CN109755290A - Nanowire transistor and method of making the same - Google Patents
Nanowire transistor and method of making the same Download PDFInfo
- Publication number
- CN109755290A CN109755290A CN201711068065.XA CN201711068065A CN109755290A CN 109755290 A CN109755290 A CN 109755290A CN 201711068065 A CN201711068065 A CN 201711068065A CN 109755290 A CN109755290 A CN 109755290A
- Authority
- CN
- China
- Prior art keywords
- isolation structure
- nano
- source
- side wall
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 220
- 238000004519 manufacturing process Methods 0.000 title description 2
- 238000002955 isolation Methods 0.000 claims abstract description 239
- 239000000758 substrate Substances 0.000 claims abstract description 117
- 238000002360 preparation method Methods 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims description 97
- 230000004888 barrier function Effects 0.000 claims description 85
- 239000002184 metal Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 238000009792 diffusion process Methods 0.000 claims description 19
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 14
- 239000010948 rhodium Substances 0.000 claims description 12
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052733 gallium Inorganic materials 0.000 claims description 9
- 229910003811 SiGeC Inorganic materials 0.000 claims description 7
- 229910052785 arsenic Inorganic materials 0.000 claims description 6
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 5
- 229910003465 moissanite Inorganic materials 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 8
- 229910052681 coesite Inorganic materials 0.000 claims 4
- 229910052906 cristobalite Inorganic materials 0.000 claims 4
- 239000000377 silicon dioxide Substances 0.000 claims 4
- 229910052682 stishovite Inorganic materials 0.000 claims 4
- 229910052905 tridymite Inorganic materials 0.000 claims 4
- 230000003071 parasitic effect Effects 0.000 abstract description 13
- 238000000034 method Methods 0.000 description 124
- 125000006850 spacer group Chemical group 0.000 description 95
- 230000008569 process Effects 0.000 description 94
- 238000005530 etching Methods 0.000 description 27
- 150000002500 ions Chemical class 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000001039 wet etching Methods 0.000 description 11
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 238000001312 dry etching Methods 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 238000000231 atomic layer deposition Methods 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 229910004541 SiN Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001451 molecular beam epitaxy Methods 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 229910010038 TiAl Inorganic materials 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 229910017855 NH 4 F Inorganic materials 0.000 description 2
- 229910004166 TaN Inorganic materials 0.000 description 2
- 229910010041 TiAlC Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/014—Manufacture or treatment of FETs having zero-dimensional [0D] or one-dimensional [1D] channels, e.g. quantum wire FETs, single-electron transistors [SET] or Coulomb blockade transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/43—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 1D charge carrier gas channels, e.g. quantum wire FETs or transistors having 1D quantum-confined channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6735—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes having gates fully surrounding the channels, e.g. gate-all-around
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/114—PN junction isolations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
- H10D62/121—Nanowire, nanosheet or nanotube semiconductor bodies oriented parallel to substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
- H10D62/364—Substrate regions of field-effect devices of FETs of IGFETs
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造领域,特别涉及一种纳米线晶体管及其制备方法。The invention relates to the field of semiconductor manufacturing, in particular to a nanowire transistor and a preparation method thereof.
背景技术Background technique
一直以来,缩小晶体管尺寸、提高集成电路的集成度是半导体行业永恒追求的主题。从FinFET(鳍式晶体管)到NWFET(纳米线电晶体),栅极的物理尺寸不断减小。在NWFET中,栅极厚度以及源/漏区宽度比较小,这有效地增强了栅极的调控功能。但是,自身尺寸的减小容易产生寄生电容,影响晶体管的性能。目前,为了解决这一问题,研究者提出了在栅极底部形成侧墙的技术方案,切断寄生晶体管电流的通路,改善了NWFET的直流特性。For a long time, reducing the size of transistors and improving the integration of integrated circuits has been the eternal pursuit of the semiconductor industry. From FinFETs (fin transistors) to NWFETs (nanowire transistors), the physical size of the gate continues to decrease. In NWFETs, the gate thickness and the width of the source/drain regions are relatively small, which effectively enhances the control function of the gate. However, the reduction of its own size is prone to generate parasitic capacitance, which affects the performance of the transistor. At present, in order to solve this problem, researchers have proposed a technical scheme of forming sidewalls at the bottom of the gate to cut off the path of parasitic transistor current and improve the DC characteristics of NWFETs.
但是,目前在现有技术中,NWFET纳米线晶体管源/漏极与衬底直接接触,两者之间没有进行有效的隔离。当纳米线晶体管工作时,纳米线晶体管源/漏极与衬底接触的地方容易发生漏电现象。However, currently in the prior art, the source/drain of the NWFET nanowire transistor is in direct contact with the substrate, and there is no effective isolation between the two. When the nanowire transistor works, the leakage phenomenon is likely to occur where the source/drain of the nanowire transistor is in contact with the substrate.
因此,现有技术亟需一种能实现衬底与纳米线晶体管源/漏极之间形成电学隔离,减少漏电的方法。Therefore, there is an urgent need in the prior art for a method that can achieve electrical isolation between the substrate and the source/drain of the nanowire transistor and reduce leakage.
发明内容SUMMARY OF THE INVENTION
本发明提供一种纳米线晶体管及其制备方法,实现了源/漏极与衬底之间的电学隔离,又减小了纳米线晶体管底部栅极与源/漏极之间过大的电容。The invention provides a nanowire transistor and a preparation method thereof, which realizes the electrical isolation between the source/drain and the substrate, and reduces the excessive capacitance between the bottom gate and the source/drain of the nanowire transistor.
在本发明提供一种纳米线晶体管,包括:设置于衬底上的栅极结构;源/漏极,源/漏极位于栅极结构的两侧;纳米线,纳米线设置于栅极结构内部,纳米线的两侧面均与源/漏极接触;和隔离结构,隔离结构形成于衬底与源/漏极之间,以隔离衬底和源/漏极。The present invention provides a nanowire transistor, comprising: a gate structure disposed on a substrate; source/drain, the source/drain are located on both sides of the gate structure; nanowire, the nanowire is disposed inside the gate structure , both sides of the nanowire are in contact with the source/drain; and an isolation structure formed between the substrate and the source/drain to isolate the substrate and the source/drain.
根据本发明的一个方面,纳米线个数为1个或多个,当纳米线为多个时,多个纳米线纵向间隔分布在栅极结构内部。According to an aspect of the present invention, the number of nanowires is one or more, and when there are multiple nanowires, the multiple nanowires are longitudinally spaced and distributed inside the gate structure.
根据本发明的一个方面,隔离结构覆盖源/漏极下方的衬底,以使源/漏极不与衬底接触。According to one aspect of the present invention, the isolation structure covers the substrate under the source/drain so that the source/drain is not in contact with the substrate.
根据本发明的一个方面,隔离结构两侧面的最高点低于最底部纳米线的顶部表面。According to one aspect of the invention, the highest points of both sides of the isolation structure are lower than the top surface of the bottommost nanowire.
根据本发明的一个方面,隔离结构两侧面的最高点不高于最底部纳米线的底部表面。According to one aspect of the present invention, the highest points of both sides of the isolation structure are not higher than the bottom surface of the bottommost nanowire.
根据本发明的一个方面,隔离结构包括:侧壁隔离结构和底部隔离结构,其中,侧壁隔离结构位于隔离结构的两侧,底部隔离结构位于侧壁隔离结构之间,且与侧壁隔离结构相接触。According to one aspect of the present invention, the isolation structure includes: a sidewall isolation structure and a bottom isolation structure, wherein the sidewall isolation structure is located on both sides of the isolation structure, and the bottom isolation structure is located between the sidewall isolation structures and is separated from the sidewall isolation structure contact.
根据本发明的一个方面,隔离结构的两侧面分别为侧壁隔离结构的与底部隔离结构非接触的两个侧面。According to an aspect of the present invention, the two side surfaces of the isolation structure are respectively the two side surfaces of the sidewall isolation structure that are not in contact with the bottom isolation structure.
根据本发明的一个方面,侧壁隔离结构为侧壁侧墙,底部隔离结构为底部侧墙或底部阻挡层。According to one aspect of the present invention, the sidewall isolation structure is a sidewall spacer, and the bottom isolation structure is a bottom sidewall or a bottom barrier.
根据本发明的一个方面,底部阻挡层包括扩散阻挡层和/或导通阻挡层。According to one aspect of the present invention, the bottom barrier layer includes a diffusion barrier layer and/or a conduction barrier layer.
根据本发明的一个方面,还包括:当侧壁隔离结构为侧壁侧墙,且底部隔离结构为底部侧墙时,侧壁隔离结构和底部隔离结构的材料相同,为SiO2、SiN、SiON、SiOCN中的一种或多种。According to one aspect of the present invention, it further includes: when the sidewall isolation structure is a sidewall spacer and the bottom isolation structure is a bottom sidewall, the sidewall isolation structure and the bottom isolation structure are made of the same material, which is SiO 2 , SiN, SiON , one or more of SiOCN.
根据本发明的一个方面,当侧壁隔离结构为侧壁侧墙,且底部隔离结构为底部阻挡层时,侧壁隔离结构的材料为SiO2、SiN、SiON、SiOCN中的一种或多种,底部隔离结构的材料为Si、SiGe、Ge、GaAs、SiC、SiGeC中的一种或多种。According to one aspect of the present invention, when the sidewall isolation structure is a sidewall spacer, and the bottom isolation structure is a bottom barrier layer, the material of the sidewall isolation structure is one or more of SiO 2 , SiN, SiON, and SiOCN , the material of the bottom isolation structure is one or more of Si, SiGe, Ge, GaAs, SiC, and SiGeC.
根据本发明的一个方面,还包括:内部侧墙,内部侧墙位于源/漏极和与纳米线的底部表面相接触的栅极结构之间。According to an aspect of the present invention, further comprising: inner spacers located between the source/drain and the gate structure in contact with the bottom surface of the nanowire.
根据本发明的一个方面,栅极结构包括:栅极和覆盖栅极表面的栅介质层。According to one aspect of the present invention, the gate structure includes: a gate electrode and a gate dielectric layer covering a surface of the gate electrode.
根据本发明的一个方面,还包括:保护结构,保护结构覆盖最顶部的纳米线的顶部表面。According to an aspect of the present invention, further comprising: a protective structure covering the top surface of the topmost nanowire.
根据本发明的一个方面,还包括:第一侧墙,第一侧墙覆盖保护结构上方的栅极结构的两侧壁;第一介电层,第一介电层覆盖源/漏极;第二介电层,第二介电层覆盖栅极结构、第一介电层和第一侧墙表面;和金属线,金属线贯穿第二介电层、并与栅极结构接触。According to an aspect of the present invention, it further includes: a first spacer, the first spacer covering both side walls of the gate structure above the protection structure; a first dielectric layer, the first dielectric layer covering the source/drain; Two dielectric layers, the second dielectric layer covers the gate structure, the first dielectric layer and the surface of the first sidewall spacer; and a metal line, the metal line penetrates the second dielectric layer and is in contact with the gate structure.
本发明还公开了一种纳米线晶体管的制备方法,包括:在衬底形成相互堆叠的牺牲层和纳米线;形成伪栅,伪栅位于堆叠的牺牲层和纳米线上方;除去相邻伪栅之间的牺牲层与纳米线,以形成源/漏区域;形成隔离结构,隔离结构位于源/漏区域底部的衬底表面,以隔离源/漏区域和衬底;和在源/漏区域内形成源/漏极,源/漏极位于隔离结构上方,且与相邻的纳米线的侧面接触。The invention also discloses a method for preparing a nanowire transistor, which includes: forming a sacrificial layer and nanowires stacked on a substrate; forming a dummy gate, where the dummy gate is located above the stacked sacrificial layer and the nanowire; removing adjacent dummy gates between the sacrificial layer and the nanowires to form the source/drain regions; forming isolation structures located on the substrate surface at the bottom of the source/drain regions to isolate the source/drain regions and the substrate; and within the source/drain regions A source/drain is formed over the isolation structure and in contact with the sides of adjacent nanowires.
根据本发明的一个方面,最底部的牺牲层与衬底表面接触,最底部纳米线不与衬底接触。According to one aspect of the present invention, the bottommost sacrificial layer is in contact with the substrate surface, and the bottommost nanowire is not in contact with the substrate.
根据本发明的一个方面,堆叠的纳米线的个数为1个或多个。According to one aspect of the present invention, the number of stacked nanowires is one or more.
根据本发明的一个方面,隔离结构覆盖源/漏区域下方的衬底。According to one aspect of the present invention, an isolation structure covers the substrate below the source/drain regions.
根据本发明的一个方面,形成的隔离结构包括:形成侧壁隔离结构和底部隔离结构,侧壁隔离结构位于底部隔离结构的两侧,形成的底部隔离结构位于侧壁隔离结构之间,且与侧壁隔离结构相接触。According to one aspect of the present invention, forming the isolation structure includes: forming a sidewall isolation structure and a bottom isolation structure, the sidewall isolation structure is located on both sides of the bottom isolation structure, the formed bottom isolation structure is located between the sidewall isolation structures, and is connected with the sidewall isolation structure. The sidewall isolation structures are in contact.
根据本发明的一个方面,形成侧壁隔离结构和底部隔离结构的步骤包括:形成第二侧墙,第二侧墙覆盖源/漏区域两侧的伪栅侧面、纳米线侧面、牺牲层侧面以及源/漏区域底部衬底表面;形成覆盖源/漏区域底部第二侧墙表面的介质层,介质层的顶部表面低于最底部的纳米线的顶部表面,且高于最底部的牺牲层的底部表面;和除去源/漏区域两侧的部分第二侧墙,使源/漏区域两侧余下的第二侧墙的顶部表面与介质层的顶部表面平齐,以形成侧壁侧墙与底部侧墙,其中,源/漏区域两侧余下的第二侧墙为侧壁侧墙,且侧壁侧墙为侧壁隔离结构,位于介质层底部的第二侧墙为底部侧墙,且底部侧墙为底部隔离结构。According to one aspect of the present invention, the step of forming the sidewall isolation structure and the bottom isolation structure includes: forming second sidewall spacers covering dummy gate sides, nanowire sides, sacrificial layer sides on both sides of the source/drain region, and The bottom substrate surface of the source/drain region; a dielectric layer covering the second sidewall surface at the bottom of the source/drain region is formed, and the top surface of the dielectric layer is lower than the top surface of the bottommost nanowire and higher than the bottommost sacrificial layer. and removing part of the second spacers on both sides of the source/drain region, so that the top surfaces of the remaining second spacers on both sides of the source/drain region are flush with the top surface of the dielectric layer to form the sidewall spacers and bottom sidewalls, wherein the remaining second sidewalls on both sides of the source/drain region are sidewall sidewalls, and the sidewall sidewalls are sidewall isolation structures, the second sidewalls located at the bottom of the dielectric layer are bottom sidewalls, and The bottom side wall is the bottom isolation structure.
根据本发明的一个方面,隔离结构两侧面的最高点低于最底部纳米线的顶部表面。According to one aspect of the invention, the highest points of both sides of the isolation structure are lower than the top surface of the bottommost nanowire.
根据本发明的一个方面,隔离结构两侧面的最高点不高于最底部纳米线的底部表面。According to one aspect of the present invention, the highest points of both sides of the isolation structure are not higher than the bottom surface of the bottommost nanowire.
根据本发明的一个方面,隔离结构的两侧面分别为侧壁隔离结构的与底部隔离结构非接触的侧面。According to an aspect of the present invention, the two side surfaces of the isolation structure are respectively the side surfaces of the sidewall isolation structure that are not in contact with the bottom isolation structure.
根据本发明的一个方面,侧壁隔离结构为侧壁侧墙,底部隔离结构为底部侧墙或底部阻挡层。According to one aspect of the present invention, the sidewall isolation structure is a sidewall spacer, and the bottom isolation structure is a bottom sidewall or a bottom barrier.
根据本发明的一个方面,当侧壁隔离结构为侧壁侧墙,且底部隔离结构为底部侧墙时,侧壁隔离结构与底部隔离结构的材料相同,为SiO2、SiN、SiC、SiOCN中的一种或多种。According to one aspect of the present invention, when the sidewall isolation structure is a sidewall spacer and the bottom isolation structure is a bottom spacer, the sidewall isolation structure and the bottom isolation structure are made of the same material, which is one of SiO 2 , SiN, SiC, and SiOCN. one or more of.
根据本发明的一个方面,当侧壁隔离结构为侧壁侧墙,且底部隔离结构为底部阻挡层时,侧壁隔离结构的材料为SiO2、SiN、SiON、SiOCN中的一种或多种,底部隔离结构的材料为Si、SiGe、Ge、GaAs、SiC、SiGeC中的一种或多种。According to one aspect of the present invention, when the sidewall isolation structure is a sidewall spacer, and the bottom isolation structure is a bottom barrier layer, the material of the sidewall isolation structure is one or more of SiO 2 , SiN, SiON, and SiOCN , the material of the bottom isolation structure is one or more of Si, SiGe, Ge, GaAs, SiC, and SiGeC.
根据本发明的一个方面,形成侧壁隔离结构和底部隔离结构的步骤还包括:除去介质层;除去底部侧墙,暴露衬底;和在侧壁侧墙之间的衬底表面形成底部阻挡层,底部阻挡层为底部隔离结构。According to one aspect of the present invention, the steps of forming the sidewall isolation structure and the bottom isolation structure further include: removing the dielectric layer; removing the bottom spacer to expose the substrate; and forming a bottom barrier layer on the surface of the substrate between the sidewall spacers , the bottom barrier layer is a bottom isolation structure.
根据本发明的一个方面,底部阻挡层包括扩散阻挡层和/或导通阻挡层。According to one aspect of the present invention, the bottom barrier layer includes a diffusion barrier layer and/or a conduction barrier layer.
根据本发明的一个方面,扩散阻挡层与源/漏极掺杂的离子类型相反,扩散阻挡层内掺杂的离子为硼(B)、镓(Ga)中的一种或多种。According to one aspect of the present invention, the type of ions doped in the diffusion barrier layer is opposite to that of the source/drain electrode, and the ions doped in the diffusion barrier layer are one or more of boron (B) and gallium (Ga).
根据本发明的一个方面,导通阻挡层与源/漏极掺杂的离子类型相同,掺杂有:硼(B)、镓(Ga)中的一种或多种,或者砷(As)、铑(Rh)中的一种或多种。According to one aspect of the present invention, the conduction barrier layer is doped with the same ion type as the source/drain, and is doped with: one or more of boron (B), gallium (Ga), or arsenic (As), One or more of Rhodium (Rh).
根据本发明的一个方面,还包括:在形成第二侧墙之前,除去部分牺牲层,以在每层牺牲层的两侧形成开口;和形成第二侧墙时,填充每个开口以形成内部侧墙。According to an aspect of the present invention, further comprising: before forming the second spacer, removing part of the sacrificial layer to form openings on both sides of each sacrificial layer; and when forming the second spacer, filling each opening to form an interior side wall.
根据本发明的一个方面,开口的深度范围为2nm~20nm。According to an aspect of the present invention, the depth of the openings ranges from 2 nm to 20 nm.
根据本发明的一个方面,在形成源/漏极之后,还包括:形成覆盖源/漏极的第一介电层;除去伪栅和牺牲层,以形成沟槽;和在沟槽内形成栅极结构。According to one aspect of the present invention, after forming the source/drain, it further includes: forming a first dielectric layer covering the source/drain; removing the dummy gate and the sacrificial layer to form a trench; and forming a gate in the trench polar structure.
根据本发明的一个方面,在形成栅极结构之后,还包括:形成覆盖栅极结构和第一介电层的第二介电层;和形成贯穿第二介电层的金属线,金属线与栅极结构接触。According to one aspect of the present invention, after the gate structure is formed, the method further includes: forming a second dielectric layer covering the gate structure and the first dielectric layer; and forming a metal wire penetrating the second dielectric layer, the metal wire being connected to the second dielectric layer. The gate structure contacts.
根据本发明的一个方面,形成伪栅之前,还包括:形成保护结构,保护结构覆盖堆叠的牺牲层与纳米线的顶部表面。According to an aspect of the present invention, before forming the dummy gate, the method further includes: forming a protection structure, and the protection structure covers the top surface of the stacked sacrificial layer and the nanowire.
根据本发明的一个方面,在形成伪栅之后,在形成隔离结构之前,还包括:形成覆盖伪栅两侧壁的第一侧墙。According to an aspect of the present invention, after the dummy gate is formed and before the isolation structure is formed, the method further includes: forming a first spacer covering both sidewalls of the dummy gate.
与现有技术相比,本发明实施例的技术方案具备的优点如下:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:
由于本发明实施例的纳米线晶体管内具有隔离结构,隔离结构位于衬底与源/漏极之间,以隔离衬底和源/漏极。隔离结构的目的在于对源/漏极和衬底进行隔离,消除源/漏极和衬底之间电流的泄漏。Since the nanowire transistor of the embodiment of the present invention has an isolation structure, the isolation structure is located between the substrate and the source/drain to isolate the substrate and the source/drain. The purpose of the isolation structure is to isolate the source/drain and the substrate and eliminate the leakage of current between the source/drain and the substrate.
进一步的,隔离结构两侧面的最高点低于最底部纳米线的底部表面。这样的位置分布可有效防止底部阻挡层顶部表面过高而增大纳米线晶体管内部的寄生电阻,从而更好的提高纳米线晶体管的性能。Further, the highest points on both sides of the isolation structure are lower than the bottom surface of the bottommost nanowire. Such a positional distribution can effectively prevent the top surface of the bottom barrier layer from being too high to increase the parasitic resistance inside the nanowire transistor, thereby better improving the performance of the nanowire transistor.
进一步的,纳米线晶体管内还包括内部侧墙,内部侧墙位于源/漏极和与纳米线的底部表面相接触的栅极结构之间。可起到隔离源/漏极与栅极结构的作用。Further, the nanowire transistor also includes internal spacers between the source/drain and the gate structure in contact with the bottom surface of the nanowire. It can play the role of isolating source/drain and gate structure.
本发明的实施例在形成纳米线晶体管时形成有隔离结构,隔离结构位于隔离结构位于源/漏区域底部的衬底表面,以隔离源/漏区域和衬底。形成隔离结构的目的在于后续对源/漏极和衬底进行隔离,消除源/漏极和衬底之间电流的泄漏。In the embodiments of the present invention, an isolation structure is formed when the nanowire transistor is formed, and the isolation structure is located on the surface of the substrate where the isolation structure is located at the bottom of the source/drain region, so as to isolate the source/drain region and the substrate. The purpose of forming the isolation structure is to subsequently isolate the source/drain and the substrate to eliminate the leakage of current between the source/drain and the substrate.
进一步的,形成覆盖源/漏区域底部第二侧墙表面的介质层,介质层的顶部表面低于最底部的纳米线的顶部表面,且高于与衬底相接触的牺牲层的底部表面。形成介质层的目的是为后续刻蚀除去部分第二侧墙提供刻蚀终止位置,使侧壁侧墙的顶部表面也位于同样的位置。Further, a dielectric layer is formed covering the surface of the second spacer at the bottom of the source/drain region, and the top surface of the dielectric layer is lower than the top surface of the bottommost nanowire and higher than the bottom surface of the sacrificial layer in contact with the substrate. The purpose of forming the dielectric layer is to provide an etching stop position for the subsequent etching to remove part of the second spacer, so that the top surface of the sidewall spacer is also located at the same position.
进一步的,侧壁隔离结构与底部隔离结构非接触侧面的最高点不高于与衬底接触的牺牲层的顶部表面。限制侧壁隔离结构顶部表面的高度是为了避免表面过高,促进源/漏极与沟道的导通,进而达到更好的效果。Further, the highest point of the non-contact side surface of the sidewall isolation structure and the bottom isolation structure is not higher than the top surface of the sacrificial layer in contact with the substrate. The purpose of limiting the height of the top surface of the sidewall isolation structure is to prevent the surface from being too high, and to promote the conduction between the source/drain and the channel, thereby achieving a better effect.
进一步的,在形成第二侧墙之前,除去部分牺牲层,以在每层牺牲层的两侧形成开口;形成第二侧墙时,填充所有开口形成内部侧墙。这样做的目的在于在后续形成的栅极结构和源/漏极之间形成内部侧墙,增大源/漏极与栅极结构之间的距离,有效地解决纳米线晶体管栅极与源/漏极之间电容过大的问题。Further, before forming the second spacer, part of the sacrificial layer is removed to form openings on both sides of each sacrificial layer; when forming the second spacer, all the openings are filled to form internal spacers. The purpose of this is to form internal spacers between the subsequently formed gate structure and the source/drain, increase the distance between the source/drain and the gate structure, and effectively solve the problem between the gate and the source/drain of the nanowire transistor. The problem of excessive capacitance between drains.
附图说明Description of drawings
图1-图9是根据本发明一个实施例的纳米线晶体管形成过程的剖面结构示意图;1-9 are schematic cross-sectional structural diagrams of a nanowire transistor formation process according to an embodiment of the present invention;
图10-图15是根据本发明又一个实施例的纳米线晶体管形成过程的剖面结构示意图;10-15 are schematic cross-sectional structural diagrams of a nanowire transistor formation process according to yet another embodiment of the present invention;
图16-图25是根据本发明再一个实施例的纳米线晶体管形成过程的剖面结构示意图。16-25 are schematic cross-sectional structural diagrams of a nanowire transistor formation process according to still another embodiment of the present invention.
具体实施方式Detailed ways
如前所述,现有的纳米线晶体管衬底与源/漏极之间存在电流泄漏的现象。As mentioned above, there is a phenomenon of current leakage between the existing nanowire transistor substrate and the source/drain.
经研究发现,造成上述问题的原因为:纳米线晶体管的衬底与源/漏极之间没有进行有效隔离。因此,提出在衬底与源/漏极之间形成隔离结构的方案,可解决上述问题。Through research, it is found that the reason for the above problem is that there is no effective isolation between the substrate and the source/drain of the nanowire transistor. Therefore, a solution of forming an isolation structure between the substrate and the source/drain is proposed to solve the above problems.
经过进一步研究还发现,纳米线晶体管栅极与源/漏极之间距离较近,没有有效的隔离结构,寄生电容过大。因此,提出在栅极底部与源/漏极之间形成内部侧墙,可以解决上述问题。After further research, it is also found that the distance between the gate and the source/drain of the nanowire transistor is relatively short, there is no effective isolation structure, and the parasitic capacitance is too large. Therefore, it is proposed to form internal spacers between the bottom of the gate and the source/drain to solve the above problems.
为了解决该问题,本发明提供了一种纳米线晶体管及其制备方法,在衬底与源/漏极之间形成有效的隔离结构,避免衬底与源/漏极直接接触而导致源/漏极底部电流的泄漏。同时,在纳米线晶体管栅极与源/漏极之间形成内部侧墙,对栅极与源/漏极进行电学隔离,解决了纳米线晶体管栅极底部与源/漏极之间电容过大的问题。In order to solve this problem, the present invention provides a nanowire transistor and a preparation method thereof, which form an effective isolation structure between the substrate and the source/drain, so as to avoid the source/drain caused by direct contact between the substrate and the source/drain. Leakage of pole bottom current. At the same time, an internal spacer is formed between the gate and the source/drain of the nanowire transistor to electrically isolate the gate and the source/drain, which solves the problem of excessive capacitance between the bottom of the gate and the source/drain of the nanowire transistor. The problem.
现在将参照附图来详细描述本发明的各种示例性实施例。应理解,除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不应被理解为对本发明范围的限制。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be understood that the relative arrangement of the components and steps, the numerical expressions and numerical values set forth in these embodiments should not be construed as limiting the scope of the invention unless specifically stated otherwise.
此外,应当理解,为了便于描述,附图中所示出的各个部件的尺寸并不必然按照实际的比例关系绘制,例如某些层的厚度或宽度可以相对于其他层有所夸大。In addition, it should be understood that, for ease of description, the dimensions of various components shown in the drawings are not necessarily drawn to an actual scale relationship, for example, the thickness or width of some layers may be exaggerated relative to other layers.
以下对示例性实施例的描述仅仅是说明性的,在任何意义上都不作为对本发明及其应用或使用的任何限制。The following description of exemplary embodiments is illustrative only and is not intended to limit the invention, its application or use in any way.
对于相关领域普通技术人员已知的技术、方法和装置可能不作详细讨论,但在适用这些技术、方法和装置情况下,这些技术、方法和装置应当被视为本说明书的一部分。Techniques, methods, and apparatuses known to those of ordinary skill in the relevant art may not be discussed in detail, but where applicable, these techniques, methods, and apparatuses should be considered part of this specification.
应注意,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义或说明,则在随后的附图的说明中将不需要对其进行进一步讨论。It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined or described in one figure, it will not need to be further explained in the description of subsequent figures discuss.
第一实施例。first embodiment.
请参考图1,衬底100,在衬底100上形成相互堆叠的牺牲层110和纳米线120,在牺牲层110和纳米线120上方形成伪栅150。Referring to FIG. 1 , a substrate 100 is formed on which a sacrificial layer 110 and nanowires 120 are stacked on each other, and a dummy gate 150 is formed above the sacrificial layer 110 and the nanowires 120 .
衬底100为后续形成栅极、源/漏极以及其他工艺的基础。衬底100的材料包括Si、SiGe等,在这里并不做具体限制。The substrate 100 is the basis for subsequent formation of gates, source/drain and other processes. The material of the substrate 100 includes Si, SiGe, etc., which are not specifically limited here.
牺牲层110为后续形成栅极的基础。牺牲层110的材料包括:Si、SiGe、SiC等,在这里并不做具体限制。The sacrificial layer 110 is the basis for the subsequent formation of the gate. Materials of the sacrificial layer 110 include: Si, SiGe, SiC, etc., which are not specifically limited here.
纳米线120作为后续纳米线晶体管的沟道区。纳米线120的材料包括:Si、SiGe、SiC等,在这里并不做具体限制。由于纳米线120不与衬底100接触,所以纳米线120的材料与衬底100的材料可以相同也可以不相同,在这里不做具体限制。Nanowire 120 acts as a channel region for subsequent nanowire transistors. Materials of the nanowires 120 include: Si, SiGe, SiC, etc., which are not specifically limited here. Since the nanowire 120 is not in contact with the substrate 100, the material of the nanowire 120 and the material of the substrate 100 may be the same or different, which is not limited herein.
明显的,因为牺牲层110与纳米线120相互堆叠,所以应满足牺牲层110与纳米线120的材料是不相同的。优选的,在本发明实施例中,牺牲层110的材料为SiGe,纳米线120的材料为Si。Obviously, since the sacrificial layer 110 and the nanowires 120 are stacked on each other, it should be satisfied that the materials of the sacrificial layer 110 and the nanowires 120 are different. Preferably, in the embodiment of the present invention, the material of the sacrificial layer 110 is SiGe, and the material of the nanowires 120 is Si.
牺牲层110与纳米线120的厚度均在4nm~30nm(在这里,厚度为大于等于4nm,小于等于30nm,即,范围包括端点数值,下文的范围表述与此处的意义相同)之间。牺牲层110与纳米线120的厚度可以相同也可以不相同,在这里不作具体限制。在本发明的一个实施例中,牺牲层110的厚度为4nm,纳米线120的厚度为30nm。在本发明的另一个实施例中,牺牲层110的厚度为15nm,纳米线120的厚度为20nm。The thicknesses of the sacrificial layer 110 and the nanowires 120 are both between 4 nm and 30 nm (here, the thickness is greater than or equal to 4 nm and less than or equal to 30 nm, that is, the range includes endpoint values, and the following range expressions have the same meaning as here). The thicknesses of the sacrificial layer 110 and the nanowires 120 may be the same or different, which are not specifically limited here. In one embodiment of the present invention, the thickness of the sacrificial layer 110 is 4 nm, and the thickness of the nanowires 120 is 30 nm. In another embodiment of the present invention, the thickness of the sacrificial layer 110 is 15 nm, and the thickness of the nanowires 120 is 20 nm.
牺牲层110与纳米线120的层数不作具体限制,可以是一层也可以是多层。但应满足最底部的牺牲层110与衬底100的表面接触,最底部的纳米线120不与衬底100接触。The number of layers of the sacrificial layer 110 and the nanowires 120 is not particularly limited, and may be one layer or multiple layers. However, the bottommost sacrificial layer 110 should be in contact with the surface of the substrate 100 , and the bottommost nanowire 120 should not be in contact with the substrate 100 .
具体的,在本发明实施例中,牺牲层110与纳米线120的层数分别为两层,即形成覆盖衬底100表面的第一牺牲层110a,再形成覆盖第一牺牲层110a表面的第一纳米线120a,再形成覆盖第一纳米线120a表面的第二牺牲层110b,再形成覆盖第二牺牲层110b表面的第二纳米线120b。第一纳米线120a、第二纳米线120b均属于纳米线120。同样的,第一牺牲层110a、第二牺牲层110b均属于牺牲层110。Specifically, in the embodiment of the present invention, the layers of the sacrificial layer 110 and the nanowires 120 are respectively two layers, that is, the first sacrificial layer 110a covering the surface of the substrate 100 is formed, and the second sacrificial layer 110a covering the surface of the first sacrificial layer 110a is formed. For a nanowire 120a, a second sacrificial layer 110b covering the surface of the first nanowire 120a is formed, and then a second nanowire 120b covering the surface of the second sacrificial layer 110b is formed. Both the first nanowire 120 a and the second nanowire 120 b belong to the nanowire 120 . Similarly, the first sacrificial layer 110 a and the second sacrificial layer 110 b both belong to the sacrificial layer 110 .
在本发明实施例中,最顶部的纳米线120b表面还形成有伪栅150。伪栅150是后续形成栅极的基础。具体的,在本发明实施例中,伪栅150的材料包括多晶硅(Poly-Si)等。In the embodiment of the present invention, a dummy gate 150 is further formed on the surface of the topmost nanowire 120b. The dummy gate 150 is the basis for the subsequent formation of the gate. Specifically, in the embodiment of the present invention, the material of the dummy gate 150 includes polysilicon (Poly-Si) or the like.
在这里,之所以不直接形成栅极,而先用伪栅150代替的目的是避免后续工艺过程对栅极造成损伤,影响纳米线晶体管的性能。Here, the purpose of using the dummy gate 150 instead of directly forming the gate electrode is to avoid damage to the gate electrode caused by the subsequent process and affect the performance of the nanowire transistor.
需要说明的是,在本发明的其他实施例中,伪栅150的材料还可以是其他材料,只要满足在后续工艺中伪栅150结构不被损伤的条件即可。It should be noted that, in other embodiments of the present invention, the material of the dummy gate 150 may also be other materials, as long as the condition that the structure of the dummy gate 150 is not damaged in subsequent processes is satisfied.
在本发明实施例中,形成伪栅150之前,还包括:形成保护结构130。保护结构130覆盖最顶层纳米线120b的顶部表面、且覆盖堆叠的牺牲层110和纳米线120的侧壁。在这里,保护结构130的作用是为了避免后续工艺对堆叠的牺牲层110和纳米线120造成破坏。在本发明的其他实施例中,保护结构130可以作为部分MOS晶体管的栅介质层。In the embodiment of the present invention, before forming the dummy gate 150 , the method further includes: forming a protection structure 130 . The protection structure 130 covers the top surface of the topmost nanowire 120b and covers the sidewalls of the stacked sacrificial layer 110 and the nanowire 120 . Here, the function of the protection structure 130 is to avoid damage to the stacked sacrificial layer 110 and the nanowires 120 caused by subsequent processes. In other embodiments of the present invention, the protection structure 130 may serve as a gate dielectric layer of part of the MOS transistor.
保护结构130的材料包括氧化物、氮化物等。具体的,在本发明实施例中,保护结构130的材料为SiO2。Materials of the protection structure 130 include oxides, nitrides, and the like. Specifically, in the embodiment of the present invention, the material of the protection structure 130 is SiO 2 .
在本发明实施例中,形成伪栅150之后,在形成隔离结构之前,还包括:形成覆盖伪栅150两侧壁的第一侧墙140。第一侧墙140的作用在于保护伪栅150不被后续工艺破坏。第一侧墙140的材料为氧化物、氮化物等,在这里并不做具体限制。In the embodiment of the present invention, after the dummy gate 150 is formed and before the isolation structure is formed, the method further includes: forming a first spacer 140 covering both side walls of the dummy gate 150 . The function of the first spacer 140 is to protect the dummy gate 150 from being damaged by subsequent processes. The material of the first spacer 140 is oxide, nitride, etc., which is not specifically limited here.
请参考图2,除去相邻伪栅150之间堆叠的牺牲层110和纳米线120,暴露衬底100,形成源/漏区域160。Referring to FIG. 2 , the sacrificial layer 110 and the nanowires 120 stacked between adjacent dummy gates 150 are removed to expose the substrate 100 to form source/drain regions 160 .
除去相邻伪栅150之间堆叠的牺牲层110和纳米线120是便于后续在源/漏区域160内形成隔离结构。除去相邻伪栅150之间堆叠的牺牲层110和纳米线120的工艺包括干法刻蚀工艺和/或湿法刻蚀工艺。具体的,在本发明实施例中,除去相邻伪栅150之间堆叠的牺牲层110和纳米线120的工艺为干法刻蚀工艺。且干法刻蚀为反应离子刻蚀(Reactive IonEtch,RIE)工艺。Removing the sacrificial layer 110 and the nanowires 120 stacked between adjacent dummy gates 150 facilitates subsequent formation of isolation structures in the source/drain regions 160 . The process of removing the sacrificial layer 110 and the nanowires 120 stacked between adjacent dummy gates 150 includes a dry etching process and/or a wet etching process. Specifically, in the embodiment of the present invention, the process of removing the sacrificial layer 110 and the nanowires 120 stacked between adjacent dummy gates 150 is a dry etching process. And the dry etching is a reactive ion etching (Reactive Ion Etch, RIE) process.
源/漏区域160为后续形成隔离结构与源/漏极提供了空间。由于牺牲层110与纳米线120直接在衬底表面形成,所以在除去牺牲层110与纳米线120之后,衬底100就暴露出来。The source/drain regions 160 provide space for the subsequent formation of isolation structures and source/drain. Since the sacrificial layer 110 and the nanowires 120 are directly formed on the surface of the substrate, the substrate 100 is exposed after the sacrificial layer 110 and the nanowires 120 are removed.
在这里,暴露出衬底100的方法包括:只除去牺牲层110与纳米线120,暴露出衬底100的表面,即不对衬底100进行刻蚀;或者在除去牺牲层110与纳米线120后,再继续对衬底100进行适当刻蚀,暴露出衬底100,即在衬底100上形成凹槽。在这里,对暴露衬底100的方法并不作具体限制。优选的,在本发明实施例中,暴露衬底100的方法为:在除去牺牲层110与纳米线120后,再继续对衬底100进行适当刻蚀,除去部分衬底100后,暴露出衬底100,即在衬底100上形成凹槽。这种方法使后续在源/漏160底部形成的隔离结构相对较厚,更有效地消除衬底100与源/漏极之间电流的泄漏。Here, the method for exposing the substrate 100 includes: removing only the sacrificial layer 110 and the nanowires 120 to expose the surface of the substrate 100, that is, without etching the substrate 100; or after removing the sacrificial layer 110 and the nanowires 120 , and then proceed to appropriately etch the substrate 100 to expose the substrate 100 , that is, to form a groove on the substrate 100 . Here, the method of exposing the substrate 100 is not particularly limited. Preferably, in the embodiment of the present invention, the method for exposing the substrate 100 is as follows: after removing the sacrificial layer 110 and the nanowires 120, the substrate 100 is appropriately etched, and after removing part of the substrate 100, the substrate 100 is exposed. Bottom 100 , that is, grooves are formed on the substrate 100 . This method makes the subsequent isolation structure formed at the bottom of the source/drain 160 relatively thick, which more effectively eliminates the leakage of current between the substrate 100 and the source/drain.
刻蚀部分衬底100的工艺与刻蚀形成源/漏区域160的工艺可以相同,也可以不同。在本发明实施例中,刻蚀部分衬底100的工艺与刻蚀牺牲层110与纳米线120的工艺相同。The process of etching part of the substrate 100 and the process of etching to form the source/drain regions 160 may be the same or different. In the embodiment of the present invention, the process of etching part of the substrate 100 is the same as the process of etching the sacrificial layer 110 and the nanowires 120 .
在本发明实施例中,还包括:刻蚀除去牺牲层110与纳米线120之前,刻蚀除去保护结构130。刻蚀除去保护结构130的工艺可以与刻蚀牺牲层110和纳米线120的工艺相同,也可以不相同。具体的,在本发明实施例中,刻蚀除去保护结构130的工艺与刻蚀牺牲层110和纳米线120的工艺相同。In the embodiment of the present invention, the method further includes: before the sacrificial layer 110 and the nanowire 120 are removed by etching, the protective structure 130 is removed by etching. The process of etching and removing the protection structure 130 may be the same as or different from the process of etching the sacrificial layer 110 and the nanowires 120 . Specifically, in the embodiment of the present invention, the process of etching and removing the protective structure 130 is the same as the process of etching the sacrificial layer 110 and the nanowire 120 .
请参考图3,在源/漏区域160内形成第二侧墙170。Referring to FIG. 3 , second spacers 170 are formed in the source/drain regions 160 .
在本发明实施例中,第二侧墙170覆盖源/漏区域160两侧的伪栅150侧壁、纳米线120侧壁、牺牲层110侧壁以及源/漏区域160底部衬底100表面。In the embodiment of the present invention, the second spacers 170 cover the sidewalls of the dummy gate 150 , the sidewalls of the nanowires 120 , the sidewalls of the sacrificial layer 110 and the surface of the bottom substrate 100 of the source/drain region 160 on both sides of the source/drain region 160 .
第二侧墙170是后续形成侧壁隔离结构和底部隔离结构的基础。第二侧墙170的材料为SiO2、SiN、SiON、SiOCN中的一种或多种。第二侧墙170的厚度在2nm~20nm之间。The second sidewall 170 is the basis for the subsequent formation of the sidewall isolation structure and the bottom isolation structure. The material of the second spacer 170 is one or more of SiO 2 , SiN, SiON, and SiOCN. The thickness of the second sidewall spacer 170 is between 2 nm and 20 nm.
形成第二侧墙170的工艺包括但不限于原子层沉积工艺(ALD工艺)、化学气相沉积工艺(CVD工艺)等。具体的,在本发明实施例中,形成第二侧墙170的工艺为ALD工艺。ALD工艺形成的第二侧墙170结构更加均匀。The process of forming the second spacer 170 includes, but is not limited to, an atomic layer deposition process (ALD process), a chemical vapor deposition process (CVD process), and the like. Specifically, in the embodiment of the present invention, the process of forming the second sidewall spacer 170 is an ALD process. The structure of the second sidewall spacer 170 formed by the ALD process is more uniform.
请参考图4,形成覆盖源/漏区域160底部第二侧墙170表面的介质层180。Referring to FIG. 4 , a dielectric layer 180 covering the surface of the second spacer 170 at the bottom of the source/drain region 160 is formed.
形成介质层180的目的在于为后续刻蚀除去部分第二侧墙170提供刻蚀终止位置,使源/漏区域160底部余下侧墙的顶部表面处于合适的位置。The purpose of forming the dielectric layer 180 is to provide an etch termination position for the subsequent etching to remove part of the second spacer 170 , so that the top surface of the remaining spacer at the bottom of the source/drain region 160 is in a proper position.
在本发明实施例中,介质层180的材料包括有机物、多晶硅等。若介质层180的材料为有机物,则形成介质层180的工艺包括旋涂工艺;若介质层180的材料为多晶硅,则采用直接生长多晶硅的方式形成介质层180。具体的,在本发明实施例中,介质层180的材料为有机物,介质层180形成工艺为旋涂工艺。与直接生长多晶Si相比,旋涂工艺形成的介质层180结构更加均匀。In the embodiment of the present invention, the material of the dielectric layer 180 includes organic matter, polysilicon, and the like. If the material of the dielectric layer 180 is an organic substance, the process of forming the dielectric layer 180 includes a spin coating process; if the material of the dielectric layer 180 is polysilicon, the dielectric layer 180 is formed by directly growing polysilicon. Specifically, in the embodiment of the present invention, the material of the dielectric layer 180 is an organic substance, and the formation process of the dielectric layer 180 is a spin coating process. Compared with the direct growth of polycrystalline Si, the structure of the dielectric layer 180 formed by the spin coating process is more uniform.
在这里,需要说明的是,在本发明的其他实施例中,介质层180的材料还可以是其他材料,在此不作具体限制,只要能够满足为刻蚀第二侧墙170提供终止位置的条件即可。Here, it should be noted that in other embodiments of the present invention, the material of the dielectric layer 180 may also be other materials, which are not specifically limited here, as long as the conditions for providing a termination position for etching the second sidewall spacer 170 can be met. That's it.
介质层180的顶部表面低于最底部的纳米线120的顶部表面,且高于最底部的牺牲层110的底部表面。具体的,在本发明实施例中,介质层180的顶部表面不高于最底部纳米线120的底部表面,即不高于纳米线120a的底部表面;且高于最底部牺牲层110的底部表面,即高于牺牲层110a的底部表面。这里,限制介质层180顶部表面的位置是为了后续刻蚀第二侧墙170时,使刻蚀终止在这一位置。刻蚀停止在这一位置,也使位于源/漏区域160两侧底部余下的第二侧墙170的顶部表面高于源/漏区域160底部第二侧墙170的顶部表面,使两者在源/漏区域160底部的截面形状呈浅U型,这种浅U型结构的侧墙能更加有效地隔离后续的源/漏极与衬底100。The top surface of the dielectric layer 180 is lower than the top surface of the bottommost nanowire 120 and higher than the bottom surface of the bottommost sacrificial layer 110 . Specifically, in the embodiment of the present invention, the top surface of the dielectric layer 180 is not higher than the bottom surface of the bottommost nanowire 120, that is, not higher than the bottom surface of the nanowire 120a; and is higher than the bottom surface of the bottommost sacrificial layer 110 , that is, higher than the bottom surface of the sacrificial layer 110a. Here, the position of the top surface of the limiting dielectric layer 180 is for the purpose of terminating the etching at this position when the second spacer 170 is subsequently etched. The etching is stopped at this position, and the top surfaces of the remaining second sidewall spacers 170 at the bottom of both sides of the source/drain region 160 are also higher than the top surfaces of the second sidewall spacers 170 at the bottom of the source/drain region 160, so that the two are at the bottom of the source/drain region 160. The cross-sectional shape of the bottom of the source/drain region 160 is shallow U-shaped, and the sidewall spacers of the shallow U-shaped structure can more effectively isolate the subsequent source/drain from the substrate 100 .
需要说明的是,在实际工艺中,较难使得介质层180的顶部表面正好位于前述位置。因此还可以先形成较厚的介质层180,然后再对介质层180进行刻蚀,控制刻蚀终止位置,使得刻蚀后介质层180的顶部表面位于前述位置。具体的,在本发明实施例中,采用先形成较厚的介质层180,然后再回刻介质层180,使介质层180的顶部表面处于上述位置。It should be noted that, in the actual process, it is difficult to make the top surface of the dielectric layer 180 be located at the aforementioned position. Therefore, a thicker dielectric layer 180 can be formed first, and then the dielectric layer 180 can be etched, and the etching termination position can be controlled so that the top surface of the dielectric layer 180 after etching is located at the aforementioned position. Specifically, in the embodiment of the present invention, a thicker dielectric layer 180 is formed first, and then the dielectric layer 180 is etched back so that the top surface of the dielectric layer 180 is at the above position.
请参考图5,除去源/漏区域160两侧的部分第二侧墙170,形成隔离结构。Referring to FIG. 5 , part of the second spacers 170 on both sides of the source/drain region 160 is removed to form an isolation structure.
除去部分第二侧墙170的目的在于只保留源/漏区域160底部的第二侧墙170,以形成隔离结构。The purpose of removing part of the second sidewall spacers 170 is to leave only the second sidewall spacers 170 at the bottom of the source/drain regions 160 to form an isolation structure.
除去部分第二侧墙170的工艺包括干法刻蚀和/或湿法刻蚀。具体的,在本发明实施例中,刻蚀除去部分第二侧墙170的工艺为湿法刻蚀。湿法刻蚀所用的溶液包括:H3PO4、H2O2、SC1、去离子水、HCl、HF、NH4F中的一种或者多种混合。The process of removing part of the second spacer 170 includes dry etching and/or wet etching. Specifically, in the embodiment of the present invention, the process of etching and removing part of the second sidewall spacer 170 is wet etching. The solution used in wet etching includes: one or a mixture of H 3 PO 4 , H 2 O 2 , SC1, deionized water, HCl, HF, and NH 4 F.
在本发明实施例中,在除去部分第二侧墙170时,要暴露所有纳米线120的侧面。即在本发明实施例中,暴露所有纳米线120a与纳米线120b的侧面。这样使纳米线120与后续形成的源/漏极相接触,达到导通的目的。In the embodiment of the present invention, when removing part of the second spacers 170 , all the side surfaces of the nanowires 120 are to be exposed. That is, in the embodiment of the present invention, all the side surfaces of the nanowires 120a and the nanowires 120b are exposed. In this way, the nanowire 120 is in contact with the source/drain formed subsequently, so as to achieve the purpose of conduction.
如前所述,介质层180为刻蚀部分第二侧墙170提供了刻蚀停止位置。所以,具体的,在本发明实施例中,源/漏区域160两侧底部余下的第二侧墙为侧壁侧墙171,侧壁侧墙171的顶部表面与介质层180的顶部表面平齐。即侧壁侧墙171的顶部表面不高于最底部的纳米线120a的底部表面、且高于最底部牺牲层110a的底部表面。As mentioned above, the dielectric layer 180 provides an etching stop position for etching a portion of the second spacer 170 . Therefore, specifically, in the embodiment of the present invention, the remaining second sidewalls at the bottoms of the source/drain regions 160 are sidewall sidewalls 171 , and the top surfaces of the sidewall sidewalls 171 are flush with the top surface of the dielectric layer 180 . . That is, the top surface of the sidewall spacer 171 is not higher than the bottom surface of the bottommost nanowire 120a, and is higher than the bottom surface of the bottommost sacrificial layer 110a.
需要说明的是,由于实际的刻蚀工艺很难保证侧壁侧墙171的顶部表面与介质层180的顶部表面严格平齐。所以,具体的,在实施本发明一个实施例的纳米线晶体管时,要保证隔离结构两侧面的最高点低于最底部纳米线120的顶部表面,即纳米线120a的顶部表面。具体的,在本发明实施例中,隔离结构两侧面的最高点不高于最底部纳米线120的底部表面,即纳米线120a的底部表面。且隔离结构的两侧面分别为侧壁隔离结构的与底部隔离结构非接触的侧面。It should be noted that, due to the actual etching process, it is difficult to ensure that the top surface of the sidewall spacer 171 is strictly flush with the top surface of the dielectric layer 180 . Therefore, specifically, when implementing the nanowire transistor of an embodiment of the present invention, it is necessary to ensure that the highest points on both sides of the isolation structure are lower than the top surface of the bottommost nanowire 120 , that is, the top surface of the nanowire 120a. Specifically, in the embodiment of the present invention, the highest points on both sides of the isolation structure are not higher than the bottom surface of the bottommost nanowire 120 , that is, the bottom surface of the nanowire 120a. The two side surfaces of the isolation structure are respectively the side surfaces of the sidewall isolation structure that are not in contact with the bottom isolation structure.
至此,在本发明实施例中,第二侧墙170剩余的部分包括:侧壁侧墙171和底部侧墙172,且底部侧墙172位于侧壁侧墙171之间,且与侧壁侧墙171相连。明显的,第二侧墙170、侧壁侧墙171和底部侧墙172的材料是相同的,材料如前所述。So far, in the embodiment of the present invention, the remaining part of the second sidewall 170 includes: a sidewall sidewall 171 and a bottom sidewall 172 , and the bottom sidewall 172 is located between the sidewall sidewalls 171 and is connected to the sidewall sidewall 171 . 171 connected. Obviously, the materials of the second sidewall 170 , the sidewall sidewall 171 and the bottom sidewall 172 are the same, as described above.
至此,在源/漏区域160底部形成了隔离结构,隔离结构包括侧壁隔离结构和底部隔离结构。明显的,底部隔离结构覆盖侧壁隔离结构之间衬底100表面、且与侧壁隔离结构相连。在本发明实施例中,侧壁隔离结构为侧壁侧墙171,底部隔离结构为底部侧墙172。So far, an isolation structure is formed at the bottom of the source/drain region 160, and the isolation structure includes a sidewall isolation structure and a bottom isolation structure. Obviously, the bottom isolation structure covers the surface of the substrate 100 between the sidewall isolation structures and is connected to the sidewall isolation structures. In the embodiment of the present invention, the sidewall isolation structure is the sidewall spacer 171 , and the bottom isolation structure is the bottom sidewall 172 .
在本发明实施例中,侧壁侧墙171和底部侧墙172位于后续源/漏极与衬底100之间,实现了对衬底100和源/漏极的隔离,防止了源/漏极与衬底100之间的电流泄露,提高了纳米线晶体管的性能。In the embodiment of the present invention, the sidewall spacers 171 and the bottom spacers 172 are located between the subsequent source/drain and the substrate 100, which realizes the isolation of the substrate 100 and the source/drain and prevents the source/drain The current leakage from the substrate 100 improves the performance of the nanowire transistor.
请参考图6,在源/漏区域160内形成源/漏极1310。Referring to FIG. 6 , a source/drain 1310 is formed in the source/drain region 160 .
源/漏极1310用于与纳米线120(沟道区)接触。因此,在本发明实施例中,优选的,源/漏极1310的顶部表面要高于最顶部纳米线120b的顶部表面,即实现源/漏极1310对纳米线120两侧面的完全覆盖,且源/漏极1310同时覆盖了隔离结构的表面。The source/drain 1310 is used to make contact with the nanowire 120 (channel region). Therefore, in the embodiment of the present invention, preferably, the top surface of the source/drain 1310 is higher than the top surface of the topmost nanowire 120b, that is, the source/drain 1310 completely covers both sides of the nanowire 120, and The source/drain 1310 simultaneously covers the surface of the isolation structure.
形成源/漏极1310的工艺步骤包括:先形成覆盖隔离结构表面的源/漏材料层(未标出),再对源/漏材料层进行掺杂,形成源/漏极1310。在本发明实施例中,形成源/漏材料层的工艺包括外延生长工艺。外延生长工艺包括:化学气相沉积(CVD)外延工艺或分子束外延(MBE)工艺。具体的,在本发明实施例中,形成源/漏材料层的工艺为MBE工艺。The process steps of forming the source/drain 1310 include: firstly forming a source/drain material layer (not shown) covering the surface of the isolation structure, and then doping the source/drain material layer to form the source/drain 1310 . In an embodiment of the present invention, the process of forming the source/drain material layer includes an epitaxial growth process. The epitaxial growth process includes: chemical vapor deposition (CVD) epitaxy process or molecular beam epitaxy (MBE) process. Specifically, in the embodiment of the present invention, the process of forming the source/drain material layer is the MBE process.
源/漏材料层的材料可根据源/漏极1310的不同类型进行选择。当源/漏极1310为PMOS时,源/漏材料层的材料包括但不限于SiGe、Si等,掺杂的物质包括但不限于硼(B)、镓(Ga)等;当源/漏极1310为NMOS时,源/漏材料层的材料包括但不限于SiC、Si等,掺杂的物质包括但不限于磷(P)、砷(As)、铑(Rh)等。The material of the source/drain material layer may be selected according to different types of the source/drain 1310 . When the source/drain 1310 is a PMOS, the material of the source/drain material layer includes but is not limited to SiGe, Si, etc., and the doped substances include but not limited to boron (B), gallium (Ga), etc.; when the source/drain material layer is When 1310 is NMOS, the material of the source/drain material layer includes but not limited to SiC, Si, etc., and the doped substances include but not limited to phosphorus (P), arsenic (As), rhodium (Rh) and the like.
对源/漏材料层掺杂的工艺包括:原位掺杂、扩散、离子注入或其组合。具体的,在本发明实施例中,对源/漏材料层掺杂的工艺为原位外延掺杂。The process of doping the source/drain material layer includes in-situ doping, diffusion, ion implantation or a combination thereof. Specifically, in the embodiment of the present invention, the process of doping the source/drain material layer is in-situ epitaxial doping.
在本发明实施例中,源/漏极1310为高掺杂的源/漏极1310。高掺杂是指掺杂的离子浓度大于1×1020atoms/cm3。In the embodiment of the present invention, the source/drain 1310 is a highly doped source/drain 1310 . High doping means that the ion concentration of the doping is greater than 1×10 20 atoms/cm 3 .
需要说明的是,由于先前形成了介质层180,在本发明实施例中,除去部分侧墙170之后,形成源/漏极1310之前,还包括:除去介质层180。It should be noted that, since the dielectric layer 180 is previously formed, in the embodiment of the present invention, after removing part of the spacer 170 and before forming the source/drain electrode 1310 , the method further includes: removing the dielectric layer 180 .
除去介质层180是为了后续直接在隔离结构表面形成源/漏极1310。除去介质层180的工艺包括:干法刻蚀和/或湿法刻蚀。具体的,在本发明实施例中,除去介质层180的工艺为干法刻蚀。The removal of the dielectric layer 180 is to form the source/drain 1310 directly on the surface of the isolation structure subsequently. The process of removing the dielectric layer 180 includes dry etching and/or wet etching. Specifically, in the embodiment of the present invention, the process of removing the dielectric layer 180 is dry etching.
请参考图7,在源/漏极1310顶部形成第一介电层1320。Referring to FIG. 7 , a first dielectric layer 1320 is formed on top of the source/drain 1310 .
在本发明实施例中,在形成源/漏极1310之后,还包括:形成覆盖源/漏极1310的第一介电层1320。In the embodiment of the present invention, after forming the source/drain 1310 , the method further includes: forming a first dielectric layer 1320 covering the source/drain 1310 .
第一介电层1320在纳米线晶体管中起到介电隔离的作用,同时也保护了源/漏极1310在后续工艺中不被破坏。The first dielectric layer 1320 plays a role of dielectric isolation in the nanowire transistor, and also protects the source/drain 1310 from damage in subsequent processes.
在本发明实施例中,第一介电层1320的材料包括但不限于SiOx、SiOCH、SiN等。In the embodiment of the present invention, the material of the first dielectric layer 1320 includes, but is not limited to, SiO x , SiOCH, SiN, and the like.
在具体工艺实施中,由于第一介电层1320很难只形成在源/漏极1310的表面,因此,在伪栅150的顶部也会形成第一介电层1320。由于后续要将伪栅150去除,所以在形成第一介电层1320后要将伪栅150顶部暴露出来。具体的,在本发明实施例中,暴露伪栅150顶部的方法是先形成覆盖伪栅150和源/漏极1310的第一介电层1320,然后再除去部分第一介电层1320,暴露出伪栅150顶部。In the specific process implementation, since it is difficult to form the first dielectric layer 1320 only on the surface of the source/drain electrode 1310 , the first dielectric layer 1320 is also formed on the top of the dummy gate 150 . Since the dummy gate 150 is to be removed later, the top of the dummy gate 150 should be exposed after the first dielectric layer 1320 is formed. Specifically, in the embodiment of the present invention, the method for exposing the top of the dummy gate 150 is to form the first dielectric layer 1320 covering the dummy gate 150 and the source/drain 1310 first, and then remove part of the first dielectric layer 1320 to expose The top of the dummy gate 150 is removed.
除去部分第一介电层1320的工艺包括:干法刻蚀和/或湿法刻蚀、化学机械平坦化(CMP)等。具体的,在本发明实施例中,采用CMP工艺将第一介电层1320平坦化,进而暴露出伪栅150顶部。The process of removing part of the first dielectric layer 1320 includes dry etching and/or wet etching, chemical mechanical planarization (CMP), and the like. Specifically, in the embodiment of the present invention, the first dielectric layer 1320 is planarized by a CMP process, thereby exposing the top of the dummy gate 150 .
请参考图8,去除伪栅150和牺牲层110以形成沟槽(未标出),在沟槽内形成栅极结构。Referring to FIG. 8 , the dummy gate 150 and the sacrificial layer 110 are removed to form a trench (not shown), and a gate structure is formed in the trench.
除去伪栅150和牺牲层110的目的在于在沟槽内形成栅极结构。除去伪栅150和牺牲层110的工艺包括:干法刻蚀和/或湿法刻蚀。具体的,在本发明实施例中,除去伪栅150和牺牲层110的工艺包括干法刻蚀。The purpose of removing the dummy gate 150 and the sacrificial layer 110 is to form a gate structure in the trench. The process of removing the dummy gate 150 and the sacrificial layer 110 includes dry etching and/or wet etching. Specifically, in the embodiment of the present invention, the process of removing the dummy gate 150 and the sacrificial layer 110 includes dry etching.
在本发明实施例中,栅极结构包括:栅介质层1330和栅极1340。In the embodiment of the present invention, the gate structure includes: a gate dielectric layer 1330 and a gate 1340 .
栅介质层1330的目的在于将源/漏极1310、纳米线120与栅极1340进行隔离,避免在源/漏极1310与栅极1340之间出现过大的寄生电容。The purpose of the gate dielectric layer 1330 is to isolate the source/drain 1310 , the nanowire 120 and the gate 1340 to avoid excessive parasitic capacitance between the source/drain 1310 and the gate 1340 .
在本发明实施例中,形成栅介质层1330和栅极1340的工艺步骤包括:先形成覆盖沟槽的内部介质层(未标出),再在内部介质层表面形成高介电材料层(未标出,介电常数k在15~50之间)。栅介质层1330和栅极1340充满沟槽。在本发明实施例中,栅极1340覆盖栅介质层1330,栅介质层1330覆盖纳米线120。In the embodiment of the present invention, the process steps of forming the gate dielectric layer 1330 and the gate electrode 1340 include: firstly forming an inner dielectric layer (not shown) covering the trench, and then forming a high dielectric material layer (not shown) on the surface of the inner dielectric layer marked, the dielectric constant k is between 15 and 50). The gate dielectric layer 1330 and the gate electrode 1340 fill the trenches. In the embodiment of the present invention, the gate 1340 covers the gate dielectric layer 1330 , and the gate dielectric layer 1330 covers the nanowires 120 .
明显的,在本发明实施例中,栅介质层1330包括:内部介质层和高介电材料层。Obviously, in the embodiment of the present invention, the gate dielectric layer 1330 includes: an inner dielectric layer and a high dielectric material layer.
内部介质层的材料包括但不限于:SiON、SiOx等,在这里并不作具体限制。具体的,在本发明实施例中,内部介质层的材料为SiO2。The material of the inner dielectric layer includes but is not limited to: SiON, SiO x , etc., which are not specifically limited here. Specifically, in the embodiment of the present invention, the material of the internal dielectric layer is SiO 2 .
高介电材料层的材料包括但不限于:HfO2、ZrO2等。具体的,在本发明实施例中,高介电材料层的材料为HfO2。Materials of the high dielectric material layer include but are not limited to: HfO 2 , ZrO 2 and the like. Specifically, in the embodiment of the present invention, the material of the high dielectric material layer is HfO 2 .
栅极1340为金属栅极。栅极1340的材料包括但不限于TiN、TiAlC、TiAl、TaN、W、Ti、Al等组成的一层或者多层叠层材料。具体的,在本发明实施例中,栅极1340的材料为TiN和TiAl组成的叠层材料。The gate 1340 is a metal gate. The material of the gate electrode 1340 includes, but is not limited to, one or more layered materials composed of TiN, TiAlC, TiAl, TaN, W, Ti, Al, and the like. Specifically, in the embodiment of the present invention, the material of the gate electrode 1340 is a stacked material composed of TiN and TiAl.
形成栅介质层1330和栅极1340的工艺包括:ALD工艺、CVD工艺、物理气相沉积工艺(PVD)、化学气相沉积(CVD)外延工艺、分子束外延(MBE)工艺等,在这里并不做具体限制。具体的,在本发明实施例中,栅极介质层1330和栅极1340的形成工艺为ALD工艺。The processes for forming the gate dielectric layer 1330 and the gate electrode 1340 include: ALD process, CVD process, physical vapor deposition (PVD), chemical vapor deposition (CVD) epitaxy, molecular beam epitaxy (MBE) process, etc., which are not performed here. specific restrictions. Specifically, in the embodiment of the present invention, the formation process of the gate dielectric layer 1330 and the gate electrode 1340 is an ALD process.
在本发明实施例中,除去牺牲层110之前,还包括除去覆盖最顶层纳米线120b顶部表面、且覆盖堆叠的牺牲层110和纳米线120侧壁的保护结构130。In the embodiment of the present invention, before removing the sacrificial layer 110 , it further includes removing the protective structure 130 covering the top surface of the topmost nanowire 120 b and covering the sidewalls of the stacked sacrificial layer 110 and the nanowire 120 .
请参考图9,在栅极1340顶部形成金属线1360,形成覆盖栅极结构和第一介电层1320的第二介电层1350。Referring to FIG. 9 , a metal line 1360 is formed on top of the gate 1340 to form a second dielectric layer 1350 covering the gate structure and the first dielectric layer 1320 .
形成第二介电层1350的目的在于保护栅极1340和金属线1360。The purpose of forming the second dielectric layer 1350 is to protect the gate electrode 1340 and the metal line 1360 .
金属线1360与栅极结构接触,实现与栅极1340的连通。且金属线1360贯穿第二介电层1350。由于金属线1360要与上部的半导体器件接触,所以金属线1360的顶部表面要暴露出来。The metal line 1360 is in contact with the gate structure, enabling communication with the gate 1340 . And the metal line 1360 penetrates the second dielectric layer 1350 . Since the metal line 1360 is to be in contact with the upper semiconductor device, the top surface of the metal line 1360 is to be exposed.
明显的,第一介质层1320与第二介电层1350均起到介电保护的作用。因此,第一介质层1320与第二介电层1350的材料可以相同,也可以不相同。具体的,在本发明实施例中,第一介质层1320与第二介电层1350的材料相同。Obviously, the first dielectric layer 1320 and the second dielectric layer 1350 both play the role of dielectric protection. Therefore, the materials of the first dielectric layer 1320 and the second dielectric layer 1350 may be the same or different. Specifically, in the embodiment of the present invention, the materials of the first dielectric layer 1320 and the second dielectric layer 1350 are the same.
综上所述,根据本发明的第一实施例,源/漏极1310底部与衬底100之间形成有侧壁隔离结构和底部隔离结构。与现有技术中没有侧壁隔离结构和底部隔离结构的纳米线晶体管相比,这种隔离结构有效地对衬底100和源/漏极1310进行隔离,消除了衬底100与源/漏极1310之间电流的泄漏,提高了纳米线晶体管的性能。To sum up, according to the first embodiment of the present invention, a sidewall isolation structure and a bottom isolation structure are formed between the bottom of the source/drain 1310 and the substrate 100 . Compared with the prior art nanowire transistors without sidewall isolation structures and bottom isolation structures, this isolation structure effectively isolates the substrate 100 and the source/drain 1310, eliminating the need for the substrate 100 and the source/drain The leakage of current between 1310 improves the performance of the nanowire transistor.
相应的,请继续参考图9,本发明的实施例还提供了一种纳米线晶体管,包括:衬底100、纳米线120、隔离结构、源/漏极1310和栅极结构。Accordingly, please continue to refer to FIG. 9 , an embodiment of the present invention further provides a nanowire transistor including: a substrate 100 , a nanowire 120 , an isolation structure, a source/drain 1310 and a gate structure.
衬底100是后续栅极结构和隔离结构的基础。衬底100的材料包括Si、SiGe等,在这里并不做具体限制。The substrate 100 is the basis for subsequent gate structures and isolation structures. The material of the substrate 100 includes Si, SiGe, etc., which are not specifically limited here.
纳米线120作为半导体器件的沟道区。纳米线120的材料包括:Si、SiGe、SiC等,在这里并不做具体限制。纳米线120不与衬底100接触。纳米线120的个数为1个或多个,在这里并不做具体限制。当纳米线120为多个时,多个纳米线120纵向间隔分布在栅极结构内部,如图9中,箭头所指示的方向为纵向。具体的,在本发明实施例中,纳米线120的个数为两个,从下到上依次为120a、120b。The nanowires 120 serve as channel regions of the semiconductor device. Materials of the nanowires 120 include: Si, SiGe, SiC, etc., which are not specifically limited here. The nanowires 120 are not in contact with the substrate 100 . The number of nanowires 120 is one or more, which is not specifically limited here. When there are a plurality of nanowires 120, the plurality of nanowires 120 are longitudinally spaced and distributed inside the gate structure. In FIG. 9, the direction indicated by the arrow is the longitudinal direction. Specifically, in the embodiment of the present invention, the number of nanowires 120 is two, which are 120a and 120b in order from bottom to top.
隔离结构位于衬底100表面,用于隔离衬底100与源/漏极1310。隔离结构包括侧壁隔离结构与底部隔离结构,其中侧壁隔离结构位于底部隔离结构的两侧,底部隔离结构位于侧壁隔离结构之间,且与侧壁隔离结构相接触。具体的,在本发明实施例中,侧壁隔离结构为侧壁侧墙171,底部隔离结构为底部侧墙172。侧壁隔离结构与底部隔离结构的材料相同,为SiO2、SiN、SiON、SiOCN中的一种或多种。The isolation structure is located on the surface of the substrate 100 for isolating the substrate 100 and the source/drain 1310 . The isolation structure includes a sidewall isolation structure and a bottom isolation structure, wherein the sidewall isolation structure is located on both sides of the bottom isolation structure, and the bottom isolation structure is located between and in contact with the sidewall isolation structure. Specifically, in the embodiment of the present invention, the sidewall isolation structure is the sidewall sidewall 171 , and the bottom isolation structure is the bottom sidewall 172 . The sidewall isolation structure is made of the same material as the bottom isolation structure, which is one or more of SiO 2 , SiN, SiON, and SiOCN.
隔离结构两侧面分别为侧壁隔离结构的与底部隔离结构非接触的两个侧面。隔离结构两侧面的最高点低于最底部纳米线120的顶部表面。具体的,在本发明实施例中,隔离结构两侧面的最高点低于最底部纳米线120的底部表面,即低于纳米线120a的底部表面。The two side surfaces of the isolation structure are respectively the two side surfaces of the sidewall isolation structure that are not in contact with the bottom isolation structure. The highest points on both sides of the isolation structure are lower than the top surface of the bottommost nanowire 120 . Specifically, in the embodiment of the present invention, the highest points on both sides of the isolation structure are lower than the bottom surface of the bottommost nanowire 120 , that is, lower than the bottom surface of the nanowire 120a.
源/漏极1310位于栅极结构的两侧,且源/漏极1310与纳米线120的两侧面相接触。在本发明实施例中,源/漏极1310覆盖隔离结构。当源/漏极1310为PMOS时,源/漏极1310的材料包括但不限于SiGe、Si等,掺杂的物质包括但不限于硼(B)、镓(Ga)等;当源/漏极1310为NMOS时,源/漏极的材料包括但不限于SiC、Si等,掺杂的物质包括但不限于磷(P)、砷(As)、铑(Rh)等。The source/drain 1310 is located on both sides of the gate structure, and the source/drain 1310 is in contact with both sides of the nanowire 120 . In an embodiment of the present invention, the source/drain 1310 covers the isolation structure. When the source/drain 1310 is a PMOS, the material of the source/drain 1310 includes but not limited to SiGe, Si, etc., and the doped substances include but not limited to boron (B), gallium (Ga), etc.; when the source/drain 1310 is When 1310 is an NMOS, the source/drain material includes but is not limited to SiC, Si, etc., and the doped material includes but is not limited to phosphorus (P), arsenic (As), rhodium (Rh), and the like.
栅极结构位于衬底100上方,且栅极结构位于源/漏极1310之间。栅极结构包括栅介质层1330与栅极1340。The gate structure is located over the substrate 100 and the gate structure is located between the source/drain 1310 . The gate structure includes a gate dielectric layer 1330 and a gate 1340 .
栅介质层1330的目的在于将源/漏极1310、纳米线120与栅极1340进行隔离,避免在源/漏极1310与栅极1340之间出现过大的寄生电容。在本发明实施例中,栅介质层1330包括:内部介质层(未标出)和高介电材料层(未标出)。The purpose of the gate dielectric layer 1330 is to isolate the source/drain 1310 , the nanowire 120 and the gate 1340 to avoid excessive parasitic capacitance between the source/drain 1310 and the gate 1340 . In the embodiment of the present invention, the gate dielectric layer 1330 includes: an inner dielectric layer (not shown) and a high dielectric material layer (not shown).
内部介质层的材料包括:SiON、SiOx等,在这里并不作具体限制。具体的,在本发明实施例中,内部介质层的材料为SiO2。Materials of the inner dielectric layer include: SiON, SiO x , etc., which are not specifically limited here. Specifically, in the embodiment of the present invention, the material of the internal dielectric layer is SiO 2 .
高介电材料层的材料包括但不限于:HfO2、ZrO2等。具体的,在本发明实施例中,高介电材料层的材料为HfO2。Materials of the high dielectric material layer include but are not limited to: HfO 2 , ZrO 2 and the like. Specifically, in the embodiment of the present invention, the material of the high dielectric material layer is HfO 2 .
栅极1340为金属栅极。栅极1340的材料包括但不限于TiN、TiAlC、TiAl、TaN、W、Ti、Al等组成的一层或者多层叠层材料。具体的,在本发明实施例中,栅极1340的材料为TiN和TiAl组成的叠层材料。The gate 1340 is a metal gate. The material of the gate electrode 1340 includes, but is not limited to, one or more layered materials composed of TiN, TiAlC, TiAl, TaN, W, Ti, Al, and the like. Specifically, in the embodiment of the present invention, the material of the gate electrode 1340 is a stacked material composed of TiN and TiAl.
在本发明实施例中,纳米线晶体管还包括:第一介电层1320、第二介电层1350和金属线1360。In an embodiment of the present invention, the nanowire transistor further includes: a first dielectric layer 1320 , a second dielectric layer 1350 and a metal wire 1360 .
第一介电层1320覆盖源/漏极1310的顶部。第一介电层1320在纳米线晶体管中起到介电隔离的作用,同时也保护了源/漏极1310在后续工艺中不被破坏。在本发明实施例中,第一介电层1320的材料包括但不限于SiOx、SiOCH、SiN等。The first dielectric layer 1320 covers the top of the source/drain 1310 . The first dielectric layer 1320 plays a role of dielectric isolation in the nanowire transistor, and also protects the source/drain 1310 from damage in subsequent processes. In the embodiment of the present invention, the material of the first dielectric layer 1320 includes, but is not limited to, SiO x , SiOCH, SiN, and the like.
第二介电层1350覆盖栅极结构和第一介电层1320。第二介电层1350的目的在于保护栅极1340和金属线1360。The second dielectric layer 1350 covers the gate structure and the first dielectric layer 1320 . The purpose of the second dielectric layer 1350 is to protect the gate 1340 and the metal lines 1360 .
明显的,第一介质层1320与第二介电层1350均起到介电保护的作用。因此,第一介质层1320与第二介电层1350的材料可以相同,也可以不相同。具体的,在本发明实施例中,第一介质层1320与第二介电层1350的材料相同。Obviously, the first dielectric layer 1320 and the second dielectric layer 1350 both play the role of dielectric protection. Therefore, the materials of the first dielectric layer 1320 and the second dielectric layer 1350 may be the same or different. Specifically, in the embodiment of the present invention, the materials of the first dielectric layer 1320 and the second dielectric layer 1350 are the same.
金属线1360与栅极结构接触,实现与栅极1340的连通。且金属线1360贯穿第二介电层1350。由于金属线1360要与上部的半导体器件接触,所以金属线1360的顶部表面要暴露出来。The metal line 1360 is in contact with the gate structure, enabling communication with the gate 1340 . And the metal line 1360 penetrates the second dielectric layer 1350 . Since the metal line 1360 is to be in contact with the upper semiconductor device, the top surface of the metal line 1360 is to be exposed.
在本发明实施例中,纳米线晶体管还包括:保护结构130和第一侧墙140。In the embodiment of the present invention, the nanowire transistor further includes: a protection structure 130 and a first spacer 140 .
保护结构130覆盖最顶层纳米线120b的顶部表面、且覆盖堆叠的牺牲层110和纳米线120的侧壁。在这里,保护结构130的作用是为了避免后续工艺对堆叠的牺牲层110和纳米线120造成破坏。在本发明的其他实施例中,保护结构130可以作为部分MOS晶体管的栅介质层。保护结构130的材料包括氧化物、氮化物等。具体的,在本发明实施例中,保护结构130的材料为SiO2。The protection structure 130 covers the top surface of the topmost nanowire 120b and covers the sidewalls of the stacked sacrificial layer 110 and the nanowire 120 . Here, the function of the protection structure 130 is to avoid damage to the stacked sacrificial layer 110 and the nanowires 120 caused by subsequent processes. In other embodiments of the present invention, the protection structure 130 may serve as a gate dielectric layer of part of the MOS transistor. Materials of the protection structure 130 include oxides, nitrides, and the like. Specifically, in the embodiment of the present invention, the material of the protection structure 130 is SiO 2 .
第一侧墙140覆盖伪栅150两侧壁。第一侧墙140的作用在于保护伪栅150不被后续工艺破坏。第一侧墙140的材料为氧化物、氮化物等,在这里并不做具体限制。The first sidewall spacers 140 cover both sidewalls of the dummy gate 150 . The function of the first spacer 140 is to protect the dummy gate 150 from being damaged by subsequent processes. The material of the first spacer 140 is oxide, nitride, etc., which is not specifically limited here.
综上所述,在本发明第一实施例提供的纳米线晶体管中,源/漏极与衬底之间含有侧壁隔离结构与底部隔离结构,实现了对源/漏极与衬底的电学隔离,消除了两者之间电流的泄露,提高了纳米线晶体管的性能。To sum up, in the nanowire transistor provided by the first embodiment of the present invention, the sidewall isolation structure and the bottom isolation structure are included between the source/drain and the substrate, which realizes the electrical connection between the source/drain and the substrate. Isolation, which eliminates the leakage of current between the two, improves the performance of the nanowire transistor.
第二实施例。Second Embodiment.
第二实施例与第一实施例的不同之处在于,第二实施例利用底部阻挡层代替了第一实施例中的底部侧墙,进而实现了源/漏极与衬底之间的隔离。The difference between the second embodiment and the first embodiment is that the second embodiment uses a bottom barrier layer to replace the bottom spacer in the first embodiment, thereby realizing the isolation between the source/drain and the substrate.
请参考图10,图10为在刻蚀除去介质层的基础上进一步执行刻蚀工艺的剖面结构示意图(由于在第二实施例中,刻蚀介质层之前的工艺步骤与第一实施例相同,具体可参考第一实施例的相关描述,在此不再一一赘述)。Please refer to FIG. 10. FIG. 10 is a schematic cross-sectional structure diagram of further performing an etching process on the basis of etching and removing the dielectric layer (because in the second embodiment, the process steps before etching the dielectric layer are the same as those in the first embodiment, For details, reference may be made to the relevant description of the first embodiment, and details are not repeated here).
在本发明实施例中,还包括:去除介质层后,去除底部侧墙,暴露衬底200。In the embodiment of the present invention, the method further includes: after removing the dielectric layer, removing the bottom spacer to expose the substrate 200 .
去除底部侧墙的目的在于在源/漏区域260底部的衬底200表面形成可对源/漏极和衬底进行隔离的底部隔离结构。去除底部侧墙的工艺为反应离子刻蚀(Reactive IonEtch,RIE)工艺。The purpose of removing the bottom spacers is to form a bottom isolation structure on the surface of the substrate 200 at the bottom of the source/drain regions 260 that can isolate the source/drain and the substrate. The process of removing the bottom spacer is a reactive ion etching (Reactive Ion Etch, RIE) process.
请参考图11,在源/漏区域260底部的侧壁侧墙271之间形成底部隔离结构。Referring to FIG. 11 , a bottom isolation structure is formed between the sidewall spacers 271 at the bottom of the source/drain regions 260 .
在本发明的实施例中,除去介质层之后,还包括:除去源/漏区域260底部的底部侧墙(未标出);然后在侧壁侧墙271之间的衬底200表面形成底部阻挡层272。In the embodiment of the present invention, after removing the dielectric layer, the method further includes: removing the bottom spacers (not shown) at the bottom of the source/drain regions 260 ; and then forming a bottom barrier on the surface of the substrate 200 between the sidewall spacers 271 Layer 272.
底部阻挡层272的作用在于后续对源/漏极与衬底200进行隔离,减小源/漏极与衬底200之间电流的泄露。The function of the bottom barrier layer 272 is to subsequently isolate the source/drain from the substrate 200 to reduce the leakage of current between the source/drain and the substrate 200 .
底部侧墙(如第一实施例所述)和底部阻挡层272均可以对源/漏极与衬底200进行隔离。在本发明实施例中,底部阻挡层272作为底部隔离结构,且侧壁侧墙271作为侧壁隔离结构,两者共同构成隔离结构。其侧壁隔离结构与底部隔离结构的位置关系,以及顶部表面或者隔离结构两侧面的最高点均与第一实施例一致,在此不再赘述。Both the bottom spacer (as described in the first embodiment) and the bottom barrier layer 272 can isolate the source/drain from the substrate 200 . In the embodiment of the present invention, the bottom barrier layer 272 is used as the bottom isolation structure, and the sidewall spacers 271 are used as the sidewall isolation structure, and the two together constitute the isolation structure. The positional relationship between the sidewall isolation structure and the bottom isolation structure, as well as the top surface or the highest points of both sides of the isolation structure are the same as those in the first embodiment, and will not be repeated here.
在这里,侧壁侧墙271的材料与第一实施例中侧壁侧墙的材料一样,如前所述。而底部阻挡层272的材料为Si、SiGe、Ge、GaAs、SiC、SiGeC中的一种或多种。Here, the material of the sidewall spacer 271 is the same as that of the sidewall spacer in the first embodiment, as described above. The bottom barrier layer 272 is made of one or more of Si, SiGe, Ge, GaAs, SiC, and SiGeC.
形成底部阻挡层272的工艺包括但不限于:原子层沉积工艺、化学气相沉积工艺、化学气相沉积外延工艺、分子束外延工艺等。具体的,在本发明实施例中,形成底部隔离结构的工艺为分子束外延工艺。利用外延工艺生长的底部阻挡层272,会使后续在底部隔离结构上形成源/漏极的过程更加容易。The process of forming the bottom barrier layer 272 includes, but is not limited to, an atomic layer deposition process, a chemical vapor deposition process, a chemical vapor deposition epitaxy process, a molecular beam epitaxy process, and the like. Specifically, in the embodiment of the present invention, the process of forming the bottom isolation structure is a molecular beam epitaxy process. The bottom barrier layer 272 grown by the epitaxial process will make the subsequent process of forming the source/drain on the bottom isolation structure easier.
在本发明实施例中,底部隔离结构的类型包括:扩散阻挡层或导通阻挡层;也可以是扩散阻挡层和导通阻挡层的叠层结构,在这里并不做具体限制。In the embodiment of the present invention, the type of the bottom isolation structure includes: a diffusion barrier layer or a conduction barrier layer; or a stacked structure of a diffusion barrier layer and a conduction barrier layer, which is not specifically limited here.
在这里,需要指出的是,扩散阻挡层和导通阻挡层的名称均与其作用相一致。扩散阻挡层能够阻止源/漏极与衬底200之间粒子的扩散;导通阻挡层能够阻止源/漏极与衬底200之间寄生电容的导通。Here, it should be pointed out that the names of the diffusion barrier layer and the conduction barrier layer are consistent with their functions. The diffusion barrier layer can prevent the diffusion of particles between the source/drain and the substrate 200 ; the conduction barrier layer can prevent the conduction of the parasitic capacitance between the source/drain and the substrate 200 .
具体的,在本发明实施例中,当底部阻挡层272为扩散阻挡层时,底部阻挡层272可以不被掺杂或被浅掺杂。当底部阻挡层272不被掺杂时,底部阻挡层272能够隔离源/漏极与衬底200,切断电流的泄漏通道,提高纳米线晶体管的性能。当底部阻挡层272被浅掺杂时,其掺杂的类型与后续源/漏极掺杂的离子类型相同。优选的,当底部阻挡层272为被掺杂了硼(B)、镓(Ga)的P型半导体时,底部隔离结构的材料为SiC、SiGeC等;当底部阻挡层272为被掺杂了磷(P)、砷(As)、铑(Rh)的N型半导体时,底部阻挡层272的材料为SiC等,在这里并不作具体限制。Specifically, in the embodiment of the present invention, when the bottom barrier layer 272 is a diffusion barrier layer, the bottom barrier layer 272 may be undoped or lightly doped. When the bottom barrier layer 272 is not doped, the bottom barrier layer 272 can isolate the source/drain from the substrate 200, cut off the leakage channel of current, and improve the performance of the nanowire transistor. When the bottom barrier layer 272 is shallowly doped, it is doped with the same type of ions as the subsequent source/drain doping. Preferably, when the bottom barrier layer 272 is a P-type semiconductor doped with boron (B) and gallium (Ga), the material of the bottom isolation structure is SiC, SiGeC, etc.; when the bottom barrier layer 272 is doped with phosphorus (P), arsenic (As), rhodium (Rh) N-type semiconductor, the material of the bottom barrier layer 272 is SiC or the like, which is not specifically limited here.
在本发明实施例中,当底部阻挡层272被浅掺杂时,掺杂的离子浓度小于等于1×1017atoms/cm3。与中等掺杂(离子浓度大于1×1017atoms/cm3,小于1×1020atoms/cm3)或高掺杂(离子浓度大于等于1×1020atoms/cm3)的底部阻挡层272相比,浅掺杂的底部阻挡层272更能减小电流的泄漏,性能更优。In the embodiment of the present invention, when the bottom barrier layer 272 is shallowly doped, the ion concentration of the doping is less than or equal to 1×10 17 atoms/cm 3 . Bottom barrier layer 272 with moderate doping (ion concentration greater than 1×10 17 atoms/cm 3 and less than 1×10 20 atoms/cm 3 ) or high doping (ion concentration greater than or equal to 1×10 20 atoms/cm 3 ) Compared with the lightly doped bottom barrier layer 272, the leakage of current can be reduced and the performance is better.
在本发明实施例中,当底部阻挡层272为导通阻挡层时,底部阻挡层272被中等掺杂,其掺杂的类型与后续形成源/漏极掺杂的离子类型相反。优选的,当底部阻挡层272为被掺杂了硼(B)、镓(Ga)的P型半导体时,底部阻挡层272的材料为Si、SiGe、SiGeC等;当底部阻挡层272为被掺杂了磷(P)、砷(As)、铑(Rh)的N型半导体时,底部阻挡层272的材料为Si、SiC等。而且,底部阻挡层272中等掺杂的离子浓度在1×1017atoms/cm3~1×1020atoms/cm3之间。In the embodiment of the present invention, when the bottom barrier layer 272 is a conduction barrier layer, the bottom barrier layer 272 is moderately doped, and its doping type is opposite to the ion type of the source/drain doping formed subsequently. Preferably, when the bottom barrier layer 272 is a P-type semiconductor doped with boron (B) and gallium (Ga), the material of the bottom barrier layer 272 is Si, SiGe, SiGeC, etc.; when the bottom barrier layer 272 is doped with boron (B) and gallium (Ga) When the N-type semiconductor is doped with phosphorus (P), arsenic (As), and rhodium (Rh), the material of the bottom barrier layer 272 is Si, SiC, or the like. Also, the ion concentration of the intermediate doping of the bottom barrier layer 272 is between 1×10 17 atoms/cm 3 to 1×10 20 atoms/cm 3 .
在本发明实施例中,对底部阻挡层272进行掺杂气源包括但不限于:硅源SiH2Cl2、SiH4、Si2H6;锗源GeH4;掺杂气源:B2H6(硼)、AsH3(As)、CH3CH3、CH3SiH3(碳含量0.1%~5%)、PH3(磷)等。In the embodiment of the present invention, the doping gas source for the bottom barrier layer 272 includes but is not limited to: silicon sources SiH 2 Cl 2 , SiH 4 , Si 2 H 6 ; germanium source GeH 4 ; doping gas source: B 2 H 6 (boron), AsH 3 (As), CH 3 CH 3 , CH 3 SiH 3 (carbon content 0.1% to 5%), PH 3 (phosphorus), etc.
在这里,需要说明的是,底部阻挡层272的顶部表面不高于最底部纳米线220a的底部表面。如果底部阻挡层272的顶部表面高于最底部纳米线220a的底部表面,后续形成的源/漏极与衬底200之间的寄生电阻增大,影响纳米线晶体管的性能。Here, it should be noted that the top surface of the bottom barrier layer 272 is not higher than the bottom surface of the bottommost nanowire 220a. If the top surface of the bottom barrier layer 272 is higher than the bottom surface of the bottommost nanowire 220a, the parasitic resistance between the subsequently formed source/drain and the substrate 200 increases, affecting the performance of the nanowire transistor.
如前所述,底部阻挡层272还可以是扩散阻挡层与导通阻挡层的叠层结构。此时,叠层结构最上层与后续源/漏极相接触的可以是扩散阻挡层,也可以是导通阻挡层,此处不作具体限制,具体材料的选取和被掺杂的类型均与前文一致,在此不做赘述。As mentioned above, the bottom barrier layer 272 may also be a stacked structure of a diffusion barrier layer and a conduction barrier layer. At this time, the uppermost layer of the stacked structure in contact with the subsequent source/drain can be a diffusion barrier layer or a conduction barrier layer, which is not limited here. The selection of specific materials and the type of doping are the same as those described above. It is consistent and will not be repeated here.
请参考图12,在源/漏区域260内形成源/漏极2310。Referring to FIG. 12 , a source/drain 2310 is formed in the source/drain region 260 .
形成源/漏极2310的作用、工艺方法、步骤、掺杂的浓度以及顶部表面的位置,均与第一实施例相同,在此不作赘述。The functions of forming the source/drain 2310, the process method, the steps, the concentration of doping, and the position of the top surface are the same as those in the first embodiment, and will not be repeated here.
需要说明的是,源/漏极2310的材料要根据底部隔离结构的材料种类进行选择,如前所述。It should be noted that, the material of the source/drain 2310 should be selected according to the material of the bottom isolation structure, as described above.
请参考图13,在源/漏极2310顶部形成第一介电层2320。Referring to FIG. 13 , a first dielectric layer 2320 is formed on top of the source/drain 2310 .
形成第一介电层2320的作用、工艺、步骤以及材料的选择均与第一实施例相同,在此不作赘述。The functions, processes, steps, and selection of materials for forming the first dielectric layer 2320 are the same as those in the first embodiment, and will not be repeated here.
请参考图14,除去伪栅250和牺牲层210以形成沟槽(未标出),在沟槽内形成栅介质层2330和栅极2340。Referring to FIG. 14 , the dummy gate 250 and the sacrificial layer 210 are removed to form a trench (not shown), and a gate dielectric layer 2330 and a gate electrode 2340 are formed in the trench.
除去伪栅250和牺牲层210,并形成栅介质层2330和栅极2340的作用、工艺、步骤、材料选择以及结构之间的位置关系均与第一实施例相同,在此不作赘述。The functions, processes, steps, material selection, and positional relationship between the structures of removing the dummy gate 250 and the sacrificial layer 210 and forming the gate dielectric layer 2330 and the gate electrode 2340 are the same as those in the first embodiment, and will not be repeated here.
请参考图15,在栅极2340表面形成金属线2360,形成覆盖第二子栅极结构和第一介电层2320的第二介电层2350。Referring to FIG. 15 , metal lines 2360 are formed on the surface of the gate electrode 2340 to form a second dielectric layer 2350 covering the second sub-gate structure and the first dielectric layer 2320 .
形成第二介电层2350以及金属线2360的作用、工艺、步骤以及材料的选择均与第一实施例相同,在此不作赘述。The functions, processes, steps, and selection of materials for forming the second dielectric layer 2350 and the metal lines 2360 are the same as those in the first embodiment, and will not be repeated here.
综上所述,根据本发明第二实施例,源/漏极2310与衬底200之间存在的隔离结构包括侧壁隔离结构和底部隔离结构。两者的隔离作用,减小了源/漏极2310与衬底200之间电流的泄露,提高了纳米线晶体管的性能。To sum up, according to the second embodiment of the present invention, the isolation structure existing between the source/drain 2310 and the substrate 200 includes a sidewall isolation structure and a bottom isolation structure. The isolation of the two reduces the leakage of current between the source/drain 2310 and the substrate 200, and improves the performance of the nanowire transistor.
相应的,请继续参考图15,本发明的实施例还提供了一种纳米线晶体管,本发明第二实施例提供的纳米线晶体管与第一实施例纳米线晶体管的不同之处在于:第一实施例的底部侧墙被第二实施例的底部阻挡层代替,而且底部阻挡层的顶部表面与底部侧墙的顶部表面高度不完全相同。其他结构的位置关系均与第一实施例的纳米线晶体管一致,在此不做赘述。Correspondingly, please continue to refer to FIG. 15. An embodiment of the present invention further provides a nanowire transistor. The nanowire transistor provided by the second embodiment of the present invention is different from the nanowire transistor of the first embodiment in that: the first The bottom sidewall of the embodiment is replaced by the bottom barrier of the second embodiment, and the top surface of the bottom barrier is not the same height as the top surface of the bottom sidewall. The positional relationship of other structures is the same as that of the nanowire transistor of the first embodiment, and will not be repeated here.
底部阻挡层272的作用在于后续对源/漏极与衬底200进行隔离,减小源/漏极与衬底200之间电流的泄露。在本发明实施例中,底部阻挡层272为底部隔离结构,底部隔离结构的类型包括:扩散阻挡层或导通阻挡层;也可以是扩散阻挡层和导通阻挡层的叠层结构,在这里并不做具体限制。The function of the bottom barrier layer 272 is to subsequently isolate the source/drain from the substrate 200 to reduce the leakage of current between the source/drain and the substrate 200 . In the embodiment of the present invention, the bottom barrier layer 272 is a bottom isolation structure, and the types of the bottom isolation structure include: a diffusion barrier layer or a conduction barrier layer; or a stacked structure of a diffusion barrier layer and a conduction barrier layer, here No specific restrictions are made.
在本发明实施例中,底部阻挡层272的顶部表面不高于最底部纳米线220a的底部表面。In an embodiment of the present invention, the top surface of the bottom barrier layer 272 is not higher than the bottom surface of the bottommost nanowire 220a.
综上所述,在第二实施例提供的纳米线晶体管中,侧壁隔离结构和底部隔离结构对衬底200与源/漏极2310进行有效隔离,较少漏电,提高了纳米线晶体管的性能。To sum up, in the nanowire transistor provided by the second embodiment, the sidewall isolation structure and the bottom isolation structure effectively isolate the substrate 200 from the source/drain 2310, reduce leakage, and improve the performance of the nanowire transistor .
第三实施例。Third Embodiment.
与第二实施例相比,第三实施例的不同之处在于在堆叠的每层牺牲层两侧形成开口,并且在开口内填入第二侧墙,形成内部侧墙,实现对源/漏极与栅极的隔离。Compared with the second embodiment, the difference of the third embodiment is that openings are formed on both sides of each sacrificial layer of the stack, and the second spacers are filled in the openings to form internal spacers to realize the source/drain connection. Isolation of pole and gate.
请参考图16,图16为在形成源/漏区域360的基础上进一步执行刻蚀堆叠的每层牺牲层以形成开口的工艺的剖面结构示意图(由于第三实施例前面的工艺步骤与第一实施例相同,具体可参考第一实施例的相关描述,在此不再一一赘述)。Please refer to FIG. 16. FIG. 16 is a schematic cross-sectional structure diagram of a process of etching each sacrificial layer of the stack to form openings on the basis of forming the source/drain regions 360 (due to the previous process steps of the third embodiment and the first The embodiments are the same, and for details, reference may be made to the relevant description of the first embodiment, and details are not repeated here).
在本发明实施例中,在形成源/漏区域360后,形成第二侧墙之前,还包括:除去部分牺牲层310,以在每层牺牲层的两侧形成开口361。In the embodiment of the present invention, after forming the source/drain regions 360 and before forming the second spacers, the method further includes: removing part of the sacrificial layer 310 to form openings 361 on both sides of each sacrificial layer.
形成开口361的目的在于后续在开口361内部填充入第二侧墙。The purpose of forming the opening 361 is to subsequently fill the second sidewall in the opening 361 .
在本发明实施例中,开口361的深度在2nm~20nm之间,这里不作具体限制。在本发明的一个实施例中,开口361的深度为2nm。在本发明的另一个实施例中,开口361的深度为20nm。In this embodiment of the present invention, the depth of the opening 361 is between 2 nm and 20 nm, which is not specifically limited here. In one embodiment of the present invention, the depth of the opening 361 is 2 nm. In another embodiment of the present invention, the depth of the opening 361 is 20 nm.
形成开口361的工艺包括干法刻蚀和/或湿法刻蚀。具体的,在本发明实施例中,形成开口361的工艺包括湿法刻蚀,而且为横向湿法刻蚀工艺。此处的横向是指图16中箭头所指的方向。The process of forming the opening 361 includes dry etching and/or wet etching. Specifically, in the embodiment of the present invention, the process of forming the opening 361 includes wet etching, and is a lateral wet etching process. The lateral direction here refers to the direction indicated by the arrow in FIG. 16 .
横向湿法刻蚀的溶液包括:NH4OH、NaOH、KOH、H2O2、CH3COOH、去离子水、HCl、HF、NH4F中的一种或者多种混合。The solution for lateral wet etching includes: one or more mixtures of NH 4 OH, NaOH, KOH, H 2 O 2 , CH 3 COOH, deionized water, HCl, HF, and NH 4 F.
请参考图17,形成第二侧墙370,第二侧墙370填入开口361内部。Referring to FIG. 17 , a second sidewall 370 is formed, and the second sidewall 370 fills the interior of the opening 361 .
在本发明实施例中,形成的第二侧墙370覆盖源/漏区域360两侧的伪栅350侧壁、纳米线320侧壁、牺牲层310侧壁以及源/漏区域360底部衬底300表面,且同时保证第二侧墙370填充入所有开口361内部。In the embodiment of the present invention, the second sidewall spacers 370 are formed to cover the sidewalls of the dummy gate 350 , the sidewalls of the nanowires 320 , the sidewalls of the sacrificial layer 310 and the bottom substrate 300 of the source/drain region 360 on both sides of the source/drain region 360 . surface, and at the same time ensure that the second sidewall 370 is filled into all the openings 361 .
第二侧墙370填充入所有开口361内部的目的在于在开口361内形成内部侧墙,以实现后续对源/漏极与栅极的隔离。The purpose of filling the second spacers 370 into all the openings 361 is to form internal spacers in the openings 361 to achieve subsequent isolation of the source/drain and the gate.
在本发明实施例中,第二侧墙370的厚度在2nm~20nm之间,如第一实施例所述。第二侧墙370的厚度可以与开口361的深度相同,也可以与开口361的深度不同。但应满足开口361内部填充入第二侧墙370的条件。优选的,在本发明实施例中,第二侧墙370的厚度略大于开口361深度。In the embodiment of the present invention, the thickness of the second spacer 370 is between 2 nm and 20 nm, as described in the first embodiment. The thickness of the second sidewall 370 may be the same as the depth of the opening 361 , or may be different from the depth of the opening 361 . However, the condition that the opening 361 is filled into the second sidewall 370 should be satisfied. Preferably, in the embodiment of the present invention, the thickness of the second sidewall 370 is slightly larger than the depth of the opening 361 .
在这里,形成第二侧墙370的作用、工艺方法、以及材料的选择均与第二实施例一致,在此不再赘述。Here, the function of forming the second sidewall 370 , the process method, and the selection of materials are the same as those in the second embodiment, and are not repeated here.
请参考图18,形成覆盖源/漏区域360底部第二侧墙370表面的介质层380。Referring to FIG. 18 , a dielectric layer 380 covering the surface of the second spacer 370 at the bottom of the source/drain region 360 is formed.
形成介质层380的作用、工艺、材料选择均与第一实施例一致,在此不作赘述。The function, process, and material selection for forming the dielectric layer 380 are all the same as those in the first embodiment, and will not be repeated here.
请参考图19,除去部分第二侧墙370,形成隔离结构。Referring to FIG. 19, a part of the second sidewall spacer 370 is removed to form an isolation structure.
除去部分第二侧墙370的作用、工艺、步骤均与第一实施例一致,在此不作赘述。The functions, processes, and steps of the second sidewalls 370 are the same as those of the first embodiment, and are not repeated here.
隔离结构的位置关系以及其顶部表面的高度,请参考第一实施例。For the positional relationship of the isolation structure and the height of its top surface, please refer to the first embodiment.
在本发明实施例中,除去部分第二侧墙370时,要保留内部侧墙373。内部侧墙373的作用在于增大后续栅极与源/漏极之间的距离,减小栅极与源/漏极之间过大的寄生电容。In the embodiment of the present invention, when part of the second sidewall 370 is removed, the inner sidewall 373 should be retained. The function of the internal spacers 373 is to increase the distance between the subsequent gate and the source/drain, and reduce the excessive parasitic capacitance between the gate and the source/drain.
明显的,在本发明实施例中,第二侧墙370与内部侧墙373的材料是相同的,如前所述。Obviously, in the embodiment of the present invention, the materials of the second sidewall 370 and the inner sidewall 373 are the same, as described above.
请参考图20,除去介质层380和底部侧墙。Referring to FIG. 20, the dielectric layer 380 and the bottom spacers are removed.
除去介质层380和底部侧墙作用、工艺、步骤均与第二实施例一致,在此不作赘述。The functions, processes, and steps of removing the dielectric layer 380 and the bottom sidewall are the same as those in the second embodiment, and will not be repeated here.
在这里,需要说明的是,在除去介质层380后,可以直接在底部侧墙之上形成源/漏(如第一实施例),也可以继续除去底部侧墙以形成底部隔离结构(如第二实施例),这里不做具体限制。在本发明实施例中,除去介质层380后,继续除去底部侧墙以形成底部隔离结构,暴露衬底300。Here, it should be noted that, after removing the dielectric layer 380, the source/drain can be formed directly on the bottom sidewall spacer (as in the first embodiment), or the bottom sidewall spacer can be removed to form the bottom isolation structure (as in the first embodiment) Second Embodiment), no specific limitation is made here. In the embodiment of the present invention, after removing the dielectric layer 380 , the bottom spacer is continued to be removed to form a bottom isolation structure, exposing the substrate 300 .
请参考图21,在源/漏区域360底部的侧壁隔离结构之间形成底部隔离结构。Referring to FIG. 21 , bottom isolation structures are formed between the sidewall isolation structures at the bottom of the source/drain regions 360 .
形成底部隔离结构的作用、类型、工艺、步骤、材料选择、顶部表面的位置以及掺杂的类型均与第二实施例一致,在此不作赘述。The function, type, process, steps, material selection, position of the top surface and doping type for forming the bottom isolation structure are all the same as those of the second embodiment, and will not be repeated here.
在这里,需要说明的是,侧壁侧墙371作为侧壁隔离结构,底部阻挡层372作为底部隔离结构。Here, it should be noted that the sidewall spacers 371 serve as the sidewall isolation structure, and the bottom barrier layer 372 serves as the bottom isolation structure.
请参考图22,在源/漏区域360内形成源/漏极3310。Referring to FIG. 22 , source/drain regions 3310 are formed in the source/drain regions 360 .
形成源/漏极3310的作用、工艺方法、材料选择均与第二实施例一致,在此不作赘述。The function of forming the source/drain 3310 , the process method, and the material selection are all the same as those in the second embodiment, and will not be repeated here.
请参考图23,在源/漏极3310顶部形成第一介电层3320。Referring to FIG. 23 , a first dielectric layer 3320 is formed on top of the source/drain 3310 .
形成第一介电层3320的作用、工艺、步骤以及材料的选择均与第二实施例一致,在此不作赘述。The functions, processes, steps, and selection of materials for forming the first dielectric layer 3320 are all the same as those in the second embodiment, and are not repeated here.
请参考图24,除去伪栅350和牺牲层310以形成沟槽,在沟槽内形成栅介质层3330和栅极3340。Referring to FIG. 24 , the dummy gate 350 and the sacrificial layer 310 are removed to form a trench, and a gate dielectric layer 3330 and a gate electrode 3340 are formed in the trench.
除去伪栅350和牺牲层310,并形成栅介质层3330和栅极3340的作用、工艺、步骤、材料选择以及结构之间的位置关系均与第二实施例相同,在此不作赘述。The functions, processes, steps, material selection, and positional relationship between the structures of removing the dummy gate 350 and the sacrificial layer 310 and forming the gate dielectric layer 3330 and the gate electrode 3340 are the same as those in the second embodiment, and will not be repeated here.
请参考图25,在栅极3340表面形成金属线3360,形成覆盖第二子栅极结构和第一介电层3320的第二介电层3350。Referring to FIG. 25 , metal lines 3360 are formed on the surface of the gate electrode 3340 to form a second dielectric layer 3350 covering the second sub-gate structure and the first dielectric layer 3320 .
形成第二介电层3350以及金属线3360的作用、工艺、步骤以及材料的选择均与第二实施例相同,在此不作赘述。The functions, processes, steps, and selection of materials for forming the second dielectric layer 3350 and the metal lines 3360 are the same as those in the second embodiment, and will not be repeated here.
综上所述,根据本发明第三实施例,源/漏极3310与衬底300之间存在的隔离结构包括:源/漏区域360底部的侧壁隔离结构与底部隔离结构。两者的隔离作用,减小了源/漏极3310与衬底300之间电流的泄露。同时,在栅极3340与源/漏极3310之间存在内部侧墙373,增加了栅极3340与源/漏极3310之间的距离,解决了栅极3340与源/漏极3310之间寄生电容过大的问题,提高了纳米线晶体管的性能。To sum up, according to the third embodiment of the present invention, the isolation structure existing between the source/drain 3310 and the substrate 300 includes: a sidewall isolation structure and a bottom isolation structure at the bottom of the source/drain region 360 . The isolation of the two reduces the leakage of current between the source/drain 3310 and the substrate 300 . At the same time, there are internal spacers 373 between the gate 3340 and the source/drain 3310, which increases the distance between the gate 3340 and the source/drain 3310, and solves the parasitic between the gate 3340 and the source/drain 3310. The problem of excessive capacitance improves the performance of nanowire transistors.
相应的,请继续参考图25,本发明的实施例中还提供了一种纳米线晶体管,本发明第三实施例提供的纳米线晶体管与第二实施例纳米线晶体管的不同之处在于:在栅极结构与源/漏极之间存在内部侧墙,增加了栅极结构与源/漏极之间的距离。其他结构的位置关系均与第二实施例的纳米线晶体管一致,在此不做赘述。Correspondingly, please continue to refer to FIG. 25. An embodiment of the present invention also provides a nanowire transistor. The difference between the nanowire transistor provided by the third embodiment of the present invention and the nanowire transistor of the second embodiment is: There are internal spacers between the gate structure and the source/drain, increasing the distance between the gate structure and the source/drain. The positional relationships of other structures are the same as those of the nanowire transistor of the second embodiment, and are not repeated here.
在本发明实施例中,还包括:内部侧墙373。In this embodiment of the present invention, it further includes: an inner side wall 373 .
内部侧墙373位于源/漏极3310与栅极结构之间。内部侧墙373增加了栅极结构与源/漏极3310之间的距离,减小了两者之间出现的过大的寄生电容,提高了纳米线晶体管的性能。Internal spacers 373 are located between the source/drain 3310 and the gate structure. The inner spacer 373 increases the distance between the gate structure and the source/drain 3310, reduces the excessive parasitic capacitance between the two, and improves the performance of the nanowire transistor.
综上所述,在第三实施例提供的纳米线晶体管中,侧壁隔离结构和底部隔离结构对衬底300与源/漏极3310进行有效隔离,较少漏电;内部侧墙373增加了源/漏极3310与栅极结构之间了距离,减小了源/漏极3310与栅极结构之间过大的寄生电容。To sum up, in the nanowire transistor provided in the third embodiment, the sidewall isolation structure and the bottom isolation structure effectively isolate the substrate 300 from the source/drain 3310 , with less current leakage; the internal sidewall 373 increases the source/drain The distance between the /drain 3310 and the gate structure is reduced, and the excessive parasitic capacitance between the source/drain 3310 and the gate structure is reduced.
至此,已经详细描述了本发明。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。So far, the present invention has been described in detail. Some details that are well known in the art have not been described in order to avoid obscuring the concept of the present invention. Those skilled in the art can fully understand how to implement the technical solutions disclosed herein based on the above description.
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。While some specific embodiments of the present invention have been described in detail by way of example, those skilled in the art will appreciate that the above examples are provided for illustration only and not for the purpose of limiting the scope of the invention. Those skilled in the art will appreciate that modifications may be made to the above embodiments without departing from the scope and spirit of the present invention. The scope of the invention is defined by the appended claims.
Claims (37)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711068065.XA CN109755290B (en) | 2017-11-03 | 2017-11-03 | Nanowire transistor and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711068065.XA CN109755290B (en) | 2017-11-03 | 2017-11-03 | Nanowire transistor and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109755290A true CN109755290A (en) | 2019-05-14 |
CN109755290B CN109755290B (en) | 2022-07-19 |
Family
ID=66398102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711068065.XA Active CN109755290B (en) | 2017-11-03 | 2017-11-03 | Nanowire transistor and method of making the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109755290B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111710717A (en) * | 2020-05-12 | 2020-09-25 | 中国科学院微电子研究所 | A kind of semiconductor device and its manufacturing method, electronic equipment |
WO2020236694A1 (en) * | 2019-05-20 | 2020-11-26 | Applied Materials, Inc. | Bottom isolation by selective top deposition in gaa transistors |
EP3944330A1 (en) * | 2020-07-21 | 2022-01-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Latch-up prevention |
CN114823898A (en) * | 2021-01-22 | 2022-07-29 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method for forming semiconductor structure |
US20220399331A1 (en) * | 2021-06-11 | 2022-12-15 | Samsung Electronics Co., Ltd. | Semiconductor integrated circuit device and manufacturing method thereof |
EP4109548A1 (en) * | 2021-06-24 | 2022-12-28 | INTEL Corporation | Nanoribbon sub-fin isolation by backside si substrate removal etch selective to source and drain epitaxy |
US12237230B2 (en) | 2020-10-19 | 2025-02-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device with leakage current suppression and method for forming the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104054181A (en) * | 2011-12-30 | 2014-09-17 | 英特尔公司 | Variable gate width for all-around gate transistors |
US20140264253A1 (en) * | 2013-03-14 | 2014-09-18 | Seiyon Kim | Leakage reduction structures for nanowire transistors |
CN106611792A (en) * | 2015-10-23 | 2017-05-03 | 三星电子株式会社 | Semiconductor device and manufacturing method therefor |
CN108269849A (en) * | 2017-01-04 | 2018-07-10 | 三星电子株式会社 | Semiconductor devices with channel region |
-
2017
- 2017-11-03 CN CN201711068065.XA patent/CN109755290B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104054181A (en) * | 2011-12-30 | 2014-09-17 | 英特尔公司 | Variable gate width for all-around gate transistors |
US20140264253A1 (en) * | 2013-03-14 | 2014-09-18 | Seiyon Kim | Leakage reduction structures for nanowire transistors |
CN106611792A (en) * | 2015-10-23 | 2017-05-03 | 三星电子株式会社 | Semiconductor device and manufacturing method therefor |
CN108269849A (en) * | 2017-01-04 | 2018-07-10 | 三星电子株式会社 | Semiconductor devices with channel region |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020236694A1 (en) * | 2019-05-20 | 2020-11-26 | Applied Materials, Inc. | Bottom isolation by selective top deposition in gaa transistors |
US11189710B2 (en) | 2019-05-20 | 2021-11-30 | Applied Materials, Inc. | Method of forming a bottom isolation dielectric by directional sputtering of a capping layer over a pair of stacks |
CN111710717A (en) * | 2020-05-12 | 2020-09-25 | 中国科学院微电子研究所 | A kind of semiconductor device and its manufacturing method, electronic equipment |
CN111710717B (en) * | 2020-05-12 | 2024-02-13 | 中国科学院微电子研究所 | Semiconductor device, manufacturing method thereof and electronic equipment |
EP3944330A1 (en) * | 2020-07-21 | 2022-01-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Latch-up prevention |
US12237230B2 (en) | 2020-10-19 | 2025-02-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device with leakage current suppression and method for forming the same |
US12363989B2 (en) | 2020-10-19 | 2025-07-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device with leakage current suppression and method for forming the same |
CN114823898A (en) * | 2021-01-22 | 2022-07-29 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method for forming semiconductor structure |
US20220399331A1 (en) * | 2021-06-11 | 2022-12-15 | Samsung Electronics Co., Ltd. | Semiconductor integrated circuit device and manufacturing method thereof |
EP4109548A1 (en) * | 2021-06-24 | 2022-12-28 | INTEL Corporation | Nanoribbon sub-fin isolation by backside si substrate removal etch selective to source and drain epitaxy |
US12328920B2 (en) | 2021-06-24 | 2025-06-10 | Intel Corporation | Nanoribbon sub-fin isolation by backside Si substrate removal etch selective to source and drain epitaxy |
Also Published As
Publication number | Publication date |
---|---|
CN109755290B (en) | 2022-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11164792B2 (en) | Complementary field-effect transistors | |
US12040386B2 (en) | Self-aligned epitaxy layer | |
CN109755290B (en) | Nanowire transistor and method of making the same | |
US11069684B1 (en) | Stacked field effect transistors with reduced coupling effect | |
US10622459B2 (en) | Vertical transistor fabrication and devices | |
US9312383B1 (en) | Self-aligned contacts for vertical field effect transistors | |
US9905646B2 (en) | V-shaped epitaxially formed semiconductor layer | |
US10490552B2 (en) | FinFET device having flat-top epitaxial features and method of making the same | |
US20190252546A1 (en) | Semiconductor Structures and Methods with High Mobility and High Energy Bandgap Materials | |
TWI419324B (en) | Semiconductor device having three-five-group channel and four-group source drain and manufacturing method thereof | |
CN106033757B (en) | High mobility device with anti-punch through layer and method of forming the same | |
CN114121807B (en) | Method for forming a transistor structure | |
US10923595B2 (en) | Semiconductor device having a SiGe epitaxial layer containing Ga | |
CN103579295B (en) | Semiconductor device and method for manufacturing the same | |
CN109273362A (en) | Method of manufacturing a semiconductor device and semiconductor device | |
US11282748B2 (en) | Semiconductor device and method of forming the same | |
CN104659097A (en) | FinFET Having Suppressed Leakage Current | |
CN105845678A (en) | Method for forming semiconductor structure and semiconductor structure thereof | |
CN105244379A (en) | Semiconductor device and method for manufacturing the same | |
CN109755312B (en) | Nanowire transistor and preparation method thereof | |
CN106531632A (en) | Method for manufacturing stacked nanowire MOS transistor | |
CN107689329B (en) | Fin field effect transistor and manufacturing method thereof | |
US11056574B2 (en) | Stacked semiconductor device and method of forming same | |
CN105448985B (en) | Semiconductor device and method for manufacturing the same | |
CN102479801A (en) | Semiconductor device and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |