CN114765277A - Lithium battery and preparation method thereof - Google Patents
Lithium battery and preparation method thereof Download PDFInfo
- Publication number
- CN114765277A CN114765277A CN202110031421.0A CN202110031421A CN114765277A CN 114765277 A CN114765277 A CN 114765277A CN 202110031421 A CN202110031421 A CN 202110031421A CN 114765277 A CN114765277 A CN 114765277A
- Authority
- CN
- China
- Prior art keywords
- lithium
- electrolyte
- polymer
- battery
- lithium salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 80
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 238000002360 preparation method Methods 0.000 title abstract description 16
- 229920000642 polymer Polymers 0.000 claims abstract description 132
- 239000003792 electrolyte Substances 0.000 claims abstract description 118
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 117
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 105
- 239000002841 Lewis acid Substances 0.000 claims abstract description 61
- 150000007517 lewis acids Chemical class 0.000 claims abstract description 61
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 40
- 150000001450 anions Chemical class 0.000 claims abstract description 31
- 150000001768 cations Chemical class 0.000 claims abstract description 9
- 150000007942 carboxylates Chemical class 0.000 claims abstract description 8
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 6
- 239000010452 phosphate Substances 0.000 claims abstract description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims abstract description 5
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 3
- 239000003960 organic solvent Substances 0.000 claims description 35
- -1 trifluoropenta-phenyl phosphine Chemical compound 0.000 claims description 24
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 19
- 239000007773 negative electrode material Substances 0.000 claims description 12
- 239000007774 positive electrode material Substances 0.000 claims description 12
- 239000000654 additive Substances 0.000 claims description 11
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052731 fluorine Inorganic materials 0.000 claims description 10
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 8
- 239000011737 fluorine Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 6
- 229910015900 BF3 Inorganic materials 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 150000005678 chain carbonates Chemical class 0.000 claims description 4
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 4
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 claims description 4
- 239000003446 ligand Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 claims description 3
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 3
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 claims description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 claims description 2
- OGJQVRIEKWJQLI-UHFFFAOYSA-M C(C(=O)O)(=O)[O-].P(=O)(O)(O)F.P(=O)(O)(O)F.P(=O)(O)(O)F.P(=O)(O)(O)F.[Li+] Chemical compound C(C(=O)O)(=O)[O-].P(=O)(O)(O)F.P(=O)(O)(O)F.P(=O)(O)(O)F.P(=O)(O)(O)F.[Li+] OGJQVRIEKWJQLI-UHFFFAOYSA-M 0.000 claims description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 2
- VEWLDLAARDMXSB-UHFFFAOYSA-N ethenyl sulfate;hydron Chemical compound OS(=O)(=O)OC=C VEWLDLAARDMXSB-UHFFFAOYSA-N 0.000 claims description 2
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 claims description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- OBCUTHMOOONNBS-UHFFFAOYSA-N phosphorus pentafluoride Chemical compound FP(F)(F)(F)F OBCUTHMOOONNBS-UHFFFAOYSA-N 0.000 claims description 2
- 229940090181 propyl acetate Drugs 0.000 claims description 2
- MDCWDBMBZLORER-UHFFFAOYSA-N triphenyl borate Chemical compound C=1C=CC=CC=1OB(OC=1C=CC=CC=1)OC1=CC=CC=C1 MDCWDBMBZLORER-UHFFFAOYSA-N 0.000 claims description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims 2
- 150000001733 carboxylic acid esters Chemical class 0.000 claims 2
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- WDXYVJKNSMILOQ-UHFFFAOYSA-N 1,3,2-dioxathiolane 2-oxide Chemical compound O=S1OCCO1 WDXYVJKNSMILOQ-UHFFFAOYSA-N 0.000 claims 1
- QVXQYMZVJNYDNG-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)methylsulfonyl-trifluoromethane Chemical compound [Li+].FC(F)(F)S(=O)(=O)[C-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F QVXQYMZVJNYDNG-UHFFFAOYSA-N 0.000 claims 1
- 239000007784 solid electrolyte Substances 0.000 abstract description 6
- 239000011244 liquid electrolyte Substances 0.000 abstract description 4
- 239000011245 gel electrolyte Substances 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 15
- 238000000576 coating method Methods 0.000 description 13
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 229910013870 LiPF 6 Inorganic materials 0.000 description 8
- 239000006258 conductive agent Substances 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 7
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 7
- 150000002430 hydrocarbons Chemical group 0.000 description 7
- 230000005012 migration Effects 0.000 description 7
- 238000013508 migration Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910003480 inorganic solid Inorganic materials 0.000 description 4
- 230000037427 ion transport Effects 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005524 ceramic coating Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 238000001467 acupuncture Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- XSAOIFHNXYIRGG-UHFFFAOYSA-M lithium;prop-2-enoate Chemical compound [Li+].[O-]C(=O)C=C XSAOIFHNXYIRGG-UHFFFAOYSA-M 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- QTZBTBLHYPSFMG-UHFFFAOYSA-N 5-chloro-3-methylpyridin-2-amine Chemical compound CC1=CC(Cl)=CN=C1N QTZBTBLHYPSFMG-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 1
- SXDASMFNTHIRRS-UHFFFAOYSA-M P(=O)([O-])(F)F.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] Chemical compound P(=O)([O-])(F)F.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] SXDASMFNTHIRRS-UHFFFAOYSA-M 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 1
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 1
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- RBBXSUBZFUWCAV-UHFFFAOYSA-N ethenyl hydrogen sulfite Chemical compound OS(=O)OC=C RBBXSUBZFUWCAV-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical compound [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- AHKHZLVXUVZTGF-UHFFFAOYSA-M lithium dihydrogen phosphate oxalic acid Chemical compound P(=O)([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] AHKHZLVXUVZTGF-UHFFFAOYSA-M 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- GRPIQKZLNSCFTB-UHFFFAOYSA-N n-[bis(dimethylamino)-fluoroimino-$l^{5}-phosphanyl]-n-methylmethanamine Chemical compound CN(C)P(=NF)(N(C)C)N(C)C GRPIQKZLNSCFTB-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011076 safety test Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种锂电池,尤其是一种固液混合电解质锂电池。The invention relates to a lithium battery, in particular to a solid-liquid mixed electrolyte lithium battery.
背景技术Background technique
锂离子电池具有能量密度高、循环寿命长、储能效率高等优点,已经在各种便携式电子产品中得到广泛应用,并已逐渐应用到电动汽车、储能等领域中。然而,商业化的锂离子电池中使用的有机电解液中含有大量的低沸点低闪点的有机溶剂(约占电解液重量的50%以上),其在电池热失控的情况下极易发生燃烧、爆炸。在电解液中加入阻燃剂(如氟代磷酸酯、氟代磷腈)虽然可以在一定程度上抑制上述低沸点低闪点有机溶剂的燃烧,但是会增大电池的内阻,降低电池的功率特性和低温特性。近年出现的高浓度电解液可以在一定程度上降低有机溶剂的用量,同时高浓度电解液中的溶剂大部分与锂离子络合能够显著降低有机溶剂的蒸汽压,对于锂离子电池安全性的提高很有帮助。但是这种高浓度电解液的粘度很高,对电极和隔膜的浸润性差,很难进入电极和隔膜的微小孔隙中,即使加入表面活性剂也达不到充分浸润的目的。Lithium-ion batteries have the advantages of high energy density, long cycle life, and high energy storage efficiency. They have been widely used in various portable electronic products, and have been gradually applied to electric vehicles, energy storage and other fields. However, the organic electrolytes used in commercial lithium-ion batteries contain a large amount of low-boiling and low-flash-point organic solvents (about 50% of the electrolyte weight), which are prone to combustion under the condition of thermal runaway of the battery. ,explode. Adding flame retardants (such as fluorophosphate and fluorophosphazene) to the electrolyte can inhibit the combustion of the above-mentioned low-boiling and low-flash-point organic solvents to a certain extent, but it will increase the internal resistance of the battery and reduce the battery's performance. Power characteristics and low temperature characteristics. The high-concentration electrolytes that have appeared in recent years can reduce the amount of organic solvents to a certain extent. At the same time, most of the solvents in the high-concentration electrolytes are complexed with lithium ions, which can significantly reduce the vapor pressure of organic solvents and improve the safety of lithium-ion batteries. Very helpful. However, this high-concentration electrolyte has high viscosity, poor wettability to electrodes and separators, and is difficult to enter into the tiny pores of electrodes and separators.
另一方面,用聚合物电解质来取代液体电解质用于锂电池的研究由来已久,最典型的聚合物电解质是以聚氧化乙烯(PEO)为代表的一类聚醚类聚合物与小分子锂盐复合所形成的聚合物固态电解质,但是它的问题是电导率很低,虽然经过一系列改性,其室温电导率最高也只能达到10-4S/cm量级,仍然比液态电解质低一个数量级以上。将锂盐中的阴离子固定连接到聚合物骨架上,限制阴离子的迁移,可以得到所谓的单离子导体(聚合物锂盐),它可以将锂离子迁移数提高到接近1的程度,能够有效防止充放电过程中由于阴离子的迁移所造成的电解液的浓差极化现象,有利于提高电池的倍率特性。通常这类聚合物锂盐中需要加入一定量的有机溶剂与锂离子络合,从而解离出一定量的自由锂离子,但是要解离出足够多的自由锂离子,这类聚合物锂盐中的阴离子通常必须是含有强吸电子基团的大型阴离子,如下表所示的含有氟代烷基磺酰基的阴离子或者以硼原子为中心的复杂结构阴离子(其中R1、R2是烃基,Rf是氟代烃基)。On the other hand, the use of polymer electrolytes to replace liquid electrolytes for lithium batteries has a long history. The most typical polymer electrolytes are a class of polyether polymers represented by polyethylene oxide (PEO) and small molecular lithium The polymer solid electrolyte formed by salt compounding has the problem of low conductivity. Although it has undergone a series of modifications, its room temperature conductivity can only reach the order of 10 -4 S/cm, which is still lower than that of liquid electrolytes. more than an order of magnitude. The anion in the lithium salt is fixedly connected to the polymer backbone to limit the migration of the anion, and a so-called single-ion conductor (polymer lithium salt) can be obtained, which can increase the lithium ion migration number to a level close to 1, which can effectively prevent The phenomenon of concentration polarization of the electrolyte caused by the migration of anions during the charging and discharging process is beneficial to improve the rate characteristics of the battery. Usually this kind of polymer lithium salt needs to add a certain amount of organic solvent to complex with lithium ions, so as to dissociate a certain amount of free lithium ions, but to dissociate enough free lithium ions, this kind of polymer lithium salt Generally, the anion must be a large anion containing a strong electron withdrawing group, such as an anion containing a fluoroalkylsulfonyl group as shown in the table below, or an anion with a complex structure centered on a boron atom (wherein R 1 , R 2 are hydrocarbon groups, R f is fluorohydrocarbyl).
这类聚合物锂盐由于结构复杂,合成困难,导致成本高,难以实现量产应用。尤其是含有氟代烃基的聚合物锂盐虽然性能优异,但是极高的成本严重阻碍了其量产应用。Due to the complex structure and difficult synthesis of such polymer lithium salts, the cost is high and it is difficult to achieve mass production applications. In particular, although polymer lithium salts containing fluorohydrocarbon groups have excellent performance, their high cost seriously hinders their mass production applications.
为了在不降低锂电池的充放电性能的基础上大幅度提高锂离子电池的安全性,本发明提出了一种新的锂电池及其制备方法,保证了锂电池具有优良的充放电性能和安全性能。In order to greatly improve the safety of the lithium ion battery without reducing the charge and discharge performance of the lithium battery, the present invention proposes a new lithium battery and a preparation method thereof, which ensure that the lithium battery has excellent charge and discharge performance and safety. performance.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供一种新的锂电池,大幅度提高锂电池的安全性,同时不降低锂电池的充放电性能,并且具有成本低的特点。The main purpose of the present invention is to provide a new lithium battery, which greatly improves the safety of the lithium battery, does not reduce the charge and discharge performance of the lithium battery, and has the characteristics of low cost.
本发明解决上述技术问题所采用的技术方案如下:The technical scheme adopted by the present invention to solve the above-mentioned technical problems is as follows:
提供一种锂电池,包括电池壳体以及位于所述电池壳体内的正极板、负极板、隔离体以及电解质;所述电解质包含聚合物锂盐和电解液;所述正极板、负极板和隔离体中至少有一个同时包含路易斯酸和所述聚合物锂盐;所述聚合物锂盐包括聚合物链段、与聚合物链段相连的阴离子、阳离子;所述阴离子含有羧酸根、磺酸根、磷酸根、硫酸根中的一种或几种;所述阳离子为锂离子;所述路易斯酸可溶于所述电解液中,且所述电解液中,所述路易斯酸的质量浓度为0.5%以下。A lithium battery is provided, comprising a battery case, a positive electrode plate, a negative electrode plate, a separator and an electrolyte in the battery case; the electrolyte includes a polymer lithium salt and an electrolyte; the positive electrode plate, the negative electrode plate and the separator At least one of the bodies contains both a Lewis acid and the polymer lithium salt; the polymer lithium salt includes a polymer segment, an anion and a cation connected to the polymer segment; the anion contains carboxylate, sulfonate, One or more of phosphate and sulfate; the cation is lithium ion; the Lewis acid is soluble in the electrolyte, and the mass concentration of the Lewis acid in the electrolyte is 0.5% the following.
同时,本发明还提供了上述锂电池的制备方法,包括如下步骤:Meanwhile, the present invention also provides a method for preparing the above-mentioned lithium battery, comprising the following steps:
1)制备正极板、负极板、隔离体,并且所述正极板、所述负极板、所述隔离体中至少有一个含有所述聚合物锂盐;1) preparing a positive electrode plate, a negative electrode plate, and a separator, and at least one of the positive electrode plate, the negative electrode plate, and the separator contains the polymer lithium salt;
2)将所述正极板、所述负极板、所述隔离体组装成干电芯;2) assembling the positive plate, the negative plate and the separator into a dry cell;
3)将所述路易斯酸与电解液混合后注入干电芯中。3) The Lewis acid is mixed with the electrolyte and injected into the dry cell.
本发明提供的锂电池中所采用的聚合物锂盐具有结构简单、成本低廉的特点,上述聚合物锂盐在有机溶剂中通常只能解离出很少的自由锂离子。因此,本发明采用了一种路易斯酸与聚合物锂盐中的阴离子结合,分散阴离子上的负电荷,显著促进锂离子的解离。这样,电解质中的自由锂离子浓度可以大幅度提高,电解液中的有机溶剂的蒸汽压也可以大幅度降低,电池的安全性大幅度提高。与此同时,电解质中自由锂离子浓度的提高对于锂离子的传输是有利的,且聚合物锂盐上的阴离子难以在电场作用下迁移,从而大幅度提高了锂离子迁移数,保证了锂电池具有优良的充放电性能。The polymer lithium salt used in the lithium battery provided by the present invention has the characteristics of simple structure and low cost, and the polymer lithium salt can usually only dissociate a few free lithium ions in an organic solvent. Therefore, the present invention adopts a Lewis acid to combine with the anion in the lithium polymer salt to disperse the negative charge on the anion and significantly promote the dissociation of the lithium ion. In this way, the concentration of free lithium ions in the electrolyte can be greatly increased, the vapor pressure of the organic solvent in the electrolyte can also be greatly reduced, and the safety of the battery is greatly improved. At the same time, the increase of the free lithium ion concentration in the electrolyte is beneficial to the transport of lithium ions, and the anions on the polymer lithium salt are difficult to migrate under the action of the electric field, thus greatly improving the lithium ion migration number and ensuring the lithium battery. Has excellent charge and discharge performance.
但是,由于路易斯酸极易在电池制作过程中发生分解,发明人创造性的将路易斯酸加到电解液中,随电解液一起注入干电芯,使路易斯酸在电芯内与聚合物锂盐结合,从而有效避免路易斯酸的分解,保证了电池性能。However, since the Lewis acid is easily decomposed during the battery production process, the inventor creatively added the Lewis acid to the electrolyte and injected it into the dry cell together with the electrolyte, so that the Lewis acid was combined with the polymer lithium salt in the cell. , so as to effectively avoid the decomposition of Lewis acid and ensure the performance of the battery.
具体实施方式Detailed ways
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects solved by the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
本发明提供的锂电池包括电池壳体以及位于所述电池壳体内的正极板、负极板、隔离体以及电解质;所述电解质包含聚合物锂盐和电解液;所述正极板、负极板和隔离体中至少有一个同时包含路易斯酸和所述聚合物锂盐;所述聚合物锂盐包括聚合物链段、与聚合物链段相连的阴离子、阳离子;所述阴离子含有羧酸根、磺酸根、磷酸根、硫酸根中的一种或几种;所述阳离子为锂离子;所述路易斯酸可溶于所述电解液中,且所述电解液中,所述路易斯酸的质量浓度为0.5%以下。The lithium battery provided by the present invention includes a battery case and a positive electrode plate, a negative electrode plate, a separator and an electrolyte located in the battery case; the electrolyte includes a polymer lithium salt and an electrolyte; the positive electrode plate, the negative electrode plate and the separator At least one of the bodies contains both a Lewis acid and the polymer lithium salt; the polymer lithium salt includes a polymer segment, an anion and a cation connected to the polymer segment; the anion contains carboxylate, sulfonate, One or more of phosphate and sulfate; the cation is lithium ion; the Lewis acid is soluble in the electrolyte, and the mass concentration of the Lewis acid in the electrolyte is 0.5% the following.
电池壳体以及位于电池壳体内的电芯是锂电池的常规构造。电芯通常包括正极板、负极板、隔离体。The battery housing and the cells located within the battery housing are conventional configurations of lithium batteries. The cell usually includes a positive plate, a negative plate, and a separator.
正极板通常包括正极集流体以及位于正极集流体表面的正极材料,正极材料中包含正极活性物质。本发明中,对于正极活性物质的种类没有限制,可以使用现有的各种正极活性物质,优选情况下,所述正极活性物质包含钴酸锂、镍钴锰酸锂、镍钴铝酸锂、尖晶石锰酸锂、磷酸铁锂中的一种或多种。通常,为提高导电性,正极材料中还包括正极导电剂,同样的,本发明对正极导电剂也没有特殊限制,优选情况下,所述正极导电剂包括炭黑、碳纳米管、石墨烯中的一种或多种。The positive electrode plate usually includes a positive electrode current collector and a positive electrode material located on the surface of the positive electrode current collector, and the positive electrode material contains a positive electrode active material. In the present invention, there is no limitation on the types of positive electrode active materials, and various existing positive electrode active materials can be used. Preferably, the positive electrode active materials include lithium cobalt oxide, lithium nickel cobalt manganate, lithium nickel cobalt aluminate, One or more of spinel lithium manganate and lithium iron phosphate. Usually, in order to improve the conductivity, the positive electrode material also includes a positive electrode conductive agent. Similarly, the present invention does not have any special restrictions on the positive electrode conductive agent. Preferably, the positive electrode conductive agent includes carbon black, carbon nanotubes, and graphene. one or more of.
负极板通常包括负极集流体和位于负极集流体表面的负极材料,所述负极材料包含负极活性物质。本发明中,对于负极活性物质的种类没有限制,可以使用现有的各种负极活性物质,优选情况下,所述负极活性物质包含石墨、硬碳、软碳、硅碳复合材料、硅氧碳复合材料、金属锂、金属锂的合金中的一种或多种。通常,为提高导电性,负极材料中还包括负极导电剂,同样的,本发明对负极导电剂也没有特殊限制,优选情况下,所述负极导电剂包括炭黑、碳纳米管、石墨烯中的一种或多种。The negative plate generally includes a negative electrode current collector and a negative electrode material located on the surface of the negative electrode current collector, and the negative electrode material contains a negative electrode active material. In the present invention, there is no limitation on the types of negative electrode active materials, and various existing negative electrode active materials can be used. Preferably, the negative electrode active materials include graphite, hard carbon, soft carbon, silicon carbon composite material, silicon oxycarbon One or more of composite materials, metallic lithium, and metallic lithium alloys. Usually, in order to improve the conductivity, the negative electrode material also includes a negative electrode conductive agent. Similarly, the present invention does not have any special restrictions on the negative electrode conductive agent. Preferably, the negative electrode conductive agent includes carbon black, carbon nanotubes, and graphene. one or more of.
本发明中,所述隔离体可以采用现有的常规隔离体,即聚烯烃类多孔膜,优选情况下,所述隔离体还包含陶瓷和/或无机固态电解质涂层。除此之外,所述隔离体也可以包含无纺布、纤维涂层、陶瓷涂层、无机固态电解质涂层中的一种或多种。举例来说,所述隔离体可以是在无纺布上涂布纤维涂层、陶瓷涂层或者无机固态电解质涂层形成的,甚至可以是直接在正极或者负极表面形成的纤维涂层、陶瓷涂层或者无机固态电解质涂层。In the present invention, the separator can be an existing conventional separator, that is, a polyolefin-based porous membrane. Preferably, the separator further comprises a ceramic and/or inorganic solid electrolyte coating. Besides, the separator may also include one or more of non-woven fabrics, fiber coatings, ceramic coatings, and inorganic solid electrolyte coatings. For example, the separator can be formed by coating a non-woven fabric with a fiber coating, a ceramic coating or an inorganic solid electrolyte coating, or even a fiber coating, ceramic coating directly formed on the surface of the positive electrode or negative electrode layer or inorganic solid electrolyte coating.
根据本发明,上述聚合物锂盐在电池中的分布形式没有特殊限制,优选上述聚合物锂盐分散于所述正极、隔离体、负极中的至少一个之中。可以理解的,当正极中分散有聚合物锂盐时,聚合物锂盐分散于正极材料中,具体可以在制备正极浆料时加入上述聚合物锂盐,然后经涂布、烘烤和辊压制备成为正极。类似的,当负极中分散有上述聚合物锂盐时,聚合物锂盐分散于负极材料中,可在制备负极浆料时加入。当隔离体中分散有上述聚合物锂盐时,聚合物锂盐分散于隔离体中,可在制备隔离体时加入。According to the present invention, the distribution form of the above-mentioned polymer lithium salt in the battery is not particularly limited. Preferably, the above-mentioned polymer lithium salt is dispersed in at least one of the positive electrode, the separator and the negative electrode. It can be understood that when the polymer lithium salt is dispersed in the positive electrode, the polymer lithium salt is dispersed in the positive electrode material. Specifically, the above-mentioned polymer lithium salt can be added when the positive electrode slurry is prepared, and then coated, baked and rolled. Ready to be positive. Similarly, when the above-mentioned polymer lithium salt is dispersed in the negative electrode, the polymer lithium salt is dispersed in the negative electrode material and can be added when preparing the negative electrode slurry. When the above-mentioned polymer lithium salt is dispersed in the separator, the polymer lithium salt is dispersed in the separator and can be added during the preparation of the separator.
优选情况下,所述正极、隔离体、负极中的两个或三个中分散有聚合物锂盐。最优选为所述正极、隔离体、负极中均分散有聚合物锂盐。Preferably, polymer lithium salts are dispersed in two or three of the positive electrode, separator and negative electrode. Most preferably, polymer lithium salts are dispersed in the positive electrode, separator and negative electrode.
为了让聚合物锂盐发挥出显著效果,所述正极材料、负极材料、隔离体中的至少一个所含的聚合物锂盐的重量百分比为5%以上。In order for the polymer lithium salt to exert a significant effect, the weight percentage of the polymer lithium salt contained in at least one of the positive electrode material, the negative electrode material and the separator is 5% or more.
本发明中,上述聚合物锂盐具体包括聚合物链段、与聚合物链段相连的阴离子、阳离子;所述阴离子含有羧酸根、磺酸根、硫酸根、磷酸根中的一种或几种;所述阳离子为锂离子。In the present invention, the above-mentioned polymer lithium salt specifically includes a polymer segment, an anion and a cation connected to the polymer segment; the anion contains one or more of carboxylate, sulfonate, sulfate, and phosphate; The cations are lithium ions.
优选情况下,所述阴离子中含有氟代烃基,或者,所述阴离子与氟代烃基相连。Preferably, the anion contains a fluorohydrocarbon group, or the anion is linked to a fluorohydrocarbon group.
进一步优选情况下,所述聚合物锂盐包括如下结构式1-3中的一种或多种的结构:Further preferably, the lithium polymer salt includes one or more structures of the following structural formulas 1-3:
其中,R1为烃基或选择性含有氧或氟元素的取代烃基,且R1与聚合物链段相连;Wherein, R 1 is a hydrocarbon group or a substituted hydrocarbon group optionally containing oxygen or fluorine, and R 1 is connected to the polymer segment;
R2为氟原子、烃基或选择性含有氧或氟元素的取代烃基,R2与聚合物链段相连或不相连;R1、R2连接形成环状结构或者不连接形成环状结构。R 2 is a fluorine atom, a hydrocarbon group or a substituted hydrocarbon group optionally containing oxygen or fluorine elements, R 2 is connected to the polymer segment or not; R 1 and R 2 are connected to form a cyclic structure or not connected to form a cyclic structure.
可以理解的,上述结构式1-3示出的结构为与聚合物锂盐中与聚合物链段相连的部分(即通过R1与聚合物链段相连,同时R2独立的与聚合物链段相连或不相连),而并非聚合物锂盐的完整结构。It can be understood that the structure shown in the above structural formula 1-3 is the part connected to the polymer chain segment in the lithium polymer salt (that is, connected to the polymer chain segment through R 1 , while R 2 is independently connected to the polymer chain segment. connected or unconnected), rather than the complete structure of the polymer lithium salt.
对于聚合物锂盐,其中聚合物链段的重复单元可以为现有的各种,例如可以为含各种取代基的聚烯烃(如结构式4)、聚醚(如结构式5)、聚酯(如结构For polymer lithium salts, the repeating units of the polymer segment can be various existing ones, such as polyolefins (such as structural formula 4), polyethers (such as structural formula 5), polyesters (such as structural formula 4) containing various substituents as structure
式6、结构式7)、聚酰胺(如结构式8、结构式9)、聚氨酯(如结构式10)等。formula 6, structural formula 7), polyamide (such as structural formula 8, structural formula 9), polyurethane (such as structural formula 10) and the like.
其中R11,R12为烃基或选择性含有氧、氟、氮元素的取代烃基。wherein R 11 and R 12 are hydrocarbon groups or substituted hydrocarbon groups optionally containing oxygen, fluorine and nitrogen elements.
本发明中,具有上述结构的聚合物锂盐可通过现有的各种方式获得,例如商购或自行制备。In the present invention, the polymer lithium salt with the above structure can be obtained by various existing methods, such as commercial purchase or self-preparation.
本发明提供的锂电池中,所述正极板、负极板和隔离体中至少有一个同时包含路易斯酸和所述聚合物锂盐。In the lithium battery provided by the present invention, at least one of the positive electrode plate, the negative electrode plate and the separator contains both the Lewis acid and the polymer lithium salt.
上述路易斯酸须可溶于所述电解液。并且所述电解液中,所述路易斯酸的质量浓度为0.5%以下。优选为0.001%-0.5%。The above Lewis acid whiskers are soluble in the electrolyte. In addition, in the electrolyte solution, the mass concentration of the Lewis acid is 0.5% or less. It is preferably 0.001%-0.5%.
进一步的,所述路易斯酸与所述聚合物锂盐中阴离子的摩尔比为0.5-1.1。Further, the molar ratio of the Lewis acid to the anion in the lithium polymer salt is 0.5-1.1.
理论上,为了让路易斯酸和聚合物锂盐上的阴离子充分结合并发挥出最好的效果,路易斯酸的摩尔数应当与聚合物锂盐中阴离子的摩尔数相等。当路易斯酸的摩尔数低于聚合物锂盐上阴离子的摩尔数时,一部分聚合物锂盐上的阴离子将无法与路易斯酸结合,不利于聚合物锂盐中锂离子的充分解离,而当路易斯酸的摩尔数高于聚合物锂盐上阴离子的摩尔数时,将有一部分路易斯酸游离在电解液中,游离在电解液中的路易斯酸对电池性能的影响随路易斯酸种类的不同而不同。在本发明的锂电池中,路易斯酸与聚合物锂盐上阴离子的摩尔比在0.5-1.1之间,优选的在0.7-1.1之间,更有选的在0.9-1.1之间。Theoretically, in order to make the Lewis acid and the anion on the polymer lithium salt fully combine and play the best effect, the mole number of Lewis acid should be equal to the mole number of the anion in the polymer lithium salt. When the number of moles of Lewis acid is lower than the number of moles of anions on the lithium polymer salt, a part of the anions on the lithium polymer salt will not be able to combine with the Lewis acid, which is not conducive to the sufficient dissociation of lithium ions in the lithium polymer salt. When the number of moles of Lewis acid is higher than the number of moles of anions on the lithium polymer salt, a part of the Lewis acid will be free in the electrolyte, and the effect of the Lewis acid free in the electrolyte on the battery performance varies with the type of Lewis acid. . In the lithium battery of the present invention, the molar ratio of the Lewis acid to the anion on the lithium polymer salt is between 0.5-1.1, preferably between 0.7-1.1, and more preferably between 0.9-1.1.
为了防止电解液中游离的路易斯酸对电池性能可能造成的不利影响,在本发明的锂电池中,电解液中游离的路易斯酸含量控制在重量百分比0.5%以内。也就是说,注液后电解液中的绝大部分路易斯酸都与聚合物锂盐结合,使得电解液中游离的路易斯酸的重量百分比为0.5%以下。In order to prevent possible adverse effects of the free Lewis acid in the electrolyte on the battery performance, in the lithium battery of the present invention, the content of the free Lewis acid in the electrolyte is controlled within 0.5% by weight. That is to say, most of the Lewis acid in the electrolyte is combined with the polymer lithium salt after the liquid injection, so that the weight percentage of the free Lewis acid in the electrolyte is less than 0.5%.
所述注液后电解液中游离的路易斯酸含量可以按下述方法得到:将注液后的电池中的电解液取出后用气相色谱(GC)、液相色谱(LC)、核磁共振(NMR)等方法进行检测定量。The content of free Lewis acid in the electrolyte after the liquid injection can be obtained by the following method: the electrolyte in the battery after the liquid injection is taken out and then used for gas chromatography (GC), liquid chromatography (LC), nuclear magnetic resonance (NMR) ) and other methods for detection and quantification.
本发明中,所述路易斯酸包括中心原子以及与中心原子相结合的配体;所述中心原子为硼或磷,所述配体含氧或氟中的一种或多种。优选情况下,所述路易斯酸包括三氟化硼、五氟化磷、三苯基硼酸酯、三五氟苯基硼、三五氟苯基膦中的一种或多种。In the present invention, the Lewis acid includes a central atom and a ligand combined with the central atom; the central atom is boron or phosphorus, and the ligand contains one or more of oxygen or fluorine. Preferably, the Lewis acid includes one or more of boron trifluoride, phosphorus pentafluoride, triphenyl borate, tripentafluorophenyl boron, and tripentafluorophenyl phosphine.
如前所述,本发明提供的锂电池中,电解质除含有上述聚合物锂盐外还包括电解液。进一步的,所述电解液包含有机溶剂和小分子锂盐。优选情况下,以所述电解质的总重量为基准,所述聚合物锂盐的含量为10%以上,所述有机溶剂的含量为60%以下;所述电解质中锂离子的浓度不低于1.5mol/L。As mentioned above, in the lithium battery provided by the present invention, the electrolyte includes an electrolyte in addition to the above-mentioned polymer lithium salt. Further, the electrolyte contains an organic solvent and a small molecule lithium salt. Preferably, based on the total weight of the electrolyte, the content of the polymer lithium salt is more than 10%, and the content of the organic solvent is less than 60%; the concentration of lithium ions in the electrolyte is not less than 1.5% mol/L.
本发明提供的锂电池中含有上述特定含量的聚合物锂盐、有机溶剂和小分子锂盐,在此组合之中,聚合物锂盐一方面提供了一部分锂离子,提高了锂离子的浓度,有利于提高电解质的离子传输性能,另一方面聚合物锂盐中的阴离子的移动受到很大限制,难以在电场作用下定向迁移,能够显著提高电解质的锂离子迁移数,减少电解质在充放电过程中的浓差极化,对于电解质的离子传输性能有很好的有利影响。虽然和其它聚合物一样,聚合物锂盐的存在会提高电解质的粘度,对于锂离子的迁移有不利影响,但是上述有利影响足以抵消粘度升高造成的不利影响。此外,聚合物锂盐的存在为降低有机溶剂含量提供了基础,且聚合物锂盐与有机溶剂的相互作用能够显著降低有机溶剂的蒸汽压,这两方面的作用能够大幅度提高锂电池的安全性。因此,本发明所采用的聚合物锂盐、有机溶剂和小分子锂盐的组合可以使锂电池同时具有优异的充放电特性和安全性能。The lithium battery provided by the present invention contains the above-mentioned specific content of polymer lithium salt, organic solvent and small molecule lithium salt. In this combination, the polymer lithium salt provides a part of lithium ions on the one hand, which increases the concentration of lithium ions. It is beneficial to improve the ion transport performance of the electrolyte. On the other hand, the movement of anions in the polymer lithium salt is greatly restricted, and it is difficult to migrate directionally under the action of an electric field. It can significantly improve the lithium ion migration number of the electrolyte and reduce the charge and discharge process of the electrolyte. The concentration polarization in the electrolyte has a very favorable effect on the ion transport properties of the electrolyte. Although, like other polymers, the presence of polymer lithium salts increases the viscosity of the electrolyte and has a detrimental effect on the migration of lithium ions, the above-mentioned beneficial effects are sufficient to offset the detrimental effects of increased viscosity. In addition, the presence of polymer lithium salts provides a basis for reducing the content of organic solvents, and the interaction between polymer lithium salts and organic solvents can significantly reduce the vapor pressure of organic solvents, which can greatly improve the safety of lithium batteries. sex. Therefore, the combination of the polymer lithium salt, the organic solvent and the small molecule lithium salt used in the present invention can make the lithium battery have excellent charge-discharge characteristics and safety performance at the same time.
总体而言,本发明提供的锂电池中,以包含聚合物锂盐、有机溶剂和小分子锂盐的电解质的总重量为基准,所述聚合物锂盐的含量为10%以上,进一步优选为20%以上,更优选为30%以上。同时,上述电解质中,如前所述,聚合物锂盐的含量过高时,电解质的粘度过高,不利于锂离子的迁移,聚合物锂盐的含量为50%以下即可。Generally speaking, in the lithium battery provided by the present invention, based on the total weight of the electrolyte including the polymer lithium salt, the organic solvent and the small molecular lithium salt, the content of the polymer lithium salt is more than 10%, more preferably 20% or more, more preferably 30% or more. At the same time, in the above electrolyte, as mentioned above, when the content of polymer lithium salt is too high, the viscosity of the electrolyte is too high, which is not conducive to the migration of lithium ions, and the content of polymer lithium salt may be less than 50%.
电解质在锂电池中有多个存在位置,包括正负极和隔离体中以及正负极和隔离体之外的空隙中,不同位置的电解质的组成可以有所不同,但是其中聚合物锂盐和有机溶剂的总的重量百分比满足上述要求即可。Electrolytes exist in multiple locations in lithium batteries, including positive and negative electrodes and separators, and in voids outside positive and negative electrodes and separators. The composition of electrolytes at different locations can be different, but the polymer lithium salts and The total weight percentage of the organic solvent only needs to meet the above requirements.
根据本发明,锂电池的壳体内的电解质还包含有机溶剂。重要的是,所述电解质中,有机溶剂的重量百分比为60%以下,优选情况下,有机溶剂的重量百分比为50%以下,更优选为有机溶剂的重量百分比为40%以下。同时,基于实际使用情况,有机溶剂的重量百分比为20%以上。According to the present invention, the electrolyte in the casing of the lithium battery further contains an organic solvent. It is important that in the electrolyte, the weight percent of organic solvent is 60% or less, preferably, the weight percent of organic solvent is 50% or less, and more preferably, the weight percent of organic solvent is 40% or less. Meanwhile, based on the actual usage, the weight percent of the organic solvent is more than 20%.
本发明中,上述电解液中的有机溶剂可以为本领域所公知的各种,例如所述有机溶剂包含环状碳酸酯、环状羧酸酯、链状碳酸酯、链状羧酸酯、氟代环状碳酸酯、氟代环状羧酸酯、氟代链状碳酸酯、氟代链状羧酸酯中的一种或几种。In the present invention, the organic solvent in the above-mentioned electrolyte can be various known in the art, for example, the organic solvent includes cyclic carbonate, cyclic carboxylate, chain carbonate, chain carboxylate, fluorine One or more of substituted cyclic carbonate, fluorinated cyclic carboxylate, fluorinated chain carbonate and fluorinated chain carboxylate.
通常,为了降低粘度并保证足够高的电导率,普通锂离子电池的电解液中会使用大量的闪点低于30℃的有机溶剂,如碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯等链状碳酸酯以及乙酸乙酯、丙酸乙酯、乙酸丙酯、丙酸丙酯等链状羧酸酯,其重量百分比通常需要达到50%以上。本发明的电解质中可以包含上述闪点低于30℃的有机溶剂,所述电解质中,闪点低于30℃的有机溶剂含量为所述电解质总重量的40%以下,进一步优选为30%以下,更优选为20%以下。Usually, in order to reduce the viscosity and ensure a sufficiently high conductivity, a large amount of organic solvents with a flash point lower than 30 °C are used in the electrolyte of ordinary lithium-ion batteries, such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate The weight percentage of isochain carbonate and chain carboxylates such as ethyl acetate, ethyl propionate, propyl acetate, and propyl propionate usually needs to reach more than 50%. The electrolyte of the present invention may contain the above-mentioned organic solvent with a flash point lower than 30°C. In the electrolyte, the content of the organic solvent with a flash point lower than 30°C is 40% or less of the total weight of the electrolyte, more preferably 30% or less. , more preferably 20% or less.
根据本发明,锂电池的壳体内的电解质还包含小分子锂盐。上述小分子锂盐的具体种类为本领域所公知的各种适用于电解液的锂盐,优选情况下,所述小分子锂盐包含四氟硼酸锂、六氟磷酸锂、三氟甲基磺酸锂、双(三氟甲基磺酰基)亚胺基锂、三(三氟甲基磺酰基)甲基锂、双氟磺酰亚胺基锂、双草酸硼酸锂、二氟草酸硼酸锂中的一种或多种。According to the present invention, the electrolyte in the casing of the lithium battery further comprises a small molecular lithium salt. The specific types of the above-mentioned small-molecule lithium salts are various lithium salts known in the art that are suitable for electrolytes. Preferably, the small-molecule lithium salts include lithium tetrafluoroborate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, One of lithium bis(trifluoromethylsulfonyl)imide, lithium tris(trifluoromethylsulfonyl)methyl, lithium bis(trifluoromethylsulfonyl)imide, lithium bis(oxalate) borate, lithium difluorooxalate borate or more.
根据本发明,通过上述特定含量的聚合物锂盐和小分子锂盐的共同作用,可以提高电解质中的锂离子浓度,有利于提高离子传输性能,而且高浓度的锂离子可以减少电解质中未与锂离子络合的游离有机溶剂,有利于提高电池的安全性,并且对于提高电解质的电化学稳定性也有帮助。According to the present invention, through the joint action of the above-mentioned specific content of polymer lithium salt and small molecule lithium salt, the concentration of lithium ions in the electrolyte can be increased, which is beneficial to improve the ion transport performance, and the high concentration of lithium ions can reduce the amount of unreacted lithium ions in the electrolyte. The free organic solvent complexed by lithium ions is beneficial to improve the safety of the battery and also to improve the electrochemical stability of the electrolyte.
小分子锂盐的含量可以在一定范围内变化,只要和聚合物锂盐一起,使得电解质中的锂离子浓度超过1.5mol/L即可,这样既能够保证足够的电导率,又能显著降低电解质中未与锂离子络合的游离有机溶剂,从而显著提高电池的安全性。The content of small-molecule lithium salt can be changed within a certain range, as long as the lithium ion concentration in the electrolyte exceeds 1.5mol/L together with the polymer lithium salt, which can not only ensure sufficient electrical conductivity, but also significantly reduce the electrolyte. free organic solvent that is not complexed with lithium ions, thereby significantly improving the safety of the battery.
需要注意的是,本发明提供的锂电池中,电解质中锂离子的浓度不低于1.5mol/L。如前所述,上述电解质可能存在于锂电池中的多个位置,例如正负极和隔离体中以及正负极和隔离体之外的空隙中,并且不同位置的电解质的组成可能不同,本发明中,上述锂离子浓度为包含聚合物锂盐和小分子锂盐在内的所有锂离子相对于电解质总体积计算得到的平均浓度。It should be noted that, in the lithium battery provided by the present invention, the concentration of lithium ions in the electrolyte is not less than 1.5 mol/L. As mentioned earlier, the above electrolytes may exist in multiple locations in a lithium battery, such as in the positive and negative electrodes and the separator and in the voids outside the positive and negative electrodes and the separator, and the composition of the electrolyte at different locations may be different. In the present invention, the above-mentioned lithium ion concentration is the average concentration calculated by all lithium ions including polymer lithium salts and small molecular lithium salts relative to the total volume of the electrolyte.
如现有的,为了提高锂电池的循环性能、高温储存性能、低温性能等各方面的性能,通常在液态电解质中会添加各种添加剂,上述各种添加剂同样可以用于本发明提供的锂电池的电解质。举例来说,所述电解质中还包含添加剂,所述添加剂选自碳酸亚乙烯酯、氟代碳酸乙烯酯、1,3-丙烷磺酸内酯、亚硫酸乙烯酯、硫酸乙烯酯、二氟磷酸锂、草酸四氟磷酸锂、二草酸二氟磷酸锂、三草酸磷酸锂中的一种或多种。上述各种添加剂的含量也为本领域技术人员所熟知的,例如上述各种添加剂在电解质中的含量可以在0.01-10%的范围内根据实际性能需要进行调整。As existing, in order to improve the cycle performance, high temperature storage performance, low temperature performance and other properties of lithium batteries, various additives are usually added to the liquid electrolyte, and the above various additives can also be used in the lithium battery provided by the present invention. electrolyte. For example, the electrolyte further includes additives selected from vinylene carbonate, fluoroethylene carbonate, 1,3-propane sultone, vinyl sulfite, vinyl sulfate, difluorophosphoric acid One or more of lithium, lithium oxalate tetrafluorophosphate, lithium dioxalate difluorophosphate, and lithium trioxalate phosphate. The content of the above-mentioned various additives is also well known to those skilled in the art. For example, the content of the above-mentioned various additives in the electrolyte can be adjusted in the range of 0.01-10% according to actual performance requirements.
本发明还提供了上述锂电池的制备方法,包含如下步骤:The present invention also provides a method for preparing the above-mentioned lithium battery, comprising the following steps:
1)制备正极板、负极板、隔离体,并且所述正极板、所述负极板、所述隔离体中至少有一个含有所述聚合物锂盐;1) preparing a positive electrode plate, a negative electrode plate, and a separator, and at least one of the positive electrode plate, the negative electrode plate, and the separator contains the polymer lithium salt;
2)将所述正极板、所述负极板、所述隔离体组装成干电芯;2) assembling the positive plate, the negative plate and the separator into a dry cell;
3)将所述路易斯酸与电解液混合后注入干电芯中。3) The Lewis acid is mixed with the electrolyte and injected into the dry cell.
上述步骤中的具体方法和工艺为常规的,在此不再赘述。The specific methods and processes in the above steps are conventional and will not be repeated here.
上述方法中,聚合物锂盐可以在所述正极板、所述负极板、所述隔离体的制作过程中加入,路易斯酸则添加在电解液中注入。当电解液注入干电芯后,所述路易斯会随电解液渗透入正极板的正极材料/负极板的负极材料/隔离体中,并与聚合物锂盐结合。通过上述方法,本发明提供的锂电池,电解液中的路易斯酸的质量浓度为0.5%以下。如前文所述,若在制备锂电池前,先将路易斯酸与聚合物锂盐结合,在制备锂电池过程中会导致路易斯酸分解,从而无法实现本发明的目的。In the above method, the polymer lithium salt can be added during the manufacturing process of the positive electrode plate, the negative electrode plate and the separator, and the Lewis acid can be added and injected into the electrolyte. When the electrolyte is injected into the dry cell, the Lewis will penetrate into the positive electrode material of the positive electrode plate/the negative electrode material/separator of the negative electrode plate with the electrolyte, and combine with the polymer lithium salt. Through the above method, in the lithium battery provided by the present invention, the mass concentration of the Lewis acid in the electrolyte is 0.5% or less. As mentioned above, if the Lewis acid is combined with the lithium polymer salt before preparing the lithium battery, the Lewis acid will be decomposed during the preparation of the lithium battery, so that the object of the present invention cannot be achieved.
根据本发明,为了保证所述电解液能够顺利地渗透到所述正极、所述负极、所述隔离体的孔隙中,小分子锂盐在电解液中的浓度需要控制在0.8mol/L到1.5mol/L之间。所述电解液中的小分子锂盐浓度太低时,为了使得电解质中的锂离子浓度达到要求,就必须提高聚合物锂盐的含量,但过高含量的聚合物锂盐会使得电解质的粘度太高,不利于离子传输。所述电解液中的小分子锂盐浓度太高时,所述电解液的粘度太高,难以充分渗透到所述正极板、所述负极板、所述隔离体的孔隙中。According to the present invention, in order to ensure that the electrolyte can smoothly penetrate into the pores of the positive electrode, the negative electrode, and the separator, the concentration of the small-molecule lithium salt in the electrolyte needs to be controlled between 0.8 mol/L and 1.5 mol/L. between mol/L. When the concentration of small-molecule lithium salt in the electrolyte is too low, in order to make the lithium ion concentration in the electrolyte meet the requirements, the content of polymer lithium salt must be increased, but an excessively high content of polymer lithium salt will make the electrolyte viscosity. Too high is not conducive to ion transport. When the concentration of the small-molecule lithium salt in the electrolyte is too high, the viscosity of the electrolyte is too high, and it is difficult to fully penetrate into the pores of the positive electrode plate, the negative electrode plate, and the separator.
以下通过实施例对本发明进行进一步的说明。The present invention will be further illustrated by the following examples.
实施例1Example 1
本实施例用于说明本发明公开的锂电池。This embodiment is used to illustrate the lithium battery disclosed in the present invention.
(1)聚合物锂盐的制备(1) Preparation of polymer lithium salt
将丙烯酸(AA)溶解在甲醇中,加入等摩尔的氢氧化锂(LiOH),搅拌反应2hr后,升温至75℃,滴加偶氮二异丁腈(AIBN)的甲醇溶液,再搅拌反应4hr后,生成聚丙烯酸锂(PAALi)的沉淀,经过滤洗涤干燥后得到聚合物锂盐1(PAALi)。Acrylic acid (AA) was dissolved in methanol, an equimolar amount of lithium hydroxide (LiOH) was added, and after stirring for 2 hr, the temperature was raised to 75 °C, and the methanol solution of azobisisobutyronitrile (AIBN) was added dropwise, and the reaction was stirred for 4 hr. After that, the precipitate of polyacrylate lithium (PAALi) was formed, which was filtered, washed and dried to obtain polymer lithium salt 1 (PAALi).
(2)正极板的制备(2) Preparation of positive plate
将正极活性物质LiNi0.8Co0.1Mn0.1O2、炭黑导电剂(SuperLi)、PVDF粘结剂(5130)、聚合物锂盐1(PAALi)按重量比91.5:1.5:2:5混合后投入双行星搅拌机,加入N-甲基吡咯烷酮(NMP),充分搅拌均匀后经过滤网过滤获得浆料,浆料的固含量为65%。然后用挤压式涂布机将浆料涂布到厚度为12μm的铝箔的两面上,经烘烤、热辊压后得到正极板,正极板单面涂层的面密度为19.5mg/cm2,单面涂层厚度为57μm。The positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 , carbon black conductive agent (Super Li), PVDF binder ( 5130), polymer lithium salt 1 (PAALi) were mixed in a weight ratio of 91.5:1.5:2:5, put into a double planetary mixer, added N-methylpyrrolidone (NMP), fully stirred and filtered through a filter to obtain a slurry, The solids content of the slurry was 65%. Then, the slurry was coated on both sides of the aluminum foil with a thickness of 12 μm by an extrusion coater, and the positive plate was obtained after baking and hot rolling. The surface density of the single-sided coating of the positive plate was 19.5 mg/cm 2 , the single-sided coating thickness is 57 μm.
(3)负极板的制备(3) Preparation of negative plate
将负极活性物质人造石墨、炭黑导电剂(SuperLi)、聚合物锂盐1(PAALi)按重量比93.5:1.5:5混合后投入双行星搅拌机,加入去离子水(DIW),充分搅拌均匀后再加入占固形物总重1%的固含量为50%的丁苯橡胶乳液(SBR),继续搅拌均匀后经过滤网过滤获得浆料,浆料的固含量为45%。然后用挤压式涂布机将浆料涂布到厚度为6μm的铜箔的两面上,经烘烤、热辊压后得到负极板,负极板单面涂层的面密度为13.0mg/cm2,单面涂层厚度为79μm。The negative active material artificial graphite, carbon black conductive agent (Super Li) and polymer lithium salt 1 (PAALi) were mixed in a weight ratio of 93.5:1.5:5, put into a double planetary mixer, added deionized water (DIW), fully stirred and then added a solid content of 1% of the total solid weight It is a 50% styrene-butadiene rubber latex (SBR), which is continuously stirred evenly and filtered through a filter to obtain a slurry, and the solid content of the slurry is 45%. Then, the slurry was coated on both sides of the copper foil with a thickness of 6 μm by an extrusion coater, and the negative plate was obtained after baking and hot rolling. The surface density of the coating on one side of the negative plate was 13.0 mg/cm 2 , the thickness of the single-sided coating is 79 μm.
(4)隔离体的制备(4) Preparation of separator
将氧化铝粉末(D50为1.5μm)、聚合物锂盐1(PAALi)按重量比95:5混合后投入去离子水(DIW)中,在搅拌研磨机中搅拌研磨至氧化铝的粒度为2μm以下,然后转入搅拌罐中,再加入占固形物总重1.2%的固含量为50%的丁苯橡胶乳液(SBR),搅拌均匀后,经过滤网过滤获得浆料,浆料的固含量为10%。然后将浆料通过凹版印刷的方式涂覆在厚度为9μm的聚乙烯多孔薄膜(孔隙率45%)的一个表面上,重复此步骤向聚乙烯多孔膜的另一个表面上涂覆浆料。干燥后,得到单面无机涂层厚度为3μm的复合多孔性隔离体。该复合多孔性隔离体的总厚度为15μm。Alumina powder (D50 is 1.5μm) and polymer lithium salt 1 (PAALi) were mixed in a weight ratio of 95:5, put into deionized water (DIW), and stirred and ground in a stirring mill until the particle size of alumina was 2μm Next, transfer it into a stirring tank, add styrene-butadiene rubber latex (SBR) with a solid content of 50%, which accounts for 1.2% of the total solid weight, and stir evenly, and filter through a filter to obtain a slurry. 10%. Then, the slurry was coated on one surface of a polyethylene porous film with a thickness of 9 μm (porosity 45%) by gravure printing, and this step was repeated to coat the slurry on the other surface of the polyethylene porous film. After drying, a composite porous separator with a single-sided inorganic coating thickness of 3 μm was obtained. The total thickness of the composite porous separator was 15 μm.
(5)干电芯的制备(5) Preparation of dry cell
将上述正极板、上述负极板、上述隔离体切成一定形状,其中正极板上活性物质区域的尺寸为20cm×12cm,负极板上活性物质区域的尺寸为20.1cm×12.1cm,隔离体的尺寸为20.5cm×12.5cm,且正极板和负极板上分别留出集流体引出部;然后按照负极板、隔离体、正极板、隔离体、负极板、…的方式逐层堆叠起来,一共26片正极板和27片负极板,最外层为负极板;然后将正极板的集流体引出部用超声波焊机焊接到一起,并焊接上正极耳,将负极板的集流体引出部用超声波焊机焊接到一起,并焊接上负极耳,这样就得到了叠片体。Cut the above-mentioned positive electrode plate, the above-mentioned negative electrode plate, and the above-mentioned separator into a certain shape, wherein the size of the active material region on the positive electrode plate is 20cm×12cm, the size of the active material region on the negative electrode plate is 20.1cm×12.1cm, and the size of the separator It is 20.5cm×12.5cm, and the current collector lead-out parts are left on the positive plate and the negative plate respectively; then they are stacked layer by layer in the manner of negative plate, separator, positive plate, separator, negative plate, ..., a total of 26 pieces The positive plate and 27 negative plates, the outermost layer is the negative plate; then the current collectors of the positive plates are welded together with an ultrasonic welder, and the positive lugs are welded, and the current collectors of the negative plates are drawn out with an ultrasonic welder. Welded together, and welded the negative lug to get the lamination.
将上述叠片体放入由两片冲壳后的铝塑膜制成的封装袋中,并用热熔的方式将极耳上的热熔胶与封装袋熔接在一起,极耳引出封装袋外,在封装袋的一边留出气囊和注液口,这样得到了干电芯。干电芯中聚合物锂盐1的重量可以从正极板、负极板、隔离体的重量及其中的聚合物锂盐1的含量计算得到。Put the above-mentioned laminated body into a packaging bag made of two pieces of aluminum-plastic film after punching, and fuse the hot-melt glue on the tab with the packaging bag by hot-melting, and the tab is drawn out of the packaging bag. , leaving an airbag and a liquid injection port on one side of the packaging bag, thus obtaining a dry cell. The weight of the polymer lithium salt 1 in the dry cell can be calculated from the weight of the positive electrode plate, the negative electrode plate, the separator and the content of the polymer lithium salt 1 therein.
(6)电解液的制备(6) Preparation of electrolyte
所采用的路易斯酸为三氟化硼(BF3),为了将其加入电解液中,采用了三氟化硼与碳酸甲乙酯的络合物(BF3.EMC)。在露点低于-40℃的手套箱中将六氟磷酸锂(LiPF6)溶解到碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、三氟化硼/碳酸甲乙酯络合物(BF3.EMC)的混合物中,重量百分比为LiPF6:EC:EMC:BF3.EMC=13.8:22.6:5.3:58.3,再添加占整个电解液重量1.5%的碳酸亚乙烯酯(VC)、1.5%的1,3-丙烷磺酸内酯(1,3-PS)作为添加剂,得到了所需要的电解液。The Lewis acid used was boron trifluoride (BF 3 ), and in order to add it to the electrolyte, a complex of boron trifluoride and ethyl methyl carbonate (BF 3 .EMC) was used. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in ethylene carbonate (EC), ethyl methyl carbonate (EMC), boron trifluoride/ethyl methyl carbonate complex (BF 3 . In the mixture of EMC), the weight percentage is LiPF 6 :EC:EMC:BF 3 .EMC=13.8:22.6:5.3:58.3, and then add 1.5% of vinylene carbonate (VC), 1.5% of the weight of the whole electrolyte 1,3-propane sultone (1,3-PS) was used as an additive to obtain the desired electrolyte.
(7)电池的制备(7) Preparation of batteries
将干电芯置于60℃下真空干燥24小时以上,然后在露点低于-40℃的手套箱中将上述电解液从注液口注入干电芯中,静置24小时后,用真空热封机将气囊外的注液口封上,同时抽出电芯中的气体,这样就得到了未化成的电芯。称量未化成的电芯重量,减去干电芯的重量即得到了注入的电解液重量。Put the dry cell at 60°C under vacuum for more than 24 hours, and then pour the above electrolyte into the dry cell from the injection port in a glove box with a dew point lower than -40°C. The sealing machine seals the liquid injection port outside the airbag, and at the same time draws out the gas in the cell, so that the unformed cell is obtained. The weight of the unformed cell was weighed, and the weight of the injected electrolyte was obtained by subtracting the weight of the dry cell.
(8)电池电解液中游离的路易斯酸含量的检测(8) Detection of free Lewis acid content in battery electrolyte
剪开注液完成的电池,对电池施加压力使得电解液渗出,收集渗出的电解液样品,用气相色谱检测BF3并进行定量,得到游离的路易斯酸含量,结果见表1。Cut the battery after liquid injection, apply pressure to the battery to make the electrolyte seep out, collect a sample of the seepage electrolyte, detect and quantify BF 3 by gas chromatography, and obtain the free Lewis acid content. The results are shown in Table 1.
(9)电池的化成(9) Formation of batteries
将电芯用充放电装置进行化成,先以0.05C的电流恒流充电至3.6V,然后用真空热封机抽真空排气封口并剪掉气囊,然后以0.2C的电流恒流充电至4.2V,再恒压充电至电流下降到0.05C,之后以0.2C的电流恒流放电至3.0V,即得到了化成好的电芯。The battery is formed with a charging and discharging device, firstly charged to 3.6V with a constant current of 0.05C, then vacuumed and exhausted with a vacuum heat sealer and cut off the airbag, and then charged with a constant current of 0.2C to 4.2V V, and then charge at constant voltage until the current drops to 0.05C, and then discharge to 3.0V at a constant current of 0.2C, that is, a good battery is obtained.
(10)电池的测试(10) Battery test
室温下将化成好的电池以1C的电流恒流充电至4.2V,再恒压充电至电流下降到0.05C,之后以1C的电流恒流放电至3.0V,得到放电容量(Ah)以及能量密度(Wh/kg)。然后,室温下将电池以1C的电流恒流充电至4.2V,再恒压充电至电流下降到0.05C,之后以3C的电流恒流放电至3.0V,得到放电容量,并计算倍率放电性能3C/1C。最后,室温下将电池以1C的电流恒流充电至4.2V,再恒压充电至电流下降到0.05C,之后以1C的电流恒流放电至3.0V,如此循环1000周,得到放电容量保持率。The formed battery was charged to 4.2V at a constant current of 1C at room temperature, and then charged at a constant voltage until the current dropped to 0.05C, and then discharged to 3.0V at a constant current of 1C to obtain the discharge capacity (Ah) and energy density. (Wh/kg). Then, the battery was charged to 4.2V with a constant current of 1C at room temperature, and then charged with a constant voltage until the current dropped to 0.05C, and then discharged to 3.0V with a constant current of 3C to obtain the discharge capacity and calculate the rate discharge performance 3C /1C. Finally, the battery was charged to 4.2V with a constant current of 1C at room temperature, and then charged with a constant voltage until the current dropped to 0.05C, and then discharged to 3.0V with a constant current of 1C. This cycle was performed for 1000 cycles to obtain the discharge capacity retention rate. .
参照GB/T 31485-2015进行电池针刺安全性的测试,用直径8mm的钢针以25mm/s的速度沿垂直极板的方向贯穿电池并停留在其中,观察1hr。According to GB/T 31485-2015, the battery needling safety test was carried out. A steel needle with a diameter of 8 mm was used to penetrate the battery in the direction perpendicular to the polar plate at a speed of 25 mm/s and stayed in it for 1 hr.
电池中与聚合物锂盐、电解液相关的各项参数见表1,电池的测试结果见表2。The parameters related to the polymer lithium salt and electrolyte in the battery are shown in Table 1, and the test results of the battery are shown in Table 2.
实施例2Example 2
本实施例用于说明本发明公开的锂电池。This embodiment is used to illustrate the lithium battery disclosed in the present invention.
除了所采用的聚合物锂盐为聚合物锂盐2,且电解液中除添加剂之外的成份按重量百分比为LiPF6:EC:EMC:BF3.EMC=15.2:26.6:31.5:26.7进行调整之外,其它与实施例1相同。电池中与聚合物锂盐、电解液相关的各项参数见表1,电池测试结果见表2。Except that the polymer lithium salt used is polymer lithium salt 2, and the components other than the additives in the electrolyte are adjusted by weight percentage as LiPF 6 :EC:EMC:BF 3 .EMC=15.2:26.6:31.5:26.7 Others are the same as in Example 1. The parameters related to polymer lithium salt and electrolyte in the battery are shown in Table 1, and the battery test results are shown in Table 2.
聚合物锂盐2的制备Preparation of polymer lithium salt 2
将丙烯酸(AA)溶解在甲醇中,加入等摩尔的氢氧化锂(LiOH),搅拌反应2hr后,加入等摩尔的丙烯酸丁酯(BA),升温至75℃,滴加偶氮二异丁腈(AIBN)的甲醇溶液,再搅拌反应4hr后,生成丙烯酸锂与丙烯酸丁酯的共聚物(P(AALi-BA))的沉淀,经过滤洗涤干燥后得到聚合物锂盐2(P(AALi-BA),两种单体的摩尔比为1:1)。Acrylic acid (AA) was dissolved in methanol, equimolar lithium hydroxide (LiOH) was added, and after stirring for 2 hr, equimolar butyl acrylate (BA) was added, the temperature was raised to 75°C, and azobisisobutyronitrile was added dropwise. (AIBN) methanol solution, after stirring and reacting for 4 hr, the precipitation of the copolymer of lithium acrylate and butyl acrylate (P(AALi-BA)) was formed, and the polymer lithium salt 2 (P(AALi-BA) was obtained after filtration, washing and drying. BA), the molar ratio of the two monomers is 1:1).
实施例3Example 3
本实施例用于说明本发明公开的锂电池。This embodiment is used to illustrate the lithium battery disclosed in the present invention.
除了所采用的聚合物锂盐为聚合物锂盐3,且电解液中除添加剂之外的成份按重量百分比为LiPF6:EC:EMC:BF3.EMC=14.1:23.6:11.5:50.8进行调整之外,其它与实施例1相同。电池中与聚合物锂盐、电解液相关的各项参数见表1,电池测试结果见表2。Except that the polymer lithium salt used is polymer lithium salt 3, and the components other than additives in the electrolyte are adjusted by weight percentage as LiPF 6 :EC:EMC:BF 3 .EMC=14.1:23.6:11.5:50.8 Others are the same as in Example 1. The parameters related to polymer lithium salt and electrolyte in the battery are shown in Table 1, and the battery test results are shown in Table 2.
聚合物锂盐3的制备Preparation of polymer lithium salt 3
参照文献Polymer Bulletin 57,115–120(2006)合成了聚乙烯基磺酸锂(PVSLi)作为聚合物锂盐3。Lithium polyvinylsulfonate (PVSLi) was synthesized as polymer lithium salt 3 with reference to the literature Polymer Bulletin 57, 115-120 (2006).
实施例4Example 4
本实施例用于说明本发明公开的锂电池。This embodiment is used to illustrate the lithium battery disclosed in the present invention.
除了所采用的聚合物锂盐为聚合物锂盐4,路易斯酸采用三五氟苯基硼(TPFPB),且电解液中除添加剂之外的成份按重量百分比为LiPF6:EC:EMC:TPFPB=13.1:18.4:33.0:35.5进行调整之外,其它与实施例1相同。电池中与聚合物锂盐、电解液相关的各项参数见表1,电池测试结果见表2。Except that the polymer lithium salt used is polymer lithium salt 4, the Lewis acid adopts tripentafluorophenyl boron (TPFPB), and the components other than the additives in the electrolyte are LiPF 6 :EC:EMC:TPFPB by weight percentage =13.1:18.4:33.0:35.5 was adjusted, and the rest was the same as in Example 1. The parameters related to polymer lithium salt and electrolyte in the battery are shown in Table 1, and the battery test results are shown in Table 2.
聚合物锂盐4的制备Preparation of polymer lithium salt 4
将丙烯酸(AA)溶解在甲醇中,加入等摩尔的氢氧化锂(LiOH),搅拌反应2hr后,加入摩尔数为丙烯酸摩尔数2倍的丙烯酸丁酯(BA),升温至75℃,滴加偶氮二异丁腈(AIBN)的甲醇溶液,再搅拌反应4hr后,生成丙烯酸锂与丙烯酸丁酯的共聚物(P(AALi-2BA))的沉淀,经过滤洗涤干燥后得到聚合物锂盐4(P(AALi-2BA),两种单体的摩尔比为1:2)。Dissolve acrylic acid (AA) in methanol, add equimolar lithium hydroxide (LiOH), stir and react for 2 hr, add butyl acrylate (BA) whose mole number is twice the mole number of acrylic acid, heat up to 75°C, and add dropwise. The methanol solution of azobisisobutyronitrile (AIBN) was stirred and reacted for 4 hr to form the precipitation of the copolymer of lithium acrylate and butyl acrylate (P(AALi-2BA)), which was filtered, washed and dried to obtain lithium polymer salt 4 (P(AALi-2BA), the molar ratio of the two monomers is 1:2).
对比例1Comparative Example 1
本对比例用于对比说明本发明公开的锂电池。This comparative example is used to compare and illustrate the lithium battery disclosed in the present invention.
除了没有聚合物锂盐和路易斯酸,且电解液是将1mol/L的LiPF6溶解在体积比为3/7的EC/EMC混合溶剂中,并添加重量百分比为2%的VC和重量百分比为2%的1,3-PS之外,其它与实施例1相同。电池中与电解液相关的各项参数见表1,电池测试结果见表2。Except that there is no polymer lithium salt and Lewis acid, and the electrolyte is to dissolve 1 mol/L LiPF 6 in an EC/EMC mixed solvent with a volume ratio of 3/7, and add 2% by weight of VC and 2% by weight of Except for 2% of 1,3-PS, the rest was the same as in Example 1. The parameters related to the electrolyte in the battery are shown in Table 1, and the battery test results are shown in Table 2.
对比例2Comparative Example 2
本对比例用于对比说明本发明公开的锂电池。This comparative example is used to compare and illustrate the lithium battery disclosed in the present invention.
除了没有路易斯酸,且电解液是将1.2mol/L的LiPF6溶解在体积比为3/7的EC/EMC混合溶剂中,并添加重量百分比为1.5%的VC和重量百分比为1.5%的1,3-PS之外,其它与实施例1相同。电池中与聚合物锂盐、电解液相关的各项参数见表1,电池测试结果见表2。Except that there is no Lewis acid, and the electrolyte is to dissolve 1.2mol/L LiPF 6 in an EC/EMC mixed solvent with a volume ratio of 3/7, and add 1.5% by weight of VC and 1.5% by weight of 1 , 3-PS, other is the same as Example 1. The parameters related to polymer lithium salt and electrolyte in the battery are shown in Table 1, and the battery test results are shown in Table 2.
对比例3Comparative Example 3
本对比例用于对比说明本发明公开的锂电池。This comparative example is used to compare and illustrate the lithium battery disclosed in the present invention.
除了将电解液中路易斯酸的含量提高,即电解液中除添加剂之外的成份按重量百分比为LiPF6:EC:EMC:BF3.EMC=15.0:25.9:27.1:32.0进行调整之外,其它与实施例1相同。电池中与聚合物锂盐、电解液相关的各项参数见表1,电池测试结果见表2。Except that the content of Lewis acid in the electrolyte is increased, that is, the components other than additives in the electrolyte are adjusted by weight percentage as LiPF 6 :EC:EMC:BF 3 .EMC=15.0:25.9:27.1:32.0, other Same as Example 1. The parameters related to polymer lithium salt and electrolyte in the battery are shown in Table 1, and the battery test results are shown in Table 2.
表1Table 1
得到的测试结果如表2所示。The obtained test results are shown in Table 2.
从表2所示的电池的测试结果可以看到,本发明提供的方案采用了聚合物锂盐和路易斯酸,并且将二者的摩尔比控制在合适的范围,使得注液后的电池电解液中游离的路易斯酸重量百分比低于0.5%,可以保证电池具有优良的倍率放电性能和循环性能,并且能够通过针刺实验,拥有良好的安全性。作为对比,不采用聚合物锂盐和路易斯酸的对比例1无法通过针刺测试,安全性不好;采用聚合物锂盐(PAALi)但不采用路易斯酸的对比例2虽然拥有良好的安全性,但由于聚合物锂盐本身不能解离出较多的自由锂离子,导致电池的倍率放电性能差;采用了聚合物锂盐和路易斯酸,但路易斯酸的含量高的对比例3中,由于注液后的电池中游离的路易斯酸重量百分比显著超过0.5%,对电池的循环性能造成了一定的负面影响。It can be seen from the test results of the battery shown in Table 2 that the solution provided by the present invention adopts polymer lithium salt and Lewis acid, and the molar ratio of the two is controlled within a suitable range, so that the battery electrolyte after liquid injection The free Lewis acid weight percentage is less than 0.5%, which can ensure that the battery has excellent rate discharge performance and cycle performance, and can pass the acupuncture test with good safety. For comparison, Comparative Example 1, which did not use polymer lithium salt and Lewis acid, could not pass the acupuncture test, and the safety was not good; Comparative Example 2, which used polymer lithium salt (PAALi) but did not use Lewis acid, had good safety. , but because the polymer lithium salt itself cannot dissociate more free lithium ions, the rate discharge performance of the battery is poor; in Comparative Example 3, which uses polymer lithium salt and Lewis acid, but the content of Lewis acid is high, due to The weight percentage of free Lewis acid in the battery after liquid injection significantly exceeds 0.5%, which has a certain negative impact on the cycle performance of the battery.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110031421.0A CN114765277A (en) | 2021-01-11 | 2021-01-11 | Lithium battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110031421.0A CN114765277A (en) | 2021-01-11 | 2021-01-11 | Lithium battery and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114765277A true CN114765277A (en) | 2022-07-19 |
Family
ID=82362937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110031421.0A Pending CN114765277A (en) | 2021-01-11 | 2021-01-11 | Lithium battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114765277A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024169494A1 (en) * | 2023-02-13 | 2024-08-22 | 深圳市固易能科技有限责任公司 | Gel electrolyte lithium-ion battery containing ionic polymer and preparation method therefor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1263047A (en) * | 1998-12-31 | 2000-08-16 | 蔚山化学株式会社 | Preparation method of lithium hexafluorophosphate |
JP2012209144A (en) * | 2011-03-30 | 2012-10-25 | Sekisui Chem Co Ltd | Electrolyte and lithium-ion secondary battery |
CN103283075A (en) * | 2010-12-28 | 2013-09-04 | 积水化学工业株式会社 | Lithium ion secondary battery |
CN109935906A (en) * | 2017-12-18 | 2019-06-25 | 孚能科技(赣州)有限公司 | Electrolyte and Lithium-Ion Batteries |
-
2021
- 2021-01-11 CN CN202110031421.0A patent/CN114765277A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1263047A (en) * | 1998-12-31 | 2000-08-16 | 蔚山化学株式会社 | Preparation method of lithium hexafluorophosphate |
CN103283075A (en) * | 2010-12-28 | 2013-09-04 | 积水化学工业株式会社 | Lithium ion secondary battery |
JP2012209144A (en) * | 2011-03-30 | 2012-10-25 | Sekisui Chem Co Ltd | Electrolyte and lithium-ion secondary battery |
CN109935906A (en) * | 2017-12-18 | 2019-06-25 | 孚能科技(赣州)有限公司 | Electrolyte and Lithium-Ion Batteries |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024169494A1 (en) * | 2023-02-13 | 2024-08-22 | 深圳市固易能科技有限责任公司 | Gel electrolyte lithium-ion battery containing ionic polymer and preparation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112119527B (en) | Thermosetting electrolyte composition, gel polymer electrolyte prepared from the same, and lithium secondary battery including the electrolyte | |
CN106935907A (en) | Lithium metal battery | |
CN111342138A (en) | High-film-forming-property lithium ion battery electrolyte and using method thereof | |
CN112074982B (en) | Thermosetting electrolyte composition, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the same | |
CN105098244A (en) | Electrolyte and lithium ion battery comprising same | |
CN104466241B (en) | One can as lithium ion battery New Solid membrane materials for electrolyte and its preparation method and application | |
CN113711396B (en) | Electrochemical device and electronic device | |
JP2002025615A (en) | Lithium secondary battery | |
CN111244541A (en) | Electrolyte and electrochemical device using the same | |
WO2025001007A1 (en) | Lithium-ion secondary battery and electric apparatus | |
CN110660959A (en) | Positive electrode and sodium ion battery | |
JP2022536290A (en) | In-situ polymerized polymer electrolyte for lithium-ion batteries | |
CN114094102A (en) | Secondary battery | |
CN109004275B (en) | Electrolyte solution and secondary battery | |
CN113130992A (en) | Non-aqueous electrolyte and lithium ion battery | |
CN114883637A (en) | Preparation and application of organic-inorganic composite solid electrolyte | |
CN108110215A (en) | A kind of positive plate of lithium ion battery and preparation method thereof and lithium ion battery | |
CN112701347A (en) | Electrochemical device and electronic equipment | |
CN117276639A (en) | High-conductivity battery electrolyte, preparation method thereof and solid-state lithium-sulfur battery | |
CN114420933A (en) | Anodes, Electrochemical Devices and Electronic Devices | |
CN116259833A (en) | Crosslinked polymer solid electrolyte, preparation method and application thereof | |
WO2025055864A1 (en) | Electrolyte for lithium-ion battery and lithium-ion battery | |
CN114765277A (en) | Lithium battery and preparation method thereof | |
CN118054070A (en) | Polyacrylate gel polymer electrolyte containing oxalate group and preparation method and application thereof | |
CN114695964A (en) | Lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |