CN109935906B - Electrolyte and Lithium-Ion Batteries - Google Patents
Electrolyte and Lithium-Ion Batteries Download PDFInfo
- Publication number
- CN109935906B CN109935906B CN201711367928.3A CN201711367928A CN109935906B CN 109935906 B CN109935906 B CN 109935906B CN 201711367928 A CN201711367928 A CN 201711367928A CN 109935906 B CN109935906 B CN 109935906B
- Authority
- CN
- China
- Prior art keywords
- electrolyte
- positive electrode
- lithium
- weight
- lithium salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 68
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 23
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 36
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 36
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 32
- 239000000654 additive Substances 0.000 claims abstract description 28
- 230000000996 additive effect Effects 0.000 claims abstract description 25
- -1 alkyl sultone Chemical class 0.000 claims abstract description 21
- 239000002000 Electrolyte additive Substances 0.000 claims abstract description 11
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000003125 aqueous solvent Substances 0.000 claims abstract description 7
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000007774 positive electrode material Substances 0.000 claims description 37
- 239000006258 conductive agent Substances 0.000 claims description 26
- 239000006229 carbon black Substances 0.000 claims description 21
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 19
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 19
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 19
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 18
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 claims description 18
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 17
- 239000002131 composite material Substances 0.000 claims description 17
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 16
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 14
- 239000004917 carbon fiber Substances 0.000 claims description 14
- 239000008151 electrolyte solution Substances 0.000 claims description 12
- 229910013733 LiCo Inorganic materials 0.000 claims description 10
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 10
- 239000002033 PVDF binder Substances 0.000 claims description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 7
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 claims description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 claims description 4
- 239000003273 ketjen black Substances 0.000 claims description 4
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 239000006245 Carbon black Super-P Substances 0.000 claims description 3
- NVJBFARDFTXOTO-UHFFFAOYSA-N diethyl sulfite Chemical compound CCOS(=O)OCC NVJBFARDFTXOTO-UHFFFAOYSA-N 0.000 claims description 3
- BDUPRNVPXOHWIL-UHFFFAOYSA-N dimethyl sulfite Chemical compound COS(=O)OC BDUPRNVPXOHWIL-UHFFFAOYSA-N 0.000 claims description 3
- 229920002125 Sokalan® Polymers 0.000 claims description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 claims 1
- 229910013545 LiCo0.2Ni0.5Mn0.3O2 Inorganic materials 0.000 claims 1
- 239000004584 polyacrylic acid Substances 0.000 claims 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 abstract description 3
- 238000007600 charging Methods 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 229910001290 LiPF6 Inorganic materials 0.000 abstract 2
- NDZWKTKXYOWZML-UHFFFAOYSA-N trilithium;difluoro oxalate;borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FOC(=O)C(=O)OF NDZWKTKXYOWZML-UHFFFAOYSA-N 0.000 abstract 1
- 239000002904 solvent Substances 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000007773 negative electrode material Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 239000011267 electrode slurry Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000005056 compaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000011883 electrode binding agent Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- IFDLFCDWOFLKEB-UHFFFAOYSA-N 2-methylbutylbenzene Chemical compound CCC(C)CC1=CC=CC=C1 IFDLFCDWOFLKEB-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- FWBMVXOCTXTBAD-UHFFFAOYSA-N butyl methyl carbonate Chemical compound CCCCOC(=O)OC FWBMVXOCTXTBAD-UHFFFAOYSA-N 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XJYDIOOQMIRSSY-UHFFFAOYSA-N 1,3,2-dioxathiepane 2-oxide Chemical compound O=S1OCCCCO1 XJYDIOOQMIRSSY-UHFFFAOYSA-N 0.000 description 1
- OTYYBJNSLLBAGE-UHFFFAOYSA-N CN1C(CCC1)=O.[N] Chemical compound CN1C(CCC1)=O.[N] OTYYBJNSLLBAGE-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- LXQJDZXMYIZZMQ-UHFFFAOYSA-N but-1-en-3-yne;carbonic acid Chemical compound C=CC#C.OC(O)=O LXQJDZXMYIZZMQ-UHFFFAOYSA-N 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- RBBXSUBZFUWCAV-UHFFFAOYSA-N ethenyl hydrogen sulfite Chemical compound OS(=O)OC=C RBBXSUBZFUWCAV-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明涉及锂离子电池领域,具体地,涉及一种电解液和锂离子电池。The present invention relates to the field of lithium ion batteries, in particular, to an electrolyte and a lithium ion battery.
背景技术Background technique
随着电动汽车的日益发展,对能够提供更大续航里程的高能量密度电池提出了更高的要求。现有的锂离子电池包括三元材料构成的正极和石墨构成的负极,如果提高正负极片的活性物质涂覆量并使用导电剂炭黑,虽然可以使电芯获得较高的能量密度,但是循环性能和倍率放电性能较差,不能满足EV动力电池要求。同时,由于电池在使用过程中不断的释放热量,电池包内温度升高,使得电池包内温度达到50℃,甚至更高温度,这势必对电芯循环等性能造成坏的影响。现有技术采用增加冷却装置以降低电池包的温度,但这会使电池包能量密度大大降低,影响电动汽车的行驶量程。With the increasing development of electric vehicles, higher requirements are placed on high-energy-density batteries that can provide greater cruising range. Existing lithium-ion batteries include a positive electrode composed of ternary materials and a negative electrode composed of graphite. If the active material coating amount of the positive and negative electrode sheets is increased and the conductive agent carbon black is used, although the cell can obtain a higher energy density, However, the cycle performance and rate discharge performance are poor and cannot meet the requirements of EV power batteries. At the same time, due to the continuous release of heat by the battery during use, the temperature in the battery pack increases, making the temperature in the battery pack reach 50°C or even higher, which is bound to have a bad impact on the performance of the cell cycle. In the prior art, a cooling device is added to reduce the temperature of the battery pack, but this greatly reduces the energy density of the battery pack and affects the driving range of the electric vehicle.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有的锂离子电池难以兼具较高能量密度、循环性能、倍率放电性能和耐高温性能的缺陷,提供了一种能够获得兼具较高能量密度、循环性能、倍率放电性能和耐高温性能的锂离子电池的电解液和锂离子电池。The purpose of the present invention is to provide a battery capable of obtaining both high energy density, cycle performance, rate of Electrolyte and lithium-ion battery for lithium-ion batteries with discharge performance and high temperature resistance.
为了实现上述目的,本发明提供一种电解液,该电解液含有电解质锂盐、非水溶剂和电解液添加剂,其中,所述电解质锂盐为第一锂盐和第二锂盐的组合,所述第一锂盐为LiPF6,所述第二锂盐为二氟草酸硼酸锂、二草酸硼酸锂和二氟磷酸锂中的一种或多种;所述电解液添加剂包括成膜剂和添加剂A,所述添加剂A为烷基磺酸内酯、烯基磺酸内酯和亚硫酸二烷基酯中的一种或多种。In order to achieve the above object, the present invention provides an electrolyte, which contains an electrolyte lithium salt, a non-aqueous solvent and an electrolyte additive, wherein the electrolyte lithium salt is a combination of a first lithium salt and a second lithium salt, so The first lithium salt is LiPF 6 , the second lithium salt is one or more of lithium difluorooxalate borate, lithium dioxalate borate and lithium difluorophosphate; the electrolyte additives include film-forming agents and additives A, the additive A is one or more of alkyl sultone, alkenyl sultone and dialkyl sulfite.
本发明还提供了一种锂离子电池,该电池包括极芯和电解液,所述极芯和电解液密封在电池壳体内,所述极芯包括正极、负极及隔离膜,所述电解液为上述电解液。The invention also provides a lithium ion battery, the battery includes a pole core and an electrolyte, the pole core and the electrolyte are sealed in the battery casing, the pole core includes a positive electrode, a negative electrode and a separator, and the electrolyte is the above electrolyte.
本发明的电解液,通过在特定的电解液添加剂的作用下,使得第一锂盐和第二锂盐能够配合地完成充放电过程而维持LiPF6的稳定作用,特别是配合本发明下文中所描述的正极、负极等下,能够制得兼具较高能量密度、循环性能、倍率放电性能和耐高温性能的锂离子电池。The electrolyte of the present invention maintains the stability of LiPF 6 by enabling the first lithium salt and the second lithium salt to coordinately complete the charging and discharging process under the action of a specific electrolyte additive, especially in combination with the hereinafter described in the present invention. Under the described positive electrode, negative electrode, etc., a lithium ion battery with higher energy density, cycle performance, rate discharge performance and high temperature resistance performance can be prepared.
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the detailed description that follows.
具体实施方式Detailed ways
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Specific embodiments of the present invention will be described in detail below. It should be understood that the specific embodiments described herein are only used to illustrate and explain the present invention, but not to limit the present invention.
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。The endpoints of ranges and any values disclosed herein are not limited to the precise ranges or values, which are to be understood to encompass values proximate to those ranges or values. For ranges of values, the endpoints of each range, the endpoints of each range and the individual point values, and the individual point values can be combined with each other to yield one or more new ranges of values that Ranges should be considered as specifically disclosed herein.
本发明提供一种电解液,该电解液含有电解质锂盐、非水溶剂和电解液添加剂,其中,所述电解质锂盐为第一锂盐和第二锂盐的组合,所述第一锂盐为LiPF6,所述第二锂盐为二氟草酸硼酸锂(LiODFB)、二草酸硼酸锂(LiBOB)和二氟磷酸锂(LiPF2)中的一种或多种;所述电解液添加剂包括成膜剂和添加剂A,所述添加剂A为烷基磺酸内酯、烯基磺酸内酯和亚硫酸二烷基酯中的一种或多种。The present invention provides an electrolyte, which contains an electrolyte lithium salt, a non-aqueous solvent and an electrolyte additive, wherein the electrolyte lithium salt is a combination of a first lithium salt and a second lithium salt, and the first lithium salt LiPF 6 , the second lithium salt is one or more of lithium difluorooxalate borate (LiODFB), lithium dioxalate borate (LiBOB) and lithium difluorophosphate (LiPF 2 ); the electrolyte additive includes A film-forming agent and additive A, wherein the additive A is one or more of alkyl sultone, alkenyl sultone and dialkyl sulfite.
在本发明所述的电解液中,通过选用特定的电解液组分,可以使电极材料和电解液在固液相界面上形成紧密结构层但又不增加阻抗,提高固体电解质界面膜(SEI膜)的稳定性,能够阻止电解液进一步分解,提高电解液的耐高温性能,有效防止溶剂分子的共嵌入,避免了因溶剂分子共嵌入对电极材料造成的破坏,因而大大提高了锂离子电池的能量密度和使用寿命。In the electrolyte of the present invention, by selecting specific electrolyte components, the electrode material and the electrolyte can form a tight structure layer on the solid-liquid interface without increasing the impedance, and the solid electrolyte interface film (SEI film) can be improved. ) stability, can prevent further decomposition of the electrolyte, improve the high temperature resistance of the electrolyte, effectively prevent the co-insertion of solvent molecules, and avoid the damage to the electrode material caused by the co-insertion of solvent molecules, thus greatly improving the lithium-ion battery. Energy density and service life.
根据本发明,尽管所述成膜剂和添加剂A的用量可以在较宽范围内变动,但是考虑到进一步提高锂离子电池的能量密度、循环性能、倍率放电性能和耐高温性能,优选地,以所述电解液的总重量为基准,所述成膜剂的含量为2-8重量%,优选为3-5重量%;所述添加剂A的含量为0.1-5重量%,优选为0.5-2重量%,例如为0.5-1.5重量%。According to the present invention, although the amount of the film-forming agent and the additive A can be varied within a wide range, in view of further improving the energy density, cycle performance, rate discharge performance and high temperature resistance performance of the lithium ion battery, preferably Based on the total weight of the electrolyte, the content of the film-forming agent is 2-8% by weight, preferably 3-5% by weight; the content of the additive A is 0.1-5% by weight, preferably 0.5-2% by weight % by weight, for example, 0.5-1.5% by weight.
根据本发明,所述添加剂A选自烷基磺酸内酯、烯基磺酸内酯和亚硫酸二烷基酯中的一种或多种,该烷基磺酸内酯例如可以为C1-C10的烷基磺酸内酯,具体为1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯等;该烯基磺酸内酯例如可以为C2-C10的烯基磺酸内酯,具体为1,3-丙烯磺酸内酯等;该亚硫酸二烷基酯可以为亚硫酸的二C1-C10的烷基酯,具体为亚硫酸二甲酯、亚硫酸二乙酯等。According to the present invention, the additive A is selected from one or more of alkyl sultone, alkenyl sultone and dialkyl sulfite, and the alkyl sultone can be, for example, C1- C10 alkyl sultone, specifically 1,3-propane sultone, 1,4-butane sultone, etc.; for example, the alkenyl sultone can be C2-C10 alkenyl sultone Acid lactone, specifically 1,3-propene sultone, etc.; the dialkyl sulfite can be a di-C1-C10 alkyl ester of sulfite, specifically dimethyl sulfite, diethyl sulfite esters, etc.
优选地,所述添加剂A为1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯、1,3-丙烯磺酸内酯、亚硫酸二甲酯和亚硫酸二乙酯中的一种或多种。Preferably, the additive A is 1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, dimethyl sulfite and diethyl sulfite one or more of.
根据本发明,所述成膜剂可以为本领域常规采用的各种成膜剂,例如为碳酸亚乙烯酯(VC)、乙烯基碳酸亚乙烯酯(VEC)、亚硫酸乙烯酯(ES)、亚硫酸丙烯酯(PS)和亚硫酸丁烯酯(BS)中的一种或多种,但是在配合本发明的特定的电解质和添加剂下,优选地,所述成膜剂为碳酸亚乙烯酯(VC)和亚硫酸丙烯酯(PS)的组合,更优选为重量比为1:0.5-5、优选1:1-2的碳酸亚乙烯酯(VC)和亚硫酸丙烯酯(PS)的组合。According to the present invention, the film-forming agent can be various film-forming agents conventionally used in the art, such as vinylene carbonate (VC), vinyl vinylene carbonate (VEC), vinyl sulfite (ES), One or more of propylene sulfite (PS) and butylene sulfite (BS), but in combination with the specific electrolyte and additives of the present invention, preferably, the film-forming agent is vinylene carbonate A combination of (VC) and propylene sulfite (PS), more preferably a combination of vinylene carbonate (VC) and propylene sulfite (PS) in a weight ratio of 1:0.5-5, preferably 1:1-2 .
根据本发明,如上所述的,所述第一锂盐和第二锂盐具有良好的协同作用,优选地,所述第一锂盐和第二锂盐的摩尔比为1:0.01-0.5,优选为1:0.02-0.2,更优选为1:0.04-0.1。其中,所述第二锂盐优选采用LiODFB和LiBOB的组合,特别是摩尔比为1:1-5的LiODFB和LiBOB的组合。According to the present invention, as described above, the first lithium salt and the second lithium salt have a good synergistic effect, preferably, the molar ratio of the first lithium salt and the second lithium salt is 1:0.01-0.5, It is preferably 1:0.02-0.2, more preferably 1:0.04-0.1. Wherein, the second lithium salt is preferably a combination of LiODFB and LiBOB, especially a combination of LiODFB and LiBOB with a molar ratio of 1:1-5.
在本发明的一种优选的实施方式中,所述电解液中所述电解质锂盐的浓度为0.5-2mol/L,优选为1-1.1mol/L。In a preferred embodiment of the present invention, the concentration of the electrolyte lithium salt in the electrolyte is 0.5-2 mol/L, preferably 1-1.1 mol/L.
根据本发明,所述非水溶剂可以采用本领域常规的各种溶剂,例如为碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)、碳酸甲丙酯(MPC)、氟代碳酸乙烯酯(FEC)和碳酸甲丁酯(BMC)中的一种或多种。但是在配合本发明的特定的电解质和添加剂下,优选地,所述非水溶剂为碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)和碳酸丙烯酯(PC)的组合,更优选为体积比为10:10-30:5-20:1-5,优选10:15-20:8-10:1-2的碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)和碳酸丙烯酯(PC)的组合。According to the present invention, the non-aqueous solvent can adopt various solvents conventional in the art, such as ethylene carbonate (EC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), propylene carbonate (PC) , one or more of methyl propyl carbonate (MPC), fluoroethylene carbonate (FEC) and butyl methyl carbonate (BMC). But with the specific electrolyte and additives of the present invention, preferably, the non-aqueous solvent is ethylene carbonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and propylene carbonate (PC) ), more preferably ethylene carbonate (EC) and diethyl carbonate with a volume ratio of 10:10-30:5-20:1-5, preferably 10:15-20:8-10:1-2 (DEC), a combination of ethyl methyl carbonate (EMC) and propylene carbonate (PC).
本发明还提供了一种锂离子电池,该电池包括极芯和电解液,所述极芯和电解液密封在电池壳体内,所述极芯包括正极、负极及隔离膜,所述电解液为上述电解液。The invention also provides a lithium ion battery, the battery includes a pole core and an electrolyte, the pole core and the electrolyte are sealed in the battery casing, the pole core includes a positive electrode, a negative electrode and a separator, and the electrolyte is the above electrolyte.
其中,所述电解液为上文中所描述的,这里不再赘述。Wherein, the electrolyte solution is described above, which is not repeated here.
根据本发明,通常,所述负极包括负极集流体以及形成在负极集流体上的负极材料,所述负极材料包括负极活性物质、导电剂和粘结剂。According to the present invention, generally, the negative electrode includes a negative electrode current collector and a negative electrode material formed on the negative electrode current collector, and the negative electrode material includes a negative electrode active material, a conductive agent and a binder.
其中,所述负极活性物质可以为本领域常规的可嵌入和脱出锂的负极活性物质,比如石墨、人造石墨、石油焦、有机裂解碳、中间相碳微球、碳纤维、锡合金、硅合金中的一种或几种,优选为石墨,例如为天然石墨。Wherein, the negative electrode active material can be a conventional negative electrode active material that can intercalate and extract lithium in the field, such as graphite, artificial graphite, petroleum coke, organic cracked carbon, mesocarbon microspheres, carbon fiber, tin alloy, and silicon alloy. One or more of them, preferably graphite, such as natural graphite.
其中,所述负极粘结剂的种类和含量可以为本领域的常规选择,例如含氟树脂和聚烯烃化合物如聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、丁苯橡胶(SBR)和羧甲基纤维素(CMC)中的一种或多种,优选为丁苯橡胶(SBR)和/或羧甲基纤维素(CMC)。Wherein, the type and content of the negative electrode binder can be selected conventionally in the field, such as fluorine-containing resins and polyolefin compounds such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber ( One or more of SBR) and carboxymethyl cellulose (CMC), preferably styrene-butadiene rubber (SBR) and/or carboxymethyl cellulose (CMC).
其中,所述负极导电剂可以为本领域常规的导电剂,比如碳黑、乙炔黑、炉黑、碳纤维、石墨烯、碳纳米管、导电碳黑和导电石墨中的一种或多种,优选为炭黑和碳纤维,进一步优选为炭黑和气相生成碳纤维。Wherein, the negative electrode conductive agent can be a conventional conductive agent in the field, such as one or more of carbon black, acetylene black, furnace black, carbon fiber, graphene, carbon nanotube, conductive carbon black and conductive graphite, preferably It is carbon black and carbon fiber, more preferably carbon black and gas-phase generated carbon fiber.
根据本发明,以所述负极活性物质、所述负极导电剂和所述负极粘结剂的总重量为基准,所述负极活性物质的含量为82-96重量%,所述负极导电剂的含量为3-8重量%,所述负极粘结剂的含量为0.1-10重量%。According to the present invention, based on the total weight of the negative electrode active material, the negative electrode conductive agent and the negative electrode binder, the content of the negative electrode active material is 82-96% by weight, and the content of the negative electrode conductive agent is 82-96% by weight. It is 3-8 wt%, and the content of the negative electrode binder is 0.1-10 wt%.
根据本发明,所述负极的集流体可以为锂离子电池中常用的负极集流体,如冲压金属、金属箔、网状金属和泡沫状金属,优选铜箔。According to the present invention, the current collector of the negative electrode can be a negative electrode current collector commonly used in lithium ion batteries, such as stamped metal, metal foil, mesh metal and foamed metal, preferably copper foil.
其中,所述负极的制备方法可以采用常规的制备方法。例如,将负极活性物质、负极导电剂和负极粘结剂与溶剂混合制成负极浆料,涂布在所述负极集流体上,然后进行干燥、压延和分切即可得到所述负极。其中,干燥、压延和分切的方法和条件可以为本领域的常规选择。Wherein, the preparation method of the negative electrode can adopt a conventional preparation method. For example, the negative electrode can be obtained by mixing the negative electrode active material, the negative electrode conductive agent and the negative electrode binder with a solvent to form a negative electrode slurry, coating the negative electrode current collector, and then drying, rolling and slitting. Among them, the methods and conditions of drying, calendering and slitting can be conventionally selected in the field.
根据本发明,通常所述正极包括正极集流体和在所述正极集流体表面上的正极材料层,所述正极材料层含有正极活性物质、复合导电剂和粘结剂。According to the present invention, generally the positive electrode comprises a positive electrode current collector and a positive electrode material layer on the surface of the positive electrode current collector, the positive electrode material layer containing a positive electrode active material, a composite conductive agent and a binder.
其中,为了获得较高的较高能量密度、循环性能、倍率放电性能和耐高温性能,优选地,所述复合导电剂含有第一炭黑、第二炭黑和气相生成碳纤维;其中,所述第一炭黑的表观密度为60-90kg/m3,比表面积为60-80m2/g,电导率为102-104S/m,例如可以满足表观密度为70-80kg/m3,比表面积为70-75m2/g,电导率为103-104S/m。优选地,所述第一炭黑为炭黑Super P。Wherein, in order to obtain higher energy density, cycle performance, rate discharge performance and high temperature resistance performance, preferably, the composite conductive agent contains the first carbon black, the second carbon black and the vapor-generated carbon fiber; wherein, the The apparent density of the first carbon black is 60-90kg/m 3 , the specific surface area is 60-80m 2 /g, and the electrical conductivity is 10 2 -10 4 S/m, for example, the apparent density can be satisfied to be 70-80kg/m 3 , the specific surface area is 70-75m 2 /g, and the electrical conductivity is 10 3 -10 4 S/m. Preferably, the first carbon black is carbon black Super P.
所述第二炭黑的表观密度为17-50kg/m3,比表面积为800-1000m2/g,电导率为105-107S/m,例如可以满足表观密度为20-35kg/m3,比表面积为900-950m2/g,电导率为106-107S/m。优选地,所述第二炭黑为科琴黑。The apparent density of the second carbon black is 17-50kg/m 3 , the specific surface area is 800-1000m 2 /g, and the electrical conductivity is 10 5 -10 7 S/m, for example, the apparent density can be satisfied to be 20-35kg /m 3 , the specific surface area is 900-950 m 2 /g, and the electrical conductivity is 10 6 -10 7 S/m. Preferably, the second carbon black is Ketjen black.
根据本发明,所述复合导电剂中,为了增强所述复合导电剂的导电性,所述气相生成碳纤维优选采用化学催化气相沉积技术制备得到,具体地,所述气相生成碳纤维在873-1473K下,以过渡金属Fe、Co、Ni中的一种或其化合物为催化剂,将低碳烃化合物,例如甲烷、乙炔和苯等裂解而生成。进一步优选地,所述气相生成碳纤维的直径可以为140-160nm(例如为145-155nm),长度可以为5-10μm(例如为6-8μm),拉伸模量可以为1-10GPa(例如为2-6GPa),密度可以为80-100kg/m3(例如为85-95kg/m3),热膨胀系数可以为-0.5×10-6至-1×10-6,热导率可以为1000-2000Wm-1K-1(例如为1200-1600Wm-1K-1),电导率可以为105-107S/m(例如为106-107S/m)。According to the present invention, in the composite conductive agent, in order to enhance the electrical conductivity of the composite conductive agent, the gas-phase carbon fiber is preferably prepared by chemical catalytic vapor deposition technology. Specifically, the gas-phase carbon fiber is prepared at 873-1473K , which is generated by cracking low-carbon hydrocarbon compounds such as methane, acetylene and benzene, using one of transition metals Fe, Co, Ni or their compounds as catalysts. Further preferably, the diameter of the vapor-generated carbon fiber may be 140-160 nm (for example, 145-155 nm), the length may be 5-10 μm (for example, 6-8 μm), and the tensile modulus may be 1-10 GPa (for example, 1-10 GPa). 2-6GPa), the density can be 80-100kg/m 3 (eg 85-95kg/m 3 ), the thermal expansion coefficient can be -0.5×10 -6 to -1×10 -6 , and the thermal conductivity can be 1000- 2000Wm -1 K -1 (eg 1200-1600Wm -1 K -1 ), the conductivity may be 10 5 -10 7 S/m (eg 10 6 -10 7 S/m).
根据本发明,所述粘结剂可以采用本领域常规的用于正极材料中的粘结剂,但是为了提供更多微孔结构,从而使锂离子电池的正极获得更强的吸液能力和储纳电解液的能力,进而提高电池的循环寿命和能量密度,所述粘结剂优选为聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚丙烯酸(PAA)、羧甲基纤维素钠(CMC)和聚乙烯(PE)中的至少一种。According to the present invention, the binder can be a conventional binder used in the positive electrode material in the field, but in order to provide more microporous structure, so that the positive electrode of the lithium ion battery can obtain stronger liquid absorption and storage capacity. The ability of nano-electrolyte, thereby improving the cycle life and energy density of the battery, the binder is preferably polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid (PAA), carboxymethyl cellulose At least one of sodium (CMC) and polyethylene (PE).
根据本发明,尽管所述正极材料层中的正极活性物质、复合导电剂和粘结剂的含量可以在较宽范围内变化,只要能够制得本发明所需的较高能量密度、循环性能、倍率放电性能和耐高温性能的锂离子电池即可,优选地,以所述正极活性物质、所述复合导电剂和所述粘结剂的总重量为基准,所述正极活性物质的含量为85-98重量%,所述复合导电剂的含量为1-10重量%,所述粘结剂的含量为0.1-10重量%。更优选地,以所述正极活性物质、所述复合导电剂和所述粘结剂的总重量为基准,所述正极活性物质的含量为96-98重量%,所述复合导电剂的含量为1-5重量%,所述粘结剂的含量为0.1-5重量%。According to the present invention, although the content of the positive electrode active material, the composite conductive agent and the binder in the positive electrode material layer can be varied in a wide range, as long as the higher energy density, cycle performance, A lithium ion battery with rate discharge performance and high temperature resistance performance is sufficient. Preferably, based on the total weight of the positive electrode active material, the composite conductive agent and the binder, the content of the positive electrode active material is 85% -98% by weight, the content of the composite conductive agent is 1-10% by weight, and the content of the binder is 0.1-10% by weight. More preferably, based on the total weight of the positive electrode active material, the composite conductive agent and the binder, the content of the positive electrode active material is 96-98% by weight, and the content of the composite conductive agent is 1-5% by weight, and the content of the binder is 0.1-5% by weight.
根据本发明,所述正极活性物质为本领域常规采用的三元正极活性物质,尽管所述正极活性物质可以满足化学式LiCopNiqMn1-p-qO2(其中,0<p<1,0<q<1)所表示的任何三元材料中的一种或多种,但是从与正极材料层的其他有效成分特别是导电剂的配合效果上考虑,优选地,所述正极活性物质为LiCo0.2Ni0.5Mn0.3O2、LiCo0.2Ni0.6Mn0.2O2、LiCo0.1Ni0.8Mn0.1O2和LiCo0.05Ni0.9Mn0.05O2中的一种或多种。According to the present invention, the positive electrode active material is a ternary positive electrode active material conventionally used in the field, although the positive electrode active material may satisfy the chemical formula LiCo p Ni q Mn 1-pq O 2 (wherein, 0<p<1,0 One or more of any ternary materials represented by <q<1), but from the viewpoint of the coordination effect with other effective components of the positive electrode material layer, especially the conductive agent, preferably, the positive electrode active material is LiCo One or more of 0.2 Ni 0.5 Mn 0.3 O 2 , LiCo 0.2 Ni 0.6 Mn 0.2 O 2 , LiCo 0.1 Ni 0.8 Mn 0.1 O 2 and LiCo 0.05 Ni 0.9 Mn 0.05 O 2 .
根据本发明,所述复合导电剂中,所述第一炭黑、所述第二炭黑和所述气相生成碳纤维能够形成“点”、“线”相结合的导电网络,配合所述正极活性物质下,获得较高的电学性能。优选地,所述第一炭黑、第二炭黑和气相生成碳纤维的含量的重量比为1:0.2-1:0.1-0.5,优选为1:0.2-0.5:0.1-0.3。According to the present invention, in the composite conductive agent, the first carbon black, the second carbon black and the vapor-generated carbon fiber can form a conductive network combining "dots" and "lines", which cooperates with the positive electrode activity Under the material, higher electrical properties are obtained. Preferably, the weight ratio of the content of the first carbon black, the second carbon black and the vapor-generated carbon fiber is 1:0.2-1:0.1-0.5, preferably 1:0.2-0.5:0.1-0.3.
本发明中对所述正极集流体的种类没有特别的限定,可以为常规选择。具体地,所述正极集流体可以为铝、铜或钢等材料。通常,在正极为正极片的结构下,即所述正极为片状下,所述正极集流体也采用片状结构的材料,例如为铝箔、铜箔或冲孔钢带,优选为铝箔。对该正极集流体的厚度并没有特别的限定,可以根据所需的锂离子电池进行适当地调整,例如所述正极集流体的厚度为10-20μm,优选为14-18μm。In the present invention, the types of the positive electrode current collectors are not particularly limited, and can be conventionally selected. Specifically, the positive electrode current collector may be made of materials such as aluminum, copper, or steel. Usually, when the positive electrode is a positive electrode sheet, that is, when the positive electrode is a sheet, the positive electrode current collector is also made of a sheet-shaped material, such as aluminum foil, copper foil or punched steel strip, preferably aluminum foil. The thickness of the positive electrode current collector is not particularly limited, and can be appropriately adjusted according to the desired lithium ion battery. For example, the thickness of the positive electrode current collector is 10-20 μm, preferably 14-18 μm.
考虑到成本和提高能量密度、循环性能和倍率放电性能下,优选地,所述正极集流体和正极材料层的厚度比为1:5-10。在满足该条件下,优选地,所述正极材料层的厚度为60-180μm,优选为80-160μm,更优选为100-140μm。Considering cost and improving energy density, cycle performance and rate discharge performance, preferably, the thickness ratio of the positive electrode current collector and the positive electrode material layer is 1:5-10. Under this condition, preferably, the thickness of the positive electrode material layer is 60-180 μm, preferably 80-160 μm, and more preferably 100-140 μm.
根据本发明,在所述正极集流体上形成的正极材料的量可以为34-38mg/cm2,这样可以使锂离子电池获得更高的能量密度。According to the present invention, the amount of the positive electrode material formed on the positive electrode current collector can be 34-38 mg/cm 2 , so that the lithium ion battery can obtain higher energy density.
根据本发明,所述正极的制备可以按照本领域常规的锂离子电池的制备工艺进行,例如包括:将正极浆料涂布在正极集流体上,然后进行烘烤、辊压、裁切,得到所述正极。According to the present invention, the preparation of the positive electrode can be carried out according to the conventional lithium-ion battery preparation process in the art, for example, including: coating the positive electrode slurry on the positive electrode current collector, and then baking, rolling, and cutting to obtain the positive electrode.
其中,正极浆料可以是将上述正极材料层的物质分散于溶剂中制得,其中,作为形成正极浆料的溶剂可以为本领域常规采用的各种溶剂,在优选情况下,为使所述正极材料组合物的浆料具有较高的粘度,并使得各组分更均匀分散,所述溶剂选自N-甲基吡咯烷酮、N-甲基甲酰胺、N-甲基乙酰胺、乙腈和N,N-二甲基甲酰胺中的至少一种,优选为N-甲基吡咯烷酮。该溶剂的用量可以在较宽范围内变动,为了能够获得更好的导电效果和更高的导电活性物质与集流体的粘结牢度性,优选地,相对于1kg的所述正极活性物质、所述复合导电剂和所述粘结剂的总重量,该浆料中溶剂的用量为400-800mL。The positive electrode slurry can be prepared by dispersing the material of the positive electrode material layer in a solvent, wherein the solvent used to form the positive electrode slurry can be various solvents conventionally used in the field. The slurry of the positive electrode material composition has a higher viscosity and makes the components more uniformly dispersed, and the solvent is selected from N-methylpyrrolidone, N-methylformamide, N-methylacetamide, acetonitrile and N , at least one of N-dimethylformamide, preferably N-methylpyrrolidone. The amount of the solvent can be varied in a wide range, in order to obtain better conductive effect and higher bonding fastness between the conductive active material and the current collector, preferably, relative to 1 kg of the positive electrode active material, The total weight of the composite conductive agent and the binder, and the amount of the solvent in the slurry is 400-800 mL.
根据本发明,本发明对于将正极浆料涂布在正极集流体上的方法没有特别限定,可以在本领域的常用的各种设备上进行。一般地,可以采用拉浆机将所述正极材料涂布在正极集流体上。According to the present invention, the method for coating the positive electrode slurry on the positive electrode current collector is not particularly limited in the present invention, and it can be performed on various equipments commonly used in the art. Generally, the positive electrode material can be coated on the positive electrode current collector by using a pulper.
根据本发明,所述烘烤的条件没有特别的限定,只要能够将正极浆料中的溶剂充分脱出即可,例如,所述烘烤可以在80-140℃的温度下进行;优选地,所述烘烤可以在110-130℃的温度下进行。According to the present invention, the baking conditions are not particularly limited, as long as the solvent in the positive electrode slurry can be fully removed, for example, the baking can be performed at a temperature of 80-140°C; preferably, the The baking can be carried out at a temperature of 110-130°C.
所述辊压的目的为使正极活性物质形成致密的涂层,达到电池的设计要求。本发明对于所述辊压的条件没有特别限定,可以根据预期的厚度和压实密度进行适当的选择。本发明中,所述辊压的条件使得正极的厚度例如可以为100-140μm(例如130μm),压实密度在3.3-3.6g/cm3之间。The purpose of the rolling is to form a dense coating of the positive electrode active material to meet the design requirements of the battery. In the present invention, the rolling conditions are not particularly limited, and can be appropriately selected according to the expected thickness and compaction density. In the present invention, the conditions of the rolling are such that the thickness of the positive electrode can be, for example, 100-140 μm (eg, 130 μm), and the compaction density is between 3.3-3.6 g/cm 3 .
所述裁切的目的为使正极达到电池的设计要求。本发明对于所述裁切的条件没有特别限定,可以根据预期的正极尺寸进行适当的选择。本发明中,所述裁切例如使得正极的宽度为150-160mm(例如156mm),长度为205-220mm(例如212mm)。The purpose of the cutting is to make the positive electrode meet the design requirements of the battery. In the present invention, the cutting conditions are not particularly limited, and can be appropriately selected according to the expected size of the positive electrode. In the present invention, the cutting is such that the width of the positive electrode is 150-160 mm (for example, 156 mm), and the length is 205-220 mm (for example, 212 mm).
根据本发明,本发明的锂离子电池的制备方法可以为本领域的技术人员所公知的方法,一般来说,该方法包括将正极、隔离膜、负极按照自上而下的叠片模式叠放组装,然后将正极与铝极耳焊接、负极与铜镀镍极耳焊接,之后进行铝塑膜热封、注入电解液、抽真空封装制得电芯,经浸润、化成和再次抽真空得到锂离子电池。According to the present invention, the preparation method of the lithium ion battery of the present invention can be a method known to those skilled in the art. Generally speaking, the method includes stacking the positive electrode, the separator and the negative electrode in a top-down lamination mode. Assemble, then weld the positive electrode to the aluminum tab, and the negative electrode to the nickel-plated copper tab, then heat-seal the aluminum-plastic film, inject the electrolyte, and vacuumize the battery to obtain the battery cell. After infiltration, formation, and vacuuming again, lithium is obtained ion battery.
所述浸润条件包括:浸润时间为20-40h。The infiltration conditions include: the infiltration time is 20-40h.
所述化成条件包括:化成电压为2.75-4.4V。The formation conditions include: the formation voltage is 2.75-4.4V.
以下将通过实施例对本发明进行详细描述。The present invention will be described in detail below by means of examples.
以下实施例中,第一炭黑为Super P,表观密度为63kg/m3,比表面积为65m2/g,电导率为103S/m;In the following examples, the first carbon black is Super P, the apparent density is 63kg/m 3 , the specific surface area is 65m 2 /g, and the electrical conductivity is 10 3 S/m;
第二炭黑为科琴黑ECP,表观密度为35kg/m3,比表面积为800m2/g,电导率为105S/m;The second carbon black is Ketjen Black ECP, the apparent density is 35kg/m 3 , the specific surface area is 800m 2 /g, and the electrical conductivity is 10 5 S/m;
气相生成碳纤维VGCF,直径为150nm,长度为6μm,拉伸模量为2GPa,密度为80kg/m3,热膨胀系数为-10-6,热导率为1500Wm-1K-1,电导率为105S/m。Vapor-generated carbon fiber VGCF has a diameter of 150nm, a length of 6μm, a tensile modulus of 2GPa, a density of 80kg/m 3 , a thermal expansion coefficient of -10 -6 , a thermal conductivity of 1500Wm -1 K -1 , and an electrical conductivity of 10 5 S/m.
以下实施例中,正极材料的涂覆量(g)按下式计算得到:In the following examples, the coating amount (g) of the positive electrode material is calculated as follows:
m涂覆=m2-m1,m coating = m 2 -m 1 ,
其中,m1、m2分别代表相同尺寸的铝箔涂覆正极材料前后的重量(g)。Wherein, m 1 and m 2 respectively represent the weight (g) of the same size aluminum foil before and after coating the positive electrode material.
实施例1Example 1
本实施例用于说明本发明的电解液。This example is used to illustrate the electrolyte of the present invention.
将LiPF6、LiODFB和LiBOB溶解在碳酸乙烯酯EC、碳酸二乙酯DEC、碳酸甲乙酯EMC和碳酸丙烯酯PC(体积比EC:DEC:EMC:PC=20:35:20:3)的混合溶剂中,得到的溶液;之后加入电解液添加剂:成膜剂VC和成膜剂PS、以及添加剂A(即1,3-丙烷磺酸内酯)混合均匀从而得到电解液A1,电解液A1中,LiPF6的浓度为1mol/L,LiODFB的浓度为0.01mol/L,LiBOB的浓度为0.03mol/L,成膜剂VC的含量为1.5重量%,成膜剂PS的含量为1.5重量%,添加剂A的含量为0.5重量%。LiPF 6 , LiODFB and LiBOB were dissolved in ethylene carbonate EC, diethyl carbonate DEC, ethyl methyl carbonate EMC and propylene carbonate PC (volume ratio EC:DEC:EMC:PC=20:35:20:3) In the mixed solvent, the obtained solution; then add electrolyte additives: film-forming agent VC and film-forming agent PS, and additive A (i.e. 1,3-propane sultone) are mixed evenly to obtain electrolyte A1, electrolyte A1 The concentration of LiPF 6 is 1 mol/L, the concentration of LiODFB is 0.01 mol/L, the concentration of LiBOB is 0.03 mol/L, the content of film-forming agent VC is 1.5 wt%, and the content of film-forming agent PS is 1.5 wt% , the content of additive A is 0.5% by weight.
实施例2Example 2
本实施例用于说明本发明的电解液。This example is used to illustrate the electrolyte of the present invention.
将LiPF6、LiODFB和LiBOB溶解在碳酸乙烯酯EC、碳酸二乙酯DEC、碳酸甲乙酯EMC和碳酸丙烯酯PC(体积比EC:DEC:EMC:PC=20:35:20:3)的混合溶剂中,得到的溶液;之后加入电解液添加剂:成膜剂VC和成膜剂PS、以及添加剂A(即1,4-丁烷磺酸内酯),混合均匀从而得到电解液A2,电解液A2中,LiPF6的浓度为1mol/L,LiODFB的浓度为0.02mol/L,LiBOB的浓度为0.03mol/L,成膜剂VC的含量为2重量%,成膜剂PS的含量为2重量%,添加剂A的含量为1重量%。LiPF 6 , LiODFB and LiBOB were dissolved in ethylene carbonate EC, diethyl carbonate DEC, ethyl methyl carbonate EMC and propylene carbonate PC (volume ratio EC:DEC:EMC:PC=20:35:20:3) In the mixed solvent, the obtained solution; then add electrolyte additives: film-forming agent VC and film-forming agent PS, and additive A (i.e. 1,4-butane sultone), mix uniformly to obtain electrolyte A2, electrolyze In solution A2, the concentration of LiPF 6 is 1 mol/L, the concentration of LiODFB is 0.02 mol/L, the concentration of LiBOB is 0.03 mol/L, the content of film-forming agent VC is 2 wt%, and the content of film-forming agent PS is 2 % by weight, the content of additive A is 1% by weight.
实施例3Example 3
本实施例用于说明本发明的电解液。This example is used to illustrate the electrolyte of the present invention.
将LiPF6、LiODFB和LiBOB溶解在碳酸乙烯酯EC、碳酸二乙酯DEC、碳酸甲乙酯EMC和碳酸丙烯酯PC(体积比EC:DEC:EMC:PC=20:35:20:3)的混合溶剂中,得到的溶液;之后加入电解液添加剂:成膜剂VC和成膜剂PS、以及添加剂A(即1,3-丙烷磺酸内酯),混合均匀从而得到电解液A3,电解液A3中,LiPF6的浓度为1mol/L,LiODFB的浓度为0.03mol/L,LiBOB的浓度为0.05mol/L,成膜剂VC的含量为2重量%,成膜剂PS的含量为3重量%,添加剂A的含量为1.5重量%。LiPF 6 , LiODFB and LiBOB were dissolved in ethylene carbonate EC, diethyl carbonate DEC, ethyl methyl carbonate EMC and propylene carbonate PC (volume ratio EC:DEC:EMC:PC=20:35:20:3) In the mixed solvent, the obtained solution; then add electrolyte additives: film-forming agent VC and film-forming agent PS, and additive A (i.e. 1,3-propane sultone), mix well to obtain electrolyte A3, electrolyte In A3, the concentration of LiPF 6 is 1 mol/L, the concentration of LiODFB is 0.03 mol/L, the concentration of LiBOB is 0.05 mol/L, the content of film-forming agent VC is 2 wt %, and the content of film-forming agent PS is 3 wt % %, the content of additive A is 1.5% by weight.
实施例4Example 4
本实施例用于说明本发明的电解液。This example is used to illustrate the electrolyte of the present invention.
根据实施例1所述的电解液,不同的是,不采用碳酸二乙酯DEC,而是仅采用碳酸乙烯酯EC、碳酸甲乙酯EMC和碳酸丙烯酯PC(体积比EC:EMC:PC=45:45:7)的混合溶剂作为溶剂,从而得到电解液A4。According to the electrolyte described in Example 1, the difference is that instead of using diethyl carbonate DEC, only ethylene carbonate EC, ethyl methyl carbonate EMC and propylene carbonate PC are used (volume ratio EC:EMC:PC= 45:45:7) mixed solvent was used as a solvent to obtain electrolyte solution A4.
实施例5Example 5
本实施例用于说明本发明的电解液。This example is used to illustrate the electrolyte of the present invention.
根据实施例1所述的电解液,不同的是,不采用成膜剂VC,而是采用同等分的成膜剂PS替代成膜剂VC,从而得到电解液A5,该电解液中,成膜剂PS的含量为3重量%。According to the electrolyte solution described in Example 1, the difference is that instead of using the film-forming agent VC, an equal amount of the film-forming agent PS is used instead of the film-forming agent VC, so as to obtain the electrolyte solution A5, in which the film-forming agent A5 is obtained. The content of the agent PS was 3% by weight.
对比例1Comparative Example 1
根据实施例1所述的电解液,不同的是,不采用添加剂A,而是用同等分的VC替换添加剂A,从而得到电解液DA1,该电解液中,成膜剂VC的含量为2重量%。According to the electrolyte solution described in Example 1, the difference is that the additive A is not used, but the additive A is replaced with an equal amount of VC, so as to obtain the electrolyte solution DA1. In the electrolyte solution, the content of the film-forming agent VC is 2 wt. %.
对比例2Comparative Example 2
根据实施例1所述的电解液,不同的是,不采用添加剂A,而是用同等分的添加剂PS替换添加剂A,从而得到电解液DA2,该电解液中,成膜剂PS的含量为2重量%。According to the electrolyte solution described in Example 1, the difference is that the additive A is not used, but the additive PS is replaced with an equal amount of the additive PS, thereby obtaining the electrolyte solution DA2. In the electrolyte solution, the content of the film-forming agent PS is 2 weight%.
电池制备battery preparation
(1)正极片的制备(1) Preparation of positive electrode sheet
将940g的LiCo0.2Ni0.6Mn0.2O2、25g聚偏氟乙烯PVDF、20g炭黑Super P,10g科琴黑ECP和5g气相生成碳纤维VCGF混合并在3000rpm的转速下分散于600mL氮甲基吡咯烷酮NMP中,搅拌4h,得到固体含量为50重量%的正极材料。在厚度为16μm的铝箔上双面敷料,涂抹均匀,正极材料涂覆量为47mg/cm2。在90℃下烘干,压延,裁切成正极片,正极片大小为212mm(长)×156mm(宽)×130μm(厚),压实密度为3.5g/cm3,电池正极材料涂覆量为36.6mg/cm2。Mix 940g LiCo 0.2 Ni 0.6 Mn 0.2 O 2 , 25g polyvinylidene fluoride PVDF, 20g carbon black Super P, 10g Ketjen Black ECP and 5g gas phase carbon fiber VCGF and disperse in 600mL nitrogen methyl pyrrolidone at 3000rpm. In NMP, the mixture was stirred for 4 h to obtain a positive electrode material with a solid content of 50% by weight. Double-sided dressing was applied on an aluminum foil with a thickness of 16 μm, and the coating was uniform, and the coating amount of the positive electrode material was 47 mg/cm 2 . Drying at 90°C, calendering, cutting into positive electrode sheets, the size of the positive electrode sheet is 212mm (length)×156mm (width)×130μm (thickness), the compaction density is 3.5g/cm 3 , the coating amount of the battery positive electrode material was 36.6 mg/cm 2 .
(2)负极片的制备(2) Preparation of negative electrode sheet
将945g石墨、15g导电剂Super P(粒径为D50为2-5μm,真密度为0.073±0.01g/cm3,比表面积>60m2/g,吸油值为20-40mL/5g)、23g丁苯橡胶SBR(固含量为40重量%,粘度为5-50mPa.s,平均粒径为145nm,pH=7-8,以下均相同)和17g羧甲基纤维素钠CMC在去离子水中均匀混合,得到固体含量为50重量%的负极材料。在厚度为8μm的铜箔上双面敷料,涂抹均匀。在90℃下烘干,压延,裁切成负极片,负极片大小为213mm(长)×157mm(宽)×110μm(厚),压实密度为1.6g/cm3。945g graphite, 15g conductive agent Super P (particle size of D50 is 2-5μm, true density is 0.073±0.01g/cm 3 , specific surface area> 60m 2 /g, oil absorption value is 20-40mL/5g), 23g Styrene rubber SBR (solid content of 40% by weight, viscosity of 5-50mPa.s, average particle size of 145nm, pH=7-8, the same below) and 17g of sodium carboxymethylcellulose CMC were uniformly mixed in deionized water , to obtain a negative electrode material with a solid content of 50% by weight. Double-sided dressing was applied on copper foil with a thickness of 8 μm and spread evenly. Drying at 90°C, rolling, and cutting into negative electrode sheets, the size of the negative electrode sheets is 213 mm (length)×157 mm (width)×110 μm (thickness), and the compaction density is 1.6 g/cm 3 .
(3)电池的组装(3) Assembly of the battery
将上述正极片、聚乙烯隔离膜(厚度为20μm,透隙率(JIS)为320s,孔隙率45%,以下均相同)和上述负极片按照自上而下的叠片模式叠放组装,然后将正极与铝极耳焊接、负极与铜镀镍极耳焊接,之后进行铝塑膜热封。随后将上述各实施例中的电解液A1-A5和对比例中的电解液DA1-DA3分别以3.3g/Ah的量注入电池壳中,抽真空密封,经浸润30h,在3.5V电压下化成,再次抽真空制成锂离子电池。The above-mentioned positive electrode sheet, polyethylene separator (thickness is 20 μm, porosity (JIS) is 320s, porosity is 45%, the following are the same) and the above-mentioned negative electrode sheet are stacked and assembled according to the top-down lamination mode, and then Weld the positive electrode to the aluminum tab, and the negative electrode to the nickel-plated copper tab, and then heat-seal the aluminum-plastic film. Subsequently, the electrolytes A1-A5 in the above-mentioned embodiments and the electrolytes DA1-DA3 in the comparative example were injected into the battery case in an amount of 3.3g/Ah, vacuum sealed, and then infiltrated for 30h, and formed into a 3.5V voltage. , vacuumed again to make a lithium-ion battery.
测试例test case
(1)电池体积能量密度(1) Battery volumetric energy density
将上述例子制得的电池化成后于30℃下以0.2C电流恒流充电至4.2V,而后转恒电压充电,截止电流0.05C;然后,再将电池以0.2C电流恒流放电至2.75V,得到电池常温0.2C电流放电至2.75V的容量,即为电池分容容量;再将电池以0.2C电流恒流充电至4.2V,取下电池并称量此时电池重量。The battery prepared in the above example was formed and charged to 4.2V at a constant current of 0.2C at 30°C, and then switched to constant voltage charging with a cut-off current of 0.05C; then, the battery was discharged to 2.75V at a constant current of 0.2C. , get the capacity of the battery at room temperature 0.2C current discharge to 2.75V, which is the battery capacity; then charge the battery to 4.2V with 0.2C current constant current, remove the battery and weigh the battery at this time.
按下列公式计算电池能量密度:电池能量密度(Wh/kg)=电池放电容量(mAh)÷电池重量(g)×工作电压(V)。Calculate the battery energy density according to the following formula: battery energy density (Wh/kg) = battery discharge capacity (mAh) ÷ battery weight (g) × working voltage (V).
(2)循环性能(2) Cycle performance
在55℃高温下,将实验例制得的电池以1C电流恒流充电至4.2V,而后转恒电压充电,截止电流0.05C;然后,再将电池以1C电流恒流放电至2.75V。重复以上步骤250次,得到电池高温250次循环后1C电流放电至2.75V的容量,计算循环后电池容量保持率。At a high temperature of 55°C, the battery prepared in the experimental example was charged to 4.2V with a constant current of 1C, and then transferred to constant voltage charging with a cut-off current of 0.05C; then, the battery was discharged to 2.75V with a constant current of 1C. Repeat the above steps 250 times to obtain the capacity of the battery after 250 cycles of high temperature at 1C current to discharge to 2.75V, and calculate the battery capacity retention rate after the cycle.
各实施例和对比例的正极片及其制备的电池的性能如表1所示。Table 1 shows the performances of the positive electrode sheets of the examples and comparative examples and the batteries prepared therefrom.
表1Table 1
通过表1可以看出,采用本发明的电解液制得的电池具有更高的电池放电容量、电池能量密度和电池容量保持率。It can be seen from Table 1 that the battery prepared by using the electrolyte of the present invention has higher battery discharge capacity, battery energy density and battery capacity retention rate.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention are described in detail above, but the present invention is not limited to the specific details of the above-mentioned embodiments. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention. These simple modifications All belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the specific technical features described in the above-mentioned specific embodiments can be combined in any suitable manner unless they are inconsistent. In order to avoid unnecessary repetition, the present invention provides The combination method will not be specified otherwise.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, the various embodiments of the present invention can also be combined arbitrarily, as long as they do not violate the spirit of the present invention, they should also be regarded as the contents disclosed in the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711367928.3A CN109935906B (en) | 2017-12-18 | 2017-12-18 | Electrolyte and Lithium-Ion Batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711367928.3A CN109935906B (en) | 2017-12-18 | 2017-12-18 | Electrolyte and Lithium-Ion Batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109935906A CN109935906A (en) | 2019-06-25 |
CN109935906B true CN109935906B (en) | 2022-06-14 |
Family
ID=66982825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711367928.3A Active CN109935906B (en) | 2017-12-18 | 2017-12-18 | Electrolyte and Lithium-Ion Batteries |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109935906B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114765277A (en) * | 2021-01-11 | 2022-07-19 | 石桥 | Lithium battery and preparation method thereof |
CN114335583A (en) * | 2021-12-31 | 2022-04-12 | 四川大学 | Lithium primary battery and its electrolyte |
CN114583296B (en) * | 2022-03-01 | 2023-05-12 | 松山湖材料实验室 | Lithium ion battery and positive electrode lithium supplementing method thereof |
CN115528247B (en) * | 2022-09-28 | 2025-04-01 | 湖北亿纬动力有限公司 | A thick positive electrode and its application |
JP2025518058A (en) * | 2022-10-21 | 2025-06-12 | 香港時代新能源科技有限公司 | Secondary battery, its manufacturing method and power consumption device |
CN117219868B (en) * | 2023-11-09 | 2024-04-09 | 宁德时代新能源科技股份有限公司 | Electrolyte, sodium secondary battery and electricity utilization device |
CN119361975A (en) * | 2024-12-24 | 2025-01-24 | 宁德新能源科技有限公司 | Electrochemical device and electronic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103682297A (en) * | 2013-11-22 | 2014-03-26 | 深圳市迪凯特电池科技有限公司 | High-voltage lithium ion secondary battery |
CN103811812A (en) * | 2012-11-06 | 2014-05-21 | 万向电动汽车有限公司 | Lithium ion power battery overcharge protection electrolyte and lithium ion power battery prepared from same |
CN104779416A (en) * | 2015-03-24 | 2015-07-15 | 中航锂电(洛阳)有限公司 | Lithium ion battery electrolyte solution and lithium ion battery |
CN104810551A (en) * | 2014-07-09 | 2015-07-29 | 万向A一二三系统有限公司 | Lithium-ion power battery electrolyte for high/low temperature environment |
CN106159345A (en) * | 2016-09-28 | 2016-11-23 | 广西师范大学 | A kind of high-voltage lithium nickel manganate/graphite lithium ion battery and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9865900B2 (en) * | 2012-02-07 | 2018-01-09 | Battelle Memorial Institute | Solid electrolyte interphase film-suppression additives |
WO2015083863A1 (en) * | 2013-12-06 | 2015-06-11 | 에스케이이노베이션 주식회사 | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
US11005127B2 (en) * | 2015-05-05 | 2021-05-11 | Ut-Battelle, Llc | Stable fluorinated alkylated lithium malonatoborate salts for lithium-ion battery applications |
CN106410144A (en) * | 2016-11-02 | 2017-02-15 | 天津市捷威动力工业有限公司 | Lithium ion battery capable of improving low-temperature charging performance |
CN107069090A (en) * | 2017-01-23 | 2017-08-18 | 合肥国轩高科动力能源有限公司 | Ternary cathode material lithium ion battery electrolyte |
-
2017
- 2017-12-18 CN CN201711367928.3A patent/CN109935906B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103811812A (en) * | 2012-11-06 | 2014-05-21 | 万向电动汽车有限公司 | Lithium ion power battery overcharge protection electrolyte and lithium ion power battery prepared from same |
CN103682297A (en) * | 2013-11-22 | 2014-03-26 | 深圳市迪凯特电池科技有限公司 | High-voltage lithium ion secondary battery |
CN104810551A (en) * | 2014-07-09 | 2015-07-29 | 万向A一二三系统有限公司 | Lithium-ion power battery electrolyte for high/low temperature environment |
CN104779416A (en) * | 2015-03-24 | 2015-07-15 | 中航锂电(洛阳)有限公司 | Lithium ion battery electrolyte solution and lithium ion battery |
CN106159345A (en) * | 2016-09-28 | 2016-11-23 | 广西师范大学 | A kind of high-voltage lithium nickel manganate/graphite lithium ion battery and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109935906A (en) | 2019-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109935906B (en) | Electrolyte and Lithium-Ion Batteries | |
CN105140477B (en) | Si-C composite material and preparation method thereof | |
CN105551815B (en) | A kind of lithium-ion capacitor and preparation method thereof | |
CN103078140B (en) | Lithium ion secondary battery and electrolyte thereof | |
WO2014134967A1 (en) | Positive electrode film of lithium ion battery and preparation and application therefor | |
CN103730688B (en) | Lithium ion battery and electrolyte thereof | |
CN107394113A (en) | Surface coating for improving safety performance of power lithium ion battery, surface coating application and power lithium ion battery | |
JP2014002834A (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method therefor | |
CN109841425B (en) | A kind of capacitor battery and preparation method thereof | |
CN109935795A (en) | Positive electrode material composition, positive electrode slurry, positive electrode and lithium ion battery | |
JP6191602B2 (en) | Lithium ion secondary battery | |
JP5887168B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, lithium ion secondary battery module, and production method thereof | |
WO2024230065A1 (en) | Electrolyte solution and lithium-ion battery | |
CN109935887B (en) | Electrolyte and Lithium-Ion Batteries | |
WO2017216822A1 (en) | Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte | |
CN109935794B (en) | Lithium Ion Battery | |
CN113471512A (en) | Low-temperature lithium battery | |
WO2012147647A1 (en) | Lithium ion secondary cell | |
WO2014162529A1 (en) | Negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method for manufacturing said negative electrode and lithium-ion secondary battery | |
CN113067033A (en) | Electrochemical device and electronic device | |
JPWO2017056984A1 (en) | Method for producing negative electrode for lithium ion secondary battery | |
CN109935905B (en) | Electrolyte and lithium ion battery | |
JP7265481B2 (en) | Additive for non-aqueous electrolyte, non-aqueous electrolyte, and storage device | |
JP2013175410A (en) | Lithium secondary battery | |
CN118553850A (en) | Negative electrode sheet and battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 341000 Ganzhou Economic and Technological Development Zone, Jiangxi Province Applicant after: Funeng Science and Technology (Ganzhou) Co.,Ltd. Address before: 341000 Ganzhou Economic and Technological Development Zone, Jiangxi Province Applicant before: Farasis Energy (Ganzhou) Co.,Ltd. |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |