CN109891562B - 化合物半导体器件 - Google Patents
化合物半导体器件 Download PDFInfo
- Publication number
- CN109891562B CN109891562B CN201680090265.2A CN201680090265A CN109891562B CN 109891562 B CN109891562 B CN 109891562B CN 201680090265 A CN201680090265 A CN 201680090265A CN 109891562 B CN109891562 B CN 109891562B
- Authority
- CN
- China
- Prior art keywords
- electrode
- compound semiconductor
- strongly correlated
- system material
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 27
- 230000002596 correlated effect Effects 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 239000012212 insulator Substances 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 4
- 239000010408 film Substances 0.000 description 8
- 238000002161 passivation Methods 0.000 description 8
- 229910002704 AlGaN Inorganic materials 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N99/00—Subject matter not provided for in other groups of this subclass
- H10N99/03—Devices using Mott metal-insulator transition, e.g. field-effect transistor-like devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/257—Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are characterised by top-view geometrical layouts, e.g. interdigitated, semi-circular, annular or L-shaped electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
在衬底(1)之上形成有半导体层(2、3)。在半导体层(3)之上形成有栅极电极(4)、源极电极(5)以及漏极电极(6)。在栅极电极(4)与源极电极(5)之间连接有强关联电子体系材料(12)。
Description
技术领域
本发明涉及即使在暴露于高能粒子的严苛的环境下也难以破坏以及老化的化合物半导体器件。
背景技术
作为MES-FET或者HEMT等场效应晶体管而使用化合物半导体器件(例如,参照专利文献1~3)。有时器件暴露于严苛的环境下,高能粒子射入,穿过钝化膜、源极场板、器件的有源区域而到达衬底。此时,在高能粒子所穿过的轨迹周边产生大量的电子-空穴对,相应于材料的迁移率、复合速度、施加电压而扩散、复合。
专利文献1:日本特开2006-253654号公报
专利文献2:日本特开2010-67693号公报
专利文献3:日本特开2011-243632号公报
发明内容
向源极场板的漏极电极侧的端部与AlGaN沟道层之间施加高电场。因此,如果高能粒子射入而在钝化膜内产生大量的电子-空穴对,则在该部分形成导通路径而导致破坏。或者,存在以下这样的问题,即,在半导体内所产生的电子-空穴对的扩散、复合过程中半导体表面附近的空穴浓度上升,引起电位的上升或者空穴电流的增加,导致破坏,或者易于老化。同样地,向栅极电极的漏极电极侧的端部与AlGaN沟道层之间也施加高电场,存在易于破坏或者老化的问题。
另外,为了使高频特性提高,有时在栅极电极与源极电极之间连接SiN电容器。但是,由于SiN是绝缘体,因此无法将在半导体内产生的电子-空穴对的电荷经由SiN电容器而去除。
本发明就是为了解决上述这样的课题而提出的,其目的在于得到即使在暴露于高能粒子的严苛的环境下也难以破坏以及老化的化合物半导体器件。
本发明涉及的化合物半导体器件的特征在于,具备:衬底;半导体层,其形成于所述衬底之上;栅极电极、源极电极以及漏极电极,它们形成于所述半导体层之上;以及强关联电子体系材料,其连接在所述栅极电极与所述源极电极之间。
发明的效果
在本发明中,在器件内产生了电子-空穴对时,与栅极电极连接的强关联电子体系材料对器件内的电位变动进行感知,以短时间从绝缘体向导电体进行相变。在器件内产生的电子-空穴对穿过变化为导电性的强关联电子体系材料而流向接地,能够降低对器件的损伤。由此,本发明涉及的化合物半导体器件即使在暴露于高能粒子的严苛的环境下也难以破坏以及老化。
附图说明
图1是表示本发明的实施方式1涉及的化合物半导体器件的剖面图。
图2是表示本发明的实施方式1涉及的化合物半导体器件的俯视图。
图3是本发明的实施方式1涉及的化合物半导体器件的电路图。
图4是表示本发明的实施方式1涉及的强关联电子体系材料的剖面图。
图5是本发明的实施方式2涉及的化合物半导体器件的电路图。
具体实施方式
参照附图对本发明的实施方式涉及的化合物半导体器件进行说明。对相同或相应的结构要素标注相同的标号,有时省略重复说明。
实施方式1.
图1是表示本发明的实施方式1涉及的化合物半导体器件的剖面图。在SiC衬底1之上形成有GaN缓冲层2。在GaN缓冲层2之上形成有AlGaN沟道层3。在AlGaN沟道层3之上形成有栅极电极4、源极电极5以及漏极电极6。
第1钝化膜7覆盖栅极电极4以及AlGaN沟道层3。源极场板9形成于第1钝化膜7之上,从源极电极5延伸到栅极电极4与漏极电极6之间。源极场板9缓和栅极电极4与漏极电极6之间的电场,使得高电压动作成为可能,并且,降低寄生电容,由此改善高频特性。为了保护器件整体,第2钝化膜10覆盖第1钝化膜7以及源极场板9。
如果在向源极电极5与漏极电极6之间施加了电压,向栅极电极4施加了期望的偏置电压的状态下向栅极电极4输入高频,则二维电子气11内的电子高速地移动,作为从漏极电极6得到被放大的高频电力的放大器而动作。
图2是表示本发明的实施方式1涉及的化合物半导体器件的俯视图。图3是本发明的实施方式1涉及的化合物半导体器件的电路图。在栅极电极4与源极电极5之间连接有强关联电子体系材料12。源极电极5接地。
强关联电子体系材料12的代表例是VO2、SrTiO3、LaVO3、SrO等,报道了铜氧化物系、Fe系、Mn系、超导系等大量的示出强关联的材料。强关联电子体系材料12是在通常的状态下尽管充满电子,但由于电子彼此的关联过强,因此无法自由地移动,示出绝缘性的MOTT绝缘体。已知如果向强关联电子体系材料12施加电压、温度、光等刺激,则相变为导电性材料。由于强关联电子体系材料12能够通过PLD法等通常半导体工艺中使用的方法而形成、加工,因此易于与现有的半导体制造工艺结合。
高能粒子如果射入器件,则有时穿过第2钝化膜10、源极场板9、第1钝化膜7、AlGaN沟道层3、GaN缓冲层2而到达SiC衬底1。飞来的粒子是重粒子、质子、电子、中子、μ介子等,具有从1keV到100GeV左右的能量。在高能粒子所穿过的轨迹周边产生大量的电子-空穴对。在以往的构造中,在产生的电子-空穴对在器件内扩散、漂移、复合而逐步消灭的过程中给半导体带来大的损伤,发生破坏或者老化。
在本实施方式中,在器件内产生了电子-空穴对时,与栅极电极4连接的强关联电子体系材料12对器件内的电位变动进行感知,以短时间从绝缘体向导电体进行相变。在器件内产生的电子-空穴对穿过变化为导电性的强关联电子体系材料12而流向接地,能够降低对器件的损伤。由此,本实施方式涉及的化合物半导体器件即使在暴露于高能粒子的严苛的环境下也难以破坏以及老化。
图4是表示本发明的实施方式1涉及的强关联电子体系材料的剖面图。在SiC衬底1之上配置有基底电极13。基底电极13与栅极电极4连接。在基底电极13之上形成有强关联电子体系材料12的薄膜。在强关联电子体系材料12之上形成有上层电极14。上层电极14与源极电极5连接。如此,能够通过与电容器同样的简单的构造而将强关联电子体系材料12连接在源极电极5与漏极电极6之间。另外,通过将强关联电子体系材料12配置于SiC衬底1之上,能够实现器件的小型化。此外,也可以是在强关联电子体系材料12的两端分别连接源极电极5和漏极电极6的构造。
实施方式2.
图5是本发明的实施方式2涉及的化合物半导体器件的电路图。在本实施方式中,在实施方式1的结构的基础上,在源极电极5与漏极电极6之间连接有强关联电子体系材料15。由此,电荷逃逸路径增加,因而效果增强。此外,也可以省略源极侧的强关联电子体系材料12而仅设置漏极侧的强关联电子体系材料15,能够得到与实施方式1同样的效果。
标号的说明
1 SiC衬底,2 GaN缓冲层,3 AlGaN沟道层,4栅极电极,5源极电极,6漏极电极,12、15强关联电子体系材料,13基底电极,14上层电极。
Claims (4)
1.一种化合物半导体器件,其特征在于,具备:
衬底;
半导体层,其形成于所述衬底之上;
栅极电极、源极电极以及漏极电极,它们形成于所述半导体层之上;以及
强关联电子体系材料,其连接在所述栅极电极与所述源极电极之间,是在由于高能粒子的穿过而在器件内产生了电子-空穴对时对所述器件内的电位变动进行感知,从绝缘体向导电体进行相变的MOTT绝缘体。
2.一种化合物半导体器件,其特征在于,具备:
衬底;
半导体层,其形成于所述衬底之上;
栅极电极、源极电极以及漏极电极,它们形成于所述半导体层之上;以及
强关联电子体系材料,其连接在所述源极电极与所述漏极电极之间,是在由于高能粒子的穿过而在器件内产生了电子-空穴对时对所述器件内的电位变动进行感知,从绝缘体向导电体进行相变的MOTT绝缘体。
3.根据权利要求1或2所述的化合物半导体器件,其特征在于,
所述强关联电子体系材料配置于所述衬底之上。
4.根据权利要求3所述的化合物半导体器件,其特征在于,
所述强关联电子体系材料夹在基底电极与上层电极之间。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016207962 | 2016-10-24 | ||
JP2016-207962 | 2016-10-24 | ||
PCT/JP2016/088513 WO2018078893A1 (ja) | 2016-10-24 | 2016-12-22 | 化合物半導体デバイス |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109891562A CN109891562A (zh) | 2019-06-14 |
CN109891562B true CN109891562B (zh) | 2022-04-26 |
Family
ID=60213948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680090265.2A Active CN109891562B (zh) | 2016-10-24 | 2016-12-22 | 化合物半导体器件 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11283021B2 (zh) |
JP (1) | JP6222402B1 (zh) |
CN (1) | CN109891562B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6121642A (en) * | 1998-07-20 | 2000-09-19 | International Business Machines Corporation | Junction mott transition field effect transistor (JMTFET) and switch for logic and memory applications |
CN1457220A (zh) * | 2002-06-03 | 2003-11-19 | Lg.菲利浦Lcd株式会社 | 有源矩阵型有机电致发光显示装置及其制造方法 |
CN101681911A (zh) * | 2006-11-08 | 2010-03-24 | 思美公司 | 关联电子存储器 |
CN102042959A (zh) * | 2010-10-12 | 2011-05-04 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种太赫兹探测器射频读出装置及其实现方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006253654A (ja) | 2005-02-10 | 2006-09-21 | Nec Electronics Corp | 電界効果トランジスタおよび電界効果トランジスタの製造方法 |
US20060175670A1 (en) | 2005-02-10 | 2006-08-10 | Nec Compound Semiconductor Device, Ltd. | Field effect transistor and method of manufacturing a field effect transistor |
US20090121259A1 (en) * | 2007-11-13 | 2009-05-14 | Iben Icko E T | Paired magnetic tunnel junction to a semiconductor field-effect transistor |
JP5388514B2 (ja) | 2008-09-09 | 2014-01-15 | 株式会社東芝 | 半導体装置及び半導体装置の製造方法 |
JP2010147349A (ja) | 2008-12-19 | 2010-07-01 | Advantest Corp | 半導体装置、半導体装置の製造方法およびスイッチ回路 |
JP5868574B2 (ja) * | 2010-03-15 | 2016-02-24 | 富士通株式会社 | 半導体装置及びその製造方法 |
JP5552638B2 (ja) | 2010-05-14 | 2014-07-16 | 独立行政法人産業技術総合研究所 | ペロブスカイト型の複合酸化物をチャンネル層とする電界効果トランジスタ及びこれを利用したメモリ素子 |
US8829999B2 (en) | 2010-05-20 | 2014-09-09 | Cree, Inc. | Low noise amplifiers including group III nitride based high electron mobility transistors |
CN107851713A (zh) * | 2014-10-17 | 2018-03-27 | 株式会社丰田中央研究所 | 电子装置 |
JP6444789B2 (ja) | 2015-03-24 | 2018-12-26 | 株式会社東芝 | 半導体装置及びその製造方法 |
DE112016007367B4 (de) * | 2016-10-24 | 2023-01-12 | Mitsubishi Electric Corporation | Verbundhalbleitervorrichtung |
-
2016
- 2016-12-22 JP JP2017518380A patent/JP6222402B1/ja active Active
- 2016-12-22 CN CN201680090265.2A patent/CN109891562B/zh active Active
- 2016-12-22 US US16/305,456 patent/US11283021B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6121642A (en) * | 1998-07-20 | 2000-09-19 | International Business Machines Corporation | Junction mott transition field effect transistor (JMTFET) and switch for logic and memory applications |
CN1457220A (zh) * | 2002-06-03 | 2003-11-19 | Lg.菲利浦Lcd株式会社 | 有源矩阵型有机电致发光显示装置及其制造方法 |
CN101681911A (zh) * | 2006-11-08 | 2010-03-24 | 思美公司 | 关联电子存储器 |
CN102042959A (zh) * | 2010-10-12 | 2011-05-04 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种太赫兹探测器射频读出装置及其实现方法 |
Also Published As
Publication number | Publication date |
---|---|
US11283021B2 (en) | 2022-03-22 |
US20200220079A1 (en) | 2020-07-09 |
CN109891562A (zh) | 2019-06-14 |
JP6222402B1 (ja) | 2017-11-01 |
JPWO2018078893A1 (ja) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101737149B1 (ko) | 낮은 emi 회로를 위한 전자 부품, 전자 부품 형성 방법, 어셈블리, 하프 브리지 및 브리지 회로 | |
US8785912B2 (en) | Graphene electronic device including a plurality of graphene channel layers | |
US9754932B2 (en) | Semiconductor device | |
CN112585762B (zh) | 带有突出部和场板的氮化镓高电子迁移率晶体管 | |
CN104737294A (zh) | 具有集成的限流器的半导体电子元件 | |
CN103178106A (zh) | 用于异质结构的场效应晶体管的屏蔽罩 | |
TWI543368B (zh) | 氮化鎵裝置及積體電路中之隔離結構 | |
TWI626742B (zh) | 半導體裝置 | |
Zhang et al. | Field plate structural optimization for enhancing the power gain of GaN-based HEMTs | |
CN112242444A (zh) | 高电子迁移率晶体管及其制作方法 | |
CN117913135A (zh) | 一种耗尽型GaN器件及其制备方法、HEMT级联型器件 | |
JP7060207B2 (ja) | 窒化物半導体トランジスタ装置 | |
WO2018078893A1 (ja) | 化合物半導体デバイス | |
CN109891562B (zh) | 化合物半导体器件 | |
CN106373996B (zh) | 半导体装置 | |
US7339249B2 (en) | Semiconductor device | |
CN108493245B (zh) | 一种常闭型氮化镓hemt器件 | |
WO2018078894A1 (ja) | 化合物半導体デバイス | |
JP2010199241A (ja) | 半導体装置 | |
KR101756580B1 (ko) | 반도체 장치 | |
CN112753104B (zh) | 场效应晶体管 | |
US10068896B1 (en) | Electrostatic discharge protection device and manufacturing method thereof | |
CN107425071B (zh) | 一种具有抗单粒子辐照能力的vdmos器件 | |
JP6233547B1 (ja) | 化合物半導体デバイス | |
Wang et al. | The effect of the barrier thickness on DC and RF performances of AlGaN/GaN HEMTs on silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |