CN109946024A - Leak testing components with nonlinear systems - Google Patents
Leak testing components with nonlinear systems Download PDFInfo
- Publication number
- CN109946024A CN109946024A CN201711381745.7A CN201711381745A CN109946024A CN 109946024 A CN109946024 A CN 109946024A CN 201711381745 A CN201711381745 A CN 201711381745A CN 109946024 A CN109946024 A CN 109946024A
- Authority
- CN
- China
- Prior art keywords
- component
- flow
- conduits
- time
- leak
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
Description
技术领域technical field
本公开总体上涉及用于对部件进行泄漏测试的系统和方法。The present disclosure generally relates to systems and methods for leak testing components.
背景技术Background technique
实施变速器总成泄漏测试或最终泄漏测试以确保部件的正确组装或确保所有的密封表面都按照预期起作用。出于各种原因,泄漏检测是很重要的。例如,变速器总成中的变速器流体泄漏会严重损害变速器总成的性能。存在几种方法用于测试部件的泄漏,诸如,压力衰减测量、基于流量的泄漏测试(诸如测量空气质量流量)或者利用氦气的示踪气体测试。这些测试方法存在限制测试方法的有效性或效率的若干问题。例如,基于流量的方法需要在能够确定部件的泄漏率之前完成对部件的测量/测试。在涉及变速器总成的其它示例中,当利用油对变速器部件进行预处理时,在最终泄漏测试期间油可导致流动路径中的随机限制(random restriction)。除了存在限制或不存在限制在测试期间是完全随机的之外,该限制在测试期间也不会保持一致,这是因为变速器流体可运动并允许通道随机地打开和关闭。Conduct transmission assembly leak testing or final leak testing to ensure proper assembly of components or to ensure that all sealing surfaces are functioning as intended. Leak detection is important for a variety of reasons. For example, a transmission fluid leak in the transmission assembly can severely impair the performance of the transmission assembly. There are several methods for testing components for leaks, such as pressure decay measurements, flow-based leak testing (such as measuring air mass flow), or tracer gas testing with helium. These test methods suffer from several issues that limit the effectiveness or efficiency of the test methods. For example, flow-based methods require that measurement/testing of a component be completed before the leak rate of the component can be determined. In other examples involving transmission assemblies, when oil is used to pretreat transmission components, the oil can cause random restrictions in the flow path during final leak testing. In addition to the fact that the presence or absence of the restriction is completely random during the test, the restriction will not remain consistent during the test because the transmission fluid can move and allow the passages to open and close randomly.
发明内容SUMMARY OF THE INVENTION
如各个实施例中所公开的,本公开解决和克服其它泄漏测试方法的限制。在各个实施例中公开了用于泄漏测试布置的监测器以及对部件(例如,包括变速器部件的汽车部件、包括干燥组件或经油预处理的组件的变速器总成、发动机部件、发动机总成、电池组或轴)进行泄漏测试的方法和系统。As disclosed in the various embodiments, the present disclosure addresses and overcomes the limitations of other leak testing methods. Disclosed in various embodiments are monitors for leak testing arrangements as well as for components (eg, automotive components including transmission components, transmission assemblies including dry components or oil pretreated components, engine components, engine assemblies, Methods and systems for leak testing battery packs or shafts).
在各个实施例中,公开了对部件进行泄漏测试的方法和系统,包括的步骤有:经由一对导管将部件与储罐连接以使部件与储罐内的压力平衡;关闭导管中的一个导管以引发气流从所述储罐通过导管中的另一个导管到达所述部件;以及基于气流的流量在达到峰值与达到预定值之间的时间而输出关于部件的泄漏指示。各个实施例的方法和系统还可包括的步骤有:在所述连接之前对所述部件进行加压,或在所述输出之前测量所述流量。In various embodiments, methods and systems are disclosed for leak testing a component comprising the steps of: connecting the component to a tank via a pair of conduits to equalize the pressure within the component and the tank; closing one of the conduits to induce airflow from the storage tank through another of the conduits to the component; and output a leak indication regarding the component based on a time between a peak and a predetermined value of the flow of the airflow. The method and system of various embodiments may further include the step of pressurizing the component prior to the connecting, or measuring the flow prior to the output.
在各个实施例中,公开了用于泄漏测试布置的监测器,所述泄漏测试布置包括将部件和储罐并联连接的一对导管,所述监测器包括:控制器,被配置为在所述部件和所述储罐内的压力已经平衡之后,关闭导管中的一个导管,以引发气流从所述储罐通过导管中的另一个导管到达所述部件,并基于气流的流量在达到峰值与达到预定值之间的时间而输出关于部件的泄漏指示。In various embodiments, a monitor is disclosed for a leak testing arrangement comprising a pair of conduits connecting a component and a storage tank in parallel, the monitor comprising: a controller configured to After the pressure within the component and the tank has equilibrated, one of the conduits is closed to induce airflow from the tank through the other of the conduits to the component, based on the flow rate of the airflow between peak and reach. A leak indication on the component is output for the time between predetermined values.
在各个实施例中,公开了一种泄漏测试系统,包括:一对导管,具有不同的直径,将部件和储罐并联连接;传感器,设置在所述导管中较小的一个导管内;以及控制器,被配置为在所述部件和所述储罐内的压力已经平衡之后,关闭导管中的另一个导管,以引发气流从所述储罐通过所述导管中较小的一个导管到达所述部件,以及基于通过所述传感器检测的气流的流量在到达峰值与预定值之间的时间,输出关于所述部件的泄漏指示。In various embodiments, a leak testing system is disclosed comprising: a pair of conduits of different diameters connecting a component and a tank in parallel; a sensor disposed in the smaller of the conduits; and a control a device configured to close the other of the conduits to induce airflow from the storage tank through the smaller one of the conduits to the component, and outputting an indication of a leak with respect to the component based on the time between the peak and a predetermined value of the flow rate of airflow detected by the sensor.
附图说明Description of drawings
为了进一步理解本公开的本质、目的和优点,应当参考以下详细描述,结合以下附图来阅读,其中,相同的附图标号表示相同的元件,并且其中:For a further understanding of the nature, objects and advantages of the present disclosure, reference should be made to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals refer to like elements, and wherein:
图1是示出当部件有泄漏时流量仪的表现和随时间变化的流量与包括流量函数和泄漏函数的非线性系统/模型的拟合的示例性图形表示。FIG. 1 is an exemplary graphical representation showing the behavior of a flowmeter and the fit of flow over time to a nonlinear system/model including a flow function and a leakage function when a component leaks.
图2是示出当部件有泄漏时流量计的表现和在没有泄漏的情况下与非线性系统/模型的比较的示例性图形表示。FIG. 2 is an exemplary graphical representation showing the performance of a flowmeter when a component has a leak and a comparison to a nonlinear system/model without a leak.
图3示出了各个实施例的方法、系统和监测器的总体示意图。Figure 3 shows a general schematic diagram of the method, system and monitor of various embodiments.
图4是包括各个实施例的方法、系统和监测器的步骤的流程图。FIG. 4 is a flowchart including steps of a method, system and monitor of various embodiments.
图5是示出包括部件的启动和测试的各个实施例的方法、系统和监测器的步骤的示例性图形表示。5 is an exemplary graphical representation illustrating the steps of a method, system and monitor of various embodiments including start-up and testing of components.
图6至图13是示出包括部件的测试的各个实施例的方法、系统和监测器的示例性图形表示。6-13 are exemplary graphical representations of methods, systems and monitors illustrating various embodiments including testing of components.
具体实施方式Detailed ways
根据需要,在此公开本公开的具体实施例;然而,将理解的是,所公开的实施例仅仅是示例性的,并且可以以各种形式和替代形式实施。附图不必按比例绘制;可夸大或最小化一些特征以示出特定部件的细节。因此,在此公开的具体结构和功能细节不应被解释为限制,而仅仅作为用于教导本领域技术人员的代表性基础。As required, specific embodiments of the present disclosure are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary and may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art.
除了在示例中或另外明确指出以外,在本描述中表示材料的量或反应条件和/或使用条件的所有数值量应被理解为由词语“大约”来修饰。首字母缩略词或其它缩写的第一次定义适用于相同缩写在本文中的所有后续使用,并且加上必要的变更适用于最初定义的缩写的常规文法变化;并且,除非特别指出与之相反,否则通过与在前或在后对于同一属性提及的技术相同的技术来确定属性的测量。All numerical amounts in this description indicating amounts of materials or reaction conditions and/or use conditions should be understood to be modified by the word "about" unless explicitly stated in the examples or otherwise. The first definition of an acronym or other abbreviation applies to all subsequent uses of the same abbreviation in this text, and mutatis mutandis applies to conventional grammatical changes of the originally defined abbreviation; and, unless specifically stated to the contrary, , otherwise the measure of the attribute is determined by the same technique as mentioned earlier or later for the same attribute.
还将理解的是,由于特定的部件和/或条件会(肯定会)变化,所以本公开不限于下面描述的具体实施例和方法。此外,在此使用的术语仅仅出于描述特定实施例的目的,并不意图以任何方式进行限制。It will also be understood that, as particular components and/or conditions may (certainly) vary, this disclosure is not limited to the specific embodiments and methods described below. Also, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting in any way.
术语“正在接近”和“接近”可互换使用,以确定点在另一点附近或在另一点处。The terms "approaching" and "approaching" are used interchangeably to determine that a point is near or at another point.
在各个实施例中,公开了用于泄漏测试布置的监测器以及对部件(例如,包括变速器部件的汽车部件、包括干燥组件或经油预处理的组件的变速器总成、发动机部件、发动机总成、电池组或轴)进行泄漏测试的方法和系统。In various embodiments, monitors are disclosed for use in a leak testing arrangement and monitoring of components (eg, automotive components including transmission components, transmission assemblies including dry components or oil pretreated components, engine components, engine assemblies , battery pack or shaft) method and system for leak testing.
如在各个实施例中所公开的,本公开解决和克服其它泄漏测试方法的局限性。由于汽车部件(诸如,变速器)的容积,在泄漏测试时利用关于仪表(诸如,流量传感器)的瞬态响应的特定物理关系可更具成本效益,而不必将额外的资金投入到额外的试验台中(试验台通常需要等待流量稳定到可接受的阈值以下)。由于变速器的容积可以是恒定的,所以如果变速器被完全密封(即,没有泄漏),则对变速器的内部进行加压所需要的时间的量也是恒定的。如图1所示,针对泄漏率所测试的部件具有流量曲线,其中,引发湍流使流量上升、达到峰值并衰减到稳态流量。这种测试类型类似于车辆撞击减速带,使空气流量测量上升、达到波峰并衰减到其稳态流量。通过保持恒定的填充体积、测试压力和填充时间,当在变速器中不存在泄漏时,由流量计的启动而引起的峰值流量可以是恒定的,并基于变速器的泄漏率而成比例地升高。因此,一旦峰值流量已建立,就可进行总体泄漏率的准确预测。对于每种变速器结构,这种预测模型是唯一的,并且,如果由于部件的增加或缺失而使空气体积发生改变,则有时候所述预测模型甚至是不定的。As disclosed in various embodiments, the present disclosure addresses and overcomes the limitations of other leak testing methods. Due to the volume of automotive components (such as transmissions), it may be more cost-effective to utilize specific physical relationships with respect to the transient response of gauges (such as flow sensors) when leak testing, without having to invest additional capital in additional test rigs (Test rigs typically need to wait for the flow to stabilize below an acceptable threshold). Since the volume of the transmission can be constant, the amount of time required to pressurize the interior of the transmission is also constant if the transmission is fully sealed (ie, there are no leaks). As shown in Figure 1, the components tested for leak rate have flow curves in which turbulence is induced to cause the flow to rise, peak and decay to steady state flow. This type of test is similar to a vehicle hitting a speed bump, causing the air flow measurement to rise, peak and decay to its steady state flow. By maintaining a constant fill volume, test pressure, and fill time, when there is no leak in the transmission, the peak flow caused by activation of the flow meter can be constant and rise proportionally based on the transmission leak rate. Therefore, once the peak flow has been established, an accurate prediction of the overall leak rate can be made. This predictive model is unique for each transmission configuration and sometimes even indeterminate if the air volume changes due to the addition or absence of components.
从这个意义上,可以将这个曲线拟合到非线性系统,例如:In this sense, this curve can be fitted to a nonlinear system such as:
其中:in:
V是能够以标准立方厘米每分钟(SCCM)为单位的测量的体积流量;V is the volumetric flow rate that can be measured in standard cubic centimeters per minute (SCCM);
C1、C2、C3和C4是对每种测试的变速器推导的常量;C 1 , C 2 , C 3 and C 4 are constants derived for each transmission tested;
t是以秒为单位的测量的时间;t is the measured time in seconds;
VL(t)是变速器的泄漏率,在流量计的启动期间所述泄漏率相对于时间可以改变或可以不变。 VL (t) is the leakage rate of the transmission, which may or may not change with respect to time during activation of the flow meter.
在图1的示例性测试中,随着时间t接近无穷,泄漏接近它的最终实际值,或者:In the exemplary test of Figure 1, as time t approaches infinity, the leakage approaches its final actual value, or:
通常,与流量计的响应的恢复相比,泄漏率将相对较快地接近稳态。泄漏率越大,泄漏项VL(t)的指数系数相对于表达式中的其它项将会越占主导地位。如果泄漏率低或可忽略,则非线性系统/模型为:Typically, the leak rate will approach steady state relatively quickly compared to the recovery of the flowmeter's response. The larger the leakage rate, the more dominant the exponential coefficient of the leakage term VL (t) will be relative to the other terms in the expression. If the leak rate is low or negligible, the nonlinear system/model is:
如果将同一模型应用到具有一定程度的明显泄漏的部件,则表示拟合质量的相关系数减小。另外,推导出的常量会被显著影响,导致用于表达流量计的恢复率的函数明显更长。通过取样,已经确定:对于任意变速器,仅仅需要峰值之外的少量的附加数据样本就能准确地推导出流量函数。因此,可在数秒内而不是在数分钟内测试并识别出部件具有可接受的或不可接受的泄漏率。各个实施例的方法、系统和监测器消除了对与峰值分析相关联的耗时的预测模型开发的需要。这允许提高效率,并允许在给定的时间段测试更多的部件。If the same model is applied to a part with a certain degree of apparent leakage, the correlation coefficient, which indicates the quality of the fit, decreases. Additionally, the derived constants can be significantly affected, resulting in a significantly longer function expressing the recovery rate of the flowmeter. Through sampling, it has been determined that for any transmission, only a small number of additional data samples beyond the peak are required to accurately derive the flow function. As a result, components can be tested and identified with acceptable or unacceptable leak rates in seconds rather than minutes. The methods, systems and monitors of various embodiments eliminate the need for time-consuming predictive model development associated with peak analysis. This allows for increased efficiency and allows more parts to be tested in a given time period.
如图2所示,各个实施例的方法、系统和监测器可包括测量流量曲线达预定时间段(例如,与达到峰值流量的时间相等的时间段),并对该曲线与非线性系统的相关性进行评估。图2示出了从非线性系统推导出的流量与流量曲线的测量值的比较。As shown in FIG. 2, the methods, systems, and monitors of various embodiments may include measuring a flow curve for a predetermined period of time (eg, a period of time equal to the time peak flow is reached), and correlating the curve with a nonlinear system sex is assessed. Figure 2 shows a comparison of measured values of flow and flow curves derived from a nonlinear system.
图3示出了各个实施例的系统和监测器10的总体示意图。如图3所示,部件20连接到导管系统100。介质源30(诸如气体(即工厂用压缩空气(shop air))或液体)连接到导管系统100,储罐40连接到导管系统100。各个实施例的导管系统100能够将部件20连接到介质源30或储罐40,从而气体或液体能够在部件20与源30或储罐40之间流动。储罐40的填充容量或容积可大于部件20的填充容量或容积。FIG. 3 shows a general schematic diagram of the system and monitor 10 of various embodiments. As shown in FIG. 3 , component 20 is connected to catheter system 100 . A medium source 30, such as a gas (ie, shop air) or a liquid, is connected to the conduit system 100, and a storage tank 40 is connected to the conduit system 100. The conduit system 100 of the various embodiments can connect the component 20 to the media source 30 or the storage tank 40 so that a gas or liquid can flow between the component 20 and the source 30 or the storage tank 40 . The fill capacity or volume of the storage tank 40 may be greater than the fill capacity or volume of the component 20 .
各个实施例的导管系统100包括具有孔的多个导管110,多个导管110以使得气体或液体能够在部件20与介质源30或储罐40之间流动的方式彼此连接。在各个实施例中,多个导管110包括其孔的孔直径小于其它导管111的导管113或其孔的孔直径大于其它导管111的导管112。或者,导管110的孔直径可与较大直径的导管112的孔直径大致相同。较大直径的导管112还被称为旁通导管或较大导管112,较小直径的导管113还被称为较小导管。利用系统100中的较大导管112可减少用于对部件20进行加压的时间,利用系统100中的较小导管113可提高测量流量的能力,其可允许对部件20中较小的泄漏流量进行检测。或者,其它实施例的导管系统可包括其孔的孔直径全部相同或大致相同的导管。The conduit system 100 of various embodiments includes a plurality of conduits 110 having holes connected to each other in a manner that enables gas or liquid to flow between the component 20 and the medium source 30 or storage tank 40 . In various embodiments, the plurality of conduits 110 include conduits 113 whose holes are smaller in diameter than other conduits 111 or conduits 112 whose holes are larger than the other conduits 111 . Alternatively, the bore diameter of the conduit 110 may be approximately the same as the bore diameter of the larger diameter conduit 112 . The larger diameter conduit 112 is also referred to as the bypass conduit or larger conduit 112 and the smaller diameter conduit 113 is also referred to as the smaller conduit. Utilizing larger conduits 112 in system 100 may reduce the time it takes to pressurize components 20 and utilizing smaller conduits 113 in system 100 may improve the ability to measure flow, which may allow for smaller leakage flows in components 20 test. Alternatively, catheter systems of other embodiments may include catheters whose bores are all the same or approximately the same diameter.
如图3所示,较大导管112和较小导管113以并联布置的方式布置在导管系统100中。As shown in FIG. 3, the larger conduit 112 and the smaller conduit 113 are arranged in the conduit system 100 in a parallel arrangement.
各个实施例的导管系统100还包括传感器120和流量/压力调节器130。The catheter system 100 of various embodiments also includes a sensor 120 and a flow/pressure regulator 130 .
各个实施例的传感器120被配置为对导管110或导管的孔内的一个或更多个物理特性或化学特性进行测量。例如,传感器120可包括被配置为对导管110的孔内的一个或更多个物理或化学特性(诸如流量和压力)进行测量的压力指示器/仪表/传感器121和流量指示器/仪表/传感器122。在各个实施例中,传感器120能够大约每隔0.1秒、0.5秒、1.0秒、1.5秒、2.0秒、2.5秒、3.0秒、3.5秒、4.0秒、4.5秒和5.0秒进行一次测量。在各个实施例中,传感器120进行一次测量的时间在以上列出的任意两个时间之间的范围内。The sensor 120 of various embodiments is configured to measure one or more physical or chemical properties within the catheter 110 or a bore of the catheter. For example, sensors 120 may include pressure indicators/meters/sensors 121 and flow indicators/meters/sensors configured to measure one or more physical or chemical properties (such as flow and pressure) within the bore of conduit 110 122. In various embodiments, the sensor 120 is capable of taking a measurement approximately every 0.1 seconds, 0.5 seconds, 1.0 seconds, 1.5 seconds, 2.0 seconds, 2.5 seconds, 3.0 seconds, 3.5 seconds, 4.0 seconds, 4.5 seconds, and 5.0 seconds. In various embodiments, the time that the sensor 120 takes a measurement is in the range between any two of the times listed above.
各个实施例的流量/压力调节器130被配置为控制导管110的参数(诸如,导管110的孔内的流量或压力)。流量/压力控制器或调节器130可包括能够具有不同位置以引导流动的各种类型的阀131和132(诸如3通阀或4通阀)或其它调节器(诸如,比例流量控制器133)。比例流量控制器133可在部件20利用气体将要饱和/正在被加压时对流量进行调节。The flow/pressure regulator 130 of various embodiments is configured to control a parameter of the conduit 110 (such as flow or pressure within the bore of the conduit 110). Flow/pressure controller or regulator 130 may include various types of valves 131 and 132 (such as 3-way or 4-way valves) or other regulators (such as proportional flow controller 133 ) that can have different positions to direct flow . The proportional flow controller 133 may adjust the flow when the component 20 is about to be saturated/being pressurized with gas.
各个实施例的系统和监测器10还包括控制器60。控制器60可操作地连接到传感器120和流量/压力调节器130(线路150、160)。在各个实施例中,控制器60能够从传感器120接收测量值(线路160),并且能够控制流量/压力调节器130(线路150)。各个实施例的控制器60还包括一个或更多个非暂时性计算机可读存储介质(实现逻辑)或处理器,其在被执行用于接收来自传感器120的测量值(即,图4中的步骤201)、控制流量/压力调节器130(即,图4中的步骤202)以及执行任何实施例的部件20的泄漏测试的方法时是可操作的。The system and monitor 10 of various embodiments also includes a controller 60 . Controller 60 is operably connected to sensor 120 and flow/pressure regulator 130 (lines 150, 160). In various embodiments, controller 60 can receive measurements from sensor 120 (line 160) and can control flow/pressure regulator 130 (line 150). The controller 60 of various embodiments also includes one or more non-transitory computer-readable storage media (implementation logic) or processors that are executed to receive measurements from the sensors 120 (ie, the Step 201 ), the method of controlling the flow/pressure regulator 130 (ie, step 202 in FIG. 4 ), and performing a leak test of the component 20 of any of the embodiments are operable.
图4是包括各个实施例的方法、系统和监测器200的步骤的流程图,图5是示出各个实施例的方法、系统和监测器200的步骤(包括部件20的启动步骤和泄漏测试)的示例性图形表示。在各个实施例中,控制器60还包括一个或更多个非暂时性计算机可读存储介质(实现逻辑)或处理器,其在执行用于启动或执行如图4所示的各个实施例的方法、系统和监测器200的步骤201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222和223中的任何一个步骤时是可操作的。FIG. 4 is a flowchart including the steps of the method, system and monitor 200 of various embodiments, and FIG. 5 is a flowchart illustrating the steps of the method, system and monitor 200 of the various embodiments (including start-up steps and leak testing of components 20 ) An exemplary graphical representation of . In various embodiments, the controller 60 also includes one or more non-transitory computer-readable storage media (implementation logic) or processors that execute the functions for initiating or executing the various embodiments shown in FIG. 4 . Steps 201 , 202 , 203 , 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 , 212 , 213 , 214 , 215 , 216 , 217 , 218 , 219 , 220 , 221 of method, system and monitor 200 , 222 and 223 are operable.
在图4的步骤201中,启动泄漏测试序列,其中,部件20连接到导管系统100。在步骤202中,启用各个实施例的导管系统100以对部件20进行加压,其中,阀131和132被定位成允许来自于工厂用压缩空气30的气体或空气通过导管110流到部件20,导管110可包括较小直径的导管113和较大直径的导管112。在步骤202中,导管系统100可被配置为允许部件20尽可能快地被填充以允许对多个部件的连续测试。为了使部件(例如,变速器)加压的时间最少,在步骤202中可使用特大(oversized)的管道和超目标(above-target)的压力供应,这被称为“快速填充阶段”。在步骤202中,阀131还被定位成阻止到储罐40的流动。如图5所示,从0到3秒,在步骤202中启用导管系统10导致通过导管110的气流增大(301、302),导管110包括较小直径的导管113和较大直径的导管112。这还导致部件20内的压力增大(303)。在各个实施例中,各个实施例的泄漏测试方法、系统和监测器包括将部件20加压到预定目标压力以上的压力。各个实施例的目标压力大约为3磅每平方英寸(psi)(20.68千帕(kPa));3.1psi(21.37kPa);3.2psi(22.06kPa);3.3psi(22.75kPa);3.4psi(23.44kPa);3.5psi(24.13kPa);3.6psi(24.82kPa);3.7psi(25.51kPa);3.8psi(26.20kPa);3.9psi(26.89kPa);4psi(27.58kPa);4.1psi(28.27kPa);4.2psi(28.96kPa);4.3psi(29.65kPa);4.4psi(30.34kPa);4.5psi(31.03kPa);4.6psi(31.72kPa);4.7psi(32.41kPa);4.8psi(33.09kPa);4.9psi(33.78kPa)和5psi(34.47kPa)。在各个实施例中,目标压力在以上列出的任意两个压力之间的范围内。在不同的实施例中,部件20被加压到4.2psi(28.96kPa)或以上。In step 201 of FIG. 4 , a leak test sequence is initiated in which component 20 is connected to conduit system 100 . In step 202, conduit system 100 of various embodiments is activated to pressurize component 20, wherein valves 131 and 132 are positioned to allow gas or air from plant compressed air 30 to flow through conduit 110 to component 20, The catheter 110 may include a smaller diameter catheter 113 and a larger diameter catheter 112 . In step 202, catheter system 100 may be configured to allow components 20 to be filled as quickly as possible to allow for continuous testing of multiple components. To minimize the time for pressurizing a component (eg, transmission), oversized tubing and an above-target pressure supply may be used in step 202, which is referred to as a "rapid fill phase." In step 202 , valve 131 is also positioned to prevent flow to tank 40 . As shown in FIG. 5 , from 0 to 3 seconds, activation of the conduit system 10 in step 202 results in increased airflow ( 301 , 302 ) through the conduits 110 including the smaller diameter conduit 113 and the larger diameter conduit 112 . This also results in an increase in pressure within component 20 (303). In various embodiments, the leak testing methods, systems and monitors of various embodiments include pressurizing the component 20 to a pressure above a predetermined target pressure. The target pressures for the various examples are approximately 3 pounds per square inch (psi) (20.68 kilopascals (kPa)); 3.1 psi (21.37 kPa); 3.2 psi (22.06 kPa); 3.3 psi (22.75 kPa); 3.4 psi (23.44 3.5psi(24.13kPa); 3.6psi(24.82kPa); 3.7psi(25.51kPa); 3.8psi(26.20kPa); 3.9psi(26.89kPa); 4psi(27.58kPa); 4.2psi(28.96kPa); 4.3psi(29.65kPa); 4.4psi(30.34kPa); 4.5psi(31.03kPa); 4.6psi(31.72kPa); 4.7psi(32.41kPa); 4.9 psi (33.78 kPa) and 5 psi (34.47 kPa). In various embodiments, the target pressure is in a range between any two of the pressures listed above. In various embodiments, the component 20 is pressurized to 4.2 psi (28.96 kPa) or more.
在各个实施例中,部件被填充到足以使流量信号衰减或使流量曲线衰减为常量的容积。In various embodiments, the component is filled to a volume sufficient to decay the flow signal or decay the flow curve to a constant value.
在各个实施例中,方法、系统和监测器还可包括允许部件稳定一段时间的步骤,所述时间足以允许在将部件连接到储罐之前利用系统或导管使部件内的压力稳定。如图4的步骤203所示,在利用气体将部件填充到目标压力以上之后,允许部件20稳定一段时间,所述时间足以允许部件20内的压力利用系统100内的压力稳定下来/达到稳定。在步骤203中,阀131可被配置/启用为停止从工厂用压缩空气30到系统100或部件20的流动。如图5中关于步骤203所示出的,一旦部件被填充到目标压力以上(304),就使系统100的旁通导管112和较小直径的导管113内的流量稳定下来(305、306)。In various embodiments, the methods, systems and monitors may further include the step of allowing the component to stabilize for a period of time sufficient to allow the system or conduit to stabilize the pressure within the component prior to connecting the component to the tank. As shown in step 203 of FIG. 4 , after the component is filled with gas above the target pressure, component 20 is allowed to stabilize for a period of time sufficient to allow the pressure within component 20 to stabilize/stabilize with the pressure within system 100 . In step 203 , the valve 131 may be configured/activated to stop the flow of the plant compressed air 30 to the system 100 or component 20 . As shown in FIG. 5 with respect to step 203, once the components are filled above the target pressure (304), the flow in the bypass conduit 112 and the smaller diameter conduit 113 of the system 100 is stabilized (305, 306) .
在各个实施例中,允许系统内的流量曲线稳定到预定流量。图5示出了通过较小直径的导管113的流量曲线(307)在预定流量或值(308)以下运行,并且通过旁通导管112的流量曲线(309)在预定流量或值(310)以下运行。In various embodiments, the flow profile within the system is allowed to stabilize to a predetermined flow. Figure 5 shows that the flow curve (307) through the smaller diameter conduit 113 is operating below the predetermined flow or value (308) and the flow curve (309) through the bypass conduit 112 is below the predetermined flow or value (310). run.
在各个实施例中,流量被监测。各个实施例的监测可包括监测流量在预定流量或值以下运行,以限制对稳定时间的影响。如果通过系统100的流量衰减变得不稳定,则这指示部件20已被过度填充。In various embodiments, flow is monitored. Monitoring of various embodiments may include monitoring that the flow is operating below a predetermined flow or value to limit the effect on settling time. If the flow decay through the system 100 becomes unstable, this indicates that the component 20 has been overfilled.
在各个实施例中,方法、系统和监测器包括将部件连接到储罐并持续第一时间段或饱和时间。各个实施例的第一时间段是足以使部件达到一定压力或热平衡的时间。在部件20和系统100已经稳定之后,在步骤204中,阀131被定位或启用而打开储罐40与部件20之间的流动。来自工厂用压缩空气30的流动仍保持关闭。在饱和时间期间,部件20连接到储罐40,所述储罐40可具有明显大于部件20的容积,使得部件20回到环境的目标压力和热平衡。储罐40在与部件进行连接之前被加压,并且各个实施例的储罐40内的压力低于部件20的上述目标压力。各个实施例的储罐内的压力大约为3psi(20.68kPa);3.1psi(21.37kPa);3.2psi(22.06kPa);3.3psi(22.75kPa);3.4psi(23.44kPa);3.5psi(24.13kPa);3.6psi(24.82kPa);3.7psi(25.51kPa);3.8psi(26.20kPa);3.9psi(26.89kPa);4psi(27.58kPa);4.1psi(28.27kPa);4.2psi(28.96kPa);4.3psi(29.65kPa);4.4psi(30.34kPa);4.5psi(31.03kPa);4.6psi(31.72kPa);4.7psi(32.41kPa);4.8psi(33.09kPa);4.9psi(33.78kPa)和5psi(34.47kPa)。在各个实施例中,储罐内的压力在以上列出的任意两个压力之间的范围内。在一个实施例中,储罐40内的压力大约为4.0psi(27.58kPa)。如图5所示,部件20在最初连接到储罐时(311)显示出压力的初始下降(312)。所述初始下降(312)是部件20内的压力或温度稳定到平衡的指示。In various embodiments, methods, systems, and monitors include connecting components to a storage tank for a first time period or saturation time. The first period of time for various embodiments is a time sufficient for the component to reach a certain pressure or thermal equilibrium. After component 20 and system 100 have stabilized, valve 131 is positioned or activated to open flow between tank 40 and component 20 in step 204 . The flow from the plant compressed air 30 remains closed. During the saturation time, the component 20 is connected to a storage tank 40, which may have a significantly larger volume than the component 20, so that the component 20 is returned to ambient target pressure and thermal equilibrium. The tank 40 is pressurized prior to connection with the component, and the pressure within the tank 40 of various embodiments is below the target pressure of the component 20 described above. The pressure in the storage tank for each example was approximately 3 psi (20.68 kPa); 3.1 psi (21.37 kPa); 3.2 psi (22.06 kPa); 3.3 psi (22.75 kPa); 3.4 psi (23.44 kPa); ); 3.6psi(24.82kPa); 3.7psi(25.51kPa); 3.8psi(26.20kPa); 3.9psi(26.89kPa); 4psi(27.58kPa); 4.3psi (29.65kPa); 4.4psi (30.34kPa); 4.5psi (31.03kPa); 4.6psi (31.72kPa); 4.7psi (32.41kPa); 4.8psi (33.09kPa); (34.47kPa). In various embodiments, the pressure within the storage tank is within a range between any two of the pressures listed above. In one embodiment, the pressure within storage tank 40 is approximately 4.0 psi (27.58 kPa). As shown in Figure 5, the component 20 exhibits an initial drop in pressure (312) when initially connected to the tank (311). The initial drop (312) is an indication that the pressure or temperature within component 20 has stabilized to equilibrium.
第一时间段的示例在图5中示出为时间311与时间313之间的时间。An example of a first time period is shown in FIG. 5 as the time between time 311 and time 313 .
在各个实施例中,通过对部件加压的时间和第一时间段来确定曲线的峰值流量或达到峰值流量的时间。在各个实施例中,方法、系统和监测器包括执行封闭算法的步骤,所述算法基于峰值流量的运行平均值而自动地或自主地增加或减少填充和稳定时间。In various embodiments, the peak flow or time to peak flow of the curve is determined by the time the component is pressurized and the first period of time. In various embodiments, methods, systems and monitors include the step of executing a containment algorithm that automatically or autonomously increases or decreases fill and settling times based on a running average of peak flow.
在各个实施例中,方法、系统和监测器包括引发连接内的湍流以促成来自储罐的气流(形成流量曲线),和测量流量曲线持续第二时间段。在引发连接内的湍流时,气体可从储罐40通过导管110流到部件20。在一个实施例中,在第二时间段期间,气体流过较小导管113并且利用流量传感器122来测量通过较小导管113的流量曲线。各个实施例的第二时间段可包括曲线达到峰值时的时间,该时间段在曲线达到峰值与接近预定流量限制之间的时间结束。在步骤205中,泄漏测试开始,其中,来自储罐40的流量被引导通过较小导管113。步骤205还包括定位或启用阀132,以关闭通过较大导管112的流动。通过关闭通过较大导管112的流动,使得在储罐40与部件20之间的连接内的湍流可被引发,导致气体从储罐40通过较小导管113流到部件20。各个实施例的方法、系统和监测器还可包括验证流量曲线中存在初始上升的步骤。如图5所示,旁通导管112被关闭(313),并且验证了流量曲线内的初始上升(314)。各个实施例的方法、系统和监测器还可包括对在监测开始时与结束之间的流量曲线的斜率进行检查(315),其中,如果在监测开始时与结束之间的流量曲线的斜率大于预定义斜率,则完成对部件20填充或对部件20进一步填充的额外检查。In various embodiments, methods, systems, and monitors include inducing turbulence within the connection to facilitate airflow from a storage tank (forming a flow profile), and measuring the flow profile for a second period of time. Gas may flow from tank 40 through conduit 110 to component 20 upon inducing turbulence within the connection. In one embodiment, during the second time period, gas flows through the smaller conduit 113 and the flow sensor 122 is used to measure the flow profile through the smaller conduit 113 . The second time period of various embodiments may include the time when the curve peaks, the time period ending between the time when the curve peaks and approaching the predetermined flow limit. In step 205 , the leak test begins, wherein flow from the storage tank 40 is directed through the smaller conduit 113 . Step 205 also includes positioning or activating valve 132 to shut off flow through larger conduit 112 . By shutting off flow through the larger conduit 112 , turbulent flow within the connection between the tank 40 and the component 20 can be induced, causing gas to flow from the tank 40 through the smaller conduit 113 to the component 20 . The methods, systems and monitors of various embodiments may also include the step of verifying that there is an initial rise in the flow curve. As shown in Figure 5, the bypass conduit 112 is closed (313) and the initial rise in the flow curve is verified (314). The methods, systems, and monitors of various embodiments may further include checking (315) the slope of the flow curve between the start and end of monitoring, wherein if the slope of the flow curve between the start and end of monitoring is greater than Pre-defined slope, then an additional check for part 20 filling or further filling of part 20 is done.
在各个实施例中,第二时间段从曲线达到峰值时的时间起1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5、28、28.5、29、29.5、30、30.5、31、31.5、32、32.5、33、33.5、34、34.5、35、35.5、36、36.5、37、37.5、38、38.5、39、39.5和40秒结束。在各个实施例中,第二时间段结束时的时间在以上列出的从曲线达到峰值时的时间起的任意两个时间之间的范围内。In various embodiments, the second time period is 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 34.5, 35, 35.5, 36, 36.5, 37, 37.5, 38, 38.5, 39, 39.5 and 40 seconds to finish. In various embodiments, the time at the end of the second time period is within the range between any two of the times listed above from the time when the curve peaks.
在步骤206至步骤208中,测量部件20的流量曲线直到接近预定流量限制的点。在步骤207中,计算并记录上升并达到峰值流量的时间(tp)。在步骤208中,测量经过tp到流量衰减到上限以下时的流量曲线。例如,测量经过tp的时间可以是等于tp的时间长度。如图5所示,流量曲线上升(316)、达到峰值(317)和衰减到稳态流量(318)。In steps 206 to 208, the flow profile of component 20 is measured up to a point near a predetermined flow limit. In step 207, the time to rise and reach peak flow ( tp ) is calculated and recorded. In step 208, measure the flow curve through t p until the flow decays below the upper limit. For example, measuring the time elapsed tp may be a length of time equal to tp . As shown in Figure 5, the flow curve rises (316), peaks (317) and decays to steady state flow (318).
在各个实施例中,方法、系统和监测器包括将流量曲线拟合到非线性系统,并进行使所述拟合在预定阈值内的关联。在步骤209中,将流量曲线建模成过阻尼系统,并且可将流量曲线建模到非线性系统,例如,如下所示:In various embodiments, methods, systems, and monitors include fitting a flow curve to a nonlinear system, and making a correlation that brings the fit within predetermined thresholds. In step 209, the flow curve is modeled as an overdamped system, and the flow curve can be modeled as a nonlinear system, eg, as follows:
其中:in:
V是可以以标准立方厘米每分钟(SCCM)为单位的测量的体积流量;V is the volume flow rate that can be measured in standard cubic centimeters per minute (SCCM);
C1、C2、C3和C4是针对每种测试的变速器所推导的常量;C 1 , C 2 , C 3 and C 4 are constants derived for each tested transmission;
t是以秒为单位的测量的时间;t is the measured time in seconds;
为了验证流量曲线到非线性系统的拟合的有效性,确定拟合的相关性并将拟合的相关性与预定阈值进行比较。在各个实施例中,相关性步骤包括用于验证拟合的有效性的至少一个检查。To verify the validity of the fit of the flow curve to the nonlinear system, the correlation of the fit is determined and compared to a predetermined threshold. In various embodiments, the correlating step includes at least one check to verify the validity of the fit.
在各个实施例中,相关性步骤包括可用于将测量的流量曲线拟合到非线性系统的数据拟合法。数据拟合法可包括多种回归方法,包括:最小二乘回归/方法或者非线性最小二乘回归/方法。在步骤210中,当通过数据拟合法计算出的r-平方值(R2)大于预定r-平方下限时,则相关性在预定阈值内。在各个实施例中,预定r-平方下限大约为0.5、0.525、0.55、0.575、0.6、0.625、0.65、0.675、0.7、0.725、0.75、0.775、0.8、0.825、0.85、0.875、0.9、0.925、0.95、0.975、0.99和1。在各个实施例中,预定r-平方下限是以上列出的任意两个r-平方限制之间的范围。In various embodiments, the correlating step includes a data fitting method that can be used to fit the measured flow curve to a nonlinear system. Data fitting methods may include a variety of regression methods, including: least squares regression/method or non-linear least squares regression/method. In step 210, when the r-square value (R 2 ) calculated by the data fitting method is greater than the predetermined r-square lower limit, the correlation is within the predetermined threshold. In various embodiments, the predetermined r-square lower limit is approximately 0.5, 0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95 , 0.975, 0.99 and 1. In various embodiments, the predetermined lower r-square limit is a range between any two r-square limits listed above.
在各个实施例中,相关性步骤包括计算达到峰值流量的理论时间,并将理论时间与tp进行比较,其中,如果tp相对于计算出的理论时间在可接受的预定变化之内,则拟合是有效的。In various embodiments, the step of correlating includes calculating a theoretical time to peak flow and comparing the theoretical time to t p , wherein if t p is within an acceptable predetermined variation from the calculated theoretical time, then Fitting is valid.
在步骤211中,根据以下公式来计算达到峰值流量的理论时间:In step 211, the theoretical time to reach the peak flow is calculated according to the following formula:
其中,非线性系统为:Among them, the nonlinear system is:
在各个实施例中,如步骤212所示,如果tp相对于计算出的理论时间在可接受的预定变化之内,则确定流量曲线到非线性系统的拟合是有效的。可接受的预定变化大约为0.5、0.75、1、1.25、1.5、1.75、2、2.25、2.5、2.75、3、3.25、3.5、3.75、4、4.25、4.5、4.75和5秒。在各个实施例中,可接受的预定变化在以上列出的任意两个可接受的预定变化之间的范围内。通过对关于达到特定流量所需时间的模型进行求解,并且将所述时间与流量达到峰值的时间进行比较,从而获得另一有效性程度。空气流量达到阈值以下的理论时间与空气流量达到峰值的时间之间的比值对于具有最低泄漏的部件而言是一致的。随着泄漏增加,这个比值也趋向增大。In various embodiments, as shown in step 212, the fit of the flow curve to the nonlinear system is determined to be valid if tp is within an acceptable predetermined variation from the calculated theoretical time. Acceptable predetermined variations are approximately 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75 and 5 seconds. In various embodiments, the acceptable predetermined variation is within a range between any two acceptable predetermined variations listed above. Another degree of effectiveness is obtained by solving a model for the time it takes to reach a particular flow, and comparing that time to the time at which the flow peaks. The ratio between the theoretical time for the air flow to be below the threshold and the time for the air flow to peak is consistent for the part with the lowest leakage. This ratio tends to increase as leakage increases.
在步骤213中,相关性步骤可还包括:如果C1、C2、C3和C4都大于0(C1、C2、C3、C4>0),则确定流量曲线到非线性系统的拟合。In step 213, the correlation step may further include: if C 1 , C 2 , C 3 and C 4 are all greater than 0 (C 1 , C 2 , C 3 , C 4 >0), determining the flow curve to be nonlinear fit of the system.
在步骤214中,各个实施例的方法、系统和监测器包括:当曲线被拟合到非线性系统时,响应于关联在预定阈值内,从该拟合推导出曲线接近预定流量限制的时间点。各个实施例的推导步骤包括应用迭代算法(诸如,牛顿-拉普森(Newton-Raphson)法)来确定曲线接近预定流量限制的时间点。在各个实施例中,推导步骤包括应用迭代算法,该算法从先前计算的时间点计算时间点,直到新计算的时间点相对于先前计算的时间点落入到预定的时间变化之内。在其它实施例中,推导步骤包括应用迭代算法,该算法从先前计算的时间点计算时间点,直到从新计算的时间点计算的流量相对于预定的流量限制落入到预定的流量变化之内。图6到图11中示出的实线表示从流量曲线到非线性系统的拟合推导出时间点。In step 214, the methods, systems and monitors of various embodiments include when the curve is fitted to the nonlinear system, in response to the correlation being within a predetermined threshold, deriving from the fit a point in time at which the curve approaches a predetermined flow limit . The deriving step of various embodiments includes applying an iterative algorithm, such as the Newton-Raphson method, to determine the point in time at which the curve approaches a predetermined flow limit. In various embodiments, the deriving step includes applying an iterative algorithm that calculates a time point from a previously calculated time point until the newly calculated time point falls within a predetermined time change relative to the previously calculated time point. In other embodiments, the deriving step includes applying an iterative algorithm that calculates a time point from a previously calculated time point until the flow calculated from the newly calculated time point falls within a predetermined flow change relative to a predetermined flow limit. The solid lines shown in Figures 6 to 11 represent the time points derived from the fit of the flow curve to the nonlinear system.
在步骤215中,各个实施例的方法、系统和监测器包括计算该时间点与tp之间的比值。所述比值的计算使tp的变化归一化。In step 215, the methods, systems and monitors of various embodiments include calculating a ratio between the time point and tp . The calculation of the ratio normalizes the change in tp .
在各个实施例中,方法、系统和监测器包括基于气流的流量达到峰值与气流的流量达到预定值之间的时间而输出关于部件的泄漏指示。在一个实施例中,所述输出包括:如果所述时间点小于预定时间限制,则部件被识别为具有可接受的泄漏率,如果时间点(tL)大于预定时间限制,则部件被识别为具有不可接受的泄漏率。各个实施例的预定时间限制可以是具有下限和上限的范围,其中,如果时间点小于所述下限,则部件被识别为具有可接受的泄漏率,如果时间点大于所述上限,则部件被识别为具有不可接受的泄漏率。In various embodiments, methods, systems, and monitors include outputting an indication of a leak about a component based on the time between the flow of the airflow peaking and the flow of the airflow reaching a predetermined value. In one embodiment, the output includes: if the time point is less than a predetermined time limit, the component is identified as having an acceptable leak rate, and if the time point (t L ) is greater than the predetermined time limit, the component is identified as having an acceptable leak rate Has an unacceptable leak rate. The predetermined time limit of various embodiments may be a range having a lower limit and an upper limit, wherein if the time point is less than the lower limit, the part is identified as having an acceptable leak rate, and if the time point is greater than the upper limit, the part is identified to have an unacceptable leak rate.
步骤216强调了上限和下限。通过对若干部件进行测试以及对基于比值与泄漏率之间的相关性计算概率而经验性地确定针对比值测试的下限和上限。确定具有不同泄漏率的模型。例如,通过将部件修改为密封且没有泄漏来准备没有泄漏的理想模型。根据所准备的具有已知泄漏率的部件来准备其它模型。例如,在针对变速器的泄漏率进行下限和上限的准备时,具有低于7.5的比值的变速器的99%以上都是可接受的,并且具有大于10的比值的变速器的99%以上都具有高泄漏率。基于这样的准备,在7.5和10.0之间的变速器是好的变速器和坏的变速器混合在一起,因而不能准确地判断。因此,具有落入在7.5和10.0之间的区间内的具有已知泄漏率的认证部件被理解为接近最大泄漏限制或最大可允许泄漏率。Step 216 emphasizes the upper and lower limits. The lower and upper bounds for the ratio test are determined empirically by testing several components and calculating probabilities based on the correlation between the ratio and leak rate. Identify models with different leak rates. For example, prepare an ideal model with no leaks by modifying parts to be airtight and leak-free. Other models are prepared based on prepared parts with known leak rates. For example, when preparing for the lower and upper limits of the transmission's leak rate, over 99% of transmissions with ratios below 7.5 are acceptable, and over 99% of transmissions with ratios greater than 10 have high leakage Rate. Based on such preparations, transmissions between 7.5 and 10.0 are a mix of good and bad transmissions and cannot be accurately judged. Thus, having certified components with known leak rates falling within the interval between 7.5 and 10.0 is understood to be close to the maximum leak limit or maximum allowable leak rate.
步骤216包括确定相关性是否在预定阈值之内,并且,如果相关性在预定阈值之内(即,模型有效),则确定tL是否大于上限(步骤217)或是否小于下限(步骤218)。Step 216 includes determining whether the correlation is within a predetermined threshold, and, if the correlation is within the predetermined threshold (ie, the model is valid), determining whether tL is greater than an upper limit (step 217) or less than a lower limit (step 218).
图6和图7是关于泄漏测试部件的各个实施例的方法、系统和监测器400、400’的示例。在预定时间或第二时间段402测量流量曲线401。对于这个示例,确定相关性在预定阈值之内(即模型有效)。推导出在曲线接近预定流量限制406时的时间点407(403)。如图所示,时间点407小于上限405和下限404。如在步骤218所指示的,部件将被识别为具有可接受的泄漏率(222)。图7的泄漏测试示例400’类似于图6的示例400,并且还示出了流量曲线401’内的可变流量。即使存在可变流量,仍可确定相关性在预定阈值内(即模型有效)。6 and 7 are examples of methods, systems and monitors 400, 400' for various embodiments of leak testing components. The flow profile 401 is measured at a predetermined time or second time period 402 . For this example, it is determined that the correlation is within a predetermined threshold (ie the model is valid). A point in time 407 when the curve approaches the predetermined flow limit 406 is derived (403). As shown, time point 407 is less than upper limit 405 and lower limit 404 . As indicated at step 218, the component will be identified as having an acceptable leak rate (222). The leak test example 400' of Fig. 7 is similar to the example 400 of Fig. 6 and also shows variable flow within the flow curve 401'. Even with variable flow, the correlation can be determined to be within a predetermined threshold (ie, the model is valid).
图8是关于泄漏测试部件的各个实施例的方法、系统和监测器500的示例。在预定时间或第二时间段502测量流量曲线501。对于这个示例,确定相关性在预定阈值之内(即模型有效)。推导出在曲线接近预定流量限制506时的时间点507(503)。如图所示,时间点507大于上限505和下限504。如步骤217中所指示的,部件将被识别为具有不可接受的泄漏率(221)。FIG. 8 is an example of a method, system and monitor 500 for various embodiments of leak testing components. The flow profile 501 is measured at a predetermined time or second time period 502 . For this example, it is determined that the correlation is within a predetermined threshold (ie the model is valid). A point in time 507 when the curve approaches the predetermined flow limit 506 is derived (503). As shown, time point 507 is greater than upper limit 505 and lower limit 504 . As indicated in step 217, the component will be identified as having an unacceptable leak rate (221).
在各个实施例中,方法、系统和监测器包括测量曲线到当流量衰减到预定流量限制以下或接近稳态流量时的时间,并且如果流量衰减到预定流量限制以下,响应于推导出的时间点在范围内,部件将被识别为具有可接受的泄漏率。图9是关于泄漏测试部件的各个实施例的方法、系统和监测器600的示例。在预定时间或第二时间段602测量流量曲线601。对于这个示例,确定相关性在预定阈值之内(即模型有效)。推导出的在曲线603接近预定流量限制606时的时间点607在上限605与下限604之间。在步骤219和步骤223中,进一步测量流量曲线到流量衰减到预定流量限制时,或如果流量衰减到预定流量限制,则进一步测量流量分布曲线。如图9所示,流量曲线601在未到上限605和下限604的点608衰减到预定流量限制以下。由于部件在步骤220中没有衰减到预定流量限制以下,所以图9中所测试的部件被识别为具有可接受的泄漏率(步骤222)。图10的示例600’类似于图9的示例600,但是在流量曲线601’衰减到预定流量限制以下时的时间点608’在上限605与下限604之间。由于部件在步骤220衰减到预定流量限制以下,所以图10中所测试的部件也被识别为具有可接受的泄漏率(步骤222)。In various embodiments, methods, systems and monitors include measuring a curve to the time when flow decays below a predetermined flow limit or near steady-state flow, and if flow decays below the predetermined flow limit, in response to the derived point in time Within the range, the part will be identified as having an acceptable leak rate. FIG. 9 is an example of a method, system and monitor 600 for various embodiments of leak testing components. The flow profile 601 is measured at a predetermined time or second time period 602 . For this example, it is determined that the correlation is within a predetermined threshold (ie the model is valid). The derived point in time 607 when the curve 603 approaches the predetermined flow limit 606 is between the upper limit 605 and the lower limit 604 . In steps 219 and 223, the flow profile is further measured until the flow decays to the predetermined flow limit, or if the flow decays to the predetermined flow limit, the flow profile is further measured. As shown in FIG. 9 , the flow curve 601 decays below the predetermined flow limit at a point 608 where the upper limit 605 and lower limit 604 are not reached. Since the component did not decay below the predetermined flow limit in step 220, the component tested in Figure 9 was identified as having an acceptable leak rate (step 222). The example 600' of FIG. 10 is similar to the example 600 of FIG. 9, but the point in time 608' when the flow curve 601' decays below the predetermined flow limit is between the upper limit 605 and the lower limit 604. The components tested in Figure 10 were also identified as having acceptable leak rates (step 222) as the components decayed below the predetermined flow limit at step 220.
图11是关于泄漏测试部件的各个实施例的方法、系统和监测器700的示例。在图11中,在预定时间或第二时间段702测量流量曲线701。对于这个示例,确定相关性在预定阈值内(即模型有效)。推导出的在曲线703接近预定流量限制706时的时间点707在上限705与下限704之间。在步骤219和步骤223中,进一步测量流量曲线到当流量衰减到预定流量限制时,或者如果流量衰减到预定流量限制,则进一步测量流量曲线。如图11所示,流量曲线701没有衰减到预定流量限制以下。由于在步骤220中部件没有衰减到预定流量限制706以下,所以部件被识别为具有不可接受的泄漏率(步骤221)FIG. 11 is an example of a method, system and monitor 700 for various embodiments of leak testing components. In FIG. 11 , the flow profile 701 is measured at a predetermined time or second time period 702 . For this example, it is determined that the correlation is within a predetermined threshold (ie the model is valid). The derived point in time 707 when the curve 703 approaches the predetermined flow limit 706 is between the upper limit 705 and the lower limit 704 . In steps 219 and 223, the flow profile is further measured when the flow decays to the predetermined flow limit, or if the flow decays to the predetermined flow limit, the flow profile is further measured. As shown in Figure 11, the flow curve 701 does not decay below the predetermined flow limit. Since the component did not decay below the predetermined flow limit 706 in step 220, the component is identified as having an unacceptable leak rate (step 221)
在各个实施例中,方法、系统和监测器包括测量曲线到当流量衰减到预定流量限制以下或接近稳态流量时的时间,并且如果流量衰减到预定流量限制以下,响应于相关性在预定阈值之外,部件将被识别为具有可接受的泄漏率。图12和图13中公开的示例800、800’涉及步骤216和步骤223,其中,确定相关性不在预定阈值内(即模型无效或模型是坏的模型)。在步骤219和步骤223中,进一步测量流量曲线至当流量衰减到预定流量限制时,或者如果流量衰减到预定流量限制,则进一步测量流量曲线。在图12的示例800中,流量曲线801接近(807)预定流量限制806并衰减到预定流量限制806以下。由于在步骤220部件衰减到预定流量限制以下,所以图12中所测试的部件也被识别为具有可接受的泄漏率(步骤222)。在其它方面,在图13的示例800’中,流量曲线801’没有衰减到预定限制806以下。由于部件在步骤220没有衰减到预定限制806以下,所以图13中的部件被识别为具有不可接受的泄漏率(步骤221)。In various embodiments, methods, systems and monitors include measuring a curve to the time when flow decays below a predetermined flow limit or near steady state flow, and if flow decays below the predetermined flow limit, in response to the correlation being at a predetermined threshold Otherwise, components will be identified as having acceptable leak rates. The examples 800, 800' disclosed in Figures 12 and 13 involve steps 216 and 223, where it is determined that the correlation is not within a predetermined threshold (ie the model is invalid or the model is a bad model). In steps 219 and 223, the flow profile is further measured when the flow decays to the predetermined flow limit, or if the flow decays to the predetermined flow limit, the flow profile is further measured. In the example 800 of FIG. 12 , the flow curve 801 approaches ( 807 ) the predetermined flow limit 806 and decays below the predetermined flow limit 806 . The components tested in Figure 12 were also identified as having acceptable leak rates (step 222) due to the component decaying below the predetermined flow limit at step 220. In other aspects, in the example 800' of FIG. 13, the flow curve 801' Since the component did not decay below the predetermined limit 806 at step 220, the component in Figure 13 was identified as having an unacceptable leak rate (step 221).
虽然以上描述了示例性实施例,但是并不意在这些实施例描述了所有可能形式。更具体地,说明书中使用的词语为描述性词语而非限制性词语,并且理解的是,可在不脱离本公开的精神和范围的情况下作出各种改变。此外,各个实施的实施例的特征可被组合以形成进一步的实施例。While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms. More particularly, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the present disclosure. Additionally, the features of various implementing embodiments may be combined to form further embodiments.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711381745.7A CN109946024B (en) | 2017-12-20 | 2017-12-20 | Leak testing components using nonlinear systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711381745.7A CN109946024B (en) | 2017-12-20 | 2017-12-20 | Leak testing components using nonlinear systems |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109946024A true CN109946024A (en) | 2019-06-28 |
CN109946024B CN109946024B (en) | 2025-04-01 |
Family
ID=67003927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711381745.7A Active CN109946024B (en) | 2017-12-20 | 2017-12-20 | Leak testing components using nonlinear systems |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109946024B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1173376A (en) * | 1967-04-18 | 1969-12-10 | Cosmopolitan Assurance Company | Apparatus for testing the fluid tightness of containers |
US4715214A (en) * | 1986-10-03 | 1987-12-29 | S. Himmelstein And Company | Leak tester |
US4776206A (en) * | 1987-08-11 | 1988-10-11 | Xetron Corporation | Leak testing by gas flow signature analysis |
US5412978A (en) * | 1993-06-22 | 1995-05-09 | Phase 1 Instruments, Inc. | Leak detection system |
CN1837766A (en) * | 2006-04-07 | 2006-09-27 | 梅特勒-托利多(常州)称重设备系统有限公司 | Leakage detection method for closed container |
WO2008023188A2 (en) * | 2006-08-25 | 2008-02-28 | Thames Water Utilities Limited | Minimum observable flow monitor |
CN102563362A (en) * | 2011-12-31 | 2012-07-11 | 杭州哲达科技股份有限公司 | Compressed air system and intelligent pipe network leakage detecting method for same |
DE102014012784A1 (en) * | 2014-08-29 | 2016-03-03 | Sartorius Stedim Biotech Gmbh | Method and device for performing an integrity check of a filter element |
-
2017
- 2017-12-20 CN CN201711381745.7A patent/CN109946024B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1173376A (en) * | 1967-04-18 | 1969-12-10 | Cosmopolitan Assurance Company | Apparatus for testing the fluid tightness of containers |
US4715214A (en) * | 1986-10-03 | 1987-12-29 | S. Himmelstein And Company | Leak tester |
US4776206A (en) * | 1987-08-11 | 1988-10-11 | Xetron Corporation | Leak testing by gas flow signature analysis |
US5412978A (en) * | 1993-06-22 | 1995-05-09 | Phase 1 Instruments, Inc. | Leak detection system |
CN1837766A (en) * | 2006-04-07 | 2006-09-27 | 梅特勒-托利多(常州)称重设备系统有限公司 | Leakage detection method for closed container |
WO2008023188A2 (en) * | 2006-08-25 | 2008-02-28 | Thames Water Utilities Limited | Minimum observable flow monitor |
CN102563362A (en) * | 2011-12-31 | 2012-07-11 | 杭州哲达科技股份有限公司 | Compressed air system and intelligent pipe network leakage detecting method for same |
DE102014012784A1 (en) * | 2014-08-29 | 2016-03-03 | Sartorius Stedim Biotech Gmbh | Method and device for performing an integrity check of a filter element |
Non-Patent Citations (1)
Title |
---|
孙建军;左予萍;王金铃;张迎春;: "汽车燃油系统在线快速检漏仪的研究", 天津工业大学学报, no. 04, 25 August 2007 (2007-08-25), pages 48 - 50 * |
Also Published As
Publication number | Publication date |
---|---|
CN109946024B (en) | 2025-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2672246B1 (en) | Methods and Systems for Leak Testing | |
CN107014731A (en) | A kind of hypotonic rock gas-liquid two drives pressure pulse decay infiltration experiment device and method | |
TW201945695A (en) | Methods, systems, and apparatus for mass flow verification based on rate of pressure decay | |
JP2019144275A (en) | System and method for integrity testing of flexible containers | |
CN104236816A (en) | On-line calibration device and method for leakage detection instrument | |
CN204314033U (en) | Pipe flange compactedness test macro | |
WO2010134622A1 (en) | Leak inspection method and leak inspection device | |
CN101424580A (en) | Method for enhancing accuracy of water pressure leak detection test | |
CN109946024A (en) | Leak testing components with nonlinear systems | |
CN109781445B (en) | Method for determining flow area of thermostatic expansion valve | |
CN112197831A (en) | Method for measuring irregular large volume by using gas state change method | |
CN103808474A (en) | Method for checking sealing performance of safety valve | |
US10473549B2 (en) | Fluid leak measurement test device and methods | |
CN102749365A (en) | Calibration method in on-line detection for moisture content of lubricating oil | |
JP2006275906A (en) | Leakage inspection method and apparatus | |
US9810564B2 (en) | Method of determining an internal volume of a filter or bag device, computer program product and a testing apparatus for performing the method | |
CN114459767A (en) | A method for simulating characteristics of low temperature supply system of rocket engine | |
CN211347262U (en) | A detection device for valve casing leakage | |
CN104180877B (en) | A kind of fuel sensor and combination instrument match test platform | |
RU2426080C1 (en) | Method of measuring pressure in fluid transfer pipeline and device to this end | |
RU2805287C1 (en) | Method for determining the integral leakage from a closed volume | |
US10107711B2 (en) | Reducing thermal effects during leak testing | |
CN102288252A (en) | System for testing micro leakage of sealed component | |
US20090165535A1 (en) | Leak localization in a cavitated body | |
RU2333468C1 (en) | Method for measuring effective volume and testing leakproofness of pneumatic brake chambers and device to this effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |