CN109931859B - Linear Displacement Sensor with Complementary Coupling Structure - Google Patents
Linear Displacement Sensor with Complementary Coupling Structure Download PDFInfo
- Publication number
- CN109931859B CN109931859B CN201910286342.7A CN201910286342A CN109931859B CN 109931859 B CN109931859 B CN 109931859B CN 201910286342 A CN201910286342 A CN 201910286342A CN 109931859 B CN109931859 B CN 109931859B
- Authority
- CN
- China
- Prior art keywords
- coil
- linear array
- wiring layer
- straight
- fixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 58
- 230000008878 coupling Effects 0.000 title claims abstract description 30
- 238000010168 coupling process Methods 0.000 title claims abstract description 30
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 30
- 230000000295 complement effect Effects 0.000 title claims abstract description 24
- 230000006698 induction Effects 0.000 claims abstract description 43
- 238000009434 installation Methods 0.000 claims abstract description 36
- 230000005284 excitation Effects 0.000 claims abstract description 28
- 238000009826 distribution Methods 0.000 claims description 25
- 230000005674 electromagnetic induction Effects 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 36
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 14
- 230000004907 flux Effects 0.000 description 12
- 230000001939 inductive effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000011900 installation process Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
Images
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
本发明公开了一种具有互补耦合结构的直线位移传感器,包括定尺、动尺、定尺安装基体和动尺安装基体,定尺安装基体包括基座和限位块,基座上开设有与定尺的长度相匹配的定尺槽,定尺垂直安装在定尺槽内并通过限位块限位固定,动尺安装基体的中间开设有直槽口,该直槽口的宽度大于定尺厚度与两块动尺厚度之和、深度大于定尺上的定尺传感单元高度,动尺安装基体关于直槽口对称,动尺有两块,两块动尺对称安装在所述直槽口的两侧,两块动尺上的动尺传感单元串联,定尺插入直槽口内,使所述动尺传感单元与所述定尺传感单元正对耦合。本发明能实现激励与感应之间的互补耦合,可以有效减小传感器制造、装配、安装等对测量性能的影响。
The invention discloses a linear displacement sensor with a complementary coupling structure. The length of the fixed length matches the fixed length groove. The fixed length is vertically installed in the fixed length groove and fixed by the limit block. A straight notch is opened in the middle of the moving ruler installation base, and the width of the straight groove is larger than that of the fixed length. The thickness is the sum of the thickness of the two moving rulers, and the depth is greater than the height of the fixed-length sensing unit on the fixed ruler. The moving ruler installation base is symmetrical about the straight slot. There are two moving rulers, and the two moving rulers are symmetrically installed in the straight slot. On both sides of the opening, the moving ruler sensing units on the two moving rulers are connected in series, and the fixed length is inserted into the straight notch, so that the moving ruler sensing unit and the fixed length sensing unit are coupled in a positive direction. The invention can realize the complementary coupling between excitation and induction, and can effectively reduce the influence of sensor manufacture, assembly, installation, etc. on measurement performance.
Description
技术领域technical field
本发明属于精密测量传感器技术领域,具体涉及一种具有互补耦合结构的直线位移传感器。The invention belongs to the technical field of precision measurement sensors, in particular to a linear displacement sensor with a complementary coupling structure.
背景技术Background technique
机床或其它仪器设备上的直线运动单元,为了达到较好的直线定位精度,常常需要直线位移传感器提供位置反馈。目前的直线位移传感器主要有电磁感应式、电场式和光场式,这些直线位移传感器主要包括定尺和动尺,定尺与动尺正对平行安装,但是其存在如下问题:(1)动尺只在定尺的一边与定尺耦合,使得传感器的测量性能受动尺与定尺之间间隙大小、平行度等影响较大,因而对动尺和定尺的制造及安装提出了较高的要求;(2)如果定尺上的定尺传感单元通过粘贴的方式装配于定尺基体表面,很难保证定尺传感单元的平面度和直线度,从而也会对传感器的测量性能造成影响。For linear motion units on machine tools or other equipment, in order to achieve better linear positioning accuracy, linear displacement sensors are often required to provide position feedback. The current linear displacement sensors mainly include electromagnetic induction type, electric field type and optical field type. These linear displacement sensors mainly include fixed-length and moving-ruler, and the fixed-length and moving-ruler are installed in parallel with each other, but they have the following problems: (1) Moving-ruler It is only coupled with the fixed length on one side of the fixed length, so that the measurement performance of the sensor is greatly affected by the gap size and parallelism between the moving ruler and the fixed length. (2) If the fixed-length sensing unit on the fixed-length is assembled on the surface of the fixed-length substrate by pasting, it is difficult to ensure the flatness and straightness of the fixed-length sensing unit, which will also affect the measurement performance of the sensor. influences.
基于电磁感应原理的直线位移传感器因其具有较强的环境适应性得到了较好的应用。电磁感应式直线位移传感器包括励磁线圈和感应线圈,通过在励磁线圈中施加交流信号产生磁场,感应线圈接收该磁场并产生与被测位移相关的感应信号,从而实现直线位移测量。CN105300262A中公开了一种绝对式时栅直线位移传感器,励磁线圈和感应线圈分别包含于动尺和定尺,动尺上的励磁线圈产生磁场,定尺上的感应线圈接收磁场。CN107796293A中公开了一种电磁感应式直线位移传感器,励磁线圈和感应线圈均包含于定尺。定尺上的励磁线圈和感应线圈分别产生磁场和接收磁场,动尺用于改变磁场分布。当动尺与定尺发生相对位移时,感应线圈接收的磁场发生变化,使感应线圈输出的信号发生变化,动尺与定尺的相对位移可由感应线圈输出的信号处理得到。这两种直线位移传感器都存在如下问题:(1)动尺只在定尺的一边影响感应线圈接收磁场,使得传感器的测量性能受动尺与定尺之间间隙大小、平行度等影响较大,因而对传感器动尺和定尺的制造及安装提出了较高的要求;(2)如果定尺上的线圈通过粘贴的方式装配于定尺基体表面,很难保证线圈的平面度和直线度,从而会对传感器的测量性能造成影响。另外,CN107796293A中的平面矩形螺旋线圈只有一种绕制方向,该平面矩形螺旋线圈无法抵抗外界共模干扰磁场,尤其当传感器的平面矩形螺旋线圈作为感应线圈时,是传感器测量结果不可忽略的误差源。The linear displacement sensor based on the principle of electromagnetic induction has been well applied because of its strong environmental adaptability. The electromagnetic induction linear displacement sensor includes an excitation coil and an induction coil. A magnetic field is generated by applying an AC signal in the excitation coil, and the induction coil receives the magnetic field and generates an induction signal related to the measured displacement, thereby realizing linear displacement measurement. CN105300262A discloses an absolute time grid linear displacement sensor. The excitation coil and the induction coil are respectively included in the moving ruler and the fixed ruler. The excitation coil on the moving ruler generates a magnetic field, and the induction coil on the fixed ruler receives the magnetic field. CN107796293A discloses an electromagnetic induction type linear displacement sensor. Both the excitation coil and the induction coil are included in the fixed length. The excitation coil and the induction coil on the fixed ruler generate and receive magnetic fields respectively, and the moving ruler is used to change the distribution of the magnetic field. When there is relative displacement between the moving ruler and the fixed length, the magnetic field received by the induction coil changes, so that the signal output by the induction coil changes, and the relative displacement between the moving ruler and the fixed length can be obtained by processing the signal output by the induction coil. These two linear displacement sensors have the following problems: (1) The moving ruler only affects the magnetic field received by the induction coil on one side of the fixed length, so that the measurement performance of the sensor is greatly affected by the gap size and parallelism between the moving ruler and the fixed length. Therefore, higher requirements are put forward for the manufacture and installation of the moving ruler and the fixed length of the sensor; (2) If the coil on the fixed length is assembled on the surface of the fixed length substrate by pasting, it is difficult to ensure the flatness and straightness of the coil. , which will affect the measurement performance of the sensor. In addition, the planar rectangular helical coil in CN107796293A has only one winding direction, and the planar rectangular helical coil cannot resist the external common mode interference magnetic field, especially when the planar rectangular helical coil of the sensor is used as the induction coil, it is a non-negligible error in the measurement result of the sensor source.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种具有互补耦合结构的直线位移传感器,以减小动尺与定尺的制造和安装对测量性能的影响,进一步提高测量精度。The purpose of the present invention is to provide a linear displacement sensor with a complementary coupling structure, so as to reduce the influence of the manufacture and installation of the moving ruler and the fixed ruler on the measurement performance, and further improve the measurement accuracy.
本发明所述的一种具有互补耦合结构的直线位移传感器,包括定尺和两块动尺,还包括定尺安装基体和动尺安装基体,定尺安装基体包括基座和限位块,基座上开设有与定尺的长度相匹配的定尺槽,定尺垂直安装在定尺槽内并通过限位块限位固定,动尺安装基体的中间开设有直槽口,该直槽口的宽度大于定尺厚度与两块动尺厚度之和、深度大于定尺上的定尺传感单元高度,动尺安装基体关于直槽口对称,两块动尺对称安装在所述直槽口的两侧,两块动尺上的动尺传感单元串联,定尺插入直槽口内,使所述动尺传感单元与所述定尺传感单元正对耦合。这种具有互补耦合结构的直线位移传感器可以适用于电磁感应式直线位移传感器,也可以适用于非电磁感应式直线位移传感器(比如电场式直线位移传感器、光场式直线位移传感器等)。这种具有互补耦合结构的直线位移传感器具有如下效果:(1)安装过程简单,只需要将定尺垂直放置在定尺槽内并通过限位块限位固定;(2)通过基座、定尺槽、限位块配合实现定尺垂直安装,安装过程少了粘接剂的参与,定尺传感单元的平面度和直线度不再受粘接剂的影响,保证了定尺传感单元的平面度和直线度;(3)定尺垂直安装,动尺安装基体关于直槽口对称,两块动尺对称安装在直槽口的两侧,定尺插入动尺安装基体的直槽口内,动尺传感单元与定尺传感单元正对耦合,即使动尺安装不理想或运动轨迹不理想,两块动尺与定尺之间的间隙总和保持不变,实现了激励与感应之间的互补耦合,其减小了动尺与定尺的制造和安装对测量性能的影响,进一步提高了测量精度。The linear displacement sensor with complementary coupling structure according to the present invention includes a fixed-length and two moving rulers, and also includes a fixed-length installation base and a moving ruler installation base. The fixed-length installation base includes a base and a limit block. The base is provided with a fixed-length groove matching the length of the fixed-length. The fixed-length is vertically installed in the fixed-length groove and fixed by the limit block. A straight groove is opened in the middle of the moving ruler installation base. The width is greater than the sum of the thickness of the fixed length and the thickness of the two moving rulers, and the depth is greater than the height of the fixed length sensing unit on the fixed length. The moving ruler mounting base is symmetrical about the straight slot, and the two moving rulers are symmetrically installed in the straight slot. On the two sides of the two moving rulers, the moving ruler sensing units on the two moving rulers are connected in series, and the fixed length is inserted into the straight slot, so that the moving ruler sensing unit and the fixed length sensing unit are coupled to each other. The linear displacement sensor with complementary coupling structure can be applied to electromagnetic induction linear displacement sensors, and can also be applied to non-electromagnetic induction linear displacement sensors (such as electric field linear displacement sensors, optical field linear displacement sensors, etc.). This linear displacement sensor with complementary coupling structure has the following effects: (1) the installation process is simple, only need to place the fixed length vertically in the fixed length groove and fix it by the limit block; (2) through the base, the fixed length The fixed-length vertical installation is realized by the cooperation of the ruler groove and the limit block, and the participation of the adhesive is less involved in the installation process. The flatness and straightness of the fixed-length sensing unit are no longer affected by the adhesive, which ensures the fixed-length sensing unit. (3) The fixed length is installed vertically, the moving ruler installation base is symmetrical about the straight slot, the two moving rulers are symmetrically installed on both sides of the straight slot, and the fixed length is inserted into the straight slot of the moving ruler installation base. , The moving ruler sensing unit and the fixed-length sensing unit are coupled directly, even if the moving ruler is not installed ideally or the motion trajectory is not ideal, the sum of the gap between the two moving rulers and the fixed length remains unchanged, realizing the combination of excitation and induction. The complementary coupling between the moving ruler and the fixed ruler reduces the influence of the manufacture and installation of the moving ruler and the fixed ruler on the measurement performance, and further improves the measurement accuracy.
对于电磁感应式直线位移传感器而言,所述定尺包括定尺线圈基体和印制在定尺线圈基体上的所述定尺传感单元,定尺传感单元由分布周期为W、分布周期个数为的第一线圈线阵和第二线圈线阵构成,第一线圈线阵沿测量方向的起始位置与第二线圈线阵沿测量方向的起始位置相差所述动尺包括动尺线圈基体和印制在动尺线圈基体上的所述动尺传感单元,动尺传感单元由分布周期为W、分布周期个数为的第一双正弦形线圈线阵构成;其中,m1、n为偶数,n≥4,2≤m1<n。For the electromagnetic induction linear displacement sensor, the fixed-length includes a fixed-length coil base and the fixed-length sensing unit printed on the fixed-length coil base. The fixed-length sensing unit has a distribution period of W, a distribution period of The number is The first coil line array and the second coil line array are composed of the first coil line array, and the starting position of the first coil line array along the measuring direction is different from the starting position of the second coil line array along the measuring direction. The moving ruler includes a moving ruler coil base and the moving ruler sensing unit printed on the moving ruler coil base. The moving ruler sensing unit has a distribution period of W and a number of distribution periods of wherein, m 1 and n are even numbers, n≥4, 2≤m 1 <n.
所述第一线圈线阵和第二线圈线阵由长度为L的4n条直导线以及连接所述直导线的连接线组成,其中2n+2条直导线沿测量方向分布于定尺线圈基体的第一布线层上,另外的2n-2条直导线沿测量方向分布于定尺线圈基体的第二布线层上,且与分布于第一布线层的中间的2n-2条直导线对称;同一布线层上相邻两条直导线沿测量方向的间距为第一布线层上的第2i+1条直导线与第二布线层上的第2i+1条直导线通过连接线、过孔连接,第二布线层上的第2i+1条直导线与第一布线层上的第2i+5条直导线通过连接线、过孔连接,第一布线层上的第2n-1条直导线与第一布线层上的第2n+1条直导线通过连接线、过孔连接,形成第一线圈线阵,在第一布线层上的第1条、第3条直导线的未连接端部引线作为第一线圈线阵的信号输入/输出接线端;第一布线层上的第2i+2条直导线与第二布线层上的第2i+2条直导线通过连接线、过孔连接,第二布线层上的第2i+2条直导线与第一布线层上的第2i+6条直导线通过连接线、过孔连接,第一布线层上的第2n条直导线与第一布线层上的第2n+2条直导线通过连接线、过孔连接,形成第二线圈线阵,在第一布线层上的第2条、第4条直导线的未连接端部引线作为第二线圈线阵的信号输入/输出接线端;其中,i依次取0至n-2的所有整数。定尺线圈基体的第一、第二布线层上的第奇数条直导线通过连接构成第一线圈线阵,定尺线圈基体的第一、第二布线层上的第偶数条直导线通过连接构成第二线圈线阵,这种交叉布线方式保证了线圈的对称性,保证了第一线圈线阵和第二线圈线阵相对于第一双正弦形线圈线阵的对称性,也使第一线圈线阵和第二线圈线阵都具有了“两个绕制方向”,从而更好地抵抗了外界共模干扰磁场,减小了测量误差。The first coil line array and the second coil line array are composed of 4n straight wires with a length of L and connecting wires connecting the straight wires, wherein 2n+2 straight wires are distributed along the measurement direction on the fixed-length coil base. On the first wiring layer, the other 2n-2 straight wires are distributed along the measurement direction on the second wiring layer of the fixed-length coil base, and are symmetrical with the 2n-2 straight wires distributed in the middle of the first wiring layer; the same The distance between two adjacent straight wires on the wiring layer along the measurement direction is The 2i+1th straight wire on the first wiring layer and the 2i+1st straight wire on the second wiring layer are connected by connecting wires and vias, and the 2i+1th straight wire on the second wiring layer is connected with the 2nd wiring layer. The 2i+5th straight wires on a wiring layer are connected by connecting wires and vias, and the 2n-1th straight wires on the first wiring layer and the 2n+1th straight wires on the first wiring layer are connected by connecting wires , connected via holes to form a first coil line array, and the unconnected end leads of the first and third straight wires on the first wiring layer are used as the signal input/output terminals of the first coil line array; the first The 2i+2th straight wire on the wiring layer and the 2i+2th straight wire on the second wiring layer are connected by connecting wires and vias, and the 2i+2th straight wire on the second wiring layer is connected with the first wiring The 2i+6th straight wires on the layer are connected by connecting wires and vias, and the 2nth straight wires on the first wiring layer are connected with the 2n+2th straight wires on the first wiring layer by connecting wires and vias. , form a second coil line array, and the unconnected end leads of the second and fourth straight wires on the first wiring layer are used as the signal input/output terminals of the second coil line array; wherein, i takes 0 in turn All integers up to n-2. The odd-numbered straight wires on the first and second wiring layers of the fixed-length coil base are connected to form the first coil array, and the even-numbered straight wires on the first and second wiring layers of the fixed-length coil base are connected to form The second coil line array, this cross wiring method ensures the symmetry of the coil, ensures the symmetry of the first coil line array and the second coil line array relative to the first double sinusoidal coil line array, and also makes the first coil line array. Both the linear array and the second coil linear array have "two winding directions", which can better resist the external common mode interference magnetic field and reduce the measurement error.
所述第一双正弦形线圈线阵由起始位置相同、幅值为A、周期为W、周期个数为相位互差180°的第一、第二正弦导线段围成,第一正弦导线段的区间部分、区间部分以及第二正弦导线段的区间部分都分布于动尺线圈基体的第一布线层上,第二正弦导线段的区间部分、区间部分以及第一正弦导线段的区间部分都分布于动尺线圈基体的第二布线层上,在分布于不同布线层上的某相邻两个区间部分的端部引线作为第一双正弦形线圈线阵的信号输入/输出接线端,其余分布于不同布线层上的各区间部分的端部通过过孔连接;其中,j依次取0至的所有整数。第一正弦导线的一部分布置于动尺线圈基体的第一布线层上、另一部分布置于动尺线圈基体的第二布线层上,第二正弦导线的一部分布置于动尺线圈基体的第一布线层上、另一部分布置于动尺线圈基体的第二布线层上,这种布线方式保证了第一双正弦形线圈线阵相对于第一线圈线阵和第二线圈线阵的对称性,也使第一双正弦形线圈线阵具有了“两个绕制方向”,从而更好地抵抗了外界共模干扰磁场,进一步减小了测量误差。The first double sine coil line array has the same starting position, the amplitude is A, the period is W, and the number of periods is The first and second sinusoidal wire segments with a phase difference of 180° are surrounded by the first sinusoidal wire segment. interval part, interval portion and the second sinusoidal wire segment of the The interval parts are distributed on the first wiring layer of the moving scale coil base, and the second sinusoidal wire segment is interval part, interval portion and the first sinusoidal wire segment The interval parts are all distributed on the second wiring layer of the moving scale coil base, and the end leads of two adjacent interval parts distributed on different wiring layers are used as the signal input/output wiring of the first double sine coil array. The ends of the rest of the sections distributed on different wiring layers are connected through vias; among them, j takes 0 to of all integers. A part of the first sinusoidal wire is arranged on the first wiring layer of the moving scale coil base body, the other part is arranged on the second wiring layer of the moving scale coil base body, and a part of the second sinusoidal wire is arranged on the first wiring layer of the moving scale coil base body The other part is arranged on the second wiring layer of the moving ruler coil base. This wiring method ensures the symmetry of the first double sinusoidal coil array relative to the first coil array and the second coil array, and also The first double sinusoidal coil line array has "two winding directions", so as to better resist the external common mode interference magnetic field and further reduce the measurement error.
优选的,所述动尺安装基体的顶部开设有L形缺口,所述第一双正弦形线圈线阵的信号输入/输出接线端通过该L形缺口裸露在动尺安装基体之外,方便了第一双正弦形线圈线阵的信号输入/输出接线端与后续的信号处理系统的连接。Preferably, an L-shaped notch is formed on the top of the moving ruler installation base, and the signal input/output terminals of the first double-sine coil array are exposed outside the moving ruler installation base through the L-shaped notch, which is convenient for The connection between the signal input/output terminals of the first double-sine coil array and the subsequent signal processing system.
上针对电磁感应式直线位移传感器,在进行直线位移测量时有两种接线方式:第一种是将第一线圈线阵和第二线圈线阵作为励磁线圈,将第一双正弦形线圈线阵作为感应线圈,第一线圈线阵、第二线圈线阵中分别通入两相正交的交变激励信号,当动尺与定尺沿测量方向发生相对运动时,第一双正弦形线圈线阵输出幅值恒定相位周期性变化的感应信号,对该感应信号进行鉴相处理,并经换算后得到动尺相对定尺的直线位移。第二种是将第一双正弦形线圈线阵作为励磁线圈,将第一线圈线阵和第二线圈线阵作为感应线圈,第一双正弦形线圈线阵中通入交变激励信号,当动尺与定尺沿测量方向发生相对运动时,第一线圈线阵与第二线圈线阵分别输出一路相位恒定幅值周期性变化的感应信号,对该两路感应信号进行鉴幅处理,并经换算后得到动尺相对定尺的直线位移。For the electromagnetic induction linear displacement sensor, there are two wiring methods for linear displacement measurement. As an induction coil, two-phase orthogonal alternating excitation signals are respectively passed into the first coil line array and the second coil line array. The array outputs an induction signal with a constant amplitude and a periodic change in phase, and the induction signal is subjected to phase discrimination processing, and after conversion, the linear displacement of the moving ruler relative to the fixed length is obtained. The second is to use the first double sine coil array as the excitation coil, the first coil array and the second coil array as the induction coil, and the first double sine coil array is fed with alternating excitation signals. When the moving ruler and the fixed ruler move relative to each other along the measuring direction, the first coil line array and the second coil line array respectively output one inductive signal with a constant phase and a periodic change in amplitude, and the two inductive signals are subjected to amplitude discrimination processing. After conversion, the linear displacement of the moving ruler relative to the fixed ruler is obtained.
本发明所述的另一种具有互补耦合结构的电磁感应式直线位移传感器,包括定尺和动尺,定尺包括定尺线圈基体和印制在定尺线圈基体上的传感单元,动尺为金属导磁体或者导电的金属非导磁体,所述传感器还包括定尺安装基体,定尺安装基体包括基座和限位块,基座上开设有与定尺的长度相匹配的定尺槽,定尺垂直安装在定尺槽内并通过限位块限位固定,动尺的中间开设有动尺直槽口,动尺直槽口的宽度大于定尺厚度、深度大于传感单元高度,动尺关于动尺直槽口对称,动尺沿测量方向的长度为定尺插入动尺直槽口内,使动尺的前后两部分与传感单元正对耦合;所述传感单元由第一线圈线阵、第二线圈线阵和第二双正弦形线圈线阵构成,第一、第二线圈线阵的分布周期为W、分布周期个数为第一线圈线阵沿测量方向的起始位置与第二线圈线阵沿测量方向的起始位置错开第二双正弦形线圈线阵的分布周期为分布周期个数为第二双正弦形线圈线阵位于第一线圈线阵与第二线圈线阵形成的区域内,第二双正弦形线圈线阵沿测量方向的起始位置与第一线圈线阵沿测量方向的起始位置相差其中,m2、n为偶数,n≥4,m2≥4,k为整数且k≥0。这种具有互补耦合结构的电磁感应式直线位移传感器具有如下效果:(1)安装过程简单,只需要将定尺垂直放置在定尺槽内并通过限位块限位固定;(2)通过基座、定尺槽、限位块配合实现定尺垂直安装,安装过程少了粘接剂的参与,定尺上的传感单元的平面度和直线度不再受粘接剂的影响,保证了传感单元的平面度和直线度;(3)定尺垂直安装,动尺关于动尺直槽口对称,定尺插入动尺直槽口内,动尺的前后两部分与传感单元正对耦合,即使动尺安装不理想或运动轨迹不理想,动尺与定尺之间的间隙总和保持不变,实现了励磁与感应之间的互补耦合,其减小了动尺与定尺的制造和安装对测量性能的影响,进一步提高了测量精度。Another electromagnetic induction linear displacement sensor with complementary coupling structure according to the present invention includes a fixed-length and a moving ruler. The fixed-length includes a fixed-length coil base and a sensing unit printed on the fixed-length coil base. The moving ruler It is a metal magnetic conductor or a conductive metal non-magnetic conductor, the sensor also includes a fixed-length installation base, the fixed-length installation base includes a base and a limit block, and a fixed-length slot matching the length of the fixed length is opened on the base. The fixed-length is vertically installed in the fixed-length groove and fixed by the limit block. There is a straight groove of the moving ruler in the middle of the moving ruler. The width of the straight groove of the moving ruler is greater than the thickness of the fixed length and the depth is greater than the height of the sensing unit. The moving ruler is symmetrical about the straight notch of the moving ruler, and the length of the moving ruler along the measuring direction is The fixed ruler is inserted into the straight slot of the moving ruler, so that the front and rear parts of the moving ruler are coupled to the sensing unit; the sensing unit is composed of a first coil line array, a second coil line array and a second double sine coil line array The distribution period of the first and second coil arrays is W, and the number of distribution periods is The starting position of the first coil array along the measuring direction is staggered from the starting position of the second coil array along the measuring direction The distribution period of the second double sine coil array is The number of distribution periods is The second double-sine coil array is located in the area formed by the first coil array and the second coil array. start position difference Wherein, m 2 and n are even numbers, n ≥ 4, m 2 ≥ 4, k is an integer and k ≥ 0. This electromagnetic induction linear displacement sensor with complementary coupling structure has the following effects: (1) the installation process is simple, only need to place the fixed length vertically in the fixed length groove and fix it by the limit block; (2) through the base The seat, the fixed-length groove and the limit block cooperate to realize the fixed-length vertical installation, and the participation of the adhesive is less in the installation process. The flatness and straightness of the sensing unit on the fixed-length are no longer affected by the adhesive, which ensures the The flatness and straightness of the sensing unit; (3) The fixed length is installed vertically, the moving ruler is symmetrical about the straight slot of the moving ruler, the fixed length is inserted into the straight slot of the moving ruler, and the front and rear parts of the moving ruler are coupled to the sensing unit. , even if the moving ruler is not installed ideally or the motion trajectory is not ideal, the total gap between the moving ruler and the fixed length remains unchanged, realizing the complementary coupling between the excitation and the induction, which reduces the manufacturing and cost of the moving ruler and the fixed length. The impact of installation on measurement performance further improves measurement accuracy.
所述第一线圈线阵和第二线圈线阵由长度为L的4n条直导线以及连接所述直导线的连接线组成,其中2n+2条直导线沿测量方向分布于定尺线圈基体的第一布线层上,另外的2n-2条直导线沿测量方向分布于定尺线圈基体的第四布线层上,且与分布于第一布线层的中间的2n-2条直导线对称;同一布线层上相邻两条直导线沿测量方向的间距为第一布线层上的第2i+1条直导线与第四布线层上的第2i+1条直导线通过连接线、过孔连接,第四布线层上的第2i+1条直导线与第一布线层上的第2i+5条直导线通过连接线、过孔连接,第一布线层上的第2n-1条直导线与第一布线层上的第2n+1条直导线通过连接线、过孔连接,形成第一线圈线阵,在第一布线层上的第1条、第3条直导线的未连接端部引线作为第一线圈线阵的信号输入/输出接线端;第一布线层上的第2i+2条直导线与第四布线层上的第2i+2条直导线通过连接线、过孔连接,第四布线层上的第2i+2条直导线与第一布线层上的第2i+6条直导线通过连接线、过孔连接,第一布线层上的第2n条直导线与第一布线层上的第2n+2条直导线通过连接线、过孔连接,形成第二线圈线阵,在第一布线层上的第2条、第4条直导线的未连接端部引线作为第二线圈线阵的信号输入/输出接线端;其中,i依次取0至n-2的所有整数。The first coil line array and the second coil line array are composed of 4n straight wires with a length of L and connecting wires connecting the straight wires, wherein 2n+2 straight wires are distributed along the measurement direction on the fixed-length coil base. On the first wiring layer, another 2n-2 straight wires are distributed along the measurement direction on the fourth wiring layer of the fixed-length coil base, and are symmetrical with the 2n-2 straight wires distributed in the middle of the first wiring layer; the same The distance between two adjacent straight wires on the wiring layer along the measurement direction is The 2i+1th straight wire on the first wiring layer and the 2i+1st straight wire on the fourth wiring layer are connected by connecting wires and vias, and the 2i+1th straight wire on the fourth wiring layer is connected with the 2nd wire. The 2i+5th straight wires on a wiring layer are connected by connecting wires and vias, and the 2n-1th straight wires on the first wiring layer and the 2n+1th straight wires on the first wiring layer are connected by connecting wires , connected via holes to form a first coil line array, and the unconnected end leads of the first and third straight wires on the first wiring layer are used as the signal input/output terminals of the first coil line array; the first The 2i+2th straight wire on the wiring layer and the 2i+2th straight wire on the fourth wiring layer are connected by connecting wires and vias, and the 2i+2th straight wire on the fourth wiring layer is connected with the first wiring The 2i+6th straight wires on the layer are connected by connecting wires and vias, and the 2nth straight wires on the first wiring layer are connected with the 2n+2th straight wires on the first wiring layer by connecting wires and vias. , form a second coil line array, and the unconnected end leads of the second and fourth straight wires on the first wiring layer are used as the signal input/output terminals of the second coil line array; wherein, i takes 0 in turn All integers up to n-2.
所述第二双正弦形线圈线阵由起始位置相同、幅值为A、周期为周期个数为相位互差180°的第三、第四正弦导线段围成,第三正弦导线段的区间部分、区间部分以及第四正弦导线段的区间部分都分布于定尺线圈基体的第二布线层上,第四正弦导线段的区间部分、区间部分以及第三正弦导线段的区间部分都分布于定尺线圈基体的第三布线层上,在分布于不同布线层上的某相邻两个区间部分的端部引线作为第二双正弦形线圈线阵的信号输入/输出接线端,其余分布于不同布线层上的各区间部分的端部通过过孔连接;其中,j依次取0至的所有整数。The second double sine coil array has the same starting position, amplitude A, and period The number of cycles is The third and fourth sinusoidal wire segments with a phase difference of 180° are surrounded by the third sinusoidal wire segment. interval part, Interval section and fourth sinusoidal wire segment of The interval parts are distributed on the second wiring layer of the fixed-length coil base, and the fourth sinusoidal wire segment is interval part, interval section and the third sinusoidal wire segment The interval parts are all distributed on the third wiring layer of the fixed-length coil base, and the end leads of two adjacent interval parts distributed on different wiring layers are used as the signal input/output wiring of the second double sine coil array The ends of the rest of the sections distributed on different wiring layers are connected through vias; among them, j takes 0 to of all integers.
定尺线圈基体的第一、第四布线层上的第奇数条直导线通过连接构成第一线圈线阵,定尺线圈基体的第一、第四布线层上的第偶数条直导线通过连接构成第二线圈线阵,第三正弦导线的一部分布置于定尺线圈基体的第二布线层上、另一部分布置于定尺线圈基体的第三布线层上,第四正弦导线的一部分布置于定尺线圈基体的第二布线层上、另一部分布置于定尺线圈基体的第三布线层上,这种交叉布线方式保证了线圈的对称性,保证了第一线圈线阵和第二线圈线阵相对于第二双正弦形线圈线阵的对称性,也使第一线圈线阵、第二线圈线阵、第二双正弦形线圈线阵都具有了“两个绕制方向”,从而更好地抵抗了外界共模干扰磁场,进一步减小了测量误差。The odd-numbered straight wires on the first and fourth wiring layers of the fixed-length coil base are connected to form the first coil array, and the even-numbered straight wires on the first and fourth wiring layers of the fixed-length coil base are connected to form The second coil array, a part of the third sinusoidal wire is arranged on the second wiring layer of the fixed-length coil base, the other part is arranged on the third wiring layer of the fixed-length coil base, and a part of the fourth sinusoidal wire is arranged on the fixed-length coil The other part is arranged on the second wiring layer of the coil base, and the other part is arranged on the third wiring layer of the fixed-length coil base. This cross wiring method ensures the symmetry of the coil and ensures that the first coil line array and the second coil line array are opposite to each other. Due to the symmetry of the second double sine coil array, the first coil array, the second coil array, and the second double sine coil array all have "two winding directions", so as to better It resists the external common mode interference magnetic field and further reduces the measurement error.
上针对电磁感应式直线位移传感器,在进行直线位移测量时有两种接线方式:第一种是将第一线圈线阵和第二线圈线阵作为励磁线圈,将第二双正弦形线圈线阵作为感应线圈,第一线圈线阵、第二线圈线阵中分别通入两相正交的交变激励信号,当动尺与定尺沿测量方向发生相对运动时,第二双正弦形线圈线阵输出幅值恒定相位周期性变化的感应信号,对该感应信号进行鉴相处理,并经换算后得到动尺相对定尺的直线位移。第二种是将第二双正弦形线圈线阵作为励磁线圈,将第一线圈线阵和第二线圈线阵作为感应线圈,第二双正弦形线圈线阵中通入交变激励信号,当动尺与定尺沿测量方向发生相对运动时,第一线圈线阵与第二线圈线阵分别输出一路相位恒定幅值周期性变化的感应信号,对该两路感应信号进行鉴幅处理,并经换算后得到动尺相对定尺的直线位移。For the electromagnetic induction linear displacement sensor, there are two wiring methods for linear displacement measurement: the first is to use the first coil line array and the second coil line array as the excitation coil, and the second double sine coil line array As an induction coil, two-phase orthogonal alternating excitation signals are respectively passed into the first coil line array and the second coil line array. The array outputs an induction signal with a constant amplitude and a periodic change in phase, and the induction signal is subjected to phase discrimination processing, and after conversion, the linear displacement of the moving ruler relative to the fixed length is obtained. The second is to use the second double sine coil array as the excitation coil, the first coil array and the second coil array as the induction coil, and the second double sine coil array to pass the alternating excitation signal. When the moving ruler and the fixed ruler move relative to each other along the measuring direction, the first coil line array and the second coil line array respectively output one inductive signal with a constant phase and a periodic change in amplitude, and the two inductive signals are subjected to amplitude discrimination processing. After conversion, the linear displacement of the moving ruler relative to the fixed ruler is obtained.
附图说明Description of drawings
图1为实施例1、实施例2的总体结构示意图。FIG. 1 is a schematic diagram of the overall structure of
图2为图1的截面示意图。FIG. 2 is a schematic cross-sectional view of FIG. 1 .
图3为实施例1、实施例2中的定尺的结构示意图。FIG. 3 is a schematic structural diagram of the sizing in Example 1 and Example 2. FIG.
图4为实施例1、实施例2中的传感单元的布线示意图。FIG. 4 is a schematic diagram of the wiring of the sensing unit in
图5为实施例1、实施例2中的定尺线圈基体上的第一布线层上的布线示意图。FIG. 5 is a schematic diagram of the wiring on the first wiring layer on the fixed-length coil base in
图6为实施例1、实施例2中的定尺线圈基体上的第四布线层上的布线示意图。FIG. 6 is a schematic diagram of wiring on the fourth wiring layer on the fixed-length coil base in
图7为实施例1、实施例2中的定尺线圈基体上的第二布线层上的布线示意图。FIG. 7 is a schematic diagram of wiring on the second wiring layer on the fixed-length coil base in
图8为实施例1、实施例2中的定尺线圈基体上的第三布线层上的布线示意图。FIG. 8 is a schematic diagram of wiring on the third wiring layer on the fixed-length coil base in
图9为实施例1、实施例2中的定尺安装基体的分解示意图。FIG. 9 is an exploded schematic view of the fixed-length mounting base in
图10为实施例1、实施例2中的动尺的结构示意图。FIG. 10 is a schematic structural diagram of the moving ruler in
图11为实施例3、实施例4的总体结构示意图。FIG. 11 is a schematic diagram of the overall structure of
图12为图11的侧面示意图。FIG. 12 is a schematic side view of FIG. 11 .
图13为实施例3、实施例4中的定尺的结构示意图。FIG. 13 is a schematic structural diagram of the sizing in Example 3 and Example 4. FIG.
图14为实施例3、实施例4中的定尺传感单元的布线示意图。FIG. 14 is a schematic diagram of the wiring of the fixed-length sensing unit in
图15为实施例3、实施例4中的动尺的结构示意图。FIG. 15 is a schematic structural diagram of the moving ruler in
图16为实施例3、实施例4中的动尺传感单元的布线示意图。FIG. 16 is a schematic diagram of the wiring of the moving scale sensing unit in the third and fourth embodiments.
图17为实施例3、实施例4中的动尺安装基体的结构示意图。FIG. 17 is a schematic structural diagram of the moving ruler mounting base in
具体实施方式Detailed ways
下面结合附图对本发明作详细说明。The present invention will be described in detail below with reference to the accompanying drawings.
定义测量方向为定尺长度方向(即X轴方向),垂直于定尺尺面方向为前后方向(即Y轴方向),垂直于定尺安装基体表面方向为上下方向(即Z轴方向)。The measurement direction is defined as the length direction of the fixed length (that is, the X-axis direction), the direction perpendicular to the fixed-length surface is the front-rear direction (that is, the Y-axis direction), and the direction perpendicular to the surface of the fixed-length installation base is the up and down direction (that is, the Z-axis direction).
实施例1:如图1至图10所示的具有互补耦合结构的电磁感应式直线位移传感器,包括定尺1、定尺安装基体2和动尺3。定尺1包括定尺线圈基体11和印制在定尺线圈基体11上的传感单元,定尺线圈基体11的下侧具有两个通孔,用于定尺1在定尺安装基体2上的安装。Embodiment 1: The electromagnetic induction linear displacement sensor with complementary coupling structure as shown in FIG. 1 to FIG. 10 includes a fixed
如图4至图8所示,传感单元由第一线圈线阵121、第二线圈线阵122和第二双正弦形线圈线阵13构成,第一线圈线阵121、第二线圈线阵122、第二双正弦形线圈线阵13都为平面线圈,分布在定尺线圈基体11的4个布线层(即第一、第二、第三、第四布线层)上。As shown in FIG. 4 to FIG. 8 , the sensing unit is composed of a
如图4、图5、图6所示,第一线圈线阵121的分布周期为W、分布周期个数为4个,第二线圈线阵122的分布周期为W、分布周期个数为4个,第一线圈线阵121沿测量方向的起始位置与第二线圈线阵122沿测量方向的起始位置错开第一线圈线阵121和第二线圈线阵122由长度为L的32条直导线以及连接这些直导线的连接线组成,其中18条直导线沿测量方向分布于定尺线圈基体11的第一布线层上,另外的14条直导线沿测量方向分布于定尺线圈基体11的第四布线层上,这14条直导线与分布于第一布线层的中间的14条直导线对称(即在Y轴方向的投影重合),同一布线层上相邻两条直导线沿测量方向的间距为第一布线层上的第2i+1条直导线与第四布线层上的第2i+1条直导线通过连接线、过孔连接,第四布线层上的第2i+1条直导线与第一布线层上的第2i+5条直导线通过连接线、过孔连接,第一布线层上的第15条直导线与第一布线层上的第17条直导线通过连接线、过孔连接,形成第一线圈线阵121,第一布线层上的第1条直导线的未连接端部通过过孔在第四布线层上引线作为第一线圈线阵121的信号输入/输出接线端一,第一布线层上的第3条直导线的未连接端部直接在第一布线层上引线作为第一线圈线阵121的信号输入/输出接线端二;第一布线层上的第2i+2条直导线与第四布线层上的第2i+2条直导线通过连接线、过孔连接,第四布线层上的第2i+2条直导线与第一布线层上的第2i+6条直导线通过连接线、过孔连接,第一布线层上的第16条直导线与第一布线层上的第18条直导线通过连接线、过孔连接,形成第二线圈线阵122,第一布线层上的第2条直导线的未连接端部通过过孔在第四布线层上引线作为第二线圈线阵122的信号输入/输出接线端一,第一布线层上的第4条直导线的未连接端部直接在第一布线层上引线作为第二线圈线阵122的信号输入/输出接线端二;其中,i依次取0至6的所有整数。As shown in FIG. 4 , FIG. 5 , and FIG. 6 , the distribution period of the
如图4、图7、图8所示,第二双正弦形线圈线阵13位于第一线圈线阵121与第二线圈线阵122形成的区域内,第二双正弦形线圈线阵13沿测量方向的起始位置与第一线圈线阵121沿测量方向的起始位置相差第二双正弦形线圈线阵13由起始位置相同、幅值为A、周期为周期个数为7个、相位互差180°的第三、第四正弦导线段围成,第三正弦导线段的区间部分、区间部分以及第四正弦导线段的 区间部分都分布于定尺线圈基体11的第二布线层上,第四正弦导线段的区间部分、区间部分以及第三正弦导线段的区间部分都分布于定尺线圈基体11的第三布线层上;在第四正弦导线段的位置处,通过分别在定尺线圈基体11的第二布线层和第三布线层上引线作为第二双正弦形线圈线阵13的信号输入/输出接线端,其余分布于不同布线层上的各区间部分的端部通过过孔连接;其中,j依次取0至6的所有整数,2A<L。As shown in FIG. 4 , FIG. 7 , and FIG. 8 , the second double
如图9所示,定尺安装基体2包括基座21和限位块22,基座21上开设有与定尺1的长度相匹配的定尺槽,基座21上的定尺槽侧面有两个螺丝孔,螺丝孔位置与定尺线圈基体11上的通孔一一对应,对应螺丝孔的位置,限位块22上也开设有两个通孔,螺丝23穿过限位块22和定尺线圈基体11上的通孔,进入螺丝孔并旋紧,使定尺1被基座21和限位块22压紧,定尺1的传感单元区域须避开定尺槽部分。As shown in FIG. 9, the fixed-
如图10所示,动尺3为矩形导磁体,动尺3的中间开设有动尺直槽口33,动尺直槽口33在Y轴方向上的尺寸大于定尺厚度、在Z轴方向上的尺寸大于传感单元在Z轴方向上的尺寸,动尺3关于动尺直槽口33对称,动尺3沿测量方向的长度(即在X轴方向上的尺寸)为定尺1插入动尺直槽口33内,使动尺3的前、后两部分与传感单元正对耦合(参见图1)。As shown in FIG. 10 , the moving
将第一线圈线阵121和第二线圈线阵122作为励磁线圈,将第二双正弦形线圈线阵13作为感应线圈,在第一线圈线阵121和第二线圈线阵122中分别通入幅值为Im的电流i121=Imsin(ωt)和i122=Imcos(ωt),则第一线圈线阵121和第二线圈线阵122与第二双正弦形线圈线阵13通过磁场产生耦合。由于动尺3为导磁体,所以动尺3所处位置的第一线圈线阵121和第二线圈线阵122与第二双正弦形线圈线阵13的磁场耦合较强(相较于其他位置)。当动尺3相对于定尺1在X轴方向上发生相对运动时,第一线圈线阵121和第二线圈线阵122与第二双正弦形线圈线阵13之间的磁场耦合发生周期性变化。The
设计第二双正弦形线圈线阵13为正弦形状,目的在于让第二双正弦形线圈线阵13中磁通量的变化呈正弦规律变化,如式(1)和(2)所示:The second double-
其中,ω表示电流频率,表示在第一线圈线阵121作用下,第二双正弦形线圈线阵13产生的磁通变化,表示在第二线圈线阵122作用下,第二双正弦形线圈线阵13产生的磁通变化,表示磁通量的幅值,x表示被测直线位移(即动尺3相对于定尺1在X轴方向上的位移)。where ω is the current frequency, represents the change of the magnetic flux generated by the second double
由于第一线圈线阵121和第二线圈线阵122产生的磁场在第二双正弦形线圈线阵13中叠加,所以根据法拉第电磁感应定律,第二双正弦形线圈线阵13输出幅值恒定、相位发生周期性变化的感应信号,如式(3)所示:Since the magnetic fields generated by the
将式(3)进行鉴相处理,得到其相位然后经过换算得到动尺3相对于定尺1在X轴方向上的位移x。Perform phase discrimination processing on formula (3) to obtain its phase Then, the displacement x of the moving
实施例2:如图1至图10所示,本实施例中的具有互补耦合结构的电磁感应式直线位移传感器的结构与实施例1相同,不同之处在于:将第二双正弦形线圈线阵13作为励磁线圈,将第一线圈线阵121和第二线圈线阵122作为感应线圈,第二双正弦形线圈线阵13中通入幅值为Im的电流i13=Imsin(ωt),第一线圈线阵121和第二线圈线阵122输出感应信号。当动尺3相对于定尺1在X轴方向上发生相对运动时,第一线圈线阵121和第二线圈线阵122与第二双正弦形线圈线阵13之间的磁场耦合发生周期性变化。Embodiment 2: As shown in FIG. 1 to FIG. 10 , the structure of the electromagnetic induction linear displacement sensor with complementary coupling structure in this embodiment is the same as that of
第一线圈线阵121和第二线圈线阵122中磁通量的变化如式(4)和(5)所示:The changes of the magnetic fluxes in the
其中,表示磁通量的幅值。in, represents the magnitude of the magnetic flux.
根据法拉第电磁感应定律,第一线圈线阵121和第二线圈线阵122输出信号的幅值发生周期性变化,如式(6)和(7)所示:According to Faraday's law of electromagnetic induction, the amplitudes of the output signals of the
将式(6)和(7)表示的感应信号进行鉴幅处理,得到两路信号的幅值和将这两个幅值相除,并对结果求反正切或反余切,得到的值,然后经过换算得到动尺3相对于定尺1在X轴方向上的位移x。The induction signals represented by equations (6) and (7) are subjected to amplitude discrimination processing to obtain the amplitudes of the two signals and Divide these two magnitudes and find the arctangent or inverse cotangent of the result to get The value of , and then the displacement x of the moving
实施例3:如图11至图17所示的具有互补耦合结构的电磁感应式直线位移传感器,包括定尺1、定尺安装基体2、动尺安装基体4和相同的两块动尺3。Embodiment 3: The electromagnetic induction linear displacement sensor with complementary coupling structure shown in FIG. 11 to FIG. 17 includes a fixed
如图13、图14所示,定尺1包括定尺线圈基体11和印制在定尺线圈基体11上的定尺传感单元,定尺线圈基体11的下侧具有两个通孔,用于定尺1在定尺安装基体2上的安装。定尺传感单元由第一线圈线阵121和第二线圈线阵122构成,第一线圈线阵121、第二线圈线阵122都为平面线圈,分布在定尺线圈基体11的2个布线层(即第一、第二布线层)上。As shown in FIG. 13 and FIG. 14 , the fixed-
第一线圈线阵121的分布周期为W、分布周期个数为4个,第二线圈线阵122的分布周期为W、分布周期个数为4个,第一线圈线阵121沿测量方向的起始位置与第二线圈线阵122沿测量方向的起始位置错开第一线圈线阵121和第二线圈线阵122由长度为L的32条直导线以及连接所述直导线的连接线组成,其中18条直导线沿测量方向分布于定尺线圈基体11的第一布线层上,另外的14条直导线沿测量方向分布于定尺线圈基体11的第二布线层上,这14条直导线与与分布于第一布线层的中间的14条直导线对称(即在Y轴方向的投影重合);同一布线层上相邻两条直导线沿测量方向的间距为第一布线层上的第2i+1条直导线与第二布线层上的第2i+1条直导线通过连接线、过孔连接,第二布线层上的第2i+1条直导线与第一布线层上的第2i+5条直导线通过连接线、过孔连接,第一布线层上的第15条直导线与第一布线层上的第17条直导线通过连接线、过孔连接,形成第一线圈线阵121,第一布线层上的第1条直导线的未连接端部通过过孔在第二布线层上引线作为第一线圈线阵121的信号输入/输出接线端一,第一布线层上的第3条直导线的未连接端部直接在第一布线层上引线作为第一线圈线阵121的信号输入/输出接线端二;第一布线层上的第2i+2条直导线与第二布线层上的第2i+2条直导线通过连接线、过孔连接,第二布线层上的第2i+2条直导线与第一布线层上的第2i+6条直导线通过连接线、过孔连接,第一布线层上的第16条直导线与第一布线层上的第18条直导线通过连接线、过孔连接,形成第二线圈线阵122,第一布线层上的第2条直导线的未连接端部通过过孔在第二布线层上引线作为第二线圈线阵122的信号输入/输出接线端一,在第一布线层上的第4条直导线的未连接端部直接在第一布线层上引线作为第二线圈线阵122的信号输入/输出接线端二;其中,i依次取0至6的所有整数。The distribution period of the first
定尺安装基体2包括基座21和限位块22,基座21上开设有与定尺1的长度相匹配的定尺槽,基座21上的定尺槽侧面有两个螺丝孔,螺丝孔位置与定尺线圈基体11上的通孔一一对应,对应螺丝孔的位置,限位块22上也开设有两个通孔,螺丝23穿过限位块22和定尺线圈基体11上的通孔,进入螺丝孔并旋紧,使定尺1被基座21和限位块22压紧,定尺1的定尺传感单元区域须避开定尺槽部分。The fixed-
如图15、图16所示,动尺3包括动尺线圈基体31和印制在动尺线圈基体31上的动尺传感单元,动尺传感单元由第一双正弦形线圈线阵32构成,第一双正弦形线圈线阵32为平面线圈,分布在动尺线圈基体31的2个布线层(即第一、第二布线层)上;第一双正弦形线圈线阵32由起始位置相同、幅值为A(2A<L)、周期为W、周期个数为1个、相位互差180°的第一、第二正弦导线段围成,第一正弦导线段的区间部分、区间部分以及第二正弦导线段的区间部分都分布于动尺线圈基体31的第一布线层上,第二正弦导线段的区间部分、区间部分以及第一正弦导线段的区间部分都分布于动尺线圈基体31的第二布线层上,在第一正弦导线段的位置处,通过分别在第一布线层和第二布线层上引线作为第一双正弦形线圈线阵32的信号输入/输出接线端,其余分布于不同布线层上的各区间部分的端部通过过孔连接。As shown in FIGS. 15 and 16 , the moving
如图11、图12、图17所示,动尺安装基体4为矩形导磁体,主要用于固定动尺3,动尺安装基体4在X轴方向上的尺寸大于W且小于定尺长度,动尺安装基体4的中间开设有直槽口41,该直槽口41在Y轴方向上的尺寸大于定尺厚度与两块动尺厚度之和、在Z轴方向上的尺寸大于定尺传感单元在Z轴方向上的尺寸,动尺安装基体4关于直槽口41对称,动尺安装基体4的顶部开设有L形缺口42,两块动尺3对称安装在直槽口41的两侧,两块动尺3上的第一双正弦形线圈线阵32的信号输入/输出接线端裸露在动尺安装基体4之外,两个第一双正弦形线圈线阵32通过信号输入/输出接线端接线串联,定尺1插入直槽口41内,使第一双正弦形线圈线阵32与第一线圈线阵121和第二线圈线阵122正对耦合。As shown in Figure 11, Figure 12, Figure 17, the moving
将第一线圈线阵121和第二线圈线阵122作为励磁线圈,将第一双正弦形线圈线阵32作为感应线圈,在第一线圈线阵121和第二线圈线阵122中分别通入幅值为Im的电流i121=Imsin(ωt)和i122=Imcos(ωt),则第一线圈线阵121和第二线圈线阵122与第一双正弦形线圈线阵32通过磁场产生耦合。由于第一线圈线阵121和第二线圈线阵122产生的磁场在定尺1上周期分布,所以当动尺3相对于定尺1在X轴方向上发生相对运动时,第一线圈线阵121和第二线圈线阵122与第一双正弦形线圈线阵32之间的磁场耦合发生周期性变化。The
设计第一双正弦形线圈线阵32为正弦形状,目的在于让第一双正弦形线圈线阵32中磁通量的变化呈正弦规律变化,如式(8)和(9)所示:The first double-
其中,ω表示电流频率,表示在第一线圈线阵121作用下,第一双正弦形线圈线阵32产生的磁通变化,表示在第二线圈线阵122作用下,第一双正弦形线圈线阵32产生的磁通变化,表示磁通量的幅值,x表示被测直线位移(即动尺3相对于定尺1在X轴方向上的位移)。where ω is the current frequency, represents the change of the magnetic flux generated by the first double
由于第一线圈线阵121和第二线圈线阵122产生的磁场在第一双正弦形线圈线阵32中叠加,所以根据法拉第电磁感应定律,第一双正弦形线圈线阵32输出幅值恒定、相位发生周期性变化的正弦感应信号,如式(10)所示:Since the magnetic fields generated by the
将式(10)进行鉴相处理,得到其相位然后经过换算得到动尺3相对于定尺1的在X轴方向上的位移x。Perform phase discrimination processing on formula (10) to obtain its phase Then, the displacement x of the moving
实施例4:如图11至图17所示,本实施例中的具有互补耦合结构的电磁感应式直线位移传感器的结构与实施例3相同,不同之处在于:将第一双正弦形线圈线阵32作为励磁线圈,将第一线圈线阵121和第二线圈线阵122作为感应线圈,即第一双正弦形线圈线阵32中通入幅值为Im的电流i32=Imsin(ωt),第一线圈线阵121和第二线圈线阵122输出感应信号。当动尺3相对于定尺1在X轴方向上发生相对运动时,第一线圈线阵121和第二线圈线阵122与第一双正弦形线圈线阵32之间的磁场耦合发生周期性变化。Embodiment 4: As shown in FIG. 11 to FIG. 17 , the structure of the electromagnetic induction linear displacement sensor with complementary coupling structure in this embodiment is the same as that of
第一线圈线阵121和第二线圈线阵122中磁通量的变化如式(11)和(12)所示:The changes of the magnetic fluxes in the
其中,表示磁通量的幅值。in, represents the magnitude of the magnetic flux.
根据法拉第电磁感应定律,第一线圈线阵121和第二线圈线阵122输出信号的幅值发生周期性变化,如式(13)和(14)所示:According to Faraday's law of electromagnetic induction, the amplitudes of the output signals of the
将式(13)和(14)表示的感应信号进行鉴幅处理,得到两路信号的幅值和将两个幅值相除,并对结果求反正切或反余切,得到的值,然后经过换算得到动尺3相对于定尺1在X轴方向上的位移x。The induction signals expressed by equations (13) and (14) are subjected to amplitude discrimination processing to obtain the amplitudes of the two signals and Divide the two magnitudes and find the arctangent or inverse cotangent of the result to get The value of , and then the displacement x of the moving
另外,针对具有互补耦合结构的非电磁感应式直线位移传感器,其包括定尺、两块动尺、定尺安装基体和动尺安装基体,定尺安装基体包括基座和限位块,基座上开设有与定尺的长度相匹配的定尺槽,定尺垂直安装在定尺槽内并通过限位块、螺丝钉限位固定,动尺安装基体的中间开设有直槽口,该直槽口的宽度大于定尺厚度与两块动尺厚度之和、深度大于定尺上的定尺传感单元高度,动尺安装基体关于直槽口对称,两块动尺对称安装在直槽口的两侧,两块动尺上的动尺传感单元串联,定尺插入直槽口内,使动尺传感单元与定尺传感单元正对耦合。In addition, for a non-electromagnetic induction linear displacement sensor with a complementary coupling structure, it includes a fixed length, two moving rulers, a fixed length installation base and a moving ruler installation base, and the fixed length installation base includes a base and a limit block, and the base There is a fixed-length groove matching the length of the fixed-length. The fixed-length is installed vertically in the fixed-length groove and fixed by limit blocks and screws. A straight slot is opened in the middle of the moving ruler installation base. The straight groove The width of the opening is greater than the sum of the thickness of the fixed length and the thickness of the two moving rulers, and the depth is greater than the height of the fixed length sensing unit on the fixed length. On both sides, the moving ruler sensing units on the two moving rulers are connected in series, and the fixed length is inserted into the straight notch, so that the moving ruler sensing unit and the fixed length sensing unit are positively coupled.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910286342.7A CN109931859B (en) | 2019-04-10 | 2019-04-10 | Linear Displacement Sensor with Complementary Coupling Structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910286342.7A CN109931859B (en) | 2019-04-10 | 2019-04-10 | Linear Displacement Sensor with Complementary Coupling Structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109931859A CN109931859A (en) | 2019-06-25 |
CN109931859B true CN109931859B (en) | 2021-05-14 |
Family
ID=66989621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910286342.7A Active CN109931859B (en) | 2019-04-10 | 2019-04-10 | Linear Displacement Sensor with Complementary Coupling Structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109931859B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113008120B (en) * | 2019-12-19 | 2023-09-22 | 通用技术集团国测时栅科技有限公司 | Capacitive linear displacement sensor and movable ruler thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH690933A5 (en) * | 1996-01-24 | 2001-02-28 | Hans Ulrich Meyer | An inductive displacement sensor. |
US6355198B1 (en) * | 1996-03-15 | 2002-03-12 | President And Fellows Of Harvard College | Method of forming articles including waveguides via capillary micromolding and microtransfer molding |
CN202814347U (en) * | 2012-09-21 | 2013-03-20 | 芜湖通和汽车管路系统有限公司 | Grating ruler length measuring instrument |
CN108571986A (en) * | 2017-03-07 | 2018-09-25 | 赛卓电子科技(上海)有限公司 | Displacement sensor |
CN108267072B (en) * | 2018-01-31 | 2019-09-13 | 重庆理工大学 | A time grating linear displacement sensor |
-
2019
- 2019-04-10 CN CN201910286342.7A patent/CN109931859B/en active Active
Non-Patent Citations (1)
Title |
---|
变耦型时栅位移传感器理论模型与误差研究;鲁进等;《仪器仪表学报》;20160331;第37卷(第3期);第561-569页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109931859A (en) | 2019-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107796293B (en) | An electromagnetic induction linear displacement sensor | |
CN104457544B (en) | Time grating linear displacement sensor | |
US10416195B2 (en) | Current sensor and a method of manufacturing a current sensor | |
CN103644834A (en) | Time grating linear displacement sensor | |
CN102359753A (en) | Linear displacement sensor | |
JP2013058755A (en) | Printed circuit board comprising two coils | |
CN104677258B (en) | Two-dimensional plane displacement sensor | |
CN105300262A (en) | Absolute type time-grating linear displacement sensor | |
JP2015111080A (en) | Bus bar module | |
JP2013058754A (en) | Printed circuit board | |
CN109931859B (en) | Linear Displacement Sensor with Complementary Coupling Structure | |
CN112857194B (en) | Plane two-dimensional displacement sensor based on eddy current effect | |
US11971252B2 (en) | Inductive position measuring sensor | |
CN104848778B (en) | When grating straight-line displacement sensor | |
JP5783361B2 (en) | Current measuring device | |
CN106441058B (en) | Grating straight-line displacement sensor when a kind of single-column type two dimension | |
CN114577104B (en) | Absolute Linear Displacement Sensor Based on Eddy Current Effect | |
CN111006698B (en) | Electromagnetic induction type encoder | |
CN105444659A (en) | Absolute-type sensor utilizing electromagnetic induction principle to carry out length measurement | |
CN114739277B (en) | Plane magnetic resistance type two-dimensional displacement sensor | |
CN108267072B (en) | A time grating linear displacement sensor | |
CN106197244B (en) | Grating straight-line displacement sensor when a kind of double-row type two dimension | |
JP6134964B2 (en) | Inductive displacement detector | |
CN106338235B (en) | A single row time grating linear displacement sensor | |
JP7471993B2 (en) | Electromagnetic Induction Encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190625 Assignee: Chongqing Han's Shizha Technology Co.,Ltd. Assignor: Chongqing University of Technology Contract record no.: X2022500000007 Denomination of invention: Linear displacement sensor with complementary coupling structure Granted publication date: 20210514 License type: Exclusive License Record date: 20220926 |