CN110008645A - A kind of transformer loss calculation method - Google Patents
A kind of transformer loss calculation method Download PDFInfo
- Publication number
- CN110008645A CN110008645A CN201910363556.XA CN201910363556A CN110008645A CN 110008645 A CN110008645 A CN 110008645A CN 201910363556 A CN201910363556 A CN 201910363556A CN 110008645 A CN110008645 A CN 110008645A
- Authority
- CN
- China
- Prior art keywords
- transformer
- current
- excitation
- loss
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 42
- 230000005284 excitation Effects 0.000 claims abstract description 64
- 238000004804 winding Methods 0.000 claims abstract description 46
- 238000012360 testing method Methods 0.000 claims abstract description 4
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 3
- 230000005415 magnetization Effects 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 12
- 230000006698 induction Effects 0.000 claims description 9
- 230000005381 magnetic domain Effects 0.000 claims description 8
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 6
- 230000002427 irreversible effect Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 230000002441 reversible effect Effects 0.000 claims description 6
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 5
- 230000004907 flux Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 230000001066 destructive effect Effects 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 1
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
本发明涉及一种变压器损耗计算方法,包括:S1:通过变压器投入运行前的空载试验获得实际工频运行状态下变压器B‑H曲线;S2:建立J‑A动态模型,利用B‑H曲线对J‑A动态模型参数进行优化,获得用来仿真实际运行状态下的变压器铁心磁滞回线的J‑A动态模型;S3:建立谐波下变压器绕组模型,计算一次侧阻抗和变压器励磁阻抗;S4:通过傅里叶分解处理非正弦输入,利用变压器电路等效模型获得实时数据下的绕组电流和励磁电流;S5:通过绕组等效电路中一二次侧阻抗与流过的绕组电流的关系计算得实时变压器绕组损耗,通过J‑A模型计算得实时变压器铁心损耗;本发明兼顾了变压器损耗计算的快速性和精确性来实现变压器损耗的实时预测。
The invention relates to a transformer loss calculation method, comprising: S1: obtaining the B-H curve of the transformer under the actual power frequency operation state through no-load test before the transformer is put into operation; S2: establishing a J-A dynamic model, using the B-H curve Optimize the parameters of the J‑A dynamic model to obtain the J‑A dynamic model used to simulate the hysteresis loop of the transformer core under actual operating conditions; S3: Establish the transformer winding model under harmonics, and calculate the primary side impedance and transformer excitation impedance ; S4: The non-sinusoidal input is processed by Fourier decomposition, and the winding current and excitation current under real-time data are obtained by using the equivalent model of the transformer circuit; The real-time transformer winding loss is calculated by the relationship, and the real-time transformer core loss is calculated through the J-A model; the invention takes into account the rapidity and accuracy of the transformer loss calculation to realize the real-time prediction of the transformer loss.
Description
技术领域technical field
本发明涉及电力系统损耗预测方法领域,更具体地,涉及一种变压器损耗计算方法。The invention relates to the field of power system loss prediction methods, and more particularly, to a transformer loss calculation method.
背景技术Background technique
随着电力系统中的非线性负载逐渐增加,线路中存在大量超标的谐波电流和电压,使得电力系统的谐波问题日趋严重;变压器长期在谐波环境下运行时,会产生大量的损耗、发热,从而使变压器绝缘水平下降,降低变压器的使用寿命,严重时会对电网安全造成影响。With the gradual increase of nonlinear loads in the power system, there are a large number of harmonic currents and voltages that exceed the standard in the line, which makes the harmonic problem of the power system more and more serious. Heat generation, thereby reducing the insulation level of the transformer, reducing the service life of the transformer, and affecting the safety of the power grid in severe cases.
降低变压器损耗、提高供电力设备能效是实现电网运行优质高效的基础;精确快速地计算变压器实时损耗的模型可以在变压器的运行过程的调度投切提供重要参考,也为电能质量评估方法研究提供仿真模块。Reducing transformer losses and improving the energy efficiency of power supply equipment are the basis for achieving high-quality and high-efficiency power grid operation; a model that accurately and quickly calculates real-time losses of transformers can provide an important reference for the dispatching and switching of transformers during operation, as well as provide simulations for research on power quality assessment methods. module.
目前国内外变压器损耗计算模型普遍使用斯坦梅茨方程或采用静态J-A模型、变压器励磁支路阻抗的非线性采用分段式处理,需要大量实验数据,没有兼顾一定的快速性和精确性来实现损耗实时预测。At present, the transformer loss calculation models at home and abroad generally use the Steinmetz equation or the static J-A model, and the nonlinearity of the transformer excitation branch impedance adopts a segmental processing, which requires a large amount of experimental data, and does not take into account a certain speed and accuracy to achieve loss. Real-time predictions.
发明内容SUMMARY OF THE INVENTION
本发明为克服上述现有技术所述的变压器损耗计算没有兼顾一定的快速性和精确性来实现损耗实时预测的缺陷,提供一种变压器损耗计算方法。The present invention provides a transformer loss calculation method in order to overcome the defect that the transformer loss calculation described in the above-mentioned prior art does not take into account certain rapidity and accuracy to realize the real-time prediction of the loss.
所述方法包括以下步骤:The method includes the following steps:
S1:通过变压器投入运行前的空载试验获得实际工频运行状态下变压器B-H曲线;B-H曲线为表征变压器铁心在磁化过程中磁感强度B与磁场强度H之间关系的磁化曲线;S1: The B-H curve of the transformer under the actual power frequency operation state is obtained through the no-load test before the transformer is put into operation; the B-H curve is the magnetization curve that characterizes the relationship between the magnetic induction intensity B and the magnetic field intensity H of the transformer core during the magnetization process;
S2:建立J-A动态模型,利用B-H曲线对J-A动态模型参数进行优化,获得用来仿真实际运行状态下的变压器铁心磁滞回线的J-A动态模型;S2: Establish a J-A dynamic model, use the B-H curve to optimize the parameters of the J-A dynamic model, and obtain the J-A dynamic model used to simulate the hysteresis loop of the transformer core under actual operating conditions;
S3:建立谐波下变压器绕组模型,根据变压器铭牌参数计算变压器一次侧阻抗;利用i-L函数计算变压器励磁阻抗;S3: Establish the transformer winding model under harmonics, calculate the transformer primary side impedance according to the transformer nameplate parameters; use the i-L function to calculate the transformer excitation impedance;
S4:采集并记录变压器一二次电压、电流数据,根据数据修改变压器绕组模型中一二次电压、电流参数;通过傅里叶分解处理非正弦输入,利用变压器绕组模型获得实时数据下的绕组电流和励磁电流;S4: Collect and record the primary and secondary voltage and current data of the transformer, modify the primary and secondary voltage and current parameters in the transformer winding model according to the data; process the non-sinusoidal input through Fourier decomposition, and use the transformer winding model to obtain the winding current under real-time data and excitation current;
S5:通过绕组等效电路中一二次侧阻抗与流过的绕组电流的关系计算变压器绕组损耗,通过J-A模型计算得实时变压器铁心损耗。S5: Calculate the transformer winding loss through the relationship between the primary and secondary side impedance in the winding equivalent circuit and the flowing winding current, and calculate the real-time transformer core loss through the J-A model.
优选地,S2中的J-A动态模型为:Preferably, the J-A dynamic model in S2 is:
其中Man=Ms(coth(He/a)-(a/He))where M an =M s (coth(H e /a)-(a/H e ))
B=μo(H+M)B=μ o (H+M)
式中,磁场强度H作为输入,磁感应强度B作为输出,Ms为饱和磁化强度、k为不可逆系数、c为可逆系数、α为表征磁畴间相互作用的参数、a为无磁滞磁化曲线形状的修正参数,ρ为材料的电阻率,单位为Ω·m;d为材料尺寸(圆柱体时为直径,切片时为片厚度),单位为m,一般配电变压器硅钢片厚度为0.25-0.35mm;β为几何因子(圆柱体时为16,切片时为6,球体时为20),对于变压器取β=6;其中;w为切片宽度,单位为m;Ho为与畴壁有关的参数,取值0.0075;G为与尺寸无关的无纲量常数,取值0.1356;μ0为真空磁导率,t为时间,M为磁化强度,单位A/m,δ为表征磁场中钉扎效应阻碍作用的参数,当dH/dt>0,δ>0;当dH/dt<0,δ<0;Man为无损磁化强度,单位A/m,He为有效磁场强度,单位A/m,H为磁场强度,单位A/m。In the formula, the magnetic field intensity H is used as the input, the magnetic induction intensity B is the output, M s is the saturation magnetization, k is the irreversible coefficient, c is the reversible coefficient, α is the parameter characterizing the interaction between magnetic domains, and a is the magnetization curve without hysteresis Correction parameter of shape, ρ is the resistivity of the material, the unit is Ω m; d is the material size (diameter when the cylinder is, the thickness of the sheet when slicing), the unit is m, the thickness of the general distribution transformer silicon steel sheet is 0.25- 0.35mm; β is the geometric factor (16 for the cylinder, 6 for the slice, 20 for the sphere), and β=6 for the transformer; where; w is the slice width, in m; H o is related to the domain wall The parameter of , the value is 0.0075; G is the dimensionless constant, which is independent of the size, and the value is 0.1356; μ 0 is the vacuum permeability, t is the time, M is the magnetization, and the unit is A/m, and δ is the nail in the characteristic magnetic field. The parameters of the blocking effect of the tie effect, when dH/dt>0, δ>0; when dH /dt<0, δ<0; Man is the lossless magnetization, unit A/m, He is the effective magnetic field strength, unit A /m, H is the magnetic field strength, the unit is A/m.
优选地,利用B-H曲线对模型参数进行优化的具体过程为:Preferably, the specific process of optimizing the model parameters by using the B-H curve is as follows:
采用粒子群优化算法拟合S1获得的硅钢片B-H曲线,获得修正J-A动态模型的5个参数:饱和磁化强度Ms、不可逆系数k、可逆系数c、表征磁畴间相互作用的参数α、无磁滞磁化曲线形状的修正参数a,其余参数以实际变压器情况而设置,获得用来仿真实际运行状态下的变压器铁心磁滞回线的J-A动态模型。The particle swarm optimization algorithm was used to fit the BH curve of the silicon steel sheet obtained by S1, and five parameters of the modified JA dynamic model were obtained: saturation magnetization Ms, irreversible coefficient k , reversible coefficient c, parameter α characterizing the interaction between magnetic domains, no The correction parameter a of the shape of the hysteresis magnetization curve, and the other parameters are set according to the actual transformer condition, and the JA dynamic model used to simulate the hysteresis loop of the transformer core under the actual operating state is obtained.
优选地,S3中变压器绕组模型包括:一次侧电源,一次侧阻抗,励磁阻抗,二次侧电源;Preferably, the transformer winding model in S3 includes: primary side power supply, primary side impedance, excitation impedance, and secondary side power supply;
一次侧电源和一次侧阻抗串联连接;串联后的一次侧电源和一次侧阻抗与励磁阻抗、二次侧电源三者并联连接。The primary side power supply and the primary side impedance are connected in series; the series connected primary side power supply and the primary side impedance are connected in parallel with the excitation impedance and the secondary side power supply.
优选地,S3中一次侧阻抗的计算公式为:Preferably, the calculation formula of the primary side impedance in S3 is:
其中,h为谐波次数,R为绕组电感,X为绕组电抗。Among them, h is the harmonic order, R is the winding inductance, and X is the winding reactance.
优选地,S3中励磁阻抗的计算过程为:Preferably, the calculation process of the excitation impedance in S3 is:
S3.1:设无漏磁,且磁路l上的磁场强度H处处相等;根据全电流定律有得励磁电流im与磁场强度H关系: S3.1 : Suppose there is no magnetic leakage, and the magnetic field strength H on the magnetic circuit l is equal everywhere; according to the law of total current, there is a relationship between the excitation current im and the magnetic field strength H:
得have to
式中,l为变压器平均铁心磁路,N为高次侧绕组圈数;In the formula, l is the average core magnetic circuit of the transformer, and N is the number of turns of the high-order side winding;
S3.2:根据能量扰动原理,计算外部提供的励磁能量增量,计算公式为:S3.2: According to the principle of energy disturbance, calculate the excitation energy increment provided by the outside, and the calculation formula is:
ΔW1=ΔemΔim ΔW 1 =Δe m Δim
即ΔW1=LeqΔim 2 That is, ΔW 1 =L eq Δim 2
其中,Δim为电路模型中线圈某时刻在外部电源作用下生成励磁电流,Δλ为励磁电流Δi所产生的磁链;Δem为励磁端口电压增量;Leq为励磁支路等效电感;Among them, Δim is the excitation current generated by the coil in the circuit model under the action of an external power supply at a certain time, Δλ is the flux linkage generated by the excitation current Δi; Δe m is the voltage increment of the excitation port; L eq is the equivalent inductance of the excitation branch;
S3.3:计算磁场中励磁电流引起的磁场变化所产生的能量增量,计算公式为:S3.3: Calculate the energy increment generated by the magnetic field change caused by the excitation current in the magnetic field. The calculation formula is:
ΔW2=∫ΔBΔH·dVΔW 2 =∫ΔBΔH·dV
式中,ΔB为磁感应强度增量;ΔH为磁场强度增量In the formula, ΔB is the magnetic induction intensity increment; ΔH is the magnetic field intensity increment
S3.4:结合S3.1-S3.3,并通过S2中的J-A模型获得励磁电流与励磁支路等效电感Leq的关系;再通过Gaussian算法获得i-L函数;S3.4: Combine S3.1-S3.3, and obtain the relationship between the excitation current and the equivalent inductance L eq of the excitation branch through the JA model in S2; then obtain the iL function through the Gaussian algorithm;
i-L函数为:The i-L function is:
其中aj、bj、cj为不同的参数,j=1,2,3,4,5,6,7,8;where a j , b j , c j are different parameters, j=1,2,3,4,5,6,7,8;
S3.5:根据i-L函数计算励磁阻抗。S3.5: Calculate the excitation impedance according to the i-L function.
优选地,S4包括以下步骤:Preferably, S4 includes the following steps:
S4.1:采集并记录变压器一二次电压、电流数据,根据数据修改变压器绕组模型中一二次电压、电流参数;S4.1: Collect and record the primary and secondary voltage and current data of the transformer, and modify the primary and secondary voltage and current parameters in the transformer winding model according to the data;
通过傅里叶级数将一次侧非正弦电压、二次侧非正弦电流分别分解成正弦基波电压和电流、奇次正弦谐波电压和电流。by Fourier series The primary side non-sinusoidal voltage and secondary side non-sinusoidal current are decomposed into sinusoidal fundamental voltage and current, odd sinusoidal harmonic voltage and current, respectively.
S4.3:输入经S4.1分解后的一次侧电压源电压up、二次侧电流源电流iuser,并设置一个小于空载励磁电流的10%的初始励磁电流im初始值(自行设置一个较小的励磁电流的初始值im,以启动计算流程,如0.05A),求一次侧电流ip,计算公式为:S4.3: Input the primary side voltage source voltage up p and the secondary side current source current i user decomposed by S4.1 , and set an initial value of the initial excitation current im less than 10% of the no-load excitation current (self- Set a small initial value im of the excitation current to start the calculation process, such as 0.05A), to find the primary side current i p , the calculation formula is:
ip=iuser+im i p = i user + i m
S4.4:根据一次侧电流,计算反电动势,计算公式为:S4.4: Calculate the back EMF according to the primary side current, the calculation formula is:
S4.5:求励磁电势,计算公式为:S4.5: Find the excitation potential, the calculation formula is:
S4.6:计算励磁电流:计算公式为:S4.6: Calculate the excitation current: the calculation formula is:
S4.7:判断励磁电流是否收敛;若收敛,则进行S5;若不收敛,则返回步骤S4.3。S4.7: Determine whether the excitation current converges; if it converges, go to S5; if it does not converge, go back to step S4.3.
优选地,步骤S5中绕组总损耗的计算公式为:Preferably, the calculation formula of the total winding loss in step S5 is:
其中,iph为一次侧电流ip中h次谐波所产生的电流。Among them, i ph is the current generated by the h harmonic in the primary side current i p .
优选地,步骤S5中铁心损耗的计算过程为:Preferably, the calculation process of the core loss in step S5 is:
S5.1:将S4中通过迭代的不同谐波次数下的励磁电流im相加,代入下列公式求得输入磁场H: S5.1 : Add the excitation current im under different harmonic orders through iteration in S4, and substitute the following formula to obtain the input magnetic field H:
S5.2:通过J-A模型计算磁感应强度B;S5.2: Calculate the magnetic induction intensity B through the J-A model;
S5.3:计算变压器的铁心损耗,计算公式为:S5.3: Calculate the core loss of the transformer, the calculation formula is:
PFe=Pec+PA+Ph P Fe =P ec +P A +P h
Ph=∫BdHP h =∫BdH
其中,PFe为铁心损耗,Pec为涡流损耗,PA为由设备结构间局部涡流引起的附加损耗,Ph为磁滞损耗。Among them, P Fe is the core loss, P ec is the eddy current loss, P A is the additional loss caused by the local eddy current between the device structures, and P h is the hysteresis loss.
与现有技术相比,本发明技术方案的有益效果是:本发明兼顾了变压器损耗计算的快速性和精确性来实现变压器损耗的实时预测,本发明只需要测量变压器铁心实际运行B-H曲线,形成对应的J-A模型来获得对应输入下的励磁阻抗和BH回线,体现变压器铁心的非线性;同时频率对J-A模型影响很好地体现谐波环境下模型地动态性,对不同型号的变压器只要改变参数就可以进行损耗评估。Compared with the prior art, the beneficial effects of the technical solution of the present invention are: the present invention takes into account the rapidity and accuracy of the transformer loss calculation to realize the real-time prediction of the transformer loss, and the present invention only needs to measure the actual operation B-H curve of the transformer core to form The corresponding J-A model is used to obtain the excitation impedance and BH loop under the corresponding input, which reflects the nonlinearity of the transformer core; at the same time, the influence of frequency on the J-A model can well reflect the dynamics of the model in the harmonic environment. parameters can be used for loss evaluation.
附图说明Description of drawings
图1为本实施例变压器损耗计算方法流程图。FIG. 1 is a flow chart of a method for calculating transformer loss according to the present embodiment.
图2为变压器等效电路图。Figure 2 is an equivalent circuit diagram of a transformer.
图3为非线性电感参数获取流程图。Fig. 3 is the flow chart of nonlinear inductance parameter acquisition.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;The accompanying drawings are for illustrative purposes only, and should not be construed as limitations on this patent;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;In order to better illustrate this embodiment, some parts of the drawings are omitted, enlarged or reduced, which do not represent the size of the actual product;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。It will be understood by those skilled in the art that some well-known structures and their descriptions may be omitted from the drawings.
下面结合附图和实施例对本发明的技术方案做进一步的说明。The technical solutions of the present invention will be further described below with reference to the accompanying drawings and embodiments.
本实施例提供一种变压器损耗计算方法,如图1所示,所述方法包括以下步骤:This embodiment provides a method for calculating transformer loss, as shown in FIG. 1 , the method includes the following steps:
S1:通过变压器投入运行前的空载试验获得实际工频运行状态下变压器B-H曲线。S1: Obtain the B-H curve of the transformer under the actual power frequency operating state through the no-load test before the transformer is put into operation.
S2:通过matlab/Simulink建立变压器铁心模型,J-A动态数学模型如式(1)示:S2: The transformer core model is established through matlab/Simulink, and the J-A dynamic mathematical model is shown in formula (1):
B=μo(H+M) (2)B=μ o (H+M) (2)
Man=Ms(coth(He/a)-(a/He)) (3)M an =M s (coth(H e /a)-(a/H e )) (3)
式(1)(2)中,磁场强度H作为输入,磁感应强度B作为输出,Ms为饱和磁化强度、k为不可逆系数、c为可逆系数、α为表征磁畴间相互作用的参数、a为无磁滞磁化曲线形状的修正参数,ρ为材料的电阻率,单位为Ω·m;d为材料尺寸(圆柱体时为直径,切片时为片厚度)单位为m,一般配电变压器硅钢片厚度为0.25-0.35mm;β为几何因子(圆柱体时为16,切片时为6,球体时为20),对于变压器取β=6;其中;w为切片宽度,单位为m;Ho为与畴壁有关的参数,取值0.0075;G为与尺寸无关的无纲量常数,取值0.1356。μ0为真空磁导率,t为时间,M为磁化强度,单位A/m,δ为表征磁场中钉扎效应阻碍作用的参数,当dH/dt>0,δ>0;当dH/dt<0,δ<0;Man为无损磁化强度,单位A/m,He为有效磁场强度,单位A/m,H为磁场强度,单位A/m。In formulas (1) and (2), the magnetic field strength H is used as the input, the magnetic induction strength B is used as the output, M s is the saturation magnetization, k is the irreversible coefficient, c is the reversible coefficient, α is the parameter characterizing the interaction between the magnetic domains, a is the correction parameter for the shape of the magnetization curve without hysteresis, ρ is the resistivity of the material, the unit is Ω m; d is the material size (diameter in the case of a cylinder, slice thickness in the case of a slice), the unit is m, the general distribution transformer silicon steel The thickness of the slice is 0.25-0.35mm; β is the geometric factor (16 for the cylinder, 6 for the slice, 20 for the sphere), and β=6 for the transformer; where; w is the width of the slice, in m; H o is a parameter related to the domain wall, and takes the value of 0.0075; G is a dimensionless constant that is independent of the size, and takes the value of 0.1356. μ 0 is the vacuum permeability, t is the time, M is the magnetization, the unit is A/m, δ is the parameter characterizing the impeding effect of the pinning effect in the magnetic field, when dH/dt>0, δ>0; when dH/dt <0, δ<0; Man is the non-destructive magnetization, the unit is A/m, He is the effective magnetic field strength, the unit is A/m, and H is the magnetic field strength, the unit is A/m.
采用粒子群优化算法拟合步骤1获得的硅钢片B-H曲线,获得修正J-A动态模型5个参数:饱和磁化强度Ms、不可逆系数k、可逆系数c、表征磁畴间相互作用的参数α、无磁滞磁化曲线形状的修正参数a,其余参数以实际变压器情况而设置,获得可仿真实际运行状态下的变压器铁心磁滞回线的动态模型。Particle swarm optimization algorithm was used to fit the BH curve of the silicon steel sheet obtained in step 1, and five parameters of the modified JA dynamic model were obtained: saturation magnetization M s , irreversible coefficient k, reversible coefficient c, parameter α characterizing the interaction between magnetic domains, no The correction parameter a of the shape of the hysteresis magnetization curve, and other parameters are set according to the actual transformer condition, and a dynamic model that can simulate the hysteresis loop of the transformer core under the actual operating state is obtained.
S3:通过matlab/Simulink建立变压器绕组模型;如图2所示,绕组模型由一次侧电源,一次侧阻抗,励磁阻抗,二次侧电源组成。S3: Build the transformer winding model through matlab/Simulink; as shown in Figure 2, the winding model consists of the primary side power supply, the primary side impedance, the excitation impedance, and the secondary side power supply.
在谐波次数比较低时,邻近效应和集肤效应对交流绕组的影响比较小。对于电力网中的变压器,主要分析次数低于23次的谐波,为了简化计算,本发明采用常规变压器绕组模型,式(2),变压器绕组50Hz下的一次侧等效阻抗由变压器铭牌参数计算得:When the harmonic order is relatively low, the influence of proximity effect and skin effect on the AC winding is relatively small. For the transformer in the power network, the main analysis frequency is lower than the 23rd harmonic. In order to simplify the calculation, the present invention adopts the conventional transformer winding model, formula (2), the equivalent impedance of the primary side of the transformer winding at 50Hz is calculated from the transformer nameplate parameters. :
h为谐波次数,绕组阻抗随谐波次数改变而改变,R为绕组电感,X为绕组电抗。h is the harmonic order, the winding impedance changes with the harmonic order, R is the winding inductance, and X is the winding reactance.
如图3所示,非线性电感参数获取过程如下:As shown in Figure 3, the acquisition process of nonlinear inductance parameters is as follows:
根据全电流定律According to the full current law
式(5)中,l为变压器平均铁心磁路,N为高次侧绕组圈数;漏磁不考虑(视单框铁心为无分支磁路),并且认为磁路l上的磁场强度H处处相等,于是根据全电流定律有得励磁电流im与磁场强度H关系:In formula (5), l is the average core magnetic circuit of the transformer, and N is the number of turns of the high-order side winding; the magnetic flux leakage is not considered (the single-frame core is regarded as a non-branched magnetic circuit), and it is considered that the magnetic field strength H on the magnetic circuit l is everywhere. are equal, so according to the full current law, there is a relationship between the excitation current im and the magnetic field strength H:
根据能量扰动原理,电路模型中线圈某时刻在外部电源作用下生成励磁电流Δi产生磁链Δλ,由此得励磁端口电压增量以抵消线圈中的感应电动势。则外部提供得励磁能量增量为ΔW1=ΔemΔim,即:According to the principle of energy disturbance, the coil in the circuit model generates the excitation current Δi under the action of the external power supply at a certain time to generate the flux linkage Δλ, and thus the voltage increment of the excitation port is obtained. to cancel the induced electromotive force in the coil. Then the externally provided excitation energy increment is ΔW 1 =Δe m Δim , namely:
ΔW1=LeqΔim 2 (7)ΔW 1 =L eq Δim 2 (7)
其中,Leq为励磁支路等效电感。Among them, L eq is the equivalent inductance of the excitation branch.
而在磁场中励磁电流Δi引起得场量变化ΔB、ΔH,其对应产生得磁场能量增量为:In the magnetic field, the excitation current Δi causes the field quantity changes ΔB and ΔH, and the corresponding magnetic field energy increment is:
ΔW2=∫ΔBΔH·dV (8)ΔW 2 =∫ΔBΔH·dV (8)
联立式(4)(5)(6)可通过步骤2中的J-A模型获得励磁电流im与励磁支路等效电感Leq的关系,通过matlab拟合工具箱采用Gaussian算法获得i-L函数,即励磁阻抗Zeq参数由励磁电流im的变化而变化;Simultaneous equations (4) (5) (6) can be obtained through the JA model in step 2 to obtain the relationship between the excitation current im and the equivalent inductance L eq of the excitation branch, and the iL function can be obtained through the matlab fitting toolbox using the Gaussian algorithm, That is, the parameter of excitation impedance Z eq is changed by the change of excitation current im ;
其中,i-L函数为:Among them, the i-L function is:
其中aj、bj、cj为不同的参数,j=1,2,3,4,5,6,7,8;where a j , b j , c j are different parameters, j=1,2,3,4,5,6,7,8;
再根据i-L函数计算励磁阻抗。Then calculate the excitation impedance according to the i-L function.
采集并记录变压器一二次电压、电流数据,根据数据修改变压器绕组模型中一二次电压、电流参数;通过傅里叶级数将一次侧非正弦电压、二次侧非正弦电流分别分解成正弦基波电压和电流、奇次正弦谐波电压和电流。Collect and record the primary and secondary voltage and current data of the transformer, and modify the primary and secondary voltage and current parameters in the transformer winding model according to the data; through the Fourier series The primary side non-sinusoidal voltage and secondary side non-sinusoidal current are decomposed into sinusoidal fundamental voltage and current, odd sinusoidal harmonic voltage and current, respectively.
输入经S4.1分解后的一次侧电压源电压up、二次侧电流源电流iuser,并设置一个小于空载励磁电流的10%的初始励磁电流im初始值(自行设置一个较小的励磁电流的初始值im,以启动计算流程,如0.05A),由迭代电路模型如(9)(10)(11)(12)求一次侧电流ip:Input the primary side voltage source voltage up p and the secondary side current source current i user decomposed by S4.1 , and set an initial value of the initial excitation current im less than 10% of the no-load excitation current (set a smaller value by yourself). The initial value of the excitation current im to start the calculation process, such as 0.05A), the primary side current i p is calculated by the iterative circuit model such as (9)(10)(11)(12):
ip=iuser+im (9)i p = i user + i m (9)
得迭代收敛后得不同谐波次数下用于计算绕组损耗的一次侧电流ip和用于计算铁心损耗的励磁电流im。After iterative convergence, the primary side current ip used to calculate the winding loss and the excitation current im used to calculate the core loss under different harmonic orders can be obtained.
S5:通过绕组等效电路中一二次侧阻抗与流过的绕组电流的关系计算变压器绕组损耗,通过J-A模型计算得实时变压器铁心损耗。S5: Calculate the transformer winding loss through the relationship between the primary and secondary side impedance in the winding equivalent circuit and the flowing winding current, and calculate the real-time transformer core loss through the J-A model.
计算绕组损耗:Calculate winding losses:
基于式(3)的变压器绕组谐波损耗可由式(13)得:Transformer winding harmonic loss based on equation (3) can be obtained from equation (13):
h为谐波次数,iph为一次侧电流ip中h次谐波所产生的电流。h is the harmonic order, i ph is the current generated by the h harmonic in the primary side current i p .
将经过迭代得不同谐波次数下的一次侧电流ip通过公式(13)可计算得绕组总损耗。The total winding loss can be calculated by formula (13) through the iterative primary side current i p under different harmonic orders.
计算铁心损耗:Calculate core loss:
将通过迭代得不同谐波次数下励磁电流im相加,代入式(5)(6)得输入磁场强度H,通过式(1)(2)(3)得计算铁心损耗需要的磁感应强度B。Add the excitation current im under different harmonic orders obtained through iteration, and substitute it into formula (5) (6) to obtain the input magnetic field strength H, and obtain the magnetic induction strength B required to calculate the core loss through formula (1) (2) (3) .
根据损耗分离理论,变压器铁心损耗可分为三部分,涡流损耗、磁滞损耗和由设备结构间局部涡流引起的附加损耗:According to the theory of loss separation, transformer core loss can be divided into three parts, eddy current loss, hysteresis loss and additional loss caused by local eddy current between equipment structures:
PFe=Pec+PA+Ph (14)P Fe =P ec +P A +P h (14)
其中,PFe为铁心损耗,Pec为涡流损耗,PA为由设备结构间局部涡流引起的附加损耗,Ph为磁滞损耗。Among them, P Fe is the core loss, P ec is the eddy current loss, P A is the additional loss caused by the local eddy current between the device structures, and P h is the hysteresis loss.
在磁场均匀穿透的条件下,通过求解麦克斯韦方程可得到经典涡流损耗,其表达为:Under the condition of uniform penetration of the magnetic field, the classical eddy current loss can be obtained by solving Maxwell's equation, which is expressed as:
磁畴壁移动的过程中会在磁畴壁附近出现微观的局部涡流,引起涡流损耗,其表达式为:During the movement of the magnetic domain wall, microscopic local eddy currents will appear near the magnetic domain wall, causing eddy current loss, which is expressed as:
每周期磁滞损耗的大小即磁滞B-H曲线所包围的面积。单位体积铁心的磁滞损耗可通过计算磁滞回线的面积来计算:The size of the hysteresis loss per cycle is the area enclosed by the hysteresis B-H curve. The hysteresis loss per unit volume of core can be calculated by calculating the area of the hysteresis loop:
Ph=∫BdH (17)Ph = ∫BdH (17)
三项损耗相加可得变压器总铁心损耗数据。The total core loss data of the transformer can be obtained by adding the three losses.
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;The terms describing the positional relationship in the accompanying drawings are only used for exemplary illustration, and should not be construed as a limitation on this patent;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. Any modification, equivalent replacement and improvement made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910363556.XA CN110008645A (en) | 2019-04-30 | 2019-04-30 | A kind of transformer loss calculation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910363556.XA CN110008645A (en) | 2019-04-30 | 2019-04-30 | A kind of transformer loss calculation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110008645A true CN110008645A (en) | 2019-07-12 |
Family
ID=67175384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910363556.XA Pending CN110008645A (en) | 2019-04-30 | 2019-04-30 | A kind of transformer loss calculation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110008645A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110456290A (en) * | 2019-08-19 | 2019-11-15 | 武汉钢铁有限公司 | A kind of shearing transformer is lost with silicon steel sheet the evaluation method of influence |
CN110517874A (en) * | 2019-08-05 | 2019-11-29 | 三峡大学 | A kind of high-power intermediate-frequency power transformer design method |
CN110968969A (en) * | 2019-12-11 | 2020-04-07 | 国网浙江省电力有限公司岱山县供电公司 | Analysis Method of Iron Core Loss of Asynchronous Motor |
CN111342428A (en) * | 2020-02-26 | 2020-06-26 | 合肥工业大学 | A Transformer Protection Method Based on Temperature Characteristics |
CN111679237A (en) * | 2020-06-05 | 2020-09-18 | 郑州科尔物联科技有限公司 | Current transformer detection method |
CN111931310A (en) * | 2020-08-28 | 2020-11-13 | 西南交通大学 | Method for evaluating eddy current loss of wound core interlayer short circuit in consideration of boundary conditions of different magnetic fields |
CN112462180A (en) * | 2020-11-18 | 2021-03-09 | 西安交通大学 | Converter transformer loss measuring method |
CN113239649A (en) * | 2021-05-19 | 2021-08-10 | 四川大学 | Modeling method of transformer |
CN113552852A (en) * | 2021-06-16 | 2021-10-26 | 南方电网科学研究院有限责任公司 | Method and system for controlling no-load performance of transformer, computer equipment and storage medium |
CN113933600A (en) * | 2021-10-19 | 2022-01-14 | 北京智芯仿真科技有限公司 | Magnetic core loss determination method and device for current saturation distortion of integrated circuit |
CN113933597A (en) * | 2021-10-19 | 2022-01-14 | 北京智芯仿真科技有限公司 | Magnetic core loss determination method and device for integrated circuit current bidirectional distortion |
CN114297832A (en) * | 2021-12-14 | 2022-04-08 | 西南交通大学 | Traction transformer hysteresis loss solving method considering frequent vibration |
CN117540169A (en) * | 2023-11-17 | 2024-02-09 | 国网宁夏电力有限公司电力科学研究院 | Method, medium and system for predicting service life of power grid transformer winding component |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104991994A (en) * | 2015-06-09 | 2015-10-21 | 国网天津市电力公司 | Transformer field current simulation method based on J-A magnetic hysteresis model |
CN106777836A (en) * | 2017-02-15 | 2017-05-31 | 南方电网科学研究院有限责任公司 | Transformer direct-current magnetic bias simulation method and device |
CN107066755A (en) * | 2017-04-28 | 2017-08-18 | 国家电网公司 | The emulated computation method of transformer loss under a kind of harmonic current |
CN109086561A (en) * | 2018-10-08 | 2018-12-25 | 重庆邮电大学 | A kind of meter and anisotropic JA hysteresis model parameter extracting method |
CN109308403A (en) * | 2018-11-26 | 2019-02-05 | 荀佳钰 | A method of current transformer J-A simulation model is determined based on Physical Experiment |
CN109388883A (en) * | 2018-10-08 | 2019-02-26 | 重庆邮电大学 | Magnetic flux towards EMTP-current mode JA magnetic hysteresis inductance acquisition methods |
-
2019
- 2019-04-30 CN CN201910363556.XA patent/CN110008645A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104991994A (en) * | 2015-06-09 | 2015-10-21 | 国网天津市电力公司 | Transformer field current simulation method based on J-A magnetic hysteresis model |
CN106777836A (en) * | 2017-02-15 | 2017-05-31 | 南方电网科学研究院有限责任公司 | Transformer direct-current magnetic bias simulation method and device |
CN107066755A (en) * | 2017-04-28 | 2017-08-18 | 国家电网公司 | The emulated computation method of transformer loss under a kind of harmonic current |
CN109086561A (en) * | 2018-10-08 | 2018-12-25 | 重庆邮电大学 | A kind of meter and anisotropic JA hysteresis model parameter extracting method |
CN109388883A (en) * | 2018-10-08 | 2019-02-26 | 重庆邮电大学 | Magnetic flux towards EMTP-current mode JA magnetic hysteresis inductance acquisition methods |
CN109308403A (en) * | 2018-11-26 | 2019-02-05 | 荀佳钰 | A method of current transformer J-A simulation model is determined based on Physical Experiment |
Non-Patent Citations (1)
Title |
---|
贾智彬: "基于J-A磁滞理论的变压器谐波损耗研究", 《通信电源技术》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110517874A (en) * | 2019-08-05 | 2019-11-29 | 三峡大学 | A kind of high-power intermediate-frequency power transformer design method |
CN110517874B (en) * | 2019-08-05 | 2021-01-26 | 三峡大学 | A design method of high-power intermediate frequency power transformer |
CN110456290B (en) * | 2019-08-19 | 2021-09-14 | 武汉钢铁有限公司 | Method for evaluating influence of shearing processing on loss of silicon steel sheet for transformer |
CN110456290A (en) * | 2019-08-19 | 2019-11-15 | 武汉钢铁有限公司 | A kind of shearing transformer is lost with silicon steel sheet the evaluation method of influence |
CN110968969A (en) * | 2019-12-11 | 2020-04-07 | 国网浙江省电力有限公司岱山县供电公司 | Analysis Method of Iron Core Loss of Asynchronous Motor |
CN111342428A (en) * | 2020-02-26 | 2020-06-26 | 合肥工业大学 | A Transformer Protection Method Based on Temperature Characteristics |
CN111342428B (en) * | 2020-02-26 | 2022-03-15 | 合肥工业大学 | Transformer protection method based on temperature characteristic |
CN111679237A (en) * | 2020-06-05 | 2020-09-18 | 郑州科尔物联科技有限公司 | Current transformer detection method |
CN111679237B (en) * | 2020-06-05 | 2022-11-29 | 郑州科尔物联科技有限公司 | Current transformer detection method |
CN111931310A (en) * | 2020-08-28 | 2020-11-13 | 西南交通大学 | Method for evaluating eddy current loss of wound core interlayer short circuit in consideration of boundary conditions of different magnetic fields |
CN112462180B (en) * | 2020-11-18 | 2021-08-27 | 西安交通大学 | Converter transformer loss measuring method |
CN112462180A (en) * | 2020-11-18 | 2021-03-09 | 西安交通大学 | Converter transformer loss measuring method |
CN113239649A (en) * | 2021-05-19 | 2021-08-10 | 四川大学 | Modeling method of transformer |
CN113552852A (en) * | 2021-06-16 | 2021-10-26 | 南方电网科学研究院有限责任公司 | Method and system for controlling no-load performance of transformer, computer equipment and storage medium |
CN113933600A (en) * | 2021-10-19 | 2022-01-14 | 北京智芯仿真科技有限公司 | Magnetic core loss determination method and device for current saturation distortion of integrated circuit |
CN113933597A (en) * | 2021-10-19 | 2022-01-14 | 北京智芯仿真科技有限公司 | Magnetic core loss determination method and device for integrated circuit current bidirectional distortion |
CN113933597B (en) * | 2021-10-19 | 2022-06-14 | 北京智芯仿真科技有限公司 | Magnetic core loss determination method and device for integrated circuit current bidirectional distortion |
CN114297832A (en) * | 2021-12-14 | 2022-04-08 | 西南交通大学 | Traction transformer hysteresis loss solving method considering frequent vibration |
CN114297832B (en) * | 2021-12-14 | 2022-08-30 | 西南交通大学 | Traction transformer hysteresis loss solving method considering frequent vibration |
CN117540169A (en) * | 2023-11-17 | 2024-02-09 | 国网宁夏电力有限公司电力科学研究院 | Method, medium and system for predicting service life of power grid transformer winding component |
CN117540169B (en) * | 2023-11-17 | 2024-06-04 | 国网宁夏电力有限公司电力科学研究院 | A method, medium and system for estimating the life of power grid transformer winding components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110008645A (en) | A kind of transformer loss calculation method | |
CN106250626B (en) | A kind of extra-high voltage transformer zero load D.C. magnetic biasing quick calculation method based on L-I curve | |
CN106649935B (en) | A real-time calculation method for no-load DC bias excitation current of UHV transformers | |
CN100589108C (en) | A Digital Simulation Modeling Method of Magnetically Controlled Shunt Reactor | |
Zhang et al. | Calculation of DC bias reactive power loss of converter transformer via finite element analysis | |
CN105302975B (en) | A kind of electromagnetic current transducer harmonic wave progress of disease modeling method | |
CN106249068B (en) | A low-frequency measurement method for no-load characteristics of ferromagnetic components | |
CN107066755A (en) | The emulated computation method of transformer loss under a kind of harmonic current | |
Wang et al. | Estimation model of core loss under DC bias | |
CN110399677A (en) | Simulation Method of Transformer DC Bias Magnetization Based on Improved J-A Formula in Bias Magnetization State | |
CN105243272B (en) | A kind of transformer winding structure calculating method of inductance | |
WO2023169610A2 (en) | Calculation method and apparatus for amount of carbon emissions, electronic device, and readable storage medium | |
Loizos et al. | Flux distribution analysis in three-phase Si-Fe wound transformer cores | |
CN108364775A (en) | Energy taking device and its design method based on converter valve busbar square wave current | |
Dawood et al. | Numerical and experimental comparison of the no-load losses in the different grain-oriented electrical steel materials | |
CN105929250A (en) | Low-frequency measurement method for core loss of ferromagnetic element | |
Kefalas et al. | Transformer joints FE analysis using pseudo-source technique | |
Ji et al. | Hysteresis characteristics prediction method of amorphous materials based on static Jiles-Atherton hysteresis model and Maxwell's equation | |
Hein et al. | Comparative core loss calculation methods for magnetic materials under harmonics effect | |
CN104483570A (en) | Empirical method for harmonic control loss reduction effect of power distribution network | |
Charalambous et al. | 2-D finite-element electromagnetic analysis of an autotransformer experiencing ferroresonance | |
CN112467726A (en) | Transient characteristic analysis method and system of saturated superconducting current limiter | |
Wang et al. | A Higher-Order Loss-Separation Model for Fast Estimation of Core Loss in High-Frequency Transformers | |
Vibhuti et al. | Transient finite element method for computing and analyzing the effect of harmonics on hysteresis and eddy current loss of distribution transformer | |
Zhao et al. | Calculation and validation of stray‐field loss in magnetic and non‐magnetic components under harmonic magnetizations based on TEAM Problem 21 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190712 |
|
RJ01 | Rejection of invention patent application after publication |