧与第一超越离合器内圈之间通过第一平面轴承转动配合,所述第二径向轴承设置于中间主动齿轮左侧形成的轴颈,中间主动齿轮左侧与第一动力输出主动齿轮之间通过第二平面轴承转动配合,第一径向轴承位于第一动力输出主动齿轮左侧;第一径向轴承与第二超越离合器内圈的内延伸轴段之间设置第三平面轴承。Further, the right side of the intermediate driving gear and the inner ring of the first overrunning clutch are rotatably matched by a first plane bearing, the second radial bearing is arranged on the journal formed on the left side of the intermediate driving gear, and the left side of the intermediate driving gear It is rotatably matched with the first power output driving gear through the second plane bearing, and the first radial bearing is located on the left side of the first power output driving gear; the first radial bearing and the inner extension shaft section of the inner ring of the second overrunning clutch A third plane bearing is arranged between them.

进一步,所述驱动过渡套左侧传动连接第一超越离合器的外圈并支撑于超越离合器的外圈,右侧形成缩颈且该缩颈上设有用于支撑于变速器箱体的第五径向轴承;所述主轴同轴位于驱动过渡套内且与驱动过渡套内圆通过第六径向轴承转动配合;所述从动摩擦件、主动摩擦件和变速弹性元件均位于驱动过渡套内圆形成的空腔内。Further, the left side of the drive transition sleeve is drivingly connected to the outer ring of the first overrunning clutch and supported on the outer ring of the overrunning clutch, and the right side forms a constriction and the constriction is provided with a fifth radial direction for supporting the transmission case. Bearing; the main shaft is coaxially located in the drive transition sleeve and is rotatably matched with the inner circle of the drive transition sleeve through the sixth radial bearing; the driven friction piece, the active friction piece and the speed change elastic element are all located in the inner circle of the drive transition sleeve. inside the cavity.

本发明的有益效果是:本发明的双超越离合机械式轴端输出自适应自动变速电驱动系统,具有现有凸轮自适应自动变速装置的全部优点,如能根据行驶阻力检测驱动扭矩—转速以及行驶阻力—车速信号,使电机输出功率与车辆行驶状况始终处于最佳匹配状态,实现车辆驱动力矩与综合行驶阻力的平衡控制,在不切断驱动力的情况下自适应随行驶阻力变化自动进行换挡变速;可以满足山区、丘陵和重负荷条件下使用,使电机负荷变化平缓,机动车辆运行平稳,提高安全性;The beneficial effects of the present invention are as follows: the double overrunning clutch mechanical shaft end output self-adaptive automatic transmission electric drive system of the present invention has all the advantages of the existing cam self-adaptive automatic transmission device, such as the ability to detect the driving torque-rotation speed and Driving resistance-vehicle speed signal, so that the output power of the motor and the driving conditions of the vehicle are always in the best match state, realize the balance control of the driving torque of the vehicle and the comprehensive driving resistance, and automatically change the driving resistance according to the change of driving resistance without cutting off the driving force. Gear shift; it can be used in mountainous areas, hills and heavy loads, so that the motor load changes smoothly, the motor vehicle runs smoothly, and the safety is improved;

利用两个超越离合器的合理配合,将倒挡结构与低速挡机构合理设置传动比,使得整体结构简单紧凑,倒挡传动与低速挡、快挡传动共用传动路线,且不发生干涉,保证了本发明的机械式自适应自动变速器的整体性能,适应能力较强,与自适应自动变速机构配合顺畅自然,降低制造成本,保证传动的稳定性;利用动力输出轴套并通过第三轴输出,可根据形成减速输出,提供较大扭矩,并实现轴端输出,不但适用于电动车领域,而且适用于其它变扭矩机械传动领域;同时,轴套输出还能保证具有较大的输出扭矩。Using the reasonable cooperation of the two overrunning clutches, the reverse gear structure and the low-speed gear mechanism are reasonably set to the transmission ratio, so that the overall structure is simple and compact. The overall performance of the invented mechanical self-adaptive automatic transmission has strong adaptability, and it cooperates with the self-adaptive automatic transmission mechanism smoothly and naturally, reducing the manufacturing cost and ensuring the stability of the transmission. According to the formation of deceleration output, large torque is provided, and shaft end output is realized, which is not only suitable for the field of electric vehicles, but also suitable for other fields of variable torque mechanical transmission; at the same time, the output of the bushing can also ensure a large output torque.

附图说明Description of drawings

下面结合附图和实施例对本发明作进一步描述。The present invention will be further described below with reference to the accompanying drawings and embodiments.

图1为本发明的轴向剖面结构示意图;Fig. 1 is the axial sectional structure schematic diagram of the present invention;

图2为本发明装箱后结构示意图;Fig. 2 is the structural representation after packing of the present invention;

图3为电磁换挡结构示意图;FIG. 3 is a schematic diagram of an electromagnetic shifting structure;

图4位电磁换挡结构剖视图;Fig. 4 sectional view of electromagnetic shift structure;

图5为本发明采用摩擦片结构的轴向剖面图;5 is an axial cross-sectional view of the friction plate structure adopted in the present invention;

图6为驱动电机横向剖面图;Figure 6 is a transverse cross-sectional view of the drive motor;

图7为摩擦片结构放大图。Figure 7 is an enlarged view of the structure of the friction plate.

具体实施方式Detailed ways

图1为本发明的轴向剖面结构示意图,图2为本发明装箱后结构示意图,图3为电磁换挡结构示意图,图4位电磁换挡结构剖视图,如图所示:本发明的双超越离合机械式轴端输出自适应自动变速电驱动系统,包括箱体、驱动电机和变速器,所述变速器包括主轴1、主轴1上的变速系统和转动配合外套于主轴的传动轴套35,所述变速系统包括低速挡传动机构、倒挡传动机构和自适应变速组件;1 is a schematic diagram of an axial cross-sectional structure of the present invention, FIG. 2 is a schematic diagram of the structure after packing of the present invention, FIG. 3 is a schematic diagram of an electromagnetic shift structure, and FIG. 4 is a cross-sectional view of an electromagnetic shift structure, as shown in the figure: The over-clutch mechanical shaft end output adaptive automatic transmission electric drive system includes a box body, a drive motor and a transmission. The transmission includes a main shaft 1, a speed change system on the main shaft 1, and a transmission sleeve 35 that rotates and fits over the main shaft. The speed change system includes a low-speed gear transmission mechanism, a reverse gear transmission mechanism and an adaptive transmission assembly;

自适应变速组件包括从动摩擦件2、主动摩擦件18和变速弹性元件19;The adaptive shifting assembly includes a driven friction member 2, an active friction member 18 and a shifting elastic element 19;

主动摩擦件18和从动摩擦件2以摩擦面相互配合的方式形成摩擦传动副,所述从动摩擦件以可轴向滑动圆周方向传动的方式设置于主轴,如图所示,主动摩擦件18和从动摩擦件2分别为圆环体轴向内锥套和圆环体轴向外锥套,圆环体轴向内锥套设有轴向内锥面且外套于圆环体轴向外锥套,圆环体轴向外锥套设有与圆环体轴向内锥套的轴向内锥面相配合的轴向外锥面,通过相互配合的锥面形成摩擦接合传动或者分离,在此不再赘述;圆环体轴向外锥套外套于主轴且与主轴均设有轴向滑槽,滑槽内嵌有减小摩擦力的滚珠,圆环体轴向外锥套与主轴之间通过滑槽以及滚珠形成轴向可滑动的圆周方向传动配合;滑槽也可以是螺旋槽(形成轴向凸轮槽),嵌入滚珠后还可形成轴向凸轮副,还具有在大扭矩传递动力时对变速弹性元件19的压缩,保证传动的平稳;当然,也可以直接形成花键或者螺纹副配合(不用滚珠),也能实现目的;The active friction member 18 and the driven friction member 2 form a friction transmission pair in a way that the friction surfaces cooperate with each other. The driven friction pieces 2 are respectively an axial inner cone sleeve of the annular body and an axial outer cone sleeve of the annular body. , the axially outer tapered sleeve of the annular body is provided with an axially outer tapered surface that matches with the axially inner tapered surface of the axially inner tapered sleeve of the annular body, and the frictional engagement transmission or separation is formed by the cooperating tapered surfaces. To repeat; the axial outer tapered sleeve of the annular body is sleeved on the main shaft and is provided with an axial chute with the main shaft. The sliding groove is embedded with balls that reduce friction, and the axial outer tapered sleeve of the annular body passes through the main shaft. The chute and the ball form an axially slidable circumferential transmission fit; the chute can also be a helical groove (forming an axial cam groove), and an axial cam pair can also be formed after the ball is embedded, and it also has the ability to adjust the transmission power when the torque is large. The compression of the variable speed elastic element 19 ensures the smooth transmission; of course, the spline or threaded pair can also be directly formed (without balls), which can also achieve the purpose;

当然,摩擦传动副也可以采用如图5、图7所示的摩擦片结构,如图5所示,主动摩擦件18’与第一超越离合器内圈一体成型或传动配合,且主动摩擦件18’上设有主动摩擦片组18a’,从动摩擦件上设有与主动摩擦片18a’相配合的从动摩擦片组,配合结构与现有的摩擦片式离合器相类似,但本结构摩擦片可拆卸式设置,可根据整体结构需要拆装增加或者减少,以保证轴向尺寸;Of course, the friction transmission pair can also adopt the friction plate structure shown in FIG. 5 and FIG. 7 . As shown in FIG. 5 , the active friction member 18 ′ and the inner ring of the first overrunning clutch are integrally formed or matched in transmission, and the active friction member 18 ′ is integrally formed with the inner ring of the first overrunning clutch. There is an active friction plate group 18a' on it, and the driven friction piece is provided with a driven friction plate group matched with the active friction plate 18a'. The matching structure is similar to the existing friction plate clutch, but the friction plate of this structure can be used. Detachable setting, which can be increased or decreased according to the needs of the overall structure to ensure the axial size;

变速弹性元件19施加使从动摩擦件与主动摩擦件贴合传动的预紧力,所述圆环体轴向外锥套通过轴向凸轮副将动力输出至传动轴套,所述轴向凸轮副将动力输出时,对从动摩擦件施加与变速弹性元件预紧力相反的轴向分力;轴向凸轮副即为相互配合的轴向凸轮(包括端面凸轮或者螺旋凸轮),从动摩擦件转动时,轴向凸轮副产生轴向和圆周方向两个分力,其中圆周方向分力输出动力,轴向分力作用于从动摩擦件并施加于变速弹性元件,也就是说,轴向凸轮副的旋向与动力输出转动方向有关,本领域技术人员根据上述记载,在得知动力输出方向的前提下,能够得知轴向凸轮副何种旋向能够施加何种方向的轴向分力,在此不再赘述;驱动动力通过一第一超越离合器4将动力输入至所述主动摩擦件,通过合理的机械布局即可实现,在此不再赘述。The variable speed elastic element 19 applies a pre-tightening force to make the driven friction piece and the active friction piece fit and drive, and the axially outer tapered sleeve of the annular body outputs the power to the transmission bushing through the axial cam pair, and the axial cam pair transmits the power When outputting, an axial component force opposite to the pre-tightening force of the shifting elastic element is applied to the driven friction piece; the axial cam pair is the cooperating axial cam (including end cam or helical cam), when the driven friction piece rotates, the shaft Two component forces in the axial and circumferential directions are generated to the cam pair, in which the circumferential component output power, and the axial component acts on the driven friction member and is applied to the variable speed elastic element, that is, the rotational direction of the axial cam pair is the same as The rotation direction of the power output is related. According to the above description, those skilled in the art can know which direction of rotation of the axial cam pair can apply which direction of the axial component force on the premise of knowing the direction of the power output. To repeat; the driving power is input to the active friction member through a first overrunning clutch 4, which can be realized through a reasonable mechanical layout, and will not be repeated here.

还包括副轴12,所述驱动动力还输入副轴12;It also includes a secondary shaft 12, and the driving power is also input to the secondary shaft 12;

所述低速挡传动机构包括第二超越离合器6,所述副轴12通过第二超越离合器6将低速挡动力传递至主轴1,主轴1与圆环体轴向外锥套传动配合;The low-speed gear transmission mechanism includes a second overrunning clutch 6, and the secondary shaft 12 transmits the low-speed gear power to the main shaft 1 through the second overrunning clutch 6, and the main shaft 1 is driven and matched with the axial outer tapered sleeve of the annular body;

所述倒挡传动机构以可将倒挡动力传递至主轴或者断开倒挡动力;一般采用挂挡结构进行设置,可以断开倒挡传动机构与主轴的传动也可以断开与副轴12的传动,均能实现发明目的;The reverse gear transmission mechanism is capable of transmitting the reverse gear power to the main shaft or disconnecting the reverse gear power; generally, the gear shifting structure is used for setting, and the transmission between the reverse gear transmission mechanism and the main shaft can be disconnected, and the transmission with the auxiliary shaft 12 can also be disconnected. transmission, can achieve the purpose of the invention;

所述倒挡传动机构具有将倒挡动力从副轴12传递至主轴1的传动比Ⅰ,所述低速挡传动机构具有将低速挡动力从副轴12传递至主轴1的传动比Ⅱ,传动比Ⅰ大于等于传动比Ⅱ;则在倒挡传动时,第二超越离合器超越内圈(转动方向与倒挡相同)转速慢于外圈(低速挡与倒挡均由副轴输入动力),形成超越,倒挡传动机构顺利传动,否则会锁死;The reverse gear transmission mechanism has a transmission ratio I for transmitting the reverse gear power from the countershaft 12 to the main shaft 1, and the low-speed gear transmission mechanism has a transmission ratio II for transmitting the low-speed gear power from the countershaft 12 to the main shaft 1. The transmission ratio is I is greater than or equal to the transmission ratio II; then in reverse gear transmission, the second overrunning clutch surpasses the inner ring (the rotation direction is the same as the reverse gear) and the speed is slower than that of the outer ring (both low-speed gear and reverse gear are powered by the counter shaft), forming an overrunning clutch. , the reverse gear transmission mechanism transmits smoothly, otherwise it will be locked;

由于低速挡传动机构和倒挡传动机构传动方向不同,因此,轴向凸轮副优选为双向输出的凸轮结构;Since the transmission directions of the low-speed gear transmission mechanism and the reverse gear transmission mechanism are different, the axial cam pair is preferably a bidirectional output cam structure;

与所述传动轴套35传动连接设有将动力输出的动力输出轴30;当然,动力输出轴动力输出的端部需伸出变速器箱体,在此不再赘述;A power output shaft 30 for outputting power is provided in driving connection with the transmission shaft sleeve 35; of course, the power output end of the power output shaft needs to extend out of the transmission case, which will not be repeated here;

还包括动力输出组件,所述动力输出组件包括差速器,所述动力输出轴将动力输出至差速器;动力输出轴与差速器之间的传动可采用现有的比如锥齿轮传动等,在此不再赘述。It also includes a power output assembly, the power output assembly includes a differential, and the power output shaft outputs power to the differential; the transmission between the power output shaft and the differential can adopt existing ones, such as bevel gear transmission, etc. , and will not be repeated here.

本实施例中,所述驱动电机包括定子37和转子38,所述转子为空心转子结构,所述从动摩擦件2、主动摩擦件18和变速弹性元件19位于空心转子结构内;所述空心转子结构设有前支撑部和后支撑部,所述前支撑部传动配合连接支撑于第一超越离合器外圈,后支撑部转动配合支撑于箱体,所述空心转子结构的空心中部转动配合支撑于变速器主轴;电机的转子设置成空心结构,且用于安装变速器的部分部件,使得电机与变速器的结构进行深度优化,形成部分或者全部的包容及高度的集成,配合顺畅自然,且不发生运行干涉,保证了电机在全工况和综合路况下高效率工作;同时,采用转子负载整体由变速器箱体以及主轴支撑的结构,将扭矩所产生的附加弯矩传递给箱体,能够传递较大的扭矩且不会发生弯曲变形,可大大减小相同承载能力条件下的构件尺寸,适应了电机转子的空心结构;实现了大扭矩、高转速和轻量化指标,还使得变速器在高速状态下具有较好的平稳性以及低噪声;该结构保证了变速器本身的整体结构的紧凑性,利于实现变速器整体的轻量化布置,为高速电机的使用创造了条件;如图所示,本实施例中,所述转子空心结构为轴向贯通的空心结构。In this embodiment, the drive motor includes a stator 37 and a rotor 38, the rotor is a hollow rotor structure, and the driven friction member 2, the active friction member 18 and the variable speed elastic element 19 are located in the hollow rotor structure; the hollow rotor The structure is provided with a front support part and a rear support part, the front support part is supported on the outer ring of the first overrunning clutch in a drive-fit connection, the rear support part is rotatably supported on the box body, and the hollow center of the hollow rotor structure is rotatably supported on the box body. Transmission main shaft; the rotor of the motor is set into a hollow structure and is used to install some parts of the transmission, so that the structure of the motor and the transmission can be deeply optimized, forming part or all of the inclusion and high integration, smooth and natural cooperation, and no operating interference occurs , which ensures the high-efficiency operation of the motor under all working conditions and comprehensive road conditions; at the same time, the structure in which the rotor load is supported by the transmission case and the main shaft is adopted to transmit the additional bending moment generated by the torque to the case, which can transmit larger torque without bending deformation, which can greatly reduce the size of components under the same bearing capacity, adapt to the hollow structure of the motor rotor; Good stability and low noise; this structure ensures the compactness of the overall structure of the transmission itself, is conducive to the realization of the overall lightweight layout of the transmission, and creates conditions for the use of high-speed motors; as shown in the figure, in this embodiment, all The rotor hollow structure is an axially penetrating hollow structure.

本实施例中,所述驱动动力由一驱动过渡套3输入,所述驱动过渡套3传动连接第一超越离合器4的外圈4b,所述第一超越离合器4的内圈4a与主动摩擦件传动连接;所述驱动过渡套还将动力通过第一超越离合器外圈输入副轴;本实施例中,驱动过渡套3为驱动电机转子38的一部分。In this embodiment, the driving power is input by a driving transition sleeve 3, and the driving transition sleeve 3 is drivingly connected to the outer ring 4b of the first overrunning clutch 4, and the inner ring 4a of the first overrunning clutch 4 is connected with the active friction member Transmission connection; the drive transition sleeve also inputs power to the secondary shaft through the outer ring of the first overrunning clutch; in this embodiment, the drive transition sleeve 3 is a part of the rotor 38 of the drive motor.

本实施例中,所述轴向凸轮副由带有端面凸轮的凸轮轴套22和从动摩擦件2带有的端面凸轮配合形成,所述凸轮轴套22转动配合外套于主轴,所述从动摩擦件2传动配合且轴向可滑动的外套于主轴1,如图所示,所述第一超越离合器4的内圈4a转动配合外套于凸轮轴套22,凸轮轴套22传动配合设有将动力输出的第一动力输出主动齿轮11,同时,凸轮轴套还将动力输出至副轴,形成低速挡(倒挡)的动力传输;In this embodiment, the axial cam pair is formed by a camshaft sleeve 22 with an end face cam and an end face cam carried by the driven friction member 2. The camshaft sleeve 22 rotates and fits over the main shaft, and the driven friction Part 2 is driven to fit and axially slidably sleeved on the main shaft 1. As shown in the figure, the inner ring 4a of the first overrunning clutch 4 rotates and fits into the camshaft sleeve 22. The output first power outputs the driving gear 11, and at the same time, the camshaft sleeve also outputs the power to the countershaft to form the power transmission of the low-speed gear (reverse gear);

还包括动力输出齿轮组,所述动力输出齿轮组包括中间轴27、与第一动力输出主动齿轮11啮合传动且与中间轴传动配合的第一动力输出从动齿轮26、与中间轴27传动配合的第二动力输出主动齿轮和与第二动力输出主动齿轮28传动啮合的第二动力输出从动齿轮29,所述第二动力输出从动齿轮29与动力输出轴30传动配合,可采用一体成型结构;如图所示,动力输出轴30与主轴1同轴设置布置在主轴端部,通过平行设置的中间轴27将动力传递,结构简单紧凑,且具有多两级减速的优势,更适合于高速电机以及大扭矩的行驶环境;It also includes a power output gear set, which includes an intermediate shaft 27, a first power output driven gear 26 that meshes with the first power output driving gear 11 and is drivingly matched with the intermediate shaft, and is drivingly matched with the intermediate shaft 27. The second power output driving gear and the second power output driven gear 29 meshing with the second power output driving gear 28, the second power output driven gear 29 and the power output shaft 30 are drivingly matched, and can be integrally formed. Structure; as shown in the figure, the power output shaft 30 and the main shaft 1 are arranged coaxially at the end of the main shaft, and the power is transmitted through the intermediate shaft 27 arranged in parallel. The structure is simple and compact, and has the advantage of two-stage deceleration, which is more suitable for High-speed motor and high-torque driving environment;

根据变速器的整体布局,动力输出齿轮组可以采用图1的结构,即与副轴分列主轴两侧,也可以采用图4的布局,与副轴位于主轴同侧,在此不再赘述。According to the overall layout of the transmission, the power output gear set can adopt the structure of Figure 1, that is, it is arranged on both sides of the main shaft with the countershaft, or it can adopt the layout of Figure 4, which is located on the same side of the main shaft as the countershaft, which will not be repeated here.

本实施例中,所述低速挡传动机构还包括低速挡从动齿轮和与低速挡从动齿轮啮合的低速挡主动齿轮7,所述第二超越离合器6的内圈6a传动配合设置于主轴1,外圈6b传动配合设置或者直接形成低速挡从动齿轮,本实施例未直接形成;所述副轴12上传动配合设置低速挡主动齿轮7;所述倒挡传动机构包括倒挡主动齿轮9和与倒挡主动齿轮9啮合的倒挡从动齿轮8,所述倒挡主动齿轮可接合或分离的方式设置于副轴,倒挡从动齿轮传动配合设置于主轴;所述传动比Ⅰ大于传动比Ⅱ。In this embodiment, the low-speed transmission mechanism further includes a low-speed driven gear and a low-speed driving gear 7 meshing with the low-speed driven gear. , the outer ring 6b is equipped with a transmission or directly forms a low-speed driven gear, which is not directly formed in this embodiment; the low-speed driving gear 7 is set on the secondary shaft 12 for transmission and cooperation; the reverse transmission mechanism includes a reverse driving gear 9 and the reverse driven gear 8 meshing with the reverse drive gear 9, the reverse drive gear can be engaged or disengaged on the countershaft, and the reverse driven gear is set on the main shaft in cooperation with the transmission; the transmission ratio I is greater than Transmission ratio II.

本实施例中,所述倒挡主动齿轮9通过电磁换挡机构10可接合或分离的方式设置于副轴12,所述电磁换挡机构同时用于切换动力正反转输入,在电磁换挡机构切换换成倒挡过程中,将信号直接发送至电机控制系统,控制电机反转,实现倒挡;采用一般的信号采集机构或者开关即可实现。In this embodiment, the reverse gear driving gear 9 is disposed on the countershaft 12 in a way that can be engaged or disengaged by the electromagnetic shifting mechanism 10 . When the mechanism is switched to reverse gear, the signal is directly sent to the motor control system to control the reverse rotation of the motor to achieve reverse gear; it can be achieved by using a general signal acquisition mechanism or switch.

本实施例中,所述电磁换挡机构包括电磁换挡器、主动摆臂、换挡转轴和换挡拨叉,所述电磁换挡器为两个分列于主动摆臂两侧用于驱动主动摆臂绕换挡转轴的轴线摆动且带动换挡转轴绕所述轴线转动,所述换挡转轴带动换挡拨叉绕所述轴线摆动并完成换挡;电磁换挡器为具有往复推杆的结构,通电时往复推杆推出并推动主动摆臂摆动后立即回位,回位一般采用回位弹簧结构,在此不再赘述。In this embodiment, the electromagnetic shift mechanism includes an electromagnetic shifter, an active swing arm, a shift shaft and a shift fork, and the electromagnetic shifters are two arranged on both sides of the active swing arm for driving The active swing arm swings around the axis of the shifting shaft and drives the shifting shaft to rotate around the axis, and the shifting shaft drives the shifting fork to swing around the axis to complete the shifting; the electromagnetic shifter has a reciprocating push rod When the power is turned on, the reciprocating push rod pushes out and pushes the active swing arm to swing and then returns immediately. The return generally adopts a return spring structure, which will not be repeated here.

本实施例中,所述电磁换挡机构还设有定位机构,所述定位机构包括设置于主动摆臂动力端的具有预紧力的定位弹子和设置于箱体的定位基座,主动摆臂动力端指的是电磁换挡器作用使其摆动的一端;如图所示,主动摆臂动力端设有一弹子座,弹子座内安装一柱状弹簧,柱状弹簧作用于定位弹子使其具有向外的预紧力;所述定位基座上设置与定位弹子对应配合的定位凹坑,在摆动过程中定位弹子在定位基座表面滑动,当滑动至定位凹坑处时定位弹子在预紧力作用下进入凹坑形成定位,当然,凹坑为平滑结构,在一定的推力下定位弹子会移除凹坑,完成后续换挡程序;所述电磁换挡机构还设有用于检测挡位换挡是否到位的位置传感组件,传感组件一般采用霍尔元件以及与霍尔元件对应的磁钢。In this embodiment, the electromagnetic shifting mechanism is further provided with a positioning mechanism, and the positioning mechanism includes a positioning pin with a pre-tightening force arranged on the power end of the active swing arm and a positioning base arranged on the box body. The end refers to the end of the electromagnetic shifter that makes it swing; as shown in the figure, the power end of the active swing arm is provided with a marble seat, and a cylindrical spring is installed in the marble seat. Pre-tightening force; the positioning base is provided with positioning pits corresponding to the positioning pins. During the swinging process, the positioning pins slide on the surface of the positioning base. When sliding to the positioning pits, the positioning pins are under the action of the pre-tightening force. Enter the pit to form a positioning. Of course, the pit is a smooth structure. Under a certain thrust, the positioning pin will remove the pit and complete the subsequent shifting procedure; The position sensing component of the sensor component generally adopts the Hall element and the magnetic steel corresponding to the Hall element.

本实施例中,所述变速弹性元件19为变速碟簧,所述变速碟簧外套于主轴并且一端抵住圆环体轴向外锥套,另一端抵住预紧力调节组件,可以直接抵住也可通过平面轴承抵住,如图5所示,所述变速碟簧19外套于主轴1并且一端通过平面轴承24抵住从动摩擦件2’,所述平面轴承24为沿径向双排小滚珠的平面滚动轴承,小滚珠指的使用较现有技术中承载能力相同的滚珠小;采用双排滚珠,在平面轴承承载相同载荷的条件下,可减小滚珠的参数,具有转动平稳、相同载荷转速高、承载能力强的特点,并且可减小轴向安装尺寸;该结构同样可用于图1的锥套式结构,在此不再赘述;如图1所示,所述预紧力调节组件包括调节环20和调节螺母17,所述调节螺母17螺纹配合设置于主轴1,调节环20轴向可滑动的外套于主轴1且两端分别抵住调节螺母17和变速碟簧,所述调节螺母还设有将其轴向锁紧的锁紧组件21。In this embodiment, the variable speed elastic element 19 is a variable speed disc spring. The variable speed disc spring is sleeved on the main shaft, one end of which is pressed against the axially outer tapered sleeve of the annular body, and the other end is pressed against the pre-tightening force adjusting component, which can be directly pressed against It can also be resisted by a plane bearing. As shown in FIG. 5 , the speed change disc spring 19 is sleeved on the main shaft 1 and one end is pressed against the driven friction member 2 ′ through a plane bearing 24, and the plane bearing 24 is a double row in the radial direction. Planar rolling bearings with small balls, the use of small balls is smaller than that of the balls with the same bearing capacity in the prior art; the use of double-row balls can reduce the parameters of the balls under the condition that the plane bearing bears the same load, with stable rotation and the same It has the characteristics of high load speed and strong bearing capacity, and can reduce the axial installation size; this structure can also be used for the tapered-sleeve structure in Figure 1, which will not be repeated here; as shown in Figure 1, the preload adjustment The assembly includes an adjusting ring 20 and an adjusting nut 17, the adjusting nut 17 is threadedly arranged on the main shaft 1, the adjusting ring 20 is axially slidably sleeved on the main shaft 1, and the two ends press against the adjusting nut 17 and the speed change disc spring respectively. The adjusting nut is also provided with a locking assembly 21 for axially locking it.

本实施例中,所述凸轮轴套22通过转动配合于主轴的传动轴套35将动力输出至第一动力输出主动齿轮11,所述凸轮轴套22与传动轴套35通过第二轴向凸轮副传动配合;形成双凸轮传动结构,利于平稳传动且在低速挡传动时利于锁紧变速弹簧,避免发生顿挫;In this embodiment, the camshaft sleeve 22 outputs power to the first power output driving gear 11 through the transmission sleeve 35 that is rotatably matched with the main shaft, and the camshaft sleeve 22 and the transmission sleeve 35 pass through the second axial cam The auxiliary transmission is matched; the double cam transmission structure is formed, which is conducive to smooth transmission and locks the transmission spring during low-speed transmission to avoid setbacks;

与所述第一超越离合器外圈传动配合且转动配合外套于传动轴套设有中间主动齿轮15,如图所示,通过一传动套5完成传动,传动套5一端固定连接与超越离合器外圈,另一端通过内花键与第一动力输出主动齿轮右侧形成的轴颈的外花键形成传动配合,同时还支撑于该轴颈外圆,形成互相的支撑,保证传动结构的稳定性;所述副轴12传动配合设置有与中间主动齿轮15传动配合的中间从动齿轮14。An intermediate driving gear 15 is arranged on the transmission shaft sleeve in cooperation with the outer ring of the first overrunning clutch, and the outer ring of the transmission sleeve 5 is fixedly connected to the outer ring of the overrunning clutch. , the other end forms a transmission fit with the outer spline of the journal formed on the right side of the first power output driving gear through the inner spline, and is also supported on the outer circle of the journal to form mutual support and ensure the stability of the transmission structure; The secondary shaft 12 is provided with an intermediate driven gear 14 in driving cooperation with the intermediate driving gear 15 .

本实施例中,所述传动轴套35外圆靠近第一动力输出主动齿轮15设有用于转动配合支撑于变速器箱体的第一径向轴承23(本实施例位于第一动力输出主动齿轮左侧);所述中间主动齿轮15一端(右侧)与第一超越离合器4外圈4b传动配合,另一端形成轴颈且该轴颈外圆设有用于转动配合支撑于变速器箱体的第二径向轴承13;所述第二超越离合器6内圈6a分别向左、右延伸形成外延伸轴段和内延伸轴段,外延伸轴段外圆和内延伸轴段外圆分别对应设有用于转动支撑于变速器箱体的第三径向轴承25和第四径向轴承31;所述倒挡从动齿轮8传动配合外套于第二超越离合器6内圈6a向内端延伸延伸的轴段外圆,且所述第四径向轴承31位于倒挡从动齿轮右侧;该结构中,凸轮轴套22和传动轴套35外套于主轴1,形成传动且互相支撑的结构,能够传递较大的扭矩且不会发生弯曲变形,可大大减小相同承载能力条件下的构件尺寸;针对各个传动承载(动力交接输入和输出)部件,分别设置相应的径向轴承,且径向轴承均支撑于箱体,使得主轴和传动的轴套能够较长的设置,并且由于具有支撑而将扭矩所产生的附加弯矩传递给箱体,使得自身传递较大扭矩,并可大大提高在大扭矩下的转速(相同构件尺寸),实现了大扭矩、高转速和轻量化指标,相对于现有技术,用于驱动电机及高速减速器的最高转速≥15000转/分,用于高效轻量化轮毂电动轮等变速机构对于节能环保具有较大的优势,更能适应于以节能环保为主要目标的纯电动车使用。In this embodiment, the outer circumference of the transmission sleeve 35 is close to the first power output driving gear 15 and is provided with a first radial bearing 23 for rotatably supporting the transmission case (located on the left side of the first power output driving gear in this embodiment). side); one end (right side) of the intermediate driving gear 15 is drivingly matched with the outer ring 4b of the first overrunning clutch 4, and the other end forms a journal, and the outer circle of the journal is provided with a second gear for rotating and supporting the transmission case. Radial bearing 13; the inner ring 6a of the second overrunning clutch 6 extends left and right respectively to form an outer extension shaft segment and an inner extension shaft segment, and the outer circle of the outer extension shaft segment and the outer circle of the inner extension shaft segment are respectively provided with The third radial bearing 25 and the fourth radial bearing 31 are rotatably supported on the transmission case; the reverse driven gear 8 is driven and fitted outside the shaft segment extending from the inner ring 6a of the second overrunning clutch 6 to the inner end. circle, and the fourth radial bearing 31 is located on the right side of the reverse driven gear; in this structure, the camshaft sleeve 22 and the transmission sleeve 35 are sleeved on the main shaft 1 to form a transmission and mutual support structure, which can transmit large It can greatly reduce the size of components under the same bearing capacity; for each transmission bearing (power transfer input and output) components, corresponding radial bearings are set respectively, and the radial bearings are supported on The box body enables the main shaft and the transmission shaft sleeve to be set longer, and the additional bending moment generated by the torque is transmitted to the box body due to the support, so that it can transmit a large torque and greatly improve the performance under high torque. Speed (same component size), high torque, high speed and lightweight indicators are achieved. Compared with the existing technology, the maximum speed used for driving motors and high-speed reducers is ≥15000 rpm, which is used for efficient and lightweight hub electric wheels. The equal-speed mechanism has great advantages for energy saving and environmental protection, and is more suitable for the use of pure electric vehicles with energy saving and environmental protection as the main goal.

本实施例中,所述中间主动齿轮15右侧与第一超越离合器4内圈4a之间通过第一平面轴承16转动配合,所述第二径向轴承13设置于中间主动齿轮15左侧形成的轴颈,中间主动齿轮15左侧与第一径向轴承23之间通过第二平面轴承36转动配合;第一动力输出主动齿轮左侧与第二超越离合器6内圈6a的内延伸轴段设置第三平面轴承33;该结构中,根据动力的输入输出节点分段承载设置径向轴承的基础上在各个分段之间设置相对转动的平面轴承,使得各个分段之间无干扰衔接,整个主轴和轴套在全长输入输出扭矩附加力矩直接传递至箱体,在径向上具有超强的承载能力,为变速器的轻量化和高速化提供了结构上的保障。In this embodiment, the right side of the intermediate driving gear 15 and the inner ring 4a of the first overrunning clutch 4 are rotatably matched through the first plane bearing 16 , and the second radial bearing 13 is arranged on the left side of the intermediate driving gear 15 to form The left side of the intermediate driving gear 15 and the first radial bearing 23 are rotated through the second plane bearing 36; the left side of the first power output driving gear and the inner extension shaft section of the inner ring 6a of the second overrunning clutch 6 A third plane bearing 33 is provided; in this structure, on the basis of setting radial bearings according to the load bearing of the input and output nodes of the power, a relatively rotating plane bearing is arranged between the segments, so that there is no interference connection between the segments, The entire main shaft and bushing transmit the additional torque of input and output torque directly to the box body in the whole length, and have super strong bearing capacity in the radial direction, which provides a structural guarantee for the lightweight and high-speed transmission of the transmission.

本实施例中,所述驱动过渡套3左侧传动连接第一超越离合器4的外圈4b并支撑于超越离合器的外圈,右侧形成缩颈且该缩颈上设有用于支撑于变速器箱体的第五径向轴承34;所述主轴同轴位于驱动过渡套内且与驱动过渡套内圆通过第六径向轴承32转动配合,如图所示,所述动力输入套3内圆位于避开从动摩擦件2、主动摩擦件18和变速弹性元件19的部位形成用于与主轴通过第六径向轴承32转动配合的轴承座28a,如图所示,驱动过渡套3位于转子内圆形成转子的一部分,轴承座38a位于由位于变速弹性元件19的右侧(尾端右侧),由所述动力输入套3内圆沿圆周方向并列布置的肋板形成,肋板与肋板之间形成纵向(主轴轴向)空隙,具有较好的减震效果、润滑效果,对于电机来说,还具有良好的散热功能;所述从动摩擦件2、主动摩擦件18和变速弹性元件19均位于驱动过渡套内圆形成的空腔内;使用时,将电机转子外套于驱动过渡套3传动连接即可,装配简单方便,当然,电机转子也可以直接由驱动过渡套3形成;如图6所示,所述转子包括空心的铝合金转子支撑体38b和外套于铝合金转子支撑体的转子主体38e,所述铝合金转子支撑体的外圆径向截面为多角星结构,转子主体的内圆为与铝合金转子支撑体外圆相配合的多角星结构;采用铝合金支撑体且采用多角星结构配合,增加了铝合金在转子中所占的体积,从而减轻电机整体重量,实现了电机的轻量化结构布置,同时降低了结构成本;多角星结构还保证了支撑体与主体之间的圆周方向的配合强度,并可大大提高在大扭矩下的转速(相同构件尺寸),实现了大扭矩、高转速和轻量化指标,相对于现有技术,在达到转速≥15000转/分的条件下更节能,用于高效轻量化轮毂电动轮等变速机构对于节能环保具有较大的优势,更能适应于以节能环保为主要目标的纯电动车使用。In this embodiment, the left side of the drive transition sleeve 3 is connected to the outer ring 4b of the first overrunning clutch 4 and supported by the outer ring of the overrunning clutch, and the right side forms a constriction, and the constriction is provided with a support for the transmission case. The fifth radial bearing 34 of the body; the main shaft is coaxially located in the drive transition sleeve and rotates with the inner circle of the drive transition sleeve through the sixth radial bearing 32. As shown in the figure, the inner circle of the power input sleeve 3 is located in the inner circle of the drive transition sleeve. A bearing seat 28a for rotating with the main shaft through the sixth radial bearing 32 is formed avoiding the position of the driven friction member 2, the active friction member 18 and the transmission elastic element 19. As shown in the figure, the driving transition sleeve 3 is located in the inner circle of the rotor A part of the rotor is formed, and the bearing seat 38a is located on the right side (right side of the rear end) of the variable speed elastic element 19, and is formed by a rib arranged in parallel along the circumferential direction of the inner circle of the power input sleeve 3, and the rib and the rib are formed. A longitudinal (axial axis of the main shaft) gap is formed between them, which has good shock absorption effect and lubrication effect, and also has a good heat dissipation function for the motor; the driven friction member 2, the active friction member 18 and the variable speed elastic element 19 are all It is located in the cavity formed by the inner circle of the drive transition sleeve; when in use, the motor rotor can be covered with the drive transition sleeve 3 for transmission connection, and the assembly is simple and convenient. Of course, the motor rotor can also be directly formed by the drive transition sleeve 3; Figure 6 As shown, the rotor includes a hollow aluminum alloy rotor support body 38b and a rotor body 38e that is sheathed on the aluminum alloy rotor support body. The circle is a multi-pointed star structure matched with the outer circle of the aluminum alloy rotor support; the aluminum alloy support body and the multi-pointed star structure are used to increase the volume occupied by the aluminum alloy in the rotor, thereby reducing the overall weight of the motor and realizing the high performance of the motor. Lightweight structural arrangement, while reducing the structural cost; the multi-pointed star structure also ensures the matching strength in the circumferential direction between the support body and the main body, and can greatly improve the rotational speed under high torque (same component size), realizing high torque , high speed and light weight index, compared with the existing technology, it is more energy-saving when the speed is ≥ 15000 rpm, and it is used for high-efficiency lightweight wheel hub electric wheels and other speed change mechanisms have great advantages for energy saving and environmental protection, and can be more energy efficient. It is suitable for the use of pure electric vehicles with energy saving and environmental protection as the main goal.

本实施例中,所述转子主体38e内布置有电机的磁钢33c,所述磁钢33c的布置方式与所述多角星结构相适应;亦可以理解为转子支撑件与转子主体的配合方式(多角星)适应了磁钢的布置方式,该配合结构尽可能的适应了磁钢的磁力线环境,为电能的节约创造了结构上的条件,利于节能降耗。In this embodiment, the magnetic steel 33c of the motor is arranged in the rotor main body 38e, and the arrangement of the magnetic steel 33c is compatible with the polygonal star structure; it can also be understood as the matching method between the rotor support and the rotor main body ( The multi-pointed star) is adapted to the arrangement of the magnetic steel, and the matching structure adapts to the magnetic field line environment of the magnetic steel as much as possible, creating structural conditions for the saving of electric energy, which is conducive to energy saving and consumption reduction.

本实施例中,所述转子的空腔内壁沿圆周方向并列形成沿纵向的加劲肋38d,加劲肋能够有效增加转子的本体强度,进一步适应于空心转子的轻量化结构;本实施例中,加劲肋38d设置于铝合金转子支撑体38b,符合铝合金材料对结构的要求,保证了支撑本身的强度,并保证了轻量化结构具有足够的支撑和传动强度。In this embodiment, the inner wall of the cavity of the rotor is juxtaposed along the circumferential direction to form longitudinal stiffening ribs 38d. The stiffening ribs can effectively increase the body strength of the rotor and are further suitable for the lightweight structure of the hollow rotor. The rib 38d is arranged on the aluminum alloy rotor support body 38b, which meets the structural requirements of the aluminum alloy material, ensures the strength of the support itself, and ensures that the lightweight structure has sufficient support and transmission strength.

上述的左右方位指的是与附图相对应,与实际使用状态无关,对比时需将实物与附图摆放方位一致。The above-mentioned left and right orientations refer to those corresponding to the attached drawings, and have nothing to do with the actual use state. When comparing, the actual objects should be placed in the same orientation as the attached drawings.

以上实施例只是本发明的最佳结构,并不是对本发明保护范围的限定;在连接方式上有所调整的方案,而不影响本发发明目的的实现。The above embodiment is only the best structure of the present invention, and does not limit the protection scope of the present invention; the scheme of adjusting the connection mode does not affect the realization of the purpose of the present invention.

本实施例的快挡动力传递路线:The fast gear power transmission route of this embodiment:

动力→主动摩擦件18→从动摩擦件2→轴向凸轮副→凸轮轴套22(传动轴套)→第一动力输出主动齿轮11输出动力;Power → active friction member 18 → driven friction member 2 → axial cam pair → cam shaft sleeve 22 (transmission shaft sleeve) → first power output driving gear 11 outputs power;

此时第二超越离合器超越,且阻力传递路线:第一动力输出主动齿轮11→凸轮轴套22→轴向凸轮副→从动摩擦件2→变速弹簧;第一动力输出主动齿轮11通过轴向凸轮副对从动摩擦件2施加轴向力并压缩变速弹簧,当行驶阻力加大到一定时,该轴向力克服变速弹簧,使主动摩擦件18和从动摩擦件2分离,动力通过下述路线传递,即低速挡动力传递路线:At this time, the second overrunning clutch is overrun, and the resistance transmission route is: the first power output driving gear 11 → the cam shaft sleeve 22 → the axial cam pair → the driven friction member 2 → the transmission spring; the first power output driving gear 11 passes through the axial cam The pair exerts an axial force on the driven friction piece 2 and compresses the shift spring. When the driving resistance increases to a certain level, the axial force overcomes the shift spring and separates the active friction piece 18 from the driven friction piece 2, and the power is transmitted through the following route , that is, the low-speed power transmission route:

动力→主动摩擦件18→副轴12→低速挡主动齿轮→第二超越离合器的外圈6b→第二超越离合器的内圈6a→主轴1→从动摩擦件2→轴向凸轮副→凸轮轴套22→第一动力输出主动齿轮11输出动力。Power→active friction member 18→counter shaft 12→low gear driving gear→outer ring 6b of the second overrunning clutch→inner ring 6a of the second overrunning clutch→main shaft 1→driven friction piece 2→axial cam pair→cam bushing 22 → The first power output pinion gear 11 outputs power.

低速挡动力传递路线同时还经过下列路线:轴向凸轮副→从动摩擦件2→压缩变速弹簧,防止低速挡传动过程中出现压缩变速弹簧往复压缩,从而防止低速挡传动时主动摩擦件18和从动摩擦件2贴合。The low-speed power transmission route also passes through the following routes: Axial cam pair → driven friction piece 2 → compression shift spring, to prevent the reciprocating compression of the compression shift spring during low-speed transmission, thereby preventing the active friction piece 18 during low-speed transmission. The dynamic friction part 2 is fitted.

有上述传递路线可以看出,本发明在运行时,主动摩擦件18与从动摩擦件8在变速弹簧作用下紧密贴合,形成一个保持一定压力的自动变速机构,并且可以通过增加变速轴套的轴向厚度来调整离合器啮合所需压力,达到传动目的,此时,动力带动主动摩擦件18、从动摩擦件2、凸轮轴套22,使凸轮轴套22输出动力;此时第二超越离合器处于超越状态。It can be seen from the above transmission route that when the present invention is running, the active friction member 18 and the driven friction member 8 are in close contact under the action of the shifting spring to form an automatic shifting mechanism that maintains a certain pressure. The axial thickness is used to adjust the pressure required for clutch engagement to achieve the purpose of transmission. At this time, the power drives the active friction member 18, the driven friction member 2, and the camshaft sleeve 22, so that the camshaft sleeve 22 outputs power; at this time, the second overrunning clutch is in beyond the state.

机动车启动时阻力大于驱动力,阻力迫使凸轮轴套向相反方向转动一定角度,在轴向凸轮副的作用下,从动摩擦件2压缩变速弹簧;从动摩擦件2和主动摩擦件18分离,同步,第二超越离合器啮合,输出动力以低速挡速度转动;因此,自动实现了低速挡起动,缩短了起动时间,减少了起动力。与此同时,变速弹簧吸收运动阻力矩能量,为恢复快挡挡位传递动力蓄备势能。When the motor vehicle starts, the resistance is greater than the driving force, and the resistance forces the camshaft sleeve to rotate a certain angle in the opposite direction. Under the action of the axial cam pair, the driven friction member 2 compresses the shifting spring; the driven friction member 2 and the active friction member 18 are separated and synchronized. , the second overrunning clutch is engaged, and the output power rotates at the low-speed gear speed; therefore, the low-speed gear start is automatically realized, which shortens the starting time and reduces the starting force. At the same time, the shifting spring absorbs the kinetic resistance torque energy, and accumulates potential energy to transmit power to restore the fast gear.

启动成功后,行驶阻力减少,当分力减少到小于变速弹簧所产生的压力时,因被运动阻力压缩而产生变速弹簧压力迅速释放推动下,完成从动摩擦件2和主动摩擦件18恢复紧密贴合状态,低速挡超越离合器处于超越状态。After the successful startup, the driving resistance is reduced. When the component force is reduced to less than the pressure generated by the speed change spring, the pressure of the speed change spring is quickly released due to the compression of the movement resistance. Under the push, the driven friction piece 2 and the active friction piece 18 are restored to close fit. state, the low gear overrunning clutch is in the overrunning state.

行驶过程中,随着运动阻力的变化自动换挡原理同上,在不需要剪断驱动力的情况下实现变挡,使整个机车运行平稳,安全低耗,而且传递路线简单化,提高传动效率。During the driving process, the principle of automatic gear shifting is the same as the above, and the shifting is realized without cutting the driving force, so that the entire locomotive runs smoothly, is safe and low in consumption, and the transmission route is simplified to improve the transmission efficiency.

倒挡传动路线:Reverse transmission line:

动力→主动摩擦件18→副轴12→倒挡主动齿轮→倒挡从动齿轮→主轴1→从动摩擦件2→轴向凸轮副→凸轮轴套22→第一动力输出主动齿轮11输出倒挡动力。Power → driving friction member 18 → countershaft 12 → reverse gear driving gear → reverse gear driven gear → main shaft 1 → driven friction member 2 → axial cam pair → cam sleeve 22 → first power output driving gear 11 output reverse gear power.

此时,由于倒挡的传动比大于低速挡传动比,则第二超越离合器超越,且由于转动反向,第一超越离合器超越,实现倒挡传动。At this time, since the transmission ratio of the reverse gear is greater than the transmission ratio of the low gear, the second overrunning clutch overruns, and due to the reverse rotation, the first overrunning clutch overruns to realize the reverse gear transmission.

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent substitutions without departing from the spirit and scope of the technical solutions of the present invention should be included in the scope of the claims of the present invention.

Claims (10)

1.一种双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:包括箱体、驱动电机和变速器,所述变速器包括主轴、主轴上的变速系统和转动配合外套于主轴的传动轴套,所述变速系统包括低速挡传动机构、倒挡传动机构和自适应变速组件;1. a double overrunning clutch mechanical shaft end output self-adaptive automatic variable-speed electric drive system is characterized in that: comprising a casing, a drive motor and a transmission, and the transmission comprises a main shaft, a speed change system on the main shaft and a rotation that cooperates with the outer casing on the main shaft The transmission shaft sleeve, the transmission system includes a low-speed transmission mechanism, a reverse transmission mechanism and an adaptive transmission assembly; 自适应变速组件包括从动摩擦件、主动摩擦件和变速弹性元件;The adaptive transmission assembly includes a driven friction part, an active friction part and a transmission elastic element; 主动摩擦件和从动摩擦件以摩擦面相互配合的方式形成摩擦传动副,所述从动摩擦件以可轴向滑动圆周方向传动的方式设置于主轴,变速弹性元件施加使从动摩擦件与主动摩擦件贴合传动的预紧力,所述从动摩擦件通过轴向凸轮副将动力输出至传动轴套,所述轴向凸轮副将动力输出时,对从动摩擦件施加与变速弹性元件预紧力相反的轴向分力;驱动动力通过一第一超越离合器将动力输入至所述主动摩擦件;The active friction piece and the driven friction piece form a friction transmission pair in a way that the friction surfaces cooperate with each other. The driven friction piece is arranged on the main shaft in a manner that can be axially slid and transmitted in the circumferential direction. In accordance with the pre-tightening force of the transmission, the driven friction piece outputs the power to the transmission bushing through the axial cam pair, and when the axial cam pair outputs the power, the driven friction piece is applied with the shaft opposite to the pre-tightening force of the shifting elastic element. to the component force; the driving power inputs the power to the active friction member through a first overrunning clutch; 还包括副轴,所述驱动动力还输入副轴;It also includes a secondary shaft, and the driving power is also input to the secondary shaft; 所述低速挡传动机构包括第二超越离合器,所述副轴通过第二超越离合器将低速挡动力传递至主轴;The low-speed gear transmission mechanism includes a second overrunning clutch, and the secondary shaft transmits the low-speed gear power to the main shaft through the second overrunning clutch; 所述倒挡传动机构以可将倒挡动力传递至主轴或者断开倒挡动力;The reverse gear transmission mechanism can transmit the reverse gear power to the main shaft or disconnect the reverse gear power; 所述倒挡传动机构具有将倒挡动力从副轴传递至主轴的传动比Ⅰ,所述低速挡传动机构具有将低速挡动力从副轴传递至主轴的传动比Ⅱ,传动比Ⅰ大于等于传动比Ⅱ;The reverse gear transmission mechanism has a transmission ratio I for transmitting the reverse gear power from the auxiliary shaft to the main shaft, and the low-speed gear transmission mechanism has a transmission ratio II for transmitting the low-speed gear power from the auxiliary shaft to the main shaft, and the transmission ratio I is greater than or equal to the transmission. ratio II; 与所述轴向凸轮副传动连接设有将动力输出的动力输出轴;A power output shaft for outputting power is provided in the drive connection with the axial cam pair; 还包括动力输出组件,所述动力输出组件包括差速器,所述动力输出轴将动力输出至差速器。Also included is a power take-off assembly including a differential to which the power take-off shaft outputs power. 2.根据权利要求1所述的双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:所述驱动电机包括定子和空心转子,包括定子和转子,所述转子为空心转子结构,所述从动摩擦件、主动摩擦件和变速弹性元件位于空心转子结构内;所述空心转子结构设有前支撑部和后支撑部,所述前支撑部传动配合连接支撑于第一超越离合器外圈,后支撑部转动配合支撑于箱体,所述空心转子结构的空心中部转动配合支撑于变速器主轴。2 . The double overrunning clutch mechanical shaft end output adaptive automatic variable speed electric drive system according to claim 1 , wherein the drive motor comprises a stator and a hollow rotor, including a stator and a rotor, and the rotor is a hollow rotor. 3 . structure, the driven friction piece, the active friction piece and the variable speed elastic element are located in the hollow rotor structure; the hollow rotor structure is provided with a front support part and a rear support part, and the front support part is supported by the first overrunning clutch in a drive-fit connection The outer ring and the rear support part are rotatably supported on the box body, and the hollow center of the hollow rotor structure is rotatably supported on the transmission main shaft. 3.根据权利要求2所述的双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:所述轴向凸轮副由带有端面凸轮的凸轮轴套和从动摩擦件带有的端面凸轮配合形成,所述凸轮轴套转动配合外套于主轴,所述从动摩擦件传动配合且轴向可滑动的外套于主轴,传动轴套与凸轮轴套传动配合或一体成型且设有将动力输出的第一动力输出主动齿轮,同时,传动轴套还将动力输出至副轴;3. The double overrunning clutch mechanical shaft end output adaptive automatic transmission electric drive system according to claim 2, characterized in that: the axial cam pair is composed of a cam sleeve with an end cam and a driven friction member with The end face cam is formed in cooperation with the camshaft sleeve, the camshaft sleeve is rotatably matched to the main shaft, the driven friction piece is driven and axially slidable and is sleeved on the main shaft. The first power output drive gear of the power output, at the same time, the transmission bushing also outputs the power to the countershaft; 还包括动力输出齿轮组,所述动力输出齿轮组包括中间轴、与第一动力输出主动齿轮啮合传动且与中间轴传动配合的第一动力输出从动齿轮、与中间轴传动配合的第二动力输出主动齿轮和与第二动力输出主动齿轮传动啮合的第二动力输出从动齿轮,所述第二动力输出从动齿轮与动力输出轴传动配合。It also includes a power output gear set, the power output gear set includes an intermediate shaft, a first power output driven gear that meshes with the first power output driving gear and is drivingly matched with the intermediate shaft, and a second power output that cooperates with the intermediate shaft. an output driving gear and a second power output driven gear in driving engagement with the second power output driving gear, the second power output driven gear is in driving cooperation with the power output shaft. 4.根据权利要求3所述的双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:所述低速挡传动机构还包括低速挡从动齿轮和与低速挡从动齿轮啮合的低速挡主动齿轮,所述第二超越离合器的内圈传动配合设置于主轴,外圈传动配合设置或者直接形成低速挡从动齿轮,所述副轴上传动配合设置低速挡主动齿轮;所述倒挡传动机构包括倒挡主动齿轮和与倒挡主动齿轮啮合的倒挡从动齿轮,所述倒挡主动齿轮可接合或分离的方式设置于副轴,倒挡从动齿轮传动配合设置于主轴;所述传动比Ⅰ大于传动比Ⅱ。4. The double overrunning clutch mechanical shaft end output adaptive automatic transmission electric drive system according to claim 3, wherein the low-speed transmission mechanism further comprises a low-speed driven gear and meshes with the low-speed driven gear The low-speed driving gear of the second overrunning clutch is set on the main shaft in cooperation with the inner ring of the second overrunning clutch; The reverse gear transmission mechanism includes a reverse gear driving gear and a reverse gear driven gear meshing with the reverse gear driving gear. The reverse gear driving gear is arranged on the countershaft in a manner of being engaged or disengaged, and the reverse gear driven gear is driven and arranged on the main shaft. ; The transmission ratio I is greater than the transmission ratio II. 5.根据权利要求4所述的双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:所述凸轮轴套与传动轴套通过第二轴向凸轮副传动配合;5. The double overrunning clutch mechanical shaft end output self-adaptive automatic transmission electric drive system according to claim 4, characterized in that: the cam shaft sleeve and the transmission shaft sleeve are driven and matched by the second axial cam pair; 与所述第一超越离合器外圈传动配合且转动配合外套于传动轴套设有中间主动齿轮,所述副轴传动配合设置有与中间主动齿轮传动配合的中间从动齿轮。An intermediate driving gear is provided on the outer ring of the first overrunning clutch and is rotatably matched with the outer ring of the first overrunning clutch. 6.根据权利要求4所述的双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:所述倒挡主动齿轮通过电磁换挡机构可接合或分离的方式设置于副轴,所述电磁换挡机构同时用于切换动力正反转输入;所述电磁换挡机构包括电磁换挡器、主动摆臂、换挡转轴和换挡拨叉,所述电磁换挡器为两个分列于主动摆臂两侧用于驱动主动摆臂绕换挡转轴的轴线摆动且带动换挡转轴绕所述轴线转动,所述换挡转轴带动换挡拨叉绕所述轴线摆动并完成换挡;6 . The double overrunning clutch mechanical shaft end output adaptive automatic transmission electric drive system according to claim 4 , wherein the reverse gear driving gear is arranged on the countershaft in a manner that can be engaged or disengaged by an electromagnetic shifting mechanism. 7 . , the electromagnetic shift mechanism is used to switch the forward and reverse power input at the same time; the electromagnetic shift mechanism includes an electromagnetic shifter, an active swing arm, a shift shaft and a shift fork, and the electromagnetic shifter is two The two are arranged on both sides of the active swing arm and are used to drive the active swing arm to swing around the axis of the shift shaft and drive the shift shaft to rotate around the axis. The shift shaft drives the shift fork to swing around the axis and completes the shift; 所述电磁换挡机构还设有定位机构,所述定位机构包括设置于主动摆臂动力端的具有预紧力的定位弹子和设置于箱体的定位基座,所述定位基座上设置与定位弹子对应配合的定位凹坑;所述电磁换挡机构还设有用于检测挡位换挡是否到位的位置传感组件。The electromagnetic shifting mechanism is further provided with a positioning mechanism, the positioning mechanism includes a positioning pin with a pre-tightening force arranged on the power end of the active swing arm and a positioning base arranged on the box body, on which the positioning base is arranged and positioned. The marbles correspond to the matching positioning pits; the electromagnetic shifting mechanism is also provided with a position sensing component for detecting whether the gear shift is in place. 7.根据权利要求1所述的双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:所述变速弹性元件为变速碟簧,所述变速碟簧外套于主轴并且一端通过平面轴承抵住从动摩擦件,另一端抵住预紧力调节组件,所述平面轴承为沿径向双排小滚珠的平面滚动轴承,所述预紧力调节组件包括调节环和调节螺母,所述调节螺母螺纹配合设置于主轴,调节环轴向可滑动的外套于主轴且两端分别抵住调节螺母和变速碟簧,所述调节螺母还设有将其轴向锁紧的锁紧组件。7. The double overrunning clutch mechanical shaft-end output adaptive automatic variable-speed electric drive system according to claim 1, wherein the variable-speed elastic element is a variable-speed disk spring, and the variable-speed disk spring is sleeved on the main shaft and has one end passing through it. The plane bearing is pressed against the driven friction piece, and the other end is against the pre-tightening force adjusting assembly, the plane bearing is a plane rolling bearing with double rows of small balls along the radial direction, and the pre-tightening force adjusting assembly includes an adjusting ring and an adjusting nut. The adjusting nut is threadedly arranged on the main shaft, and the adjusting ring is axially slidably sleeved on the main shaft, and the two ends respectively press against the adjusting nut and the speed change disc spring. 8.根据权利要求5所述的双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:所述传动轴套外圆靠近第一动力输出齿轮设有用于转动配合支撑于变速器箱体的第一径向轴承;所述中间主动齿轮一端与第一超越离合器外圈传动配合,另一端形成轴颈且该轴颈外圆设有用于转动配合支撑于变速器箱体的第二径向轴承;所述第二超越离合器内圈分别向左、右延伸形成外延伸轴段和内延伸轴段,外延伸轴段外圆和内延伸轴段外圆分别对应设有用于转动支撑于变速器箱体的第三径向轴承和第四径向轴承;所述倒挡从动齿轮传动配合外套于第二超越离合器内圈向内端延伸延伸的轴段外圆,且所述第四径向轴承位于倒挡从动齿轮右侧。8 . The double overrunning clutch mechanical shaft end output adaptive automatic transmission electric drive system according to claim 5 , wherein: the outer circumference of the transmission shaft sleeve is close to the first power output gear. The first radial bearing of the casing; one end of the intermediate driving gear is in driving cooperation with the outer ring of the first overrunning clutch, and the other end forms a journal, and the outer circle of the journal is provided with a second diameter for rotating and supporting on the transmission casing. The inner ring of the second overrunning clutch extends to the left and right to form an outer extension shaft segment and an inner extension shaft segment, respectively. The third radial bearing and the fourth radial bearing of the box body; the reverse gear driven gear drive is fitted over the outer circle of the shaft segment extending from the inner ring of the second overrunning clutch to the inner end, and the fourth radial bearing The bearing is located to the right of the reverse driven gear. 9.根据权利要求8所述的双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:所述中间主动齿轮右侧与第一超越离合器内圈之间通过第一平面轴承转动配合,所述第二径向轴承设置于中间主动齿轮左侧形成的轴颈,中间主动齿轮左侧与第一动力输出主动齿轮之间通过第二平面轴承转动配合,第一径向轴承位于第一动力输出主动齿轮左侧;第一径向轴承与第二超越离合器内圈的内延伸轴段之间设置第三平面轴承。9 . The double overrunning clutch mechanical shaft end output adaptive automatic transmission electric drive system according to claim 8 , wherein a first plane bearing passes between the right side of the intermediate driving gear and the inner ring of the first overrunning clutch. 10 . Rotating fit, the second radial bearing is arranged on the journal formed on the left side of the intermediate drive gear, the left side of the intermediate drive gear and the first power output drive gear are rotated and matched by a second plane bearing, and the first radial bearing is located at the The left side of the first power output driving gear; a third plane bearing is arranged between the first radial bearing and the inner extending shaft segment of the inner ring of the second overrunning clutch. 10.根据权利要求2所述的双超越离合机械式轴端输出自适应自动变速电驱动系统,其特征在于:所述驱动动力由一驱动过渡套输入,所述驱动过渡套左侧传动连接第一超越离合器的外圈并支撑于超越离合器的外圈,右侧形成缩颈且该缩颈上设有用于支撑于变速器箱体的第五径向轴承;所述主轴同轴位于驱动过渡套内且与驱动过渡套内圆通过第六径向轴承转动配合;所述从动摩擦件、主动摩擦件和变速弹性元件均位于驱动过渡套内圆形成的空腔内。10 . The double overrunning clutch mechanical shaft end output adaptive automatic transmission electric drive system according to claim 2 , wherein the driving power is input by a drive transition sleeve, and the left side of the drive transition sleeve is connected to the second drive. 11 . The outer ring of an overrunning clutch is supported on the outer ring of the overrunning clutch, and a constriction is formed on the right side, and the constriction is provided with a fifth radial bearing for supporting the transmission case; the main shaft is coaxially located in the drive transition sleeve And it is rotatably matched with the inner circle of the driving transition sleeve through the sixth radial bearing; the driven friction piece, the active friction piece and the shifting elastic element are all located in the cavity formed by the inner circle of the driving transition sleeve.
CN201910305591.6A 2019-04-16 2019-04-16 Double-overrunning clutch mechanical shaft end output self-adaptive automatic speed-changing electric drive system Expired - Fee Related CN110014829B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910305591.6A CN110014829B (en) 2019-04-16 2019-04-16 Double-overrunning clutch mechanical shaft end output self-adaptive automatic speed-changing electric drive system
PCT/CN2020/084066 WO2020211695A1 (en) 2019-04-16 2020-04-09 Adaptive automatic transmission main shaft assembly employing double overrunning clutch-based mechanical shaft end-output, transmission, and drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910305591.6A CN110014829B (en) 2019-04-16 2019-04-16 Double-overrunning clutch mechanical shaft end output self-adaptive automatic speed-changing electric drive system

Publications (2)

Publication Number Publication Date
CN110014829A CN110014829A (en) 2019-07-16
CN110014829B true CN110014829B (en) 2022-04-29

Family

ID=67191471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910305591.6A Expired - Fee Related CN110014829B (en) 2019-04-16 2019-04-16 Double-overrunning clutch mechanical shaft end output self-adaptive automatic speed-changing electric drive system

Country Status (1)

Country Link
CN (1) CN110014829B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020211695A1 (en) * 2019-04-16 2020-10-22 西南大学 Adaptive automatic transmission main shaft assembly employing double overrunning clutch-based mechanical shaft end-output, transmission, and drive system
CN112901730B (en) * 2019-12-04 2022-04-08 西南大学 Transaxle for an adaptive automatic transmission electric drive system
CN111016645B (en) * 2019-12-04 2022-04-22 西南大学 Ultra-large torque double helix double overrun integrated intelligent adaptive electric drive rear drive system
CN111016644B (en) * 2019-12-04 2022-03-29 西南大学 Compact adaptive automatic transmission system with multiple rows of overrunning clutches
CN111140630B (en) * 2019-12-31 2022-03-22 西南大学 Coaxial multilayer multistage self-adaptive two-gear speed change system
CN111055677B (en) * 2019-12-31 2022-10-04 西南大学 Intelligent central driving type electric drive assembly with transmission sensing function
CN111152880B (en) * 2019-12-31 2021-02-09 西南大学 Single-side dual-motor central drive system based on intelligent transmission system
CN112628373B (en) * 2020-12-16 2021-12-10 西南大学 Electric Vehicle Transmission Sensing Longitudinal Drive Adaptive Taper Clutch Automatic Transmission System

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841069A (en) * 1958-01-01 1960-07-13 Ford Motor Co Improvements relating to variable speed power transmission mechanism
CN101376419B (en) * 2008-09-26 2011-01-26 西南大学 Adjustable two-speed adaptive automatic transmission hub
CN102717705B (en) * 2012-06-18 2015-07-22 西南大学 Mechanical intelligent adaptive double-gear automatic speed change hub with multiple cams
FR3027852B1 (en) * 2014-11-04 2016-12-09 Technoboost MECHANICAL TRANSMISSION OF MOTOR VEHICLE WITH HYDRAULIC MACHINE
CN105270562A (en) * 2015-09-09 2016-01-27 梁稚子 Side-hanging pendulum type self-adaptive automatic transmission driving assembly for electric motorcycle
CN105129016B (en) * 2015-09-09 2018-09-04 西南大学 Battery-operated motor cycle pendant bends conical pendulm formula self-adapting automatic gear shift drive assembly
CN105253246B (en) * 2015-09-21 2018-09-04 西南大学 Battery-operated motor cycle spiral disc type frictional drive self-adapting automatic gear shift drive assembly

Also Published As

Publication number Publication date
CN110014829A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
CN109990069B (en) Double overrunning clutch sleeve output taper sleeve type self-adaptive automatic transmission spindle assembly
CN110014829B (en) Double-overrunning clutch mechanical shaft end output self-adaptive automatic speed-changing electric drive system
CN109910601B (en) Adaptive automatic transmission high-speed electric wheel hub with mechanical double overrunning clutch main shaft output
CN110043618B (en) Planetary gear train input double-overrunning clutch shaft sleeve output automatic speed changing electric drive system
CN109990057B (en) Mechanical type double-overrunning clutch main shaft output self-adaptive automatic transmission
CN110030332B (en) Output self-adaptive automatic transmission with double overrunning clutch shaft sleeves
CN110017370B (en) Planetary system output mechanical double overrunning clutch adaptive automatic transmission main shaft assembly
CN109895623B (en) Mechanical double-overrunning clutch self-adaptive automatic speed changing electric drive axle with planetary system output
CN110043617B (en) Planetary gear train input double overrunning clutch sleeve output automatic transmission main shaft assembly
CN109882590B (en) Double overrunning clutch mechanical shaft end output adaptive automatic transmission spindle assembly
CN109899509B (en) Self-adaptive automatic speed-changing electric drive system with mechanical double-overrunning clutch main shaft output
CN110203067B (en) Mechanical double-overrunning clutch self-adaptive automatic speed changing bridge
CN110014830B (en) Mechanical double-overrunning clutch self-adaptive automatic speed changing bridge with planetary system output
CN109941099B (en) Mechanical double-overrunning clutch self-adaptive automatic speed changing bridge with planetary system input
CN110014831B (en) Double-overrunning clutch self-adaptive automatic speed-changing electric drive system for planetary system output
CN110043633B (en) Automatic speed-changing main shaft assembly of double-overrunning clutch main shaft output of planetary system input
CN110030342B (en) Mechanical double-overrunning clutch self-adaptive automatic transmission with planetary system output
CN110005801B (en) Double overrunning clutch mechanical shaft end output adaptive automatic transmission
CN110017369B (en) Planetary gear train input double overrunning clutch sleeve output adaptive automatic transmission
CN110185790B (en) Double overrunning clutch mechanical bushing output adaptive automatic transmission electric drive system
CN109910602B (en) Mechanical type double-overrunning clutch spindle output self-adaptive automatic speed change electric hub
CN110014826B (en) Mechanical double-overrunning clutch self-adaptive automatic speed changing electric drive axle with planetary system input
CN110030355B (en) Adaptive automatic transmission with dual overrunning clutch main shaft output with planetary system input
CN110043619B (en) Automatic speed-changing electric drive system with planetary system input and double overrunning clutch main shaft output
CN109973626B (en) Self-adaptive automatic speed-changing main shaft assembly of mechanical double-overrunning clutch main shaft output

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220429