CN114577104B - Absolute Linear Displacement Sensor Based on Eddy Current Effect - Google Patents
Absolute Linear Displacement Sensor Based on Eddy Current Effect Download PDFInfo
- Publication number
- CN114577104B CN114577104B CN202210333219.8A CN202210333219A CN114577104B CN 114577104 B CN114577104 B CN 114577104B CN 202210333219 A CN202210333219 A CN 202210333219A CN 114577104 B CN114577104 B CN 114577104B
- Authority
- CN
- China
- Prior art keywords
- eddy current
- induction
- planar rectangular
- rectangular spiral
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
技术领域Technical Field
本发明属于精密测量传感器技术领域,具体涉及基于电涡流效应的绝对式直线位移传感器。The invention belongs to the technical field of precision measurement sensors, and in particular relates to an absolute linear displacement sensor based on eddy current effect.
背景技术Background Art
绝对式直线位移传感器具有无需寻找参考点,开机即可获取当前绝对位置,断电后绝对位置不丢失,测量误差不累积等优势,广泛应用于生产生活中。现阶段的绝对式直线位移传感器主要有光栅、磁栅和感应同步器等。光栅大多采用单轨绝对位置编码技术实现绝对式测量,即采用一条码道来排布绝对位置信息,在测量方向上依次布置所有码元以减少需要处理的信号源,但其依赖栅线超精密刻线来满足微小位移的分辨力要求且成本高昂。磁栅通过磁编码的形式获取绝对位置,但需进行多次比较,编码和解码方式都比较复杂。感应同步器常采用“粗机+精机”双通道结合的方式获取绝对位移值,粗通道用于粗略读数确定绝对位置,精通道用于精确读数确定测量精度,但增加级数、增加精度时会压缩各极间的距离,使制造工艺难以满足,造成尺寸偏差加大。Absolute linear displacement sensors have the advantages of not needing to find reference points, being able to obtain the current absolute position when powered on, not losing the absolute position after power failure, and not accumulating measurement errors, and are widely used in production and life. At present, the main absolute linear displacement sensors include gratings, magnetic gratings, and inductive synchronizers. Gratings mostly use single-track absolute position encoding technology to achieve absolute measurement, that is, a code channel is used to arrange the absolute position information, and all code elements are arranged in sequence in the measurement direction to reduce the signal source that needs to be processed, but it relies on ultra-precision grid lines to meet the resolution requirements of small displacements and is costly. Magnetic gratings obtain absolute position in the form of magnetic encoding, but multiple comparisons are required, and the encoding and decoding methods are relatively complicated. Inductive synchronizers often use a combination of "rough machine + fine machine" dual channels to obtain absolute displacement values. The coarse channel is used for rough readings to determine the absolute position, and the fine channel is used for precise readings to determine the measurement accuracy. However, when the number of levels and accuracy are increased, the distance between the poles will be compressed, making it difficult to meet the manufacturing process, resulting in increased dimensional deviations.
发明内容Summary of the invention
本发明的目的是提供一种基于电涡流效应的绝对式直线位移传感器,以实现高精度、高分辨力的绝对直线位移测量。The purpose of the present invention is to provide an absolute linear displacement sensor based on eddy current effect to achieve high-precision and high-resolution absolute linear displacement measurement.
本发明所述的第一种基于电涡流效应的绝对式直线位移传感器,包括定尺和动尺,动尺与定尺正对平行,且留有间隙;设定X方向为测量方向,平行于定尺且垂直于X方向为Y方向,垂直于定尺的方向为Z方向。The first absolute linear displacement sensor based on eddy current effect described in the present invention comprises a fixed scale and a movable scale, wherein the movable scale is parallel to the fixed scale with a gap therebetween; the X direction is set as the measuring direction, the direction parallel to the fixed scale and perpendicular to the X direction is the Y direction, and the direction perpendicular to the fixed scale is the Z direction.
所述定尺包括定尺基体以及嵌在该定尺基体上的相互绝缘的m个第一金属导体和n个第二金属导体,第一金属导体的形状和第二金属导体的形状均为中心对称图形。m个第一金属导体沿X方向等间隔排成第一行,形成第一涡流反射单元;n个第二金属导体沿X方向等间隔排成第二行,形成第二涡流反射单元;其中,m×W1=n×W2,W1表示第一涡流反射单元的节距(也是相邻两个第一金属导体在X方向的中心距),W2表示第二涡流反射单元的节距(也是相邻两个第二金属导体在X方向的中心距),m、n互为质数。The fixed length includes a fixed length base and m first metal conductors and n second metal conductors insulated from each other embedded on the fixed length base, and the shapes of the first metal conductors and the second metal conductors are both centrally symmetrical figures. The m first metal conductors are arranged in a first row at equal intervals along the X direction to form a first eddy current reflection unit; the n second metal conductors are arranged in a second row at equal intervals along the X direction to form a second eddy current reflection unit; wherein, m×W 1 =n×W 2 , W 1 represents the pitch of the first eddy current reflection unit (also the center distance between two adjacent first metal conductors in the X direction), W 2 represents the pitch of the second eddy current reflection unit (also the center distance between two adjacent second metal conductors in the X direction), and m and n are prime numbers to each other.
所述动尺包括动尺基体以及布置在动尺基体上的两个第一传感单元和两个第二传感单元。第一传感单元包括第一平面矩形螺旋激励线圈和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第一感应线圈组,第一感应线圈组位于第一平面矩形螺旋激励线圈内,两个第一传感单元沿X方向间隔排列且在Z方向与第一导磁单元正对,两个第一传感单元在X方向的中心距为两个第一传感单元与第一涡流反射单元构成第一测量通道。第二传感单元包括第二平面矩形螺旋激励线圈和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第二感应线圈组,第二感应线圈组位于第二平面矩形螺旋激励线圈内,两个第二传感单元沿X方向间隔排列且在Z方向与第二涡流反射单元正对,两个第二传感单元在X方向的中心距为两个第二传感单元与第二涡流反射单元构成第二测量通道;其中,i=0,1,2,3,...,j=0,1,2,3,...。The movable ruler comprises a movable ruler base and two first sensing units and two second sensing units arranged on the movable ruler base. The first sensing unit comprises a first planar rectangular spiral excitation coil and a first induction coil group formed by two planar rectangular spiral induction coils wound in opposite directions connected end to end in series, the first induction coil group is located inside the first planar rectangular spiral excitation coil, the two first sensing units are arranged at intervals along the X direction and face the first magnetic conductive unit in the Z direction, and the center distance between the two first sensing units in the X direction is The two first sensing units and the first eddy current reflection unit constitute a first measurement channel. The second sensing unit includes a second planar rectangular spiral excitation coil and a second induction coil group formed by two planar rectangular spiral induction coils wound in opposite directions connected end to end in series. The second induction coil group is located inside the second planar rectangular spiral excitation coil. The two second sensing units are arranged at intervals along the X direction and face the second eddy current reflection unit in the Z direction. The center distance between the two second sensing units in the X direction is The two second sensing units and the second eddy current reflection unit constitute a second measurement channel; wherein, i=0, 1, 2, 3, ..., j=0, 1, 2, 3, ...
两个第一平面矩形螺旋激励线圈首尾相接串联构成第一励磁单元,两个第二平面矩形螺旋激励线圈首尾相接串联构成第二励磁单元,第一励磁单元与第二励磁单元串联并通入交流激励电信号。当动尺相对定尺平行移动时,两个第一感应线圈组输出两路感应信号e1、e2,两个第二感应线圈组输出两路感应信号e3、e4,感应信号e1、e2、e3、e4经信号处理系统处理后得到动尺相对定尺的绝对直线位移值。Two first planar rectangular spiral excitation coils are connected end to end in series to form a first excitation unit, and two second planar rectangular spiral excitation coils are connected end to end in series to form a second excitation unit. The first excitation unit and the second excitation unit are connected in series and an AC excitation electric signal is passed. When the movable ruler moves parallel to the fixed ruler, the two first induction coil groups output two induction signals e 1 and e 2 , and the two second induction coil groups output two induction signals e 3 and e 4. After the induction signals e 1 , e 2 , e 3 , and e 4 are processed by the signal processing system, the absolute linear displacement value of the movable ruler relative to the fixed ruler is obtained.
优选的,所述第一金属导体的形状为平行四边形或者椭圆形;所述第二金属导体的形状为平行四边形或者椭圆形。Preferably, the shape of the first metal conductor is a parallelogram or an ellipse; the shape of the second metal conductor is a parallelogram or an ellipse.
优选的,所述第一平面矩形螺旋激励线圈中的相邻两匝线圈在X方向的间距相等(即第一平面矩形螺旋激励线圈在X方向等间距均匀绕制),第一平面矩形螺旋激励线圈在X方向的长度L1满足:L1>W1;所述第一感应线圈组的两个绕向相反的平面矩形螺旋感应线圈中的相邻两匝线圈在X方向的间距相等(即两个绕向相反的平面矩形螺旋感应线圈在X方向等间距均匀绕制)。所述第二平面矩形螺旋激励线圈中的相邻两匝线圈在X方向的间距相等(即第二平面矩形螺旋激励线圈在X方向等间距均匀绕制),第二平面矩形螺旋激励线圈在X方向的长度L2满足:L2>W2;所述第二感应线圈组的两个绕向相反的平面矩形螺旋感应线圈中的相邻两匝线圈在X方向的间距相等(即两个绕向相反的平面矩形螺旋感应线圈在X方向等间距均匀绕制)。Preferably, the spacing between two adjacent turns of the first planar rectangular spiral excitation coil in the X direction is equal (that is, the first planar rectangular spiral excitation coil is evenly wound with equal spacing in the X direction), and the length L 1 of the first planar rectangular spiral excitation coil in the X direction satisfies: L 1 >W 1 ; the spacing between two adjacent turns of the two planar rectangular spiral induction coils with opposite winding directions of the first induction coil group in the X direction is equal (that is, the two planar rectangular spiral induction coils with opposite winding directions are evenly wound with equal spacing in the X direction). The spacing between two adjacent turns of the second planar rectangular spiral excitation coil in the X direction is equal (that is, the second planar rectangular spiral excitation coil is evenly wound with equal spacing in the X direction), and the length L 2 of the second planar rectangular spiral excitation coil in the X direction satisfies: L 2 >W 2 ; the spacing between two adjacent turns of the two planar rectangular spiral induction coils with opposite winding directions of the second induction coil group in the X direction is equal (that is, the two planar rectangular spiral induction coils with opposite winding directions are evenly wound with equal spacing in the X direction).
本发明所述的第二种基于电涡流效应的绝对式直线位移传感器,包括定尺和动尺,动尺与定尺正对平行,且留有间隙;设定X方向为测量方向,平行于定尺且垂直于X方向为Y方向,垂直于定尺的方向为Z方向。The second absolute linear displacement sensor based on eddy current effect described in the present invention comprises a fixed scale and a movable scale, wherein the movable scale is parallel to the fixed scale with a gap therebetween; the X direction is set as the measuring direction, the direction parallel to the fixed scale and perpendicular to the X direction is the Y direction, and the direction perpendicular to the fixed scale is the Z direction.
所述定尺包括定尺基体以及嵌在该定尺基体上的第一涡流反射单元和第二涡流反射单元,第一涡流反射单元由相同的两个正弦形第一金属导体沿Y方向间隔排列构成,正弦形第一金属导体的周期为W1、周期个数为m,两个正弦形第一金属导体在Y方向的中心距为Wy,第二涡流反射单元由相互绝缘的n个第二金属导体沿X方向等间隔排成一行构成,第二金属导体的形状为中心对称图形;其中,m×W1=n×W2,W2表示第二涡流反射单元的节距(也是相邻两个第二金属导体在X方向的中心距),m、n互为质数。The fixed-length substrate includes a fixed-length substrate and a first eddy current reflection unit and a second eddy current reflection unit embedded in the fixed-length substrate. The first eddy current reflection unit is composed of two identical sinusoidal first metal conductors arranged at intervals along the Y direction. The period of the sinusoidal first metal conductor is W 1 , the number of periods is m, and the center distance between the two sinusoidal first metal conductors in the Y direction is W y . The second eddy current reflection unit is composed of n mutually insulated second metal conductors arranged in a row at equal intervals along the X direction, and the shape of the second metal conductor is a centrally symmetrical figure. Among them, m×W 1 =n×W 2 , W 2 represents the pitch of the second eddy current reflection unit (also the center distance between two adjacent second metal conductors in the X direction), and m and n are prime numbers to each other.
所述动尺包括动尺基体以及布置在动尺基体上的两个第一传感单元和两个第二传感单元。第一传感单元包括第一平面矩形螺旋激励线圈和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第一感应线圈组,第一感应线圈组位于第一平面矩形螺旋激励线圈内,两个第一传感单元沿X方向间隔排列,且在Y方向错开且在Z方向与第一涡流反射单元正对,两个第一传感单元与第一涡流反射单元构成第一测量通道。第二传感单元包括第二平面矩形螺旋激励线圈和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第二感应线圈组,第二感应线圈组位于第二平面矩形螺旋激励线圈内,两个第二传感单元沿X方向间隔排列且在Z方向与第二涡流反射单元正对,两个第二传感单元在X方向的中心距为两个第二传感单元与第二涡流反射单元构成第二测量通道。其中,j=0,1,2,3,...。The movable ruler comprises a movable ruler base and two first sensing units and two second sensing units arranged on the movable ruler base. The first sensing unit comprises a first planar rectangular spiral excitation coil and a first induction coil group formed by connecting two planar rectangular spiral induction coils in opposite directions end to end in series, the first induction coil group is located inside the first planar rectangular spiral excitation coil, and the two first sensing units are arranged at intervals along the X direction and staggered in the Y direction. The first sensing unit and the second sensing unit are arranged in the X direction and face the first eddy current reflection unit in the Z direction. The two first sensing units and the first eddy current reflection unit form a first measurement channel. The second sensing unit includes a second planar rectangular spiral excitation coil and a second induction coil group formed by two planar rectangular spiral induction coils wound in opposite directions connected end to end in series. The second induction coil group is located in the second planar rectangular spiral excitation coil. The two second sensing units are arranged at intervals along the X direction and face the second eddy current reflection unit in the Z direction. The center distance between the two second sensing units in the X direction is The two second sensing units and the second eddy current reflection unit form a second measurement channel. Wherein, j = 0, 1, 2, 3, . . .
两个第一平面矩形螺旋激励线圈首尾相接串联构成第一励磁单元,两个第二平面矩形螺旋激励线圈首尾相接串联构成第二励磁单元,第一励磁单元与第二励磁单元串联并通入交流激励电信号。当动尺相对定尺平行移动时,两个第一感应线圈组输出两路感应信号e1、e2,两个第二感应线圈组输出两路感应信号e3、e4,感应信号e1、e2、e3、e4经信号处理系统处理后得到动尺相对定尺的绝对直线位移值。Two first planar rectangular spiral excitation coils are connected end to end in series to form a first excitation unit, and two second planar rectangular spiral excitation coils are connected end to end in series to form a second excitation unit. The first excitation unit and the second excitation unit are connected in series and an AC excitation electric signal is passed. When the movable ruler moves parallel to the fixed ruler, the two first induction coil groups output two induction signals e 1 and e 2 , and the two second induction coil groups output two induction signals e 3 and e 4. After the induction signals e 1 , e 2 , e 3 , and e 4 are processed by the signal processing system, the absolute linear displacement value of the movable ruler relative to the fixed ruler is obtained.
优选的,所述第二金属导体的形状为平行四边形或者椭圆形。Preferably, the second metal conductor is in the shape of a parallelogram or an ellipse.
优选的,所述第一平面矩形螺旋激励线圈中的相邻两匝线圈在X方向的间距相等、在Y方向的间距相等(即第一平面矩形螺旋激励线圈在X方向、Y方向都等间距均匀绕制),第一平面矩形螺旋激励线圈在Y方向的宽度L1满足:L1>Wy;所述第一感应线圈组的两个绕向相反的平面矩形螺旋感应线圈中的相邻两匝线圈在X方向的间距相等、在Y方向的间距相等(即两个绕向相反的平面矩形螺旋感应线圈在X方向、Y方向都等间距均匀绕制)。所述第二平面矩形螺旋激励线圈中的相邻两匝线圈沿X方向的间距相等,第二平面矩形螺旋激励线圈在X方向的长度L2满足:L2>W2;所述第二感应线圈组的两个绕向相反的平面矩形螺旋感应线圈中的相邻两匝线圈在X方向的间距相等(即两个绕向相反的平面矩形螺旋感应线圈在X方向等间距均匀绕制)。Preferably, the spacing between two adjacent turns of the first planar rectangular spiral excitation coil in the X direction is equal, and the spacing in the Y direction is equal (that is, the first planar rectangular spiral excitation coil is evenly wound with equal spacing in the X direction and the Y direction), and the width L 1 of the first planar rectangular spiral excitation coil in the Y direction satisfies: L 1 >W y ; the spacing between two adjacent turns of the two planar rectangular spiral induction coils with opposite winding directions of the first induction coil group is equal in the X direction and the Y direction (that is, the two planar rectangular spiral induction coils with opposite winding directions are evenly wound with equal spacing in the X direction and the Y direction). The spacing between two adjacent turns of the second planar rectangular spiral excitation coil along the X direction is equal, and the length L 2 of the second planar rectangular spiral excitation coil in the X direction satisfies: L 2 >W 2 ; the spacing between two adjacent turns of the two planar rectangular spiral induction coils with opposite winding directions of the second induction coil group in the X direction is equal (that is, the two planar rectangular spiral induction coils with opposite winding directions are evenly wound with equal spacing in the X direction).
本发明所述的第三种基于电涡流效应的绝对式直线位移传感器,包括定尺和动尺,动尺与定尺正对平行,且留有间隙;设定X方向为测量方向,平行于定尺且垂直于X方向为Y方向,垂直于定尺的方向为Z方向。The third absolute linear displacement sensor based on eddy current effect described in the present invention comprises a fixed scale and a movable scale, wherein the movable scale is parallel to the fixed scale with a gap therebetween; the X direction is set as the measuring direction, the direction parallel to the fixed scale and perpendicular to the X direction is the Y direction, and the direction perpendicular to the fixed scale is the Z direction.
所述定尺包括定尺基体以及嵌在该定尺基体上的相互绝缘的m个第一金属导体和2n个第二金属导体,第一金属导体的形状和第二金属导体的形状均为中心对称图形。m个第一金属导体沿X方向等间隔排成第一行,形成第一涡流反射单元。其中n个第二金属导体沿X方向等间隔排成第二行,形成第二涡流反射单元;剩余n个第二金属导体沿X方向等间隔排成第三行,形成第三涡流反射单元,第三涡流反射单元的起始位置与第二涡流反射单元的起始位置在X方向错开其中,m×W1=n×W2,W1表示第一涡流反射单元的节距(也是相邻两个第一金属导体在X方向的中心距),W2表示第二、第三涡流反射单元的节距(也是相邻两个第二金属导体在X方向的中心距),m、n互为质数。The fixed length includes a fixed length base and m first metal conductors and 2n second metal conductors insulated from each other embedded on the fixed length base, and the shapes of the first metal conductors and the second metal conductors are both centrally symmetrical figures. The m first metal conductors are arranged in a first row at equal intervals along the X direction to form a first eddy current reflection unit. Among them, n second metal conductors are arranged in a second row at equal intervals along the X direction to form a second eddy current reflection unit; the remaining n second metal conductors are arranged in a third row at equal intervals along the X direction to form a third eddy current reflection unit, and the starting position of the third eddy current reflection unit is staggered from the starting position of the second eddy current reflection unit in the X direction. Wherein, m×W 1 =n×W 2 , W 1 represents the pitch of the first eddy current reflection unit (also the center distance between two adjacent first metal conductors in the X direction), W 2 represents the pitch of the second and third eddy current reflection units (also the center distance between two adjacent second metal conductors in the X direction), and m and n are prime numbers to each other.
所述动尺包括动尺基体以及布置在动尺基体上的两个第一传感单元和四个第二传感单元;第一传感单元包括第一平面矩形螺旋激励线圈和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第一感应线圈组,第一感应线圈组位于第一平面矩形螺旋激励线圈内,两个第一传感单元沿X方向间隔排列且在Z方向与第一涡流反射单元正对,两个第一传感单元在X方向的中心距为两个第一传感单元与第一涡流反射单元构成第一测量通道。第二传感单元包括第二平面矩形螺旋激励线圈和位于第二平面矩形螺旋激励线圈内的两个平面矩形螺旋感应线圈;其中两个第二传感单元沿X方向间隔排列且在Z方向与第二涡流反射单元正对,该两个第二传感单元在X方向的中心距为剩余两个第二传感单元沿X方向间隔排列且在Z方向与第三涡流反射单元正对,该两个第二传感单元在X方向的中心距为四个第二传感单元与第二涡流反射单元、第三涡流反射单元构成第二测量通道。正对于第二涡流反射单元的两个第二传感单元的起始位置与正对于第三涡流反射单元的两个第二传感单元的起始位置在X方向错开在X方向错开的其中两个第二传感单元中的四个平面矩形螺旋感应线圈首尾相接串联形成感应单元Ⅰ,在X方向错开的剩余两个第二传感单元中的四个平面矩形螺旋感应线圈首尾相接串联形成感应单元Ⅱ;其中,i=0,1,2,3,...,j=0,1,2,3,...。The movable ruler comprises a movable ruler base body and two first sensing units and four second sensing units arranged on the movable ruler base body; the first sensing unit comprises a first planar rectangular spiral excitation coil and a first induction coil group formed by two planar rectangular spiral induction coils wound in opposite directions connected end to end in series, the first induction coil group is located inside the first planar rectangular spiral excitation coil, the two first sensing units are arranged at intervals along the X direction and face the first eddy current reflection unit in the Z direction, and the center distance between the two first sensing units in the X direction is The two first sensing units and the first eddy current reflection unit constitute a first measurement channel. The second sensing unit includes a second planar rectangular spiral excitation coil and two planar rectangular spiral induction coils located inside the second planar rectangular spiral excitation coil; wherein the two second sensing units are arranged at intervals along the X direction and face the second eddy current reflection unit in the Z direction, and the center distance between the two second sensing units in the X direction is The remaining two second sensing units are arranged at intervals along the X direction and face the third eddy current reflection unit in the Z direction. The center distance between the two second sensing units in the X direction is The four second sensing units and the second eddy current reflection unit and the third eddy current reflection unit form a second measurement channel. The starting positions of the two second sensing units facing the second eddy current reflection unit and the starting positions of the two second sensing units facing the third eddy current reflection unit are staggered in the X direction. Staggered in X direction The four planar rectangular spiral induction coils in two of the second sensing units are connected end to end in series to form a sensing unit I, which is staggered in the X direction. The four planar rectangular spiral induction coils in the remaining two second sensing units are connected end to end in series to form a sensing unit II; wherein i=0,1,2,3,..., j=0,1,2,3,...
两个第一平面矩形螺旋激励线圈首尾相接串联构成第一励磁单元,两个第二平面矩形螺旋激励线圈首尾相接串联构成第二励磁单元,第一励磁单元与第二励磁单元串联并通入交流激励电信号。当动尺相对定尺平行移动时,两个第一感应线圈组输出两路感应信号e1、e2,感应单元Ⅰ输出感应信号e3,感应单元Ⅱ输出感应信号e4,感应信号e1、e2、e3、e4经信号处理系统处理后得到动尺相对定尺的绝对直线位移值。Two first planar rectangular spiral excitation coils are connected end to end in series to form a first excitation unit, and two second planar rectangular spiral excitation coils are connected end to end in series to form a second excitation unit. The first excitation unit and the second excitation unit are connected in series and an AC excitation signal is input. When the movable ruler moves parallel to the fixed ruler, the two first induction coil groups output two induction signals e1 and e2 , the induction unit I outputs an induction signal e3 , and the induction unit II outputs an induction signal e4 . After the induction signals e1 , e2 , e3 , and e4 are processed by the signal processing system, the absolute linear displacement value of the movable ruler relative to the fixed ruler is obtained.
优选的,所述第一金属导体的形状为平行四边形或者椭圆形;所述第二金属导体的形状为平行四边形或者椭圆形。Preferably, the shape of the first metal conductor is a parallelogram or an ellipse; the shape of the second metal conductor is a parallelogram or an ellipse.
优选的,所述第一平面矩形螺旋激励线圈中的相邻两匝线圈在X方向的间距相等(即第一平面矩形螺旋激励线圈在X方向等间距均匀绕制),第一平面矩形螺旋激励线圈在X方向的长度L1满足:L1>W1;所述第一感应线圈组的两个绕向相反的平面矩形螺旋感应线圈中的相邻两匝线圈在X方向的间距相等(即两个绕向相反的平面矩形螺旋感应线圈在X方向等间距均匀绕制)。所述第二平面矩形螺旋激励线圈中的相邻两匝线圈在X方向的间距相等(即第二平面矩形螺旋激励线圈在X方向等间距均匀绕制),第二平面矩形螺旋激励线圈在X方向的长度L2满足:L2>W2;所述感应单元Ⅰ、感应单元Ⅱ的各个平面矩形螺旋感应线圈中的相邻两匝线圈在X方向的间距相等(即平面矩形螺旋感应线圈在X方向等间距均匀绕制)。Preferably, the spacing between two adjacent turns of the first planar rectangular spiral excitation coil in the X direction is equal (that is, the first planar rectangular spiral excitation coil is evenly wound with equal spacing in the X direction), and the length L 1 of the first planar rectangular spiral excitation coil in the X direction satisfies: L 1 > W 1 ; the spacing between two adjacent turns of the two planar rectangular spiral induction coils with opposite winding directions of the first induction coil group in the X direction is equal (that is, the two planar rectangular spiral induction coils with opposite winding directions are evenly wound with equal spacing in the X direction). The spacing between two adjacent turns of the second planar rectangular spiral excitation coil in the X direction is equal (that is, the second planar rectangular spiral excitation coil is evenly wound with equal spacing in the X direction), and the length L 2 of the second planar rectangular spiral excitation coil in the X direction satisfies: L 2 > W 2 ; the spacing between two adjacent turns of the planar rectangular spiral induction coils of the induction unit I and the induction unit II in the X direction is equal (that is, the planar rectangular spiral induction coils are evenly wound with equal spacing in the X direction).
优选的,信号处理系统对感应信号e1、e2、e3、e4进行处理得到动尺相对定尺的绝对直线位移值的具体方式包括:Preferably, the specific manner in which the signal processing system processes the sensing signals e 1 , e 2 , e 3 , and e 4 to obtain the absolute linear displacement value of the movable ruler relative to the fixed ruler includes:
对感应信号e3与感应信号e4相除的结果进行反正切运算,得到精测直线位移值;Perform an inverse tangent operation on the result of dividing the sensing signal e3 by the sensing signal e4 to obtain the precise linear displacement value;
对感应信号e1与感应信号e2相除的结果进行鉴相,得到第一相位;对感应信号e3与感应信号e4相除的结果进行鉴相,得到第二相位;将第一相位与第二相位相减,得到相位差 The result of dividing the induction signal e1 by the induction signal e2 is phase-detected to obtain the first phase; the result of dividing the induction signal e3 by the induction signal e4 is phase-detected to obtain the second phase; the first phase is subtracted from the second phase to obtain the phase difference
利用传感器的量程Lmax、第二涡流反射单元的节距W2以及相位差进行对极定位计算,得到粗测对极位置值;Using the sensor range Lmax , the pitch W2 of the second eddy current reflection unit and the phase difference Perform pole location calculation to obtain a rough pole position value;
将精测直线位移值与粗测对极位置值相加,得到动尺相对定尺的绝对直线位移值。The absolute linear displacement value of the movable ruler relative to the fixed ruler is obtained by adding the precisely measured linear displacement value and the roughly measured antipodal position value.
本发明与现有技术相比,具有如下效果:Compared with the prior art, the present invention has the following effects:
(1)采用单边引线,只从动尺的激励线圈和感应线圈引线,简化了传感器结构,采用高频励磁条件下的涡流栅阵列,磁场的产生和消逝仅在局部范围内,减小了传感器加工带来的误差影响,能耗低,抗干扰能力大幅提高,实现了高精度、高分辨力的直线位移测量。(1) The sensor structure is simplified by using single-sided leads and only the excitation coil and induction coil of the moving ruler. The eddy current grid array under high-frequency excitation conditions is used, and the generation and disappearance of the magnetic field is only within a local range, which reduces the error caused by sensor processing, has low energy consumption, and greatly improves the anti-interference ability, thus achieving high-precision and high-resolution linear displacement measurement.
(2)利用两个第一传感单元与第一涡流反射单元构成第一测量通道,两个第二传感单元与第二涡流反射单元构成第二测量通道,两路测量通道实现了绝对直线位移测量,进而实现了高精度、高分辨力的绝对直线位移测量。(2) Two first sensing units and a first eddy current reflection unit constitute a first measurement channel, and two second sensing units and a second eddy current reflection unit constitute a second measurement channel. The two measurement channels realize absolute linear displacement measurement, thereby realizing high-precision and high-resolution absolute linear displacement measurement.
(3)测量需要节距较大的涡流反射单元时,采用两个正弦形金属导体构成第一涡流反射单元,并且两个第一传感单元通过在Y方向错开的方式实现了在X方向错开的效果,利用与测量方向垂直方向的空间进行编码,弥补了测量方向大量程编码与局部解码的矛盾,减小了动尺的尺寸,能实现量程相同但体积更小的传感器设计。(3) When the measurement requires an eddy current reflection unit with a larger pitch, two sinusoidal metal conductors are used to form the first eddy current reflection unit, and the two first sensing units are staggered in the Y direction. The staggered position in the X direction is achieved by The effect is achieved by using the space perpendicular to the measuring direction for encoding, which makes up for the contradiction between large-range encoding and local decoding in the measuring direction, reduces the size of the moving ruler, and can realize the design of a sensor with the same range but smaller size.
(4)利用四个第二传感单元与第二涡流反射单元、第三涡流反射单元构成第二测量通道,第二涡流反射单元与第三涡流反射单元沿X方向错开对应的两两第二传感单元也沿X方向错开但其中四个平面矩形螺旋感应线圈首尾相接串联形成感应单元Ⅰ,四个平面矩形螺旋感应线圈首尾相接串联形成感应单元Ⅱ,感应单元Ⅰ输出感应信号e3,感应单元Ⅱ输出感应信号e4,增强了感应信号的强度,更有利于绝对直线位移测量,能得到更为精确的绝对直线位移值。(4) The second measuring channel is formed by using four second sensing units, a second eddy current reflection unit and a third eddy current reflection unit. The second eddy current reflection unit and the third eddy current reflection unit are staggered along the X direction. The corresponding second sensing units are also staggered along the X direction. However, four planar rectangular spiral induction coils are connected end to end in series to form induction unit I, and four planar rectangular spiral induction coils are connected end to end in series to form induction unit II. Induction unit I outputs induction signal e 3 , and induction unit II outputs induction signal e 4 , which enhances the strength of the induction signal, is more conducive to absolute linear displacement measurement, and can obtain more accurate absolute linear displacement values.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为实施例1中动尺与定尺的相对位置关系示意图。FIG. 1 is a schematic diagram showing the relative position relationship between the movable scale and the fixed scale in Embodiment 1. FIG.
图2为实施例1中定尺的结构示意图。FIG. 2 is a schematic diagram of the structure of the sizing in Example 1.
图3为实施例1中动尺的结构示意图。FIG. 3 is a schematic structural diagram of the movable ruler in Example 1.
图4为实施例1中动尺与定尺的耦合示意图。FIG. 4 is a schematic diagram of the coupling between the movable scale and the fixed scale in Example 1.
图5为实施例2中定尺的结构示意图FIG. 5 is a schematic diagram of the structure of the fixed length in Example 2
图6为实施例2中动尺的结构示意图。FIG. 6 is a schematic structural diagram of the movable ruler in
图7为实施例2中动尺与定尺的耦合示意图。FIG. 7 is a schematic diagram of the coupling between the movable scale and the fixed scale in Example 2.
图8为实施例3中定尺的结构示意图。FIG8 is a schematic diagram of the structure of the sizing in Example 3.
图9为实施例3中动尺的结构示意图。FIG. 9 is a schematic diagram of the structure of the movable ruler in Example 3.
图10为实施例3中动尺与定尺的耦合示意图。FIG. 10 is a schematic diagram of the coupling between the movable scale and the fixed scale in Example 3.
具体实施方式DETAILED DESCRIPTION
实施例1:如图1至图4所示的基于电涡流效应的绝对式直线位移传感器,包括定尺1和动尺2。设定X方向为测量方向,平行于定尺1且垂直于X方向为Y方向,垂直于定尺1的方向为Z方向。定尺1与动尺2在Z方向正对平行,且留有0.5mm间隙。Embodiment 1: The absolute linear displacement sensor based on the eddy current effect as shown in FIGS. 1 to 4 includes a fixed ruler 1 and a
如图2、图4所示,定尺1包括定尺基体10以及嵌在该定尺基体10上的相互绝缘的31(即m=31)个第一金属导体11和55(即n=55)个第二金属导体12。第一金属导体11的形状为矩形,第二金属导体12的形状为矩形。31个第一金属导体11沿X方向等间隔排成第一行,形成第一涡流反射单元;55个第二金属导体12沿X方向等间隔排成第二行,形成第二涡流反射单元,第二涡流反射单元的起始位置与第一涡流反射单元的起始位置在X方向对齐。第一涡流反射单元的节距(也是相邻两个第一金属导体11在X方向的中心距)W1=7.096mm,第二涡流反射单元的节距(也是相邻两个第二金属导体12在X方向的中心距)W2=4mm,传感器的量程Lmax=55×W2=220mm。As shown in FIG. 2 and FIG. 4 , the fixed length 1 includes a fixed
如图3、图4所示,动尺2包括动尺基体20以及布置在动尺基体20上的两个第一传感单元和两个第二传感单元。As shown in FIG. 3 and FIG. 4 , the moving
第一传感单元包括第一平面矩形螺旋激励线圈21和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第一感应线圈组22,第一感应线圈组22位于第一平面矩形螺旋激励线圈21内。第一平面矩形螺旋激励线圈21在X方向和Y方向都等间距均匀绕制,第一平面矩形螺旋激励线圈21在X方向的长度L1大于第一涡流反射单元的节距W1>,第一传感单元在X方向的长度也是L1,第一平面矩形螺旋激励线圈21在Y方向的宽度(也等于第一传感单元在Y方向的宽度)稍小于第一金属导体11在Y方向的宽度,第一感应线圈组22在X方向的长度为第一感应线圈组22在Y方向的宽度为第一传感单元在Y方向的宽度的第一感应线圈组22的两个绕向相反的平面矩形螺旋感应线圈在X方向和Y方向都等间距均匀绕制。两个第一传感单元沿X方向间隔排列且在Z方向与第一涡流反射单元正对,两个第一传感单元在X方向的中心距为两个第一传感单元的起始位置在Y方向对齐,两个第一传感单元与第一涡流反射单元构成第一测量通道。The first sensing unit includes a first planar rectangular
第二传感单元包括第二平面矩形螺旋激励线圈23和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第二感应线圈组24,第二感应线圈组24位于第二平面矩形螺旋激励线圈23内。第二平面矩形螺旋激励线圈23在X方向和Y方向都等间距均匀绕制,第二平面矩形螺旋激励线圈23在X方向的长度L2大于第二涡流反射单元的节距W2,第二传感单元在X方向的长度也是L2,第二平面矩形螺旋激励线圈23在Y方向的宽度(也等于第二传感单元在Y方向的宽度)稍小于第二金属导体12在Y方向的宽度,第二感应线圈组24在X方向的长度为第二感应线圈组24在Y方向的宽度为第二传感单元在Y方向的宽度的第二感应线圈组24的两个绕向相反的平面矩形螺旋感应线圈在X方向和Y方向都等间距均匀绕制。两个第二传感单元沿X方向间隔排列且在Z方向与第二涡流反射单元正对,两个第二传感单元在X方向的中心距为两个第二传感单元的起始位置在Y方向对齐,两个第二传感单元与第二涡流反射单元构成第二测量通道。第一个第二传感单元的起始位置与第一个第一传感单元的起始位置在X方向对齐。The second sensing unit includes a second planar rectangular
两个第一平面矩形螺旋激励线圈21首尾相接串联构成第一励磁单元,两个第二平面矩形螺旋激励线圈23首尾相接串联构成第二励磁单元,第一励磁单元与第二励磁单元串联并通入交流激励电信号,在空间中形成交变磁场,第一涡流反射单元和第二涡流反射单元中均将产生电涡流,在空间中形成新的交变磁场。当动尺2相对定尺1平行移动时,两个第一感应线圈组22输出两路感应信号e1、e2,两个第二感应线圈组24输出两路感应信号e3、e4。其中,Two first planar rectangular spiral excitation coils 21 are connected end to end in series to form a first excitation unit, and two second planar rectangular spiral excitation coils 23 are connected end to end in series to form a second excitation unit. The first excitation unit and the second excitation unit are connected in series and an AC excitation electric signal is introduced to form an alternating magnetic field in space. Eddy currents will be generated in the first eddy current reflection unit and the second eddy current reflection unit to form a new alternating magnetic field in space. When the
信号处理系统对感应信号e1、e2、e3、e4进行处理,得到动尺2相对定尺1的绝对直线位移值。具体方式包括:The signal processing system processes the sensing signals e 1 , e 2 , e 3 , and e 4 to obtain the absolute linear displacement value of the
对感应信号e3与感应信号e4相除的结果进行反正切运算,得到精测直线位移值x′:Perform an inverse tangent operation on the result of dividing the induction signal e3 by the induction signal e4 to obtain the precise linear displacement value x′:
将感应信号e1与感应信号e2相除的结果(即)进行鉴相,得到第一相位。The result of dividing the sensing signal e1 by the sensing signal e2 (i.e. ) performs phase detection to obtain the first phase.
将感应信号e3与感应信号e4相除的结果(即)进行鉴相,得到第二相位。The result of dividing the sensing signal e3 by the sensing signal e4 (i.e. ) is used for phase detection to obtain the second phase.
将第一相位与第二相位相减,得到相位差 Subtract the first phase from the second phase to get the phase difference
利用公式: Using the formula:
计算上电后第二测量通道的当前绝对位移所包含的最大周期数n2。其中,Lmax表示传感器的量程,Lmax为已知参数,表示对向下取整。Calculate the maximum number of cycles n 2 contained in the current absolute displacement of the second measurement channel after power-on. Where L max represents the range of the sensor, L max is a known parameter, Express Round down.
利用公式:x"=n2*W2(7)Using the formula: x"=n 2 *W 2 (7)
计算粗测对极位置值x"。Calculate the rough measured pole position value x".
利用公式:Using the formula:
x=x′+x"(8)x=x′+x"(8)
计算得到动尺2相对定尺1的绝对直线位移值x。The absolute linear displacement value x of the
实施例2:如图5至图7所示的基于电涡流效应的绝对式直线位移传感器,其部分结构以及信号处理方式与实施例1相同,不同之处在于:Embodiment 2: The absolute linear displacement sensor based on eddy current effect as shown in FIGS. 5 to 7 has the same structure and signal processing method as that of Embodiment 1, except that:
如图5、图7所示,定尺1包括定尺基体10以及嵌在该定尺基体10上的第一涡流反射单元和第二涡流反射单元。第一涡流反射单元由相同的两个正弦形第一金属导体11沿Y方向间隔排列构成,正弦形第一金属导体11的周期为W1=73.3mm、周期个数为3(即m=3),两个正弦形第一金属导体11在Y方向的中心距为Wy=4mm。第二涡流反射单元由相互绝缘的55(即n=55)个第二金属导体12沿X方向等间隔排成一行构成,第二金属导体12的形状为矩形。第二涡流反射单元的起始位置与第一涡流反射单元的起始位置在X方向对齐。第二涡流反射单元的节距(也是相邻两个第二金属导体12在X方向的中心距)W2=4mm。As shown in Fig. 5 and Fig. 7, the fixed length 1 includes a fixed
如图6、图7所示,动尺2包括动尺基体20以及布置在动尺基体20上的两个第一传感单元和两个第二传感单元。As shown in FIG. 6 and FIG. 7 , the moving
第一传感单元包括第一平面矩形螺旋激励线圈21和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第一感应线圈组22,第一感应线圈组22位于第一平面矩形螺旋激励线圈21内。第一平面矩形螺旋激励线圈21在X方向和Y方向都等间距均匀绕制,第一平面矩形螺旋激励线圈21在Y方向的宽度L1大于两个正弦形第一金属导体11在Y方向的中心距Wy,第一传感单元在Y方向的宽度也是L1,第一平面矩形螺旋激励线圈21在X方向的长度(也等于第一传感单元在X方向的长度)小于第一感应线圈组22在Y方向的宽度为第一感应线圈组22在X方向的长度为第一传感单元在X方向的长度的第一感应线圈组22的两个绕向相反的平面矩形螺旋感应线圈中的相邻两匝线圈在X方向和Y方向都等间距均匀绕制。两个第一传感单元沿X方向间隔排列,且在Y方向错开且在Z方向与第一涡流反射单元正对,两个第一传感单元与第一涡流反射单元构成第一测量通道。The first sensing unit includes a first planar rectangular
第二传感单元包括第二平面矩形螺旋激励线圈23和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第二感应线圈组24,第二感应线圈组24位于第二平面矩形螺旋激励线圈23内。第二平面矩形螺旋激励线圈23在X方向和Y方向都等间距均匀绕制,第二平面矩形螺旋激励线圈23在X方向的长度L2大于第二涡流反射单元的节距W2,第二传感单元在X方向的长度也是L2,第二平面矩形螺旋激励线圈23在Y方向的宽度(也等于第二传感单元在Y方向的宽度)稍小于第二金属导体12在Y方向的宽度,第二感应线圈组24在X方向的长度为第二感应线圈组24在Y方向的宽度为第二传感单元在Y方向的宽度的第二感应线圈组24的两个绕向相反的平面矩形螺旋感应线圈在X方向和Y方向都等间距均匀绕制。两个第二传感单元沿X方向间隔排列且在Z方向与第二涡流反射单元正对,两个第二传感单元在X方向的中心距为两个第二传感单元的起始位置在Y方向对齐,两个第二传感单元与第二涡流反射单元构成第二测量通道。第一个第二传感单元的起始位置与第一个第一传感单元的起始位置在X方向对齐。The second sensing unit includes a second planar rectangular
实施例3:如图8至图10所示的基于电涡流效应的绝对式直线位移传感器,其部分结构以及信号处理方式与实施例1相同,不同之处在于:Embodiment 3: As shown in FIGS. 8 to 10 , the absolute linear displacement sensor based on the eddy current effect has the same structure and signal processing method as that of Embodiment 1, except that:
如图8、图10所示,定尺1包括定尺基体10以及嵌在该定尺基体10上的相互绝缘的31(即m=31)个第一金属导体11和110(即n=55)个第二金属导体12。第一金属导体11的形状为矩形,第二金属导体12的形状为矩形。31个第一金属导体11沿X方向等间隔排成第一行,形成第一涡流反射单元。其中55个第二金属导体12沿X方向等间隔排成第二行,形成第二涡流反射单元;剩余55个第二金属导体12沿X方向等间隔排成第三行,形成第三涡流反射单元。第三涡流反射单元的起始位置与第一涡流反射单元的起始位置在X方向对齐,第三涡流反射单元的起始位置与第二涡流反射单元的起始位置在X方向错开第一涡流反射单元的节距(也是相邻两个第一金属导体11在X方向的中心距)W1=7.096mm,第二、第三涡流反射单元的节距(也是相邻两个第二金属导体12在X方向的中心距)W2=4mm。As shown in Figures 8 and 10, the fixed-length 1 includes a fixed-
如图9、图10所示,动尺2包括动尺基体20以及布置在动尺基体20上的两个第一传感单元和四个第二传感单元。As shown in FIG. 9 and FIG. 10 , the moving
第一传感单元包括第一平面矩形螺旋激励线圈21和由两个绕向相反的平面矩形螺旋感应线圈首尾相接串联构成的第一感应线圈组22,第一感应线圈组22位于第一平面矩形螺旋激励线圈21内。第一平面矩形螺旋激励线圈21在X方向和Y方向都等间距均匀绕制,第一平面矩形螺旋激励线圈21在X方向的长度L1大于第一涡流反射单元的节距W1,第一传感单元在X方向的长度也是L1,第一平面矩形螺旋激励线圈21在Y方向的宽度(也等于第一传感单元在Y方向的宽度)稍小于第一金属导体11在Y方向的宽度,第一感应线圈组22在X方向的长度为第一感应线圈组22在Y方向的宽度为第一传感单元在Y方向的宽度的第一感应线圈组22的两个绕向相反的平面矩形螺旋感应线圈在X方向和Y方向都等间距均匀绕制。两个第一传感单元沿X方向间隔排列且在Z方向与第一涡流反射单元正对,两个第一传感单元在X方向的中心距为两个第一传感单元的起始位置在Y方向对齐,两个第一传感单元与第一涡流反射单元构成第一测量通道。The first sensing unit includes a first planar rectangular
第二传感单元包括第二平面矩形螺旋激励线圈23和位于第二平面矩形螺旋激励线圈23内的两个平面矩形螺旋感应线圈。第二平面矩形螺旋激励线圈23在X方向和Y方向都等间距均匀绕制,第二平面矩形螺旋激励线圈23在X方向的长度L2大于第二涡流反射单元的节距W2,第二传感单元在X方向的长度也是L2,第二平面矩形螺旋激励线圈23在Y方向的宽度(也等于第二传感单元在Y方向的宽度)稍小于第二金属导体12在Y方向的宽度,两个平面矩形螺旋感应线圈在X方向的长度为两个平面矩形螺旋感应线圈在Y方向的宽度为第二传感单元在Y方向的宽度的八个平面矩形螺旋感应线圈在X方向和Y方向都等间距均匀绕制。其中两个第二传感单元沿X方向间隔排列且在Z方向与第二涡流反射单元正对,该两个第二传感单元在X方向的中心距为剩余两个第二传感单元沿X方向间隔排列且在Z方向与第三涡流反射单元正对,该两个第二传感单元在X方向的中心距为四个第二传感单元与第二、第三涡流反射单元构成第二测量通道。正对于第二涡流反射单元的两个第二传感单元的起始位置与正对于第三涡流反射单元的两个第二传感单元的起始位置在X方向错开正对于第二涡流反射单元的两个第二传感单元的起始位置在Y方向对齐,正对于第三涡流反射单元的两个第二传感单元的起始位置在Y方向对齐。在X方向错开的其中两个第二传感单元中的四个平面矩形螺旋感应线圈首尾相接串联形成感应单元Ⅰ,在X方向错开的剩余两个第二传感单元中的四个平面矩形螺旋感应线圈首尾相接串联形成感应单元Ⅱ。感应单元Ⅰ输出感应信号e3,感应单元Ⅱ输出感应信号e4。The second sensing unit includes a second planar rectangular
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210333219.8A CN114577104B (en) | 2022-03-31 | 2022-03-31 | Absolute Linear Displacement Sensor Based on Eddy Current Effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210333219.8A CN114577104B (en) | 2022-03-31 | 2022-03-31 | Absolute Linear Displacement Sensor Based on Eddy Current Effect |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114577104A CN114577104A (en) | 2022-06-03 |
CN114577104B true CN114577104B (en) | 2023-06-09 |
Family
ID=81777775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210333219.8A Active CN114577104B (en) | 2022-03-31 | 2022-03-31 | Absolute Linear Displacement Sensor Based on Eddy Current Effect |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114577104B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119413058B (en) * | 2025-01-08 | 2025-03-18 | 中国科学技术大学 | Non-contact three-dimensional displacement sensor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2196960C2 (en) * | 2001-03-29 | 2003-01-20 | Московский государственный университет леса | Eddy-current displacement transducer |
CN101324420A (en) * | 2008-07-24 | 2008-12-17 | 上海交通大学 | Eddy current grid absolute position sensor with error averaging effect |
CN106767366A (en) * | 2016-12-05 | 2017-05-31 | 上海砺晟光电技术有限公司 | Full digital vortex gate sensor based on micro-coil |
WO2021057730A1 (en) * | 2019-09-29 | 2021-04-01 | 桂林广陆数字测控有限公司 | Hybrid positioning electromagnetic induction-type displacement sensor |
CN112857194A (en) * | 2021-01-22 | 2021-05-28 | 重庆理工大学 | Plane two-dimensional displacement sensor based on eddy current effect |
-
2022
- 2022-03-31 CN CN202210333219.8A patent/CN114577104B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2196960C2 (en) * | 2001-03-29 | 2003-01-20 | Московский государственный университет леса | Eddy-current displacement transducer |
CN101324420A (en) * | 2008-07-24 | 2008-12-17 | 上海交通大学 | Eddy current grid absolute position sensor with error averaging effect |
CN106767366A (en) * | 2016-12-05 | 2017-05-31 | 上海砺晟光电技术有限公司 | Full digital vortex gate sensor based on micro-coil |
WO2021057730A1 (en) * | 2019-09-29 | 2021-04-01 | 桂林广陆数字测控有限公司 | Hybrid positioning electromagnetic induction-type displacement sensor |
CN112857194A (en) * | 2021-01-22 | 2021-05-28 | 重庆理工大学 | Plane two-dimensional displacement sensor based on eddy current effect |
Non-Patent Citations (2)
Title |
---|
反射导体参数对涡流栅传感器非线性误差影响的仿真分析;李坤;陶卫;赵辉;杨景景;蔡云泽;;中国测试(01);全文 * |
基于横向涡流效应的新型栅式绝对位移传感器;赵辉;《机械量测试技术与仪器2014年学术交流会》;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114577104A (en) | 2022-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102288100B (en) | Time grating linear displacement sensor based on alternating electric field | |
CN103644834B (en) | Grating straight-line displacement sensor time a kind of | |
CN102425987B (en) | Alternating electric field-based time grating angular displacement transducer | |
CN106197240B (en) | Absolute type straight line time grating displacement sensor based on alternating electric field | |
CN104457544B (en) | Time grating linear displacement sensor | |
CN104677258B (en) | Two-dimensional plane displacement sensor | |
CN107796293B (en) | An electromagnetic induction linear displacement sensor | |
CN104019734B (en) | A kind of planar time grating displacement sensor | |
CN106441059B (en) | Grating straight-line displacement sensor when a kind of single-row double-row type | |
CN101324420B (en) | Eddy current grid absolute position sensor with error averaging effect | |
CN208805152U (en) | Direct total reflection type absolute time grating linear displacement sensor based on alternating electric field | |
CN114577104B (en) | Absolute Linear Displacement Sensor Based on Eddy Current Effect | |
CN105300262A (en) | Absolute type time-grating linear displacement sensor | |
CN112857194B (en) | Plane two-dimensional displacement sensor based on eddy current effect | |
CN114608431B (en) | Double-layer sine time grating linear displacement sensor | |
CN116182685A (en) | Differential linear displacement sensor and coil winding method | |
CN217585649U (en) | An absolute planar two-dimensional time grating displacement sensor | |
CN114087969B (en) | Spliced absolute linear displacement sensor | |
CN105444659A (en) | Absolute-type sensor utilizing electromagnetic induction principle to carry out length measurement | |
CN204404990U (en) | A kind of sensor for planar displacement measurement | |
CN114739276B (en) | An Absolute Linear Displacement Sensor Based on Eddy Current Effect | |
CN114739277B (en) | Plane magnetic resistance type two-dimensional displacement sensor | |
CN108982655A (en) | A kind of T-type wriggles Exciting-simulator system eddy current sensor and its coil winding method | |
CN103322898B (en) | There is vortex lattice sensor and the method for self-calibrating of self-calibration function | |
CN108267072B (en) | A time grating linear displacement sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |