CN109690181B - Sheet for covering optical semiconductor element - Google Patents
Sheet for covering optical semiconductor element Download PDFInfo
- Publication number
- CN109690181B CN109690181B CN201780055044.6A CN201780055044A CN109690181B CN 109690181 B CN109690181 B CN 109690181B CN 201780055044 A CN201780055044 A CN 201780055044A CN 109690181 B CN109690181 B CN 109690181B
- Authority
- CN
- China
- Prior art keywords
- light
- layer
- optical semiconductor
- sheet
- covering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8514—Wavelength conversion means characterised by their shape, e.g. plate or foil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V3/00—Globes; Bowls; Cover glasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V3/00—Globes; Bowls; Cover glasses
- F21V3/04—Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/852—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/852—Encapsulations
- H10H20/854—Encapsulations characterised by their material, e.g. epoxy or silicone resins
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0268—Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/882—Scattering means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Led Device Packages (AREA)
- Laminated Bodies (AREA)
- Optical Elements Other Than Lenses (AREA)
- Manufacturing & Machinery (AREA)
Abstract
本发明提供一种光学半导体元件覆盖用薄片,所述光学半导体元件覆盖用薄片是用于直接或间接地覆盖光学半导体元件的薄片,沿厚度方向依次包括含有白色粒子的白色层和含有光扩散粒子的光扩散层。
The present invention provides a sheet for covering an optical semiconductor element, the sheet for covering an optical semiconductor element is a sheet for directly or indirectly covering an optical semiconductor element, and includes a white layer containing white particles and a white layer containing light diffusing particles in this order along the thickness direction the light diffusion layer.
Description
技术领域technical field
本发明涉及一种光学半导体元件覆盖用薄片。The present invention relates to a sheet for covering an optical semiconductor element.
背景技术Background technique
以往,作为可发出高能量光的发光装置,已知的是一种白光半导体装置。在白光半导体装置中,例如设有:二极管基板,其向LED供给电力;LED(发光二极管),其安装在所述二极管基板上,发出蓝光;以及荧光体层,其覆盖LED,能够将蓝光转换成黄光。白光半导体装置通过蓝光与黄光的混色而发出高能量的白光,其中所述蓝光从LED发出并透射荧光体层,所述黄光是在荧光体层中对蓝光的一部分进行波长转换而成。Conventionally, as a light-emitting device capable of emitting high-energy light, a white light semiconductor device has been known. A white light semiconductor device includes, for example, a diode substrate that supplies power to the LEDs; LEDs (Light Emitting Diodes) that are mounted on the diode substrate and emit blue light; and a phosphor layer that covers the LEDs and can convert blue light into yellow light. The white light semiconductor device emits high-energy white light by color mixing of blue light and yellow light, wherein the blue light is emitted from the LED and transmitted through the phosphor layer, and the yellow light is obtained by wavelength-converting a part of the blue light in the phosphor layer.
作为这种光学半导体发光装置,例如提出有专利文献1的光学半导体发光装置。专利文献1的光学半导体发光装置具有包含发光层的半导体多层膜和衬底基板,以荧光体膜将光学半导体多层膜的侧面和上表面(与衬底基板相反侧的表面)覆盖的方式形成。As such an optical semiconductor light-emitting device, for example, the optical semiconductor light-emitting device of
根据专利文献1的光学半导体发光装置,能够不造成装置大型化,并且能够提高光学半导体发光装置的成品率。According to the optical semiconductor light-emitting device of
专利文献1:(日本)特开2005-252222号公报Patent Document 1: Japanese Patent Laid-Open No. 2005-252222
但是,在专利文献1的光学半导体发光装置中,从半导体多层膜通过荧光体膜而发出的光因其发出角度不同而产生不均匀的不良现象。具体地说,与向正面方向(上侧)发出的光相比,向倾斜方向发出的光稍偏黄色。其结果,因发出的角度不同造成颜色不均。特别是在沿正上方向观看光学半导体装置时,产生在白光中观察到黄色环(黄环)的不良情况。However, in the optical semiconductor light-emitting device of
此外,一般来说,在荧光体层中,作为荧光体,大多使用黄色荧光体。因此,在非发光时,光学半导体发光装置本身呈现黄色,造成于外观设计上外观变差的不良现象。In addition, in general, in the phosphor layer, a yellow phosphor is often used as the phosphor. Therefore, when not emitting light, the optical semiconductor light-emitting device itself appears yellow, which causes a problem that the appearance of the optical semiconductor light-emitting device deteriorates in design.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种光学半导体元件覆盖用薄片,使用该光学半导体元件覆盖用薄片能够容易地制造具有不同角度方向的颜色均匀性以及非发光时的外观良好的光学半导体元件。An object of the present invention is to provide a sheet for covering an optical semiconductor element with which an optical semiconductor element having color uniformity in different angular directions and good appearance when not emitting light can be easily produced.
本发明第一方面的光学半导体元件覆盖用薄片,用于直接或间接地覆盖光学半导体元件,沿厚度方向依次具有含有白色粒子的白色层和含有光扩散粒子的光扩散层。The optical semiconductor element-covering sheet of the first aspect of the present invention is used for directly or indirectly covering an optical semiconductor element, and has a white layer containing white particles and a light-diffusing layer containing light-diffusing particles in this order in the thickness direction.
本发明第二方面的光学半导体元件覆盖用薄片,在第一方面的基础上,所述光学半导体元件覆盖用薄片的厚度方向的亮度L*在51.2以上且67.7以下。The sheet for covering an optical semiconductor element according to the second aspect of the present invention is the sheet for covering an optical semiconductor element according to the first aspect, wherein the luminance L* in the thickness direction of the sheet for covering an optical semiconductor element is 51.2 or more and 67.7 or less.
本发明第三方面的光学半导体元件覆盖用薄片,在第二方面的基础上,所述光学半导体元件覆盖用薄片的厚度方向上的亮度L*在55.7以上且66.6以下。In the optical semiconductor element covering sheet of the third aspect of the present invention, in the second aspect, the luminance L* in the thickness direction of the optical semiconductor element covering sheet is 55.7 or more and 66.6 or less.
本发明第四方面的光学半导体元件覆盖用薄片,在第一方面至第三方面中的任一方面的基础上,所述光扩散层的半值角在20°以上且120°以下。In the optical semiconductor element covering sheet according to the fourth aspect of the present invention, in any one of the first to third aspects, the half-value angle of the light-diffusion layer is 20° or more and 120° or less.
本发明第五方面的光学半导体元件覆盖用薄片,在第四方面的基础上,所述光扩散层的半值角在40°以上且120°以下。In the optical semiconductor element covering sheet according to the fifth aspect of the present invention, in the fourth aspect, the half-value angle of the light-diffusion layer is 40° or more and 120° or less.
本发明第六方面的光学半导体元件覆盖用薄片,在第一方面至第五方面中的任一方面的基础上,所述白色层的厚度在30μm以上且200μm以下。In the optical semiconductor element covering sheet according to the sixth aspect of the present invention, in any one of the first to fifth aspects, the thickness of the white layer is 30 μm or more and 200 μm or less.
本发明第七方面的光学半导体元件覆盖用薄片,在第一方面至第六方面中的任一方面的基础上,所述光扩散层的厚度在30μm以上且600μm以下。In the optical semiconductor element covering sheet according to the seventh aspect of the present invention, in any one of the first to sixth aspects, the thickness of the light-diffusion layer is 30 μm or more and 600 μm or less.
本发明第八方面的光学半导体元件覆盖用薄片,在第一方面至第七方面中的任一方面的基础上,所述光扩散层含有B阶段的树脂。In the optical semiconductor element covering sheet of the eighth aspect of the present invention, in any one of the first to seventh aspects, the light-diffusion layer contains a B-stage resin.
本发明第九方面的光学半导体元件覆盖用薄片,在第八方面的基础上,所述光扩散层在频率1Hz和升温速度20℃/分钟的条件下利用动态粘弹性测量得到的表示剪切储能模量G’和温度T的关系的曲线具有极小值,所述极小值中的温度T在40℃以上且200℃以下的范围内,所述极小值中的剪切储能模量G’在1000Pa以上且90000Pa以下的范围内。According to the ninth aspect of the present invention, the sheet for covering an optical semiconductor element is based on the eighth aspect, wherein the light diffusing layer is measured by dynamic viscoelasticity under the conditions of a frequency of 1 Hz and a heating rate of 20° C./min. The curve of the relationship between the energy modulus G' and the temperature T has a minimum value in which the temperature T is in the range of 40°C or higher and 200°C or lower, and the shear storage modulus in the minimum value is The amount G' is in the range of 1000Pa or more and 90000Pa or less.
根据本发明的光学半导体元件覆盖用薄片,通过将光学半导体元件覆盖用薄片覆盖在光学半导体元件上,能够将含有白色粒子的白色层和含有光扩散粒子的光扩散层配置在光学半导体元件中。因此,能够容易地得到具有不同角度方向的颜色均匀性和非发光时的外观美观的覆盖光学半导体元件。According to the optical semiconductor element covering sheet of the present invention, by covering the optical semiconductor element with the optical semiconductor element covering sheet, the white layer containing white particles and the light diffusing layer containing light diffusing particles can be arranged in the optical semiconductor element. Therefore, it is possible to easily obtain a covered optical semiconductor element having color uniformity in different angular directions and an attractive appearance when not emitting light.
附图说明Description of drawings
图1表示本发明的覆盖片的一实施方式的剖面图;FIG. 1 shows a cross-sectional view of an embodiment of the cover sheet of the present invention;
图2A~图2F是三层覆盖元件的制造方法的流程图,图2A表示准备荧光体层覆盖元件集合体的步骤,图2B表示设置覆盖片的步骤,图2C表示将覆盖片相对于荧光体层覆盖元件集合体进行压合的步骤,图2D表示对剥离片进行剥离的步骤,图2E表示将三层覆盖元件集合体切断的步骤,图2F表示安装三层覆盖元件的步骤;2A to 2F are flowcharts of a method of manufacturing a three-layered cover element, FIG. 2A shows a step of preparing a phosphor layer-covered element assembly, FIG. 2B shows a step of setting a cover sheet, and FIG. 2C shows a cover sheet with respect to the phosphor. Figure 2D shows the step of peeling off the peeling sheet, Figure 2E shows the step of cutting off the three-layer covering element assembly, and Figure 2F shows the step of installing the three-layer covering element;
图3A~图3B表示利用图2A~图2F的制造方法制作的三层覆盖元件,图3A表示俯视图,图3B表示图3A的A-A的剖面图;3A to 3B show a three-layer covering element fabricated by the manufacturing method of FIGS. 2A to 2F , FIG. 3A shows a top view, and FIG. 3B shows a cross-sectional view of A-A in FIG. 3A ;
图4A~图4F表示三层覆盖元件的制造方法的变形例(仅在荧光体层覆盖元件的上表面配置光扩散层的实施方式)的流程图,图4A表示准备荧光体层覆盖元件集合体的步骤,图4B表示配置光扩散层侧部的步骤,图4C表示设置覆盖片的步骤,图4D表示将覆盖片相对于荧光体层覆盖元件集合体进行压合的步骤,图4E表示将剥离片剥离的步骤,图4F表示将三层覆盖元件集合体切断的步骤;FIGS. 4A to 4F are flowcharts showing a modification of the method for manufacturing a three-layer cover element (an embodiment in which only the light-diffusing layer is arranged on the upper surface of the phosphor layer cover element), and FIG. 4A shows the preparation of the phosphor layer cover element assembly. 4B shows the step of arranging the side part of the light diffusing layer, FIG. 4C shows the step of setting the cover sheet, FIG. 4D shows the step of pressing the cover sheet with respect to the phosphor layer covering element assembly, and FIG. 4E shows the peeling The step of peeling off the sheet, FIG. 4F shows the step of cutting off the three-layer covering element assembly;
图5A~图5B表示利用图4A~图4F的制造方法制作的三层覆盖元件的变形例(具有光扩散层边缘部和白色层边缘部的实施方式),图5A表示俯视图,图5B表示图5A的A-A的剖面剖面图;FIGS. 5A to 5B show a modification of the three-layer cover element (embodiment having the edge portion of the light diffusion layer and the edge portion of the white layer) produced by the manufacturing method of FIGS. 4A to 4F , FIG. 5A is a plan view, and FIG. 5B is a view A cross-sectional view of A-A of 5A;
图6表示实施例的测量光扩散层的半值角的装置的示意图;6 shows a schematic diagram of a device for measuring the half-value angle of a light-diffusion layer according to an embodiment;
图7表示实施例的荧光体层的剪切储能模量G’和温度T的关系。Fig. 7 shows the relationship between the shear storage modulus G' and the temperature T of the phosphor layers of the examples.
标记说明tag description
1:覆盖片1: Cover sheet
2:白色层2: white layer
3:光扩散层3: Light diffusing layer
6:光学半导体元件6: Optical semiconductor components
具体实施方式Detailed ways
在图1中,纸面上下方向是上下方向(第一方向、厚度方向),纸面上侧为上侧(第一方向一侧、厚度方向一侧),纸面下侧为下侧(第一方向另一侧、厚度方向另一侧)。纸面左右方向为左右方向(与第一方向垂直的第二方向、相对于上下方向的垂直方向的一例),纸面左侧为左侧(第二方向一侧),纸面右侧为右侧(第二方向另一侧)。纸厚方向是前后方向(与第一方向和第二方向垂直的第三方向、相对于上下方向的垂直方向的一例),纸面跟前一侧是前侧(第三方向一侧),纸面里侧是后侧(第三方向另一侧)。具体地说,以各图的方向箭头为基准。In FIG. 1, the upper and lower directions of the paper are the up-down direction (the first direction, the thickness direction), the upper side of the paper is the upper side (the first direction side, the thickness direction side), and the lower side of the paper is the lower side (the first direction and the thickness direction). The other side in one direction, the other side in the thickness direction). The left-right direction on the page is the left-right direction (an example of the second direction perpendicular to the first direction, and the vertical direction relative to the up-down direction), the left side of the page is the left side (the second direction side), and the right side of the page is the right side (the other side in the second direction). The paper thickness direction is the front-rear direction (an example of the third direction perpendicular to the first and second directions, and the vertical direction relative to the up-down direction), the front side of the paper surface is the front side (the third direction side), and the paper surface The inner side is the rear side (the other side in the third direction). Specifically, it is based on the directional arrows in the respective drawings.
<一种实施方式><One Embodiment>
参照图1对本发明的光学半导体元件覆盖用薄片(以下简称为覆盖片)的一实施方式进行说明。An embodiment of the sheet for covering an optical semiconductor element (hereinafter simply referred to as a covering sheet) of the present invention will be described with reference to FIG. 1 .
1.覆盖片1. Cover sheet
覆盖片1是用于直接或间接地覆盖光学半导体元件的薄片,具有沿平面方向(与厚度方向垂直的方向、前后方向和左右方向)延伸的拟似板状(薄片)的形状。覆盖片1沿厚度方向依次具有白色层2和光扩散层3。覆盖片1仅由白色层2和光扩散层3构成。The
此外,覆盖片1不是后述的三层覆盖元件5(参照图2E、图3B),并且也不是光学半导体装置10(参照图2F)。即,覆盖片1是三层覆盖元件5和光学半导体装置10的一部件,即,是用于制造三层覆盖元件5和光学半导体装置10的部件。因此,覆盖片1不包含光学半导体元件6和安装光学半导体元件6的基板15(参照图2F),覆盖片1本身是作为部件可单独流通且能够用于工业上的设备。In addition, the
2.白色层2. White layer
白色层2具有沿平面方向延伸的拟似板状(薄片)的形状。白色层2在三层覆盖元件5中是在非发光时的外观呈现白色的白色层。The
白色层2含有白色粒子。具体地说,白色层2是由含有白色粒子和第一树脂的白色组成物组成。The
作为白色粒子,可列举白色无机粒子和白色有机粒子。若从散热性和耐久性的观点出发,优选白色无机粒子。As the white particles, white inorganic particles and white organic particles are exemplified. From the viewpoint of heat dissipation and durability, white inorganic particles are preferred.
作为构成白色无机粒子的材料,列举例如氧化钛、氧化锌、氧化锆和氧化铝等氧化物,例如铅白(碱式碳酸铅)、碳酸钙等碳酸盐、例如高岭土等粘土矿物等。若从亮度和白色性的观点出发,优选为氧化物,更优选氧化钛。Examples of materials constituting the white inorganic particles include oxides such as titanium oxide, zinc oxide, zirconium oxide, and aluminum oxide, carbonates such as lead white (basic lead carbonate) and calcium carbonate, and clay minerals such as kaolin. From the viewpoints of brightness and whiteness, oxides are preferred, and titanium oxide is more preferred.
白色粒子的平均粒径,例如在0.1μm以上,优选在0.2μm以上,并且,例如在2.0μm以下,优选在0.5μm以下。若白色粒子的平均粒径在上述范围内,可以进一步提高白色性。The average particle diameter of the white particles is, for example, 0.1 μm or more, preferably 0.2 μm or more, and, for example, 2.0 μm or less, preferably 0.5 μm or less. When the average particle diameter of the white particles is within the above range, the whiteness can be further improved.
在本发明中,白色粒子、光扩散粒子、填充材料和触变赋予粒子等粒子的平均粒径计算为D50值,具体地说,利用激光衍射式粒径分布仪来测量。In the present invention, the average particle diameter of particles such as white particles, light-diffusing particles, fillers, and thixotropy-imparting particles is calculated as the D50 value, and specifically, measured by a laser diffraction particle size distribution analyzer.
白色粒子相对于白色组成物的含有率,例如为1.0质量%以上,优选2.0质量%以上,更优选2.5质量%以上,并且,例如为9.0质量%以下,优选7.0质量%以下,更优选6.0%质量以下。The content of the white particles relative to the white composition is, for example, 1.0% by mass or more, preferably 2.0% by mass or more, more preferably 2.5% by mass or more, and, for example, 9.0% by mass or less, preferably 7.0% by mass or less, and more preferably 6.0% by mass below quality.
第一树脂是能够构成可使白色粒子分散的矩阵的树脂。作为这种第一树脂的,可列举热固性树脂和热塑性树脂,优选是热固性树脂。The first resin is a resin capable of constituting a matrix in which white particles can be dispersed. As such a first resin, a thermosetting resin and a thermoplastic resin can be mentioned, and a thermosetting resin is preferable.
作为热固性树脂,可列举二级反应固化型树脂和一级反应固化型树脂。As the thermosetting resin, a secondary reaction curable resin and a primary reaction curable resin can be mentioned.
两级反应固化型树脂具有两个反应机构,可以通过第一级反应从A阶段成为B阶段(半固化),接着,通过第二级反应从B阶段成为C阶段(完全固化)。即,二级反应固化型树脂是能够利用适当的加热条件成为B阶段的热固性树脂。B阶段是热固性树脂处于液体的A阶段和完全固化的C阶段之间的状态,并且是稍许进行固化和胶化而处于压缩弹性率小于C阶段的弹性率的半固体状态或固体状态。The two-stage reaction-curable resin has two reaction mechanisms, and can change from the A-stage to the B-stage (semi-cured) by the first-stage reaction, and then from the B-stage to the C-stage (complete curing) by the second-stage reaction. That is, the secondary reaction-curable resin is a thermosetting resin that can become a B-stage under appropriate heating conditions. The B-stage is a state in which the thermosetting resin is in a state between the liquid A-stage and the fully cured C-stage, and is a semi-solid state or a solid state in which the compressive elastic modulus is less than that of the C-stage by being slightly cured and gelled.
一级反应固化型树脂具有一个反应机构,可以通过第一级反应从A阶段成为C阶段(完全固化)。这种一级反应固化性树脂包含如下的热固性树脂:可以在第一级反应的中途,使其反应停止而能够从A阶段成为B阶段,并且通过此后的进一步加热,使第一级反应再次开始而从B阶段成为C阶段(完全固化)。即,上述热固性树脂是能够成为B阶段的一级反应固化型树脂。此外,一级反应固化型树脂还包含如下的热固性树脂:不能控制成在一级的反应的中途停止,即,不能成为B阶段而从A阶段一次成为C阶段(完全固化)。即,上述热固性树脂是不能成为B阶段的一级反应固化型树脂。The primary reaction-curable resin has a reaction mechanism, and can change from A stage to C stage (complete curing) by the first stage reaction. Such a first-stage reaction curable resin includes a thermosetting resin that can stop the reaction in the middle of the first-stage reaction and can change from the A stage to the B stage, and can restart the first-stage reaction by further heating thereafter. And from B-stage to C-stage (full cure). That is, the above-mentioned thermosetting resin is a first-order reaction-curable resin that can become a B-stage. In addition, the primary reaction curable resin also includes a thermosetting resin that cannot be controlled to stop in the middle of the primary reaction, that is, cannot become a B-stage, but can change from A-stage to C-stage (complete curing) at one time. That is, the above-mentioned thermosetting resin is a first-order reaction-curable resin that cannot become a B-stage.
优选的是,作为热固性树脂,列举能够成为B阶段的热固性树脂(二级反应固化性树脂和一级反应固化型树脂)。Preferably, as the thermosetting resin, thermosetting resins (secondary reaction-curable resins and primary reaction-curable resins) that can be B-staged are exemplified.
作为能够成为B阶段的热固性树脂,优选例如硅树脂、环氧树脂,更优选例如硅树脂。As a thermosetting resin which can become a B-stage, for example, silicone resin and epoxy resin are preferable, for example, silicone resin is more preferable.
此外,作为能够成为B阶段的硅树脂,列举兼具热塑性和热固性的硅树脂(热塑性·热固性硅树脂)、以及不具有热塑性而具有热固性的硅树脂(非热塑性·热固性硅树脂)。优选热塑性·热固性硅树脂。In addition, as the silicone resin that can become the B-stage, there are mentioned silicone resins having both thermoplasticity and thermosetting properties (thermoplastic/thermosetting silicone resins), and silicone resins having thermosetting properties without thermoplasticity (non-thermoplastic/thermosetting silicone resins). Thermoplastic/thermosetting silicone resins are preferred.
热塑性·热固性硅树脂在B阶段中通过加热而暂时塑化(或液化),之后,通过进一步加热而固化(C阶段化)。具体地说,作为一级反应固化型树脂,列举例如特开2016-037562号公报和特开2016-119454号公报等中记载的苯基类硅树脂组成物。作为二级反应固化型树脂,列举例如特开2014-72351号公报和特开2013-187227号公报中记载的第一~第六热塑性·热固性硅树脂组成物(例如,含有双端胺基型硅树脂的组成物和含有笼型八聚倍半硅氧烷(Octasilsesquioxane cage)的组成物)等。优选例如,苯基类硅树脂组成物。The thermoplastic/thermosetting silicone resin is temporarily plasticized (or liquefied) by heating in the B-stage, and then cured by further heating (C-stage). Specifically, examples of the primary reaction curable resin include phenyl-based silicone resin compositions described in Japanese Patent Laid-Open Nos. 2016-037562 and 2016-119454, for example. Examples of the secondary reaction curable resin include the first to sixth thermoplastic/thermosetting silicone resin compositions (for example, double-terminal amino group-containing silicone Resin composition and octasilsesquioxane cage-containing composition) and the like. For example, a phenyl-based silicone resin composition is preferable.
苯基类硅树脂组成物是在硅氧烷键的主骨架下具有苯基。作为苯基类硅树脂组成物优选例如加成反应固化型硅树脂组成物。具体地说,列举例如加成反应固化型硅树脂组成物等,该加成反应固化型硅树脂组成物包括含有烯基的聚硅氧烷、含有氢化硅烷基的聚硅氧烷和氢化硅烷化催化剂,并且含有烯基的聚硅氧烷和含有氢化硅烷基的聚硅氧烷中的一方具有苯基。苯基类硅树脂组成物虽然在上述的进一步加热中软化(表示极小点),但比普通的热塑性·热固性硅树脂硬。The phenyl-based silicone resin composition has a phenyl group under the main skeleton of a siloxane bond. As the phenyl-based silicone resin composition, for example, an addition reaction curable silicone resin composition is preferable. Specifically, for example, an addition reaction-curable silicone resin composition including an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation are exemplified, for example, and the like. A catalyst, and one of the alkenyl group-containing polysiloxane and the hydrosilyl group-containing polysiloxane has a phenyl group. The phenyl-based silicone resin composition softens in the further heating described above (representing a minimum point), but is harder than ordinary thermoplastic/thermosetting silicone resins.
作为非热塑性·热固性硅树脂的二级反应固化型树脂,列举例如特开2010-265436号公报和特开2013-187227号公报等中记载的第一~第八缩合·加成反应固化型硅树脂组成物。Examples of the non-thermoplastic/thermosetting silicone resin secondary reaction curable resin include the first to eighth condensation/addition reaction curable silicone resins described in Japanese Patent Laid-Open Nos. 2010-265436 and 2013-187227, for example. composition.
此外,作为不采用B阶段的热固性树脂,列举加成反应固化型硅树脂组成物。作为不采用B阶段的加成反应固化型硅树脂组成物可使用市场销售产品(例如商品名:KER-2500、KER-6110、信越化学工业公司制,商品名:LR-7665、旭化成WACKER公司制造)。Moreover, as a thermosetting resin which does not employ|adopt a B-stage, an addition reaction curable silicone resin composition is mentioned. As an addition reaction curable silicone resin composition that does not use the B-stage, commercially available products (eg, trade names: KER-2500, KER-6110, manufactured by Shin-Etsu Chemical Co., Ltd., trade name: LR-7665, manufactured by Asahi Kasei WACKER Corporation) can be used. ).
这种不采用B阶段的加成反应固化型硅树脂组成物,例如在作为硅氧烷键的主骨架下实质上仅具有甲基。另外,这种硅树脂组成物是甲基类硅树脂组成物。Such an addition-reaction-curable silicone resin composition that does not use the B-stage has substantially only methyl groups under the main skeleton serving as a siloxane bond, for example. In addition, this silicone resin composition is a methyl-based silicone resin composition.
第一树脂的折射率例如在1.30以上、1.75以下。特别是树脂的苯基类硅树脂组成物的折射率在C阶段,例如在1.45以上,优选在1.50以上,更优选在1.55以上,并且,例如在1.75以下,优选在1.65以下。此外,树脂的甲基类硅树脂组成物的折射率在C阶段,例如在1.30以上,进而在1.35以上,并且,例如在1.50以下。在本发明中,可利用阿贝氏折射计来测量折射率。The refractive index of the first resin is, for example, 1.30 or more and 1.75 or less. In particular, the refractive index of the phenyl-based silicone resin composition of the resin at the C stage is, for example, 1.45 or more, preferably 1.50 or more, more preferably 1.55 or more, and, for example, 1.75 or less, preferably 1.65 or less. In addition, the refractive index of the methyl-based silicone resin composition of the resin is, for example, 1.30 or more, for example, 1.35 or more, and, for example, 1.50 or less, in the C stage. In the present invention, the refractive index can be measured using an Abbe's refractometer.
第一树脂相对于白色组成物的含有率,例如为10质量%以上,优选在20质量%以上,并且,例如在99质量%以下,优选在98质量%以下,更优选在90质量%以下。The content of the first resin relative to the white composition is, for example, 10 mass % or more, preferably 20 mass % or more, and, for example, 99 mass % or less, preferably 98 mass % or less, and more preferably 90 mass % or less.
白色组成物除了上述成分之外,还可以具有触变赋予粒子和填充材料等粒子。The white composition may have particles such as thixotropy imparting particles and fillers in addition to the above-mentioned components.
触变赋予粒子是触变剂,赋予白色组成物触变性(thixotropy、摇溶性)或提高触变性。触变性是如下性质:如果持续受到剪切应力则粘度逐渐下降,如果静止则粘度逐渐上升。如此,能够使白色粒子均匀地分散在白色组成物(进而在白色层2)中,能够在非发光时呈现无颜色不均的均匀的外观(白色)。The thixotropy-imparting particles are thixotropic agents that impart thixotropy (thixotropy) or increase thixotropy to white compositions. Thixotropy is a property in which the viscosity gradually decreases if the shear stress is continued, and the viscosity gradually increases if it is at rest. In this way, the white particles can be uniformly dispersed in the white composition (and further in the white layer 2 ), and a uniform appearance (white) without color unevenness can be exhibited during non-luminescence.
从分散性的观点出发,作为触变赋予粒子优选例如气相二氧化硅等纳米二氧化硅等。From the viewpoint of dispersibility, the thixotropy-imparting particles are preferably nano-silica such as fumed silica or the like.
作为气相二氧化硅,可以为例如二甲基二氯硅烷、利用硅油等表面处理剂而使表面疏水化的疏水性气相二氧化硅、以及未进行表面处理的亲水性气相二氧化硅中的一种。Examples of fumed silica include dimethyldichlorosilane, hydrophobic fumed silica whose surface is hydrophobized by a surface treatment agent such as silicone oil, and hydrophilic fumed silica that has not undergone surface treatment. A sort of.
纳米二氧化硅(特别是气相二氧化硅)的平均粒径例如在1nm以上,优选在5nm以上,并且例如在200nm以下,优选在50nm以下。此外,纳米二氧化硅(特别是气相二氧化硅)的比表面积(BET法)例如在50m2/g以上,优选在200m2/g以上,并且例如在500m2/g以下。The average particle diameter of nano-silica (particularly fumed silica) is, for example, 1 nm or more, preferably 5 nm or more, and, for example, 200 nm or less, preferably 50 nm or less. In addition, the specific surface area (BET method) of nano-silica (particularly fumed silica) is, for example, 50 m 2 /g or more, preferably 200 m 2 /g or more, and, for example, 500 m 2 /g or less.
白色组成物含有触变赋予粒子的情况下,触变赋予粒子白色组成物的含有率例如为0.1质量%以上,优选在0.5质量%以上,并且,例如在10质量%以下,优选在3质量%以下。When the white composition contains thixotropy-imparting particles, the content of the thixotropy-imparting particle white composition is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, and, for example, 10% by mass or less, preferably 3% by mass the following.
填充材料是透明性的粒子,并且是与第一树脂的折射率差小的粒子。具体地说,列举与第一树脂的折射率差的绝对值例如在0.03以下,优选在0.01以下的粒子。如此,能够确保白色层2的透明性,并且能够提高白色层2的刚性。The filler is transparent particles and has a small difference in refractive index with the first resin. Specifically, the absolute value of the refractive index difference with the first resin is, for example, 0.03 or less, preferably 0.01 or less. In this way, the transparency of the
作为填充材料,列举与在光扩散组成物中后述的填充材料相同,优选例如玻璃粒子。As the filler, the same as the filler described later in the light-diffusing composition, for example, glass particles are preferable.
白色组成物含有填充材料的情况下,填充材料相对于白色组成物的含有率例如在5质量%以上,优选在10质量%以上,并且,例如比在80质量%以下,优选在70质量%以下。When the white composition contains a filler, the content of the filler relative to the white composition is, for example, 5% by mass or more, preferably 10% by mass or more, and, for example, 80% by mass or less, preferably 70% by mass or less .
白色层2的厚度T1例如在30μm以上,优选在50μm以上,并且,例如在200μm以下,优选在180μm以下。The thickness T1 of the
如果白色层2的厚度在上述下限以上,则能够更有效地遮挡荧光体层7的颜色,从而能够使非发光时的外观进一步呈现白色。另一方面,如果白色层2的厚度在上述上限以下,则能够充分阻止因白色层2产生的返回光学半导体元件6的反射,从而能够保持亮度。When the thickness of the
3.光扩散层3. Light diffusion layer
光扩散层3具有沿平面方向延伸的拟似板状(薄片)的形状。光扩散层3是扩散层,使从光学半导体元件6(参照图3B)发出的光扩散。The light-
光扩散层3的厚度为100μm,以450nm波长的光照射时的光透射率例如超过30%,优选在40%以上,并且,例如在80%以下,优选在70%以下。The thickness of the
光扩散层3含有光扩散粒子。具体地说,光扩散层3例如由含有光扩散粒子和第二树脂的光扩散组成物形成。The light-
光扩散粒子是使光扩散的透明性粒子,列举例如与第二树脂的折射率差大的粒子。The light-diffusing particles are transparent particles that diffuse light, and examples thereof include particles having a large difference in refractive index with the second resin.
具体地说,可列举光扩散无机粒子和光扩散有机粒子等。Specifically, light-diffusing inorganic particles, light-diffusing organic particles, and the like are exemplified.
作为光扩散无机粒子,可列举二氧化硅粒子和复合无机氧化物粒子。Examples of the light-diffusing inorganic particles include silica particles and composite inorganic oxide particles.
复合无机氧化物粒子优选的是玻璃粒子,具体地说,作为主成分,含有二氧化硅或二氧化硅和氧化硼,作为副成分,含有氧化铝、氧化钙、氧化锌、氧化锶、氧化镁、氧化锆、氧化钡和氧化锑等。复合无机氧化物粒子中的主成分相对于复合无机氧化物粒子的含有率例如在40质量%以上,优选在50质量%以上,并且,例如在90质量%以下,优选在80质量%以下。副成分的含量是上述主成分的含有比例的剩余量。The composite inorganic oxide particles are preferably glass particles, and specifically, contain silica or silica and boron oxide as main components, and contain alumina, calcium oxide, zinc oxide, strontium oxide, and magnesium oxide as sub-components , zirconia, barium oxide and antimony oxide, etc. The content of the main component in the composite inorganic oxide particles relative to the composite inorganic oxide particles is, for example, 40 mass % or more, preferably 50 mass % or more, and, for example, 90 mass % or less, preferably 80 mass % or less. The content of the auxiliary components is the remainder of the content ratio of the above-mentioned main components.
作为光扩散有机粒子,列举例如丙烯酸类树脂粒子、苯乙烯类树脂、丙烯酸-苯乙烯类树脂粒子、硅类树脂粒子、聚碳酸酯类树脂粒子、苯并胍胺类树脂粒子、聚烯烃类树脂粒子、聚酯类树脂粒子、聚酰胺类树脂粒子和聚酰亚胺类树脂粒子等。优选是,例如,丙烯酸类树脂和硅类树脂粒子,更优选例如硅类树脂粒子。Examples of the light-diffusing organic particles include acrylic resin particles, styrene-based resins, acrylic-styrene resin particles, silicone-based resin particles, polycarbonate-based resin particles, benzoguanamine-based resin particles, and polyolefin-based resins. Particles, polyester-based resin particles, polyamide-based resin particles, polyimide-based resin particles, and the like. Preferred are, for example, acrylic resin and silicon-based resin particles, more preferably, for example, silicon-based resin particles.
从光扩散性和耐久性的观点出发,作为光扩散粒子优选例如光扩散无机粒子,更优选例如二氧化硅粒子和玻璃粒子,进一步优选例如二氧化硅粒子。From the viewpoint of light diffusivity and durability, the light diffusing particles are preferably, for example, light diffusing inorganic particles, more preferably, for example, silica particles and glass particles, and still more preferably, for example, silica particles.
光扩散粒子的折射率可对应于第二树脂的折射率而适当设定,例如在1.40以上,优选在1.45以上,并且,例如在1.60以下,优选在1.55以下。The refractive index of the light-diffusing particles can be appropriately set according to the refractive index of the second resin, and is, for example, 1.40 or more, preferably 1.45 or more, and, for example, 1.60 or less, preferably 1.55 or less.
光扩散粒子与第二树脂的折射率差的绝对值例如在0.04以上,优选在0.05以上,更优选在0.10以上,并且,例如在0.20以下,优选在0.18以下。如果折射率差低于上述下限,则有时不能发挥充分的光扩散性。另一方面,如果折射率差高于上述上限,则将因为光过度扩散而使得亮度等光学特性下降。The absolute value of the refractive index difference between the light diffusing particles and the second resin is, for example, 0.04 or more, preferably 0.05 or more, more preferably 0.10 or more, and, for example, 0.20 or less, preferably 0.18 or less. When the refractive index difference is less than the said lower limit, sufficient light diffusivity may not be exhibited. On the other hand, if the difference in refractive index is higher than the above upper limit, the optical properties such as brightness will be degraded due to excessive light diffusion.
光扩散粒子的平均粒径,例如在1.0μm以上,优选在2.0μm以上,并且,例如在10μm以下,优选在5.0μm以下。The average particle diameter of the light-diffusing particles is, for example, 1.0 μm or more, preferably 2.0 μm or more, and, for example, 10 μm or less, preferably 5.0 μm or less.
光扩散粒子相对于光扩散组成物的含有率例如在5质量%以上,优选在10%质量以上,更优选在30质量%以上,并且,例如在60质量%以下,优选在50质量%以下,更优选在40质量%以下。此外,光扩散粒子的主成分相对于光扩散组成物所占的含有率例如在40质量%以上,优选在50质量%以上,并且例如在90质量%以下,优选在80质量%以下。The content of the light-diffusing particles relative to the light-diffusing composition is, for example, 5% by mass or more, preferably 10% by mass or more, more preferably 30% by mass or more, and, for example, 60% by mass or less, preferably 50% by mass or less, More preferably, it is 40 mass % or less. In addition, the content ratio of the main component of the light-diffusing particles to the light-diffusing composition is, for example, 40 mass % or more, preferably 50 mass % or more, and, for example, 90 mass % or less, preferably 80 mass % or less.
第二树脂是可构成能够使光扩散粒子分散的矩阵的透明树脂。作为第二树脂,列举与第一树脂同样的树脂。优选固化性树脂,更优选能够成为B阶段的热固性树脂,进一步优选热塑性·热固性硅树脂,尤其优选苯基硅树脂组成物。The second resin is a transparent resin that can constitute a matrix in which light-diffusing particles can be dispersed. As the second resin, the same resin as that of the first resin is exemplified. Curable resins are preferred, thermosetting resins capable of becoming a B-stage are more preferred, thermoplastic/thermosetting silicone resins are still more preferred, and phenyl silicone resin compositions are particularly preferred.
第二树脂相对于光扩散组成物的含有率例如在10质量%以上,优选在20质量%以上,并且,例如在90质量%以下,优选在80质量%以下,更优选在60质量%以下。The content of the second resin relative to the light-diffusing composition is, for example, 10 mass % or more, preferably 20 mass % or more, and, for example, 90 mass % or less, preferably 80 mass % or less, and more preferably 60 mass % or less.
光扩散组成物除了上述成分之外,还可含有触变赋予粒子和填充材料等粒子。The light-diffusing composition may contain particles such as thixotropy-imparting particles and fillers in addition to the above-mentioned components.
作为触变赋予粒子,例如是与在白色组成物中上述触变赋予粒子同样的粒子。优选气相二氧化硅。The thixotropy-imparting particles are, for example, the same particles as the above-mentioned thixotropy-imparting particles in the white composition. Fumed silica is preferred.
在光扩散组成物含有触变赋予粒子的情况下,触变赋予粒子相对于光扩散组成物的含有率例如在0.1质量%以上,优选在0.5质量%以上,并且,例如在10质量%以下,优选在3质量%以下。When the light-diffusing composition contains thixotropy-imparting particles, the content of the thixotropy-imparting particles with respect to the light-diffusing composition is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, and, for example, 10% by mass or less, Preferably it is 3 mass % or less.
填充材料是透明性的粒子,并且是与第二树脂的折射率差小的粒子。具体地说,与第二树脂的折射率差的绝对值例如在0.03以下,优选在0.01以下。由此,能够确保光扩散层3的透明性,并且能够提高光扩散层3的刚性。The filler is transparent particles and has a small difference in refractive index with the second resin. Specifically, the absolute value of the difference in refractive index with the second resin is, for example, 0.03 or less, or preferably 0.01 or less. Thereby, the transparency of the light-
填充材料的折射率对应于第二树脂的折射率而适当设定,例如在1.40以上,优选在1.45以上,并且,例如在1.60以下,优选在1.55以下。The refractive index of the filler is appropriately set according to the refractive index of the second resin, and is, for example, 1.40 or more, preferably 1.45 or more, and, for example, 1.60 or less, preferably 1.55 or less.
作为这种填充材料,可列举例如无机粒子和有机粒子。优选无机粒子。Examples of such fillers include inorganic particles and organic particles. Inorganic particles are preferred.
作为无机粒子,可列举与光扩散粒子相同材料的粒子,优选复合无机氧化物粒子(玻璃粒子等)。Examples of the inorganic particles include particles of the same material as the light-diffusing particles, and composite inorganic oxide particles (glass particles, etc.) are preferred.
作为有机粒子,列举与光扩散有机粒子相同材料的粒子。Examples of the organic particles include particles of the same material as the light-diffusing organic particles.
填充材料的平均粒径,例如在1.0μm以上,优选在5.0μm以上,并且,例如在100μm以下,优选在50μm以下。The average particle diameter of the filler is, for example, 1.0 μm or more, preferably 5.0 μm or more, and, for example, 100 μm or less, preferably 50 μm or less.
在含有填充材料的情况下,填充材料相对于光扩散组成物的含有率例如在5质量%以上,优选在10质量%以上,并且,例如在50质量%以下,优选在30质量%以下。When a filler is contained, the content rate of the filler with respect to the light-diffusing composition is, for example, 5 mass % or more, preferably 10 mass % or more, and, for example, 50 mass % or less, preferably 30 mass % or less.
另外,本发明使用的粒子中,即使材料相同,也能够与树脂的折射率差对应而适当地区分是光扩散粒子还是填充材料。In addition, in the particles used in the present invention, even if the material is the same, it is possible to appropriately distinguish whether it is a light-diffusing particle or a filler according to the difference in refractive index of the resin.
光扩散层3的厚度T2例如在30μm以上,优选在50μm以上,更优选在100μm以上,并且,例如在600μm以下,优选在500μm以下,更优选在200μm以下。The thickness T2 of the
若光扩散层3的厚度在上述下限以上,则能够使光可靠地扩散,因此能够使不同角度方向的颜色均匀性更好。另一方面,若白色层2的厚度在上述上限以下,则能够减少光学特性的下降,并且能够在非发光时具有更美观的外观。If the thickness of the light-
光扩散层3的半值角α,例如在20°以上,优选在40°以上,更优选在80°以上,进一步优选在100°以上,并且,例如在180°以下,优选在150°以下,更优选在120°以下。如果半值角在上述下限以上,则能够使光有效地扩散,所以能够使不同角度方向的颜色均匀性更好。半值角的测量方法在实施例中详细说明。The half-value angle α of the
4.覆盖片的制造方法4. Manufacturing method of cover sheet
覆盖片1可以通过如下步骤制造:在剥离片4的表面(图1中下表面)形成白色层2的白色层形成步骤;以及在白色层2的表面(图1中下表面)形成光扩散层3的光扩散层形成步骤。The
(白色层形成步骤)(white layer formation step)
为了形成白色层2,例如首先制备白色树脂组成物(漆)。具体地说,通过将白色粒子、第一树脂,根据需要也可以与白色粒子以外的粒子(填充材料和触变赋予粒子等)配合并进行混合而制备。In order to form the
接着,在剥离片4的表面涂布白色组成物并进行烘干。Next, the white composition is applied on the surface of the
剥离片4例如由沿平面方向延伸的可弯曲性薄膜构成。作为剥离片4,列举例如聚乙烯薄膜和聚酯薄膜等聚合物薄膜、例如,陶瓷片、例如,金属箔等。此外,若有需要,对剥离片4的接触面,即涂布白色组成物的面进行氟处理等剥离处理。剥离片4的厚度,例如在1μm以上,优选在10μm以上,并且,例如在2000μm以下,优选在1000μm以下。The
接着,在白色组成物含有热固性树脂的情况下,对白色组成物进行C阶段化。具体地说,对A阶段的白色组成物进行加热(烘干)而使其C阶段化。Next, when the white composition contains a thermosetting resin, the white composition is C-staged. Specifically, the A-stage white composition is heated (drying) to be C-staged.
加热(烘干)条件与白色组成物的种类等对应而适当地调整,加热温度,例如在100℃以上,优选在110℃以上,并且,例如在150℃以下,优选在130℃以下。加热时间,例如在5分钟以上,优选在10分钟以上,并且,例如在480分钟以下,优选在300分钟以下。另外,能够在不同的温度下进行多次的加热。The heating (drying) conditions are appropriately adjusted according to the type of the white composition, and the heating temperature is, for example, 100°C or higher, preferably 110°C or higher, and, for example, 150°C or lower, preferably 130°C or lower. The heating time is, for example, 5 minutes or more, preferably 10 minutes or more, and, for example, 480 minutes or less, preferably 300 minutes or less. In addition, heating can be performed multiple times at different temperatures.
如此,白色层2形成在剥离片4的表面。具体地说,形成C阶段的白色层2。In this way, the
(光扩散层形成步骤)(Light-diffusion layer forming step)
为了形成光扩散层3,例如首先制备光扩散层组成物(漆)。具体地说,通过将光扩散粒子、第二树脂,以及根据需要与光扩散粒子以外的粒子(填充材料和触变赋予粒子等)配合并进行混合而制备。In order to form the light-
接着,在白色层2的表面上涂布光扩散层组成物并进行烘干。Next, the light-diffusion layer composition is coated on the surface of the
接着,在光扩散层组成物含有热固性树脂的情况下,对光扩散层组成物进行B阶段化。具体地说,对A阶段的光扩散层组成物进行加热(烘干)而使其B阶段化。Next, when the light-diffusion layer composition contains a thermosetting resin, the light-diffusion layer composition is B-staged. Specifically, the A-stage light-diffusion layer composition is heated (baking) to be B-staged.
加热(烘干)条件与光扩散层组成物的种类等对应而适当地调整,加热温度,例如在50℃以上,优选在70℃以上,并且,例如低于100℃,优选在90℃以下。加热时间,例如在1分钟以上,优选在5分钟以上,并且,例如在30分钟以下,优选在20分钟以下。The heating (baking) conditions are appropriately adjusted according to the type of the light-diffusion layer composition, and the heating temperature is, for example, 50°C or higher, preferably 70°C or higher, and, for example, lower than 100°C, preferably 90°C or lower. The heating time is, for example, 1 minute or more, preferably 5 minutes or more, and, for example, 30 minutes or less, preferably 20 minutes or less.
如此,光扩散层3形成(配置)在白色层2的表面。具体地说,形成B阶段的光扩散层3。即,光扩散层3中包含的树脂是在B阶段。In this way, the light-
其结果,在被剥离片4支承的状态下,得到包括白色层2和光扩散层3的覆盖片1。As a result, the
覆盖片1的厚度方向上的亮度L*例如在51.2以上,优选在55.7以上,更优选在60.0以上,并且,例如在67.7以下,优选在66.6以下,更优选在62.5以下。另外,覆盖片1的亮度与所含有的树脂的状态(B阶段或C阶段)无关而实质上相同。亮度的测量使用紫外可见近红外光谱仪并通过积分球的透射率测量方法来测量,具体在实施例中进行详细说明。The luminance L* in the thickness direction of the
如果亮度在上述下限以上,则从三层覆盖元件5发出的光的总光通量良好,三层覆盖元件5的亮度良好。另一方面,如果亮度在上述上限以下,则能够更有效地遮挡荧光体层7的颜色,从而能够进一步使非发光时的外观呈现白色。If the luminance is at least the above lower limit, the total luminous flux of the light emitted from the three-
覆盖片1的厚度,例如在50μm以上,优选在150μm以上,并且,例如在1000μm以下,优选在500μm以下。The thickness of the
5.三层覆盖元件的制造方法5. Manufacturing method of three-layer covering element
接着,参照图2A~图2F说明覆盖片1覆盖在光学半导体元件6上的方法。具体地说,说明覆盖片1覆盖在荧光体层覆盖元件8上来制造三层覆盖元件5的方法。Next, a method of covering the
三层覆盖元件5的制造方法例如包括:准备步骤,准备荧光体层覆盖元件集合体11;压合步骤,将覆盖片1相对于荧光体层覆盖元件集合体11进行热压合;剥离步骤,对剥离片进行剥离;以及切断步骤,将三层覆盖元件集合体12切断。The manufacturing method of the three-
(准备步骤)(preparatory steps)
在准备步骤中,如图2A所示,准备荧光体层覆盖元件集合体11。In the preparation step, as shown in FIG. 2A , the phosphor layer covering
荧光体层覆盖元件集合体11包括多个荧光体层覆盖元件8和将上述多个荧光体层覆盖元件8临时固定的临时固定片30。The phosphor layer covering
荧光体层覆盖元件8包括光学半导体元件6和覆盖该光学半导体元件6的荧光体层7。The phosphor
光学半导体元件6例如是将电能转换为光能的LED(发光二极管元件)或LD(半导体激光元件)。优选的是,光学半导体元件6是发出蓝光的蓝色LED。另一方面,光学半导体元件6不包括技术领域与光学半导体元件6不同的晶体管等整流器(半导体元件)。The
光学半导体元件6具有沿平面方向延伸的拟似平板形状。此外,光学半导体元件6俯视为拟似矩形(优选的是俯视为拟似正方形)。光学半导体元件6包括上表面21、下表面22和侧面23(参照图3B)。The
上表面21是将光向上侧发出的发光面,具有平坦的形状。在上表面21设有荧光体层7(后述)。The
下表面22是形成有电极24的面,相对于上表面21向下侧隔开间隔相对配置。电极24设有多个(两个),具有从下表面22朝向下侧稍突出的形状。The
侧面23是发出光的发光面,连接上表面21的周向端部边缘和下表面22的周向端部边缘。侧面23包括前面23a、后面23b、左面23c及右面23d四个面(参照图3B)。The
光学半导体元件6至少从五个面(即上表面21和侧面23)朝向五个方向(即上侧、前侧、后侧、左侧和右侧)发出光。The
可适当地设定光学半导体元件6的尺寸,具体地说,厚度(上下方向长度),例如在0.1μm以上,优选在10μm以上,更优选在100μm以上,并且,例如在2000μm以下,优选在1500μm以下,更优选在500μm以下。光学半导体元件6的平面方向(左右方向和/或前后方向)上的长度例如分别在200μm以上,优选在500μm以上,并且,例如在3000μm以下,优选在2000μm以下。The dimensions of the
荧光体层7含有荧光体,对从光学半导体元件6发出的光的波长进行转换。荧光体层7配置在光学半导体元件6的上侧和侧方,覆盖光学半导体元件6的上表面21和侧面23(前面23a、后面23b、左面23c及右面23d)。即,荧光体层7配置在光学半导体元件6的上侧和周围,完全覆盖光学半导体元件6的下表面以外的五个面。荧光体层7俯视为拟似矩形(优选的是俯视为正方形),向上下方向投影时,形成为包含光学半导体元件6。The
作为荧光体,列举例如能够将蓝光转换为黄光的黄色荧光体、以及能够将蓝光转换为红光的红色荧光体。优选例如黄色荧光体。Examples of the phosphor include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light. For example, a yellow phosphor is preferable.
作为黄色荧光体,列举例如(Ba,Sr,Ca)2SiO4:Eu、(Sr、Ba)2SiO4:Eu(原硅酸钡(BOS))等硅酸盐荧光体、例如,具有Y3Al5O12:Ce(YAG(钇·铝·石榴石):Ce)、Tb3Al3O12:Ce(TAG(铽·铝·石榴石):Ce)等石榴石型结晶结构的石榴石型荧光体、例如,Ca-α-SiAlON等氮氧化物荧光体等。Examples of the yellow phosphor include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 : Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, those having Y Garnets having garnet-type crystal structures such as 3 Al 5 O 12 : Ce (YAG (Yttrium, Aluminum, Garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (Terbium, Aluminum, Garnet): Ce) Stone-type phosphors, for example, oxynitride phosphors such as Ca-α-SiAlON, and the like.
配置在光学半导体元件6上侧的荧光体层7的上下方向长度L1(厚度,参照图3B),例如在10μm以上,优选在50μm以上,更优选在100μm以上,并且,例如在500μm以下,优选在400μm以下,更优选在300μm以下。The vertical length L1 (thickness, see FIG. 3B ) of the
临时固定片30包括支承基材31和配置在支承基材31上的压敏粘接剂层32。The
作为支承基材31,列举例如,聚乙烯薄膜、聚酯薄膜(PET等)等聚合物薄膜、例如,陶瓷片、例如,金属箔等可弯曲性薄片。Examples of the
压敏粘接剂层32配置在支承基材31的整个上表面。压敏粘接剂层32在支承基材31的上表面具有薄片形状。压敏粘接剂层32,例如由通过处理(例如紫外线的照射或加热等)使压敏粘接力下降的压敏粘接剂形成。压敏粘接剂层32的厚度,例如在1μm以上,优选在10μm以上,并且,例如在1000μm以下,优选在500μm以下。The pressure-
在荧光体层覆盖元件集合体11中,多个荧光体层覆盖元件8以荧光体层覆盖元件8的下表面22粘接在压敏粘接剂层32的上表面的方式,在临时固定片30上相互隔开间隔排列设置。此时,多个电极24埋入压敏粘接剂层32。In the phosphor layer-covered
这种荧光体层覆盖元件集合体11例如可参考特开2014-168036号公报和特开2016-119454号公报等记载的方法来制作。Such a phosphor layer-covered
(压合步骤)(pressing step)
在压合步骤中,如图2B和图2C所示,将覆盖片1相对于荧光体层覆盖元件集合体11进行热压合。In the lamination step, as shown in FIGS. 2B and 2C , the
首先,准备包括下板41和上板42的热压合机43,所述上板42隔开间隔相对配置在下板41的上方,压合时能够移动到下板41的上表面。在下板41和上板42上设有加热装置(未图标),能够将它们加热到规定的温度。First, a
接着,如图2B所示,在压合机43上设置荧光体层覆盖元件集合体11和覆盖片1。具体地说,在下板41的上表面配置荧光体层覆盖元件集合体11。此外,以光扩散层3成为下侧的方式,将覆盖片1固定在上板42的下表面。Next, as shown in FIG. 2B , the phosphor layer covering
接着,如图2C所示,使上板42向下方移动,将覆盖片1相对于荧光体层覆盖元件集合体11压合。此时,利用加热装置对下板41和上板42进行加热。Next, as shown in FIG. 2C , the
加热温度,例如在40℃以上,优选在45℃以上,并且,例如在200℃以下,优选在150℃以下。The heating temperature is, for example, 40°C or higher, preferably 45°C or higher, and, for example, 200°C or lower, preferably 150°C or lower.
压合压力,例如在0.01MPa以上,优选在0.1MPa以上,并且,例如在10MPa以下,优选在5MPa以下。The pressing pressure is, for example, 0.01 MPa or more, preferably 0.1 MPa or more, and, for example, 10 MPa or less, preferably 5 MPa or less.
压合时间,例如在1秒以上,优选在10秒以上,并且,例如在30分钟以下,优选在10分钟以下。The pressing time is, for example, 1 second or more, preferably 10 seconds or more, and, for example, 30 minutes or less, preferably 10 minutes or less.
由此,荧光体层覆盖元件8埋入光扩散层3。具体地说,荧光体层覆盖元件8的上表面和侧面被光扩散层3覆盖,临时固定片30的露出面(从荧光体层覆盖元件8露出的上表面部分)被光扩散层3覆盖。Thereby, the phosphor
其结果,在层积有剥离片4的状态下,得到包括临时固定片30、多个光学半导体元件6、荧光体层7、光扩散层3和白色层2的三层覆盖元件集合体12。As a result, the three-layer
(剥离步骤)(peeling step)
在剥离步骤中,如图2D的假想线所示,将剥离片4从三层覆盖元件集合体12剥离。即,将剥离片4从白色层2剥离。In the peeling step, as shown by the phantom line in FIG. 2D , the peeling
接着,在光扩散层3是B阶段的情况下,使热固性树脂完全固化(C阶段化)。具体地说,例如,利用烘箱等对三层覆盖元件集合体12进行加热。Next, when the light-
加热温度,例如在100℃以上,优选在120℃以上,并且,例如在200℃以下,优选在160℃以下。此外,加热时间,例如在10分钟以上,优选在30分钟以上,并且,例如在480分钟以下,优选在300分钟以下。另外,能够以不同的温度进行多次加热。The heating temperature is, for example, 100°C or higher, preferably 120°C or higher, and, for example, 200°C or lower, preferably 160°C or lower. Further, the heating time is, for example, 10 minutes or more, preferably 30 minutes or more, and, for example, 480 minutes or less, preferably 300 minutes or less. In addition, multiple heating at different temperatures can be performed.
使用苯基硅树脂组成物作为树脂的情况下,在C阶段的生成物中与硅原子直接键合的烃基的苯基的含有率,例如在30mol%以上,优选在35mol%以上,并且,例如在55mol%以下,优选在50mol%以下。利用29Si-NMR计算苯基的含有率。例如在WO2011/125463等中记载了苯基的含有率的详细计算方法。When a phenyl silicone resin composition is used as the resin, the content of the phenyl group of the hydrocarbon group directly bonded to the silicon atom in the C-stage product is, for example, 30 mol% or more, preferably 35 mol% or more, and, for example, 55 mol% or less, preferably 50 mol% or less. The content of phenyl groups was calculated by 29 Si-NMR. For example, WO2011/125463 etc. describe the detailed calculation method of the content rate of a phenyl group.
(切断步骤)(cutting step)
在切断步骤中,如图2E所示,将三层覆盖元件集合体12切断(单片化)。In the cutting step, as shown in FIG. 2E , the three-layer
具体地说,如图2D的虚线所示,在相互相邻的光学半导体元件6之间沿厚度方向将白色层2和光扩散层3完全切断。由此,三层覆盖元件集合体12被单片化为各荧光体层覆盖元件8。因此,白色层2和光扩散层3以与一个荧光体层覆盖元件8一一对应的方式被单一化。Specifically, as shown by the dotted line in FIG. 2D , the
为了切断白色层2和光扩散层3,例如采用使用窄幅圆盘状切割锯的切割装置、例如,使用刀具的切割装置、例如,激光照射装置等切断装置。In order to cut the
接着,如图2E的假想线所示,将临时固定片30从光学半导体元件6剥离。Next, as shown by the phantom line in FIG. 2E , the
由此,得到包括光学半导体元件6、荧光体层7、光扩散层3和白色层2的三层覆盖元件5。Thereby, the three-
如图3A和图3B所示,在三层覆盖元件5中,光扩散层3配置在荧光体层7的上侧和侧方,覆盖荧光体层7的上表面和侧面。即,光扩散层3配置在荧光体层7的上侧和周围,完全覆盖荧光体层7的下表面以外的五个面。荧光体层7俯视为拟似矩形(优选的是俯视为拟似正方形),向上下方向投影时,形成为包含荧光体层7。As shown in FIGS. 3A and 3B , in the three-
配置在荧光体层7上侧的光扩散层3的上下方向长度L2(厚度),例如在30μm以上,优选在50μm以上,更优选在100μm以上,并且,例如在600μm以下,优选在500μm以下,更优选在200μm以下。The vertical length L2 (thickness) of the
白色层2配置在光扩散层3的上侧,覆盖光扩散层3的上表面。即,白色层2配置在光扩散层3的上侧,仅完全覆盖光扩散层3的上表面。白色层2俯视为矩形(优选的是俯视为拟似正方形),向上下方向投影时,形成为与光扩散层3一致。The
白色层2的上下方向长度L3(厚度),例如在30μm以上,优选在50μm以上,并且,例如在200μm以下,优选在180μm以下。The vertical length L3 (thickness) of the
三层覆盖元件5不是光学半导体装置10(参照图2F),即,不包含光学半导体装置10所具有的基板15。即,三层覆盖元件5构成为电极24尚未与设置在光学半导体装置10的基板15上的端子(未图示)电连接。此外,三层覆盖元件5是光学半导体装置10的一个部件,即,是用于制造光学半导体装置10的部件,并且是作为部件可单独流通而能够用于工业上的设备。The three-
另外,参照图2F,通过将三层覆盖元件5倒装片安装在二极管基板等基板15上,得到发光二极管装置等光学半导体装置10。2F , by flip-chip mounting the three-
基板15具有拟似平板形状,具体地说,由导体层在绝缘基板的上表面,作为电路图案而层积的层积板形成。绝缘基板例如由硅基板、陶瓷基板和塑料基板(例如,聚酰亚胺树脂基板)等构成。导体层例如由金、铜、银和镍等导体形成。导体层包括用于与单数的光学半导体元件6电连接的电极(未图示)。基板15的厚度,例如在25μm以上,优选在50μm以上,并且,例如在2000μm以下,优选在1000μm以下。The
<作用效果><Action effect>
由于覆盖片1沿厚度方向依次具有含有白色粒子的白色层2和含有光扩散粒子的光扩散层3,所以能够在荧光体层覆盖元件8中配置含有白色粒子的白色层2和含有光扩散粒子的光扩散层3。Since the
特别是能够将光扩散层3配置在荧光体层覆盖元件8的上表面和侧方。因此,能够使从荧光体层覆盖元件8发出的白光在光扩散层3中可靠地扩散,从而可降低正面方向和倾斜方向的颜色不均。即,不同角度方向的颜色均匀性良好。其结果,能够防止观察到从三层覆盖元件5发出的白光中因颜色不均所造成的黄环等。In particular, the light-
此外,能够将白色层2配置在三层覆盖元件5最外侧的表面。因此,非发光时(以及发光时),三层覆盖元件5呈白色。其结果,外观是美观的。Furthermore, the
此外,由于覆盖片1可利用热压合而配置在荧光体层覆盖元件8上,所以能够容易地制造不同角度方向上的颜色均匀性以及非发光时外观(白色性)良好的三层覆盖元件5。In addition, since the
<变形例><Variation>
在以下的变形例中,对与图1-图3B的实施方式相同的部件标注相同的附图标记,并且省略详细的说明。In the following modified examples, the same reference numerals are assigned to the same components as those of the embodiment in FIGS. 1 to 3B , and detailed explanations are omitted.
(1)在图2A-图2F所示的三层覆盖元件5的制造方法中,以光扩散层3覆盖荧光体层7的上表面和侧面的方式,将覆盖片1配置在荧光体层覆盖元件8上,但例如也可以如图4A-图4F所示,以光扩散层3仅覆盖荧光体层7的上表面的方式,将覆盖片1配置在荧光体层覆盖元件8上。(1) In the manufacturing method of the three-
在图4A-图4F所示的实施方式中,优选的是,在覆盖片1中,使光扩散层3为B阶段,使其硬度比在图2A-图2F中使用的B阶段的光扩散层3稍硬。In the embodiment shown in FIGS. 4A to 4F , in the
具体地说,满足全部以下的条件[1]~[3]。Specifically, all of the following conditions [1] to [3] are satisfied.
[1]在频率1Hz和升温速度20℃/分钟的条件下,对光扩散层3进行动态粘弹性测量而得到的表示剪切储能模量G’和温度T的关系的曲线具有极小值。[1] The curve representing the relationship between the shear storage modulus G' and the temperature T obtained by measuring the dynamic viscoelasticity of the
[2]极小值的温度T在40℃以上以及200℃以下的范围内。[2] The temperature T of the minimum value is in the range of 40°C or higher and 200°C or lower.
[3]极小值的剪切储能模量G’在1000Pa以上、90000Pa以下的范围内。优选在10000Pa以上,更优选在20000Pa以上,进一步优选在30000Pa以上,并且优选在70000Pa以下。[3] The shear storage modulus G' of the minimum value is in the range of 1000Pa or more and 90000Pa or less. It is preferably 10000Pa or more, more preferably 20000Pa or more, still more preferably 30000Pa or more, and preferably 70000Pa or less.
通过使光扩散层3满足上述条件,光扩散层3能够以良好的粘附力贴附在荧光体层覆盖元件8上,并且能够保持压合前和压合后光扩散层3的厚度。此外,能够更可靠地使贴附在荧光体层覆盖元件8上的光扩散层3的厚度均匀。By making the
另外,为了制造包括满足上述条件的光扩散层3的覆盖片1,例如,作为第二树脂使用苯基硅树脂组成物,且在光扩散层3形成时的B阶段化时,使其固化的程度比图2A-图2F所示的实施方式使用的覆盖片1的光扩散层3更高。即表示,加热程度提高。In addition, in order to manufacture the
具体地说,加热温度,例如在70℃以上,优选在80℃以上,并且,例如在150℃以下,优选在140℃以下,加热时间,例如超过10分钟,优选在12分钟以上,更优选在15分钟以上,并且,例如在60分钟以下,优选在50分钟以下。Specifically, the heating temperature is, for example, 70°C or higher, preferably 80°C or higher, and, for example, 150°C or lower, preferably 140°C or lower, and the heating time is, for example, over 10 minutes, preferably 12 minutes or longer, and more preferably in 15 minutes or more, and, for example, 60 minutes or less, preferably 50 minutes or less.
另外,在上述图2A-图2F所示的实施方式的覆盖片1的光扩散层3中,上述条件[3]为极小值的剪切储能模量G’例如小于1000Pa,优选在500Pa以下,并且,例如在10Pa以上。In addition, in the light-
接着,说明使用图4A-图4F所示的实施方式的覆盖片1覆盖在荧光体层覆盖元件8上来制造三层覆盖元件5的方法。Next, a method of manufacturing the three-
三层覆盖元件5的制造方法例如包括:准备步骤,准备荧光体层覆盖元件集合体11;光扩散层配置步骤,在荧光体层覆盖元件集合体11上配置光扩散层侧部13;压合步骤,将相对于覆盖片1配置有光扩散层侧部13的荧光体层覆盖元件集合体11进行热压合;对剥离片4进行剥离的步骤;以及将三层覆盖元件集合体12切断的切断步骤。The manufacturing method of the three-
如图4A所示,准备步骤与图2A所示的准备步骤相同。As shown in FIG. 4A, the preparation steps are the same as those shown in FIG. 2A.
在光扩散层配置步骤中,如图4B所示,在荧光体层覆盖元件集合体11上配置光扩散层侧部13。具体地说,在压合步骤前,在荧光体层覆盖元件集合体11中,在多个荧光体层覆盖元件8之间配置光扩散层侧部13。In the light-diffusion layer arrangement step, as shown in FIG. 4B , the light-diffusion
为了配置光扩散层侧部13,例如,将光扩散组成物灌封在多个荧光体层覆盖元件8之间。接着,在光扩散组成物含有热固性树脂的情况下,利用加热等使光扩散组成物B阶段化。或者是使用包括B阶段的光扩散层侧部13和剥离片的光扩散层侧部转印片,在荧光体层覆盖元件集合体11上进行热压合。In order to arrange the light-diffusion
此时,以形成的光扩散层侧部13的上表面与荧光体层7的上表面位于同一平面的方式配置光扩散层侧部13。根据需要,对光扩散层侧部13和/或荧光体层7的上表面进行研磨加工。At this time, the light-diffusion
在压合步骤中,如图4C-图4D所示,将覆盖片1相对于配置有光扩散层侧部13的荧光体层覆盖元件集合体11进行热压合。热压合的条件与图2B-图2C所示的压合步骤相同。In the lamination step, as shown in FIGS. 4C to 4D , the
由此,光扩散层3以覆盖荧光体层7和光扩散层侧部13上表面的方式配置在它们的上表面。Thereby, the light-
其结果,在层积有剥离片4的状态下得到三层覆盖元件集合体12,所述三层覆盖元件集合体12包括:临时固定片30、多个光学半导体元件6、荧光体层7、光扩散层侧部13、光扩散层3和白色层2。此时,荧光体层覆盖元件集合体11的光扩散层侧部13与覆盖片1的光扩散层3一体化,形成一个光扩散层。As a result, the three-layer
在剥离步骤中,如图4E的假想线所示,将剥离片4从荧光体层覆盖元件集合体11剥离。即,将剥离片4从白色层2和光扩散层侧部13剥离。In the peeling step, as shown by the phantom line in FIG. 4E , the peeling
接着,在光扩散层3和/或光扩散层侧部13为B阶段的情况下,使热固性树脂完全固化(C阶段化)。具体地说,例如,利用烘箱等对三层覆盖元件集合体12进行加热。加热条件与图2E所示的加热条件相同。Next, when the light-
在切断步骤中,如图4F所示,将三层覆盖元件集合体12切断(单一化)。In the cutting step, as shown in FIG. 4F , the three-layer
具体地说,在相互相邻的光学半导体元件6之间,如图4E的虚线所示,沿厚度方向将白色层2、光扩散层3和光扩散层侧部13完全切断。由此,三层覆盖元件集合体12被单片化成各荧光体层覆盖元件8。Specifically, the
切断方法与图2E所示的切断步骤的方法相同。The cutting method is the same as that of the cutting step shown in FIG. 2E.
由此,得到三层覆盖元件5,该三层覆盖元件5包括光学半导体元件6、荧光体层7、光扩散层侧部13、光扩散层3、白色层2和光扩散层侧部13。Thereby, the three-
图4A-图4F所示的实施方式的制造方法也能够起到与图2A-图2F所示的实施方式的制造方法同样的作用效果。特别是在由所述第二实施方式的制造方法得到的三层覆盖元件5中,可使配置在荧光体层7的上表面的光扩散层3的厚度L2与覆盖片1的光扩散层3的厚度相同。因此,容易进行光扩散层3的厚度设计。The manufacturing method of the embodiment shown in FIGS. 4A to 4F can also achieve the same functions and effects as the manufacturing method of the embodiment shown in FIGS. 2A to 2F . In particular, in the three-
(2)此外,在上述(1)(图4A-图4F)所述的实施方式中,在荧光体层覆盖元件集合体11配置有光扩散层侧部13,但是例如也可以参照图5A-图5B,不配置光扩散层侧部13而将覆盖片1相对于荧光体层覆盖元件集合体11进行热压合。(2) In addition, in the embodiment described in the above (1) ( FIGS. 4A to 4F ), the light-diffusion
此时,以覆盖片1的光扩散层3与临时固定片30的上表面(露出面)接触的方式,利用模具等来进行热压合。At this time, thermocompression bonding is performed using a mold or the like so that the light-
由此,能够得到图5A-图5B所示的三层覆盖元件5。Thereby, the three-
在图5A-图5B所示的三层覆盖元件5中,光扩散层3包括:光扩散层上部51,其配置在荧光体层7的上表面;光扩散层侧部52,其配置在荧光体层7的侧方;以及光扩散层边缘部53,其从光扩散层侧部52的下端向侧方突出。光扩散层上部51的厚度(上下方向长度)、光扩散层侧部52的厚度(前后方向长度/左右方向长度)和光扩散层边缘部53的厚度(上下方向长度)彼此相同。In the three-
白色层2包括:白色层上部61,其配置在光扩散层上部51的上表面;白色层侧部62,其配置在光扩散层侧部52的侧方;以及白色层边缘部63,其从白色层侧部62的下端向侧方突出。白色层上部61的厚度(上下方向长度)、白色层侧部62的厚度(前后方向长度/左右方向长度)和白色层边缘部63的厚度(上下方向长度)彼此相同。The
制造上述图5A-图5B所示的三层覆盖元件5的实施方式也能够起到与图4A-图4F所示的实施方式相同的作用效果。The above-mentioned embodiment of manufacturing the three-
(3)此外,在图2A-图2F所示的实施方式中,将覆盖片1间接覆盖在光学半导体元件6上,即,将覆盖片1覆盖在荧光体层覆盖元件8上,例如,虽然未图示,但是也可以将覆盖片1直接覆盖在光学半导体元件6上。(3) In addition, in the embodiment shown in FIGS. 2A to 2F , the
即,能够以光扩散层3与光学半导体元件6的上表面接触的方式,将覆盖片1配置在不具备荧光体层7的光学半导体元件6上。在上述实施方式中,也能够起到与图2所示的实施方式相同的作用效果。That is, the
(4)此外,在图2A-图2F所示的实施方式中,将覆盖片1覆盖在荧光体层覆盖元件8上,虽然未图示,也可以覆盖在光学半导体装置上。即,在光学半导体元件6安装在基板15上的光学半导体装置中,能够将覆盖片1覆盖在上述光学半导体元件6上。在上述实施方式中,也可以起到与图2A-图2F所示的实施方式相同的作用效果。(4) In addition, in the embodiment shown in FIGS. 2A to 2F , the
[实施例][Example]
在以下的记载中使用的配合比例(含有率)、物性值、参数等具体数值可以代替为上述“具体实施方式”中记载的与它们对应的配合比例(含有率)、物性值、参数等记载的上限值(定义为“以下”、“小于”的数值)或下限值(定义为“以上”、“超过”的数值)。Specific numerical values such as blending ratios (content ratios), physical properties, and parameters used in the following description may be replaced by the corresponding blending ratios (content ratios), physical property values, parameters, and the like described in the above-mentioned "Embodiment". The upper limit (defined as a value of "below" and "less than") or the lower limit (defined as a value of "above" and "exceeding").
<硅树脂组成物的制备><Preparation of Silicone Resin Composition>
以特开2016-037562号公报的实施例中记载的制备例1为基准,制备A阶段的苯基硅树脂组成物(能够成为B阶段的一级反应固化型树脂)。Based on Preparation Example 1 described in the Examples of JP-A No. 2016-037562, an A-stage phenyl silicone resin composition (a first-stage reaction-curable resin capable of becoming a B-stage) was prepared.
接着,使A阶段的苯基硅树脂组成物以100℃反应1小时(完全固化、C阶段化),得到生成物。测量得到的生成物的29Si-NMR,计算与硅原子直接键合的烃基中的苯基所占的比例(mol%),其结果是48%。Next, the A-staged phenyl silicone resin composition was reacted at 100° C. for 1 hour (completely cured, C-staged) to obtain a product. 29 Si-NMR of the obtained product was measured, and the ratio (mol%) of the phenyl group in the hydrocarbon group directly bonded to the silicon atom was calculated, and the result was 48%.
此外,利用阿贝折射率计测量苯基硅树脂组成物于C阶段的折射率。其结果是1.56。In addition, the refractive index of the phenyl silicone resin composition at the C stage was measured with an Abbe refractometer. The result is 1.56.
<在实施例中使用的材料><Material Used in Examples>
氧化钛:白色粒子、平均粒径0.36μm、商品名“R706S”、杜邦公司制造Titanium oxide: white particles, average particle size 0.36 μm, trade name “R706S”, manufactured by DuPont
二氧化硅粒子:光扩散粒子、折射率1.45、平均粒径3.4μm,商品名“FB-3SDC”、电气化学公司制造Silica particles: light-diffusing particles, refractive index 1.45, average particle diameter 3.4 μm, trade name “FB-3SDC”, manufactured by Denki Chemical Co., Ltd.
玻璃粒子:填充材料、折射率1.55、组成和组成比例(质量%):SiO2/Al2O3/CaO/MgO=60/20/15/5的无机粒子、平均粒径20μmGlass particles: filler, refractive index 1.55, composition and composition ratio (mass %): inorganic particles of SiO 2 /Al 2 O 3 /CaO/MgO=60/20/15/5,
气相二氧化硅:触变赋予粒子、平均粒径7nm、商品名“R976S”、赢创公司制造Fumed silica: Thixotropically imparted particles,
实施例1Example 1
将46.6质量%的硅树脂组成物、3.0质量%的氧化钛、48.5质量%的玻璃粒子和1.9质量%的气相二氧化硅混合,制备白色组成物。利用逗号刮刀将白色组成物涂布在剥离片(分离器、商品名“SE-1”、厚度50μm、FUJICO公司制)上,通过以120℃加热10分钟,形成C阶段的白色层。白色层的厚度是100μm。A white composition was prepared by mixing 46.6 mass % of the silicone resin composition, 3.0 mass % of titanium oxide, 48.5 mass % of glass particles, and 1.9 mass % of fumed silica. The white composition was applied on a release sheet (separator, trade name "SE-1",
接着,将41.4质量%的硅树脂组成物、40质量%的二氧化硅粒子、18质量%的玻璃粒子和0.6质量%的气相二氧化硅混合,制备光扩散组成物。利用逗号刮刀将光扩散组成物涂布在白色层上,通过以80℃加热10分钟,形成B阶段的光扩散层。光扩散层的厚度是150μm。Next, 41.4 mass % of the silicone resin composition, 40 mass % of silica particles, 18 mass % of glass particles, and 0.6 mass % of fumed silica were mixed to prepare a light-diffusing composition. The light-diffusion composition was apply|coated on the white layer with a comma blade, and the light-diffusion layer of B-stage was formed by heating at 80 degreeC for 10 minutes. The thickness of the light diffusion layer was 150 μm.
由此,在被剥离片支承的状态下,制造包括白色层和光扩散层的覆盖片。Thereby, in the state supported by the peeling sheet, the cover sheet which consists of a white layer and a light-diffusion layer is manufactured.
实施例2~15Examples 2 to 15
除了将白色组成物(即白色层)的氧化钛的配合比例、光扩散组成物(即光扩散层)的二氧化硅粒子的配合比例、以及白色层和光扩散层的厚度改变为表1中记载的配合比例或厚度以外,以与实施例1同样的方式制作覆盖片。Except that the mixing ratio of titanium oxide in the white composition (ie, the white layer), the mixing ratio of the silica particles in the light-diffusing composition (ie, the light-diffusing layer), and the thicknesses of the white layer and the light-diffusing layer were changed to those described in Table 1. A cover sheet was produced in the same manner as in Example 1, except for the mixing ratio and thickness of .
比较例1Comparative Example 1
在白色组成物中,除了不配合氧化钛以外,以与实施例1同样的方式来制作覆盖片。即,比较例1的覆盖片由非白色层(透明层)和光扩散层形成。In the white composition, a cover sheet was produced in the same manner as in Example 1, except that titanium oxide was not blended. That is, the cover sheet of Comparative Example 1 was formed of a non-white layer (transparent layer) and a light-diffusion layer.
比较例2Comparative Example 2
在光扩散组成物中,除了不配合二氧化硅粒子以外,以与实施例1同样的方式来制作覆盖片。即,比较例2的覆盖片由白色层和非光扩散层(透明层)形成。A cover sheet was produced in the same manner as in Example 1, except that silica particles were not incorporated into the light-diffusing composition. That is, the cover sheet of Comparative Example 2 was formed of a white layer and a non-light diffusing layer (transparent layer).
实施例16Example 16
除了将光扩散层的二氧化硅粒子的配合比例以及白色层的厚度改变为表1中记载的配合比例或厚度、且将光扩散组成物的加热条件设为80℃、20分钟以外,以与实施例1同样的方式来制作覆盖片。Except changing the mixing ratio of the silica particles in the light-diffusing layer and the thickness of the white layer to the mixing ratio or thickness described in Table 1, and changing the heating conditions of the light-diffusing composition to 80° C. for 20 minutes, the same The cover sheet was produced in the same manner as in Example 1.
(厚度的测量)(Measurement of thickness)
利用测量仪器(光学尺、西铁城公司制)来测量光扩散层和白色层的厚度。The thicknesses of the light-diffusion layer and the white layer were measured with a measuring instrument (optical ruler, manufactured by Citizen).
(亮度的测量)(Measurement of brightness)
利用紫外可见近红外光谱仪并通过积分球的透射率测量方法,测量各实施例和各比较例的覆盖片的亮度。The brightness of the cover sheets of each example and each comparative example was measured by using an ultraviolet-visible-near-infrared spectrometer and by the transmittance measurement method of an integrating sphere.
具体地说,以光扩散层与载玻片接触的方式,在90℃、0.1MPa、10分钟的条件下,将由各实施例和各比较例得到的覆盖片相对于载玻片进行热压合。接着,对剥离片进行剥离,通过以150℃加热120分钟,使光扩散层C阶段化。此时,得到亮度测量用的试样(载玻片/光扩散层/白色层的层积体)。Specifically, under the conditions of 90° C., 0.1 MPa, and 10 minutes, the cover sheets obtained in each Example and each Comparative Example were thermocompressed to the glass slide so that the light-diffusion layer was in contact with the glass slide. . Next, the peeling sheet was peeled off, and the light-diffusion layer was C-staged by heating at 150° C. for 120 minutes. At this time, a sample for luminance measurement (a laminate of glass slide/light diffusion layer/white layer) was obtained.
接着,在紫外可见近红外光谱仪(“V-670”、JASCO公司制)上仅设置载玻片,照射波长380~780nm的光,进行基准测定。此后,设置试样,照射与上述相同的光,测量试样的透射光谱。根据所述透射光谱,以JIS Z 8781-4:2013为基准来进行计算,计算覆盖片的亮度L*。表1表示结果。Next, only a glass slide was set on an ultraviolet-visible-near-infrared spectrometer (“V-670”, manufactured by JASCO Corporation), and light having a wavelength of 380 to 780 nm was irradiated to perform standard measurement. After that, the sample was set, the same light as above was irradiated, and the transmission spectrum of the sample was measured. Based on the transmission spectrum, it was calculated based on JIS Z 8781-4:2013, and the luminance L* of the cover sheet was calculated. Table 1 shows the results.
另外,以同样的方式测量C阶段化前的B阶段的光扩散层,也能够得到与C阶段的光扩散层同样的结果。Moreover, the light-diffusion layer of B-stage before C-staging was measured similarly, and the same result as the light-diffusion layer of C-stage was obtained.
(光扩散层的半值角的测量)(Measurement of half-value angle of light-diffusion layer)
通过将由各实施例和各比较例制作的光扩散层3配置在载玻片70上,制作半值角测量用的试样71。By arranging the light-
接着,准备分光变角色差计(GC5000、日本电色工业公司制),在试样71的上侧隔开间隔(5cm)固定光源72,在试样71的下侧隔开间隔(3cm)配置检测器73(参照图6)。Next, a spectrophotometer (GC5000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) was prepared, the light source 72 was fixed on the upper side of the
接着,从光源72向试样71照射入射光(C光源)。Next, the
将透射试样71而到达光源72正下方的透射光作为角度0°的正面光,测量正面项的强度I0。接着,使检测器73从正面(0°)向倾斜方向(-60°~60°)移动,测量倾斜方向的透射光的强度。The intensity I 0 of the front item was measured by using the transmitted light transmitted through the
测量相对于正面光的强度I0成为其一半的强度I1/2的角度,计算发出一半以上的强度的角度范围α。表1表示结果。The angle at which the intensity I 0 of the front light becomes half of the intensity I 1/2 is measured, and the angle range α that emits more than half of the intensity is calculated. Table 1 shows the results.
(荧光体层的动态粘弹性(剪切储能模量G’)的测量)(Measurement of dynamic viscoelasticity (shear storage modulus G') of phosphor layer)
在以下条件下,对由实施例1和实施例16得到的B阶段的荧光体层进行动态粘弹性测量。The dynamic viscoelasticity measurement was performed on the B-stage phosphor layers obtained in Example 1 and Example 16 under the following conditions.
[条件][condition]
粘弹性装置:旋转流变仪(C-VOR装置,马尔文公司制造)Viscoelastic device: rotational rheometer (C-VOR device, manufactured by Malvern)
试样形状:圆板形状Specimen shape: circular plate shape
试样尺寸:厚度225μm、直径8mmSample size: thickness 225μm, diameter 8mm
变形量:10%Deformation: 10%
频率:1HzFrequency: 1Hz
板直径:8mmPlate diameter: 8mm
板间间隙:200μmGap between boards: 200μm
升温速度20℃/分钟
温度范围:20~200℃Temperature range: 20~200℃
图7图示了表示此时的剪切储能模量G’和温度T的关系的曲线。Fig. 7 is a graph showing the relationship between the shear storage modulus G' and the temperature T at this time.
实施例1的光扩散层的剪切储能模量G’的极小值是25Pa。实施例16的光扩散层的剪切储能模量G’的极小值是1980Pa。The minimum value of the shear storage modulus G' of the light-diffusing layer of Example 1 was 25 Pa. The minimum value of the shear storage modulus G' of the light-diffusing layer of Example 16 was 1980 Pa.
(三层覆盖元件的制作方法A)(Manufacturing method A of three-layer covering element)
准备多个光学半导体元件(1.1mm见方、厚度150μm、晶元光电公司制造)的上表面和侧面被荧光体层(含有黄色荧光体)覆盖的俯视为大致矩形的荧光体层覆盖元件。配置在光学半导体元件的上表面的荧光体层的厚度是200μm。A plurality of optical semiconductor elements (1.1 mm square, 150 μm thick, manufactured by Epistar Corporation) were prepared with phosphor layer-covered elements having a substantially rectangular shape in plan view, the top and side surfaces of which were covered with a phosphor layer (containing a yellow phosphor). The thickness of the phosphor layer disposed on the upper surface of the optical semiconductor element was 200 μm.
接着,准备包括支承板(不锈钢载体)和配置在支承板的上表面的粘接片(“REVALPHA”、日东电工公司制造)的临时固定片。Next, a temporary fixing sheet including a support plate (stainless steel carrier) and an adhesive sheet ("REVALPHA", manufactured by Nitto Denko Corporation) arranged on the upper surface of the support plate was prepared.
以将光学半导体元件的下表面的电极埋入粘接片的方式,将荧光体层覆盖元件以1.77mm间隔、前后方向五个、左右方向五个的方式排列配置在临时固定片上(图2A)。由此,得到荧光体层覆盖元件集合体。The electrodes on the lower surface of the optical semiconductor element were embedded in the adhesive sheet, and the phosphor layer-covered elements were arranged on the temporary fixing sheet at intervals of 1.77 mm, five in the front-rear direction, and five in the left-right direction (Fig. 2A). . Thus, the phosphor layer-covered element assembly was obtained.
接着,以荧光体层覆盖元件成为上侧的方式将荧光体层覆盖元件集合体固定在热压合机的下板的上表面,另一方面,以光扩散层成为下侧的方式,将实施例1~15或各比较例的覆盖片固定在热压合机上板的下表面(图2B)。此后,在90℃、0.1MPa、10分钟的条件下进行热压合。此时,进行热压合,使配置在荧光体层覆盖元件的上表面的光扩散层被压缩10μm,即,使在得到的三层覆盖元件中荧光体层上表面的光扩散层比层积前的覆盖片的光扩散层减少10μm(图2C)。具体地说,覆盖片的光扩散层的厚度是150μm的情况下,压合后的三层覆盖元件的光扩散层的厚度是140μm。Next, the phosphor layer-covered element assembly was fixed to the upper surface of the lower plate of the thermocompressor so that the phosphor layer covered the element on the upper side, and on the other hand, the light-diffusion layer was on the lower side. The cover sheets of Examples 1 to 15 or each of the comparative examples were fixed to the lower surface of the upper plate of the thermocompression bonding machine ( FIG. 2B ). Thereafter, thermocompression bonding was performed under the conditions of 90° C., 0.1 MPa, and 10 minutes. At this time, thermocompression bonding was performed so that the light-diffusion layer disposed on the upper surface of the phosphor layer-covered element was compressed by 10 μm, that is, the light-diffusion layer on the upper surface of the phosphor layer was laminated in the obtained three-layer cover element. The light diffusion layer of the front cover sheet was reduced by 10 μm ( FIG. 2C ). Specifically, when the thickness of the light-diffusion layer of the cover sheet is 150 μm, the thickness of the light-diffusion layer of the three-layer cover element after pressing is 140 μm.
接着,对剥离片进行剥离,利用150℃的烘箱加热120分钟,使光扩散层C阶段化(图2D)。Next, the peeling sheet was peeled off, and the light-diffusion layer was C-staged by heating in a 150° C. oven for 120 minutes ( FIG. 2D ).
接着,利用切割机切断相邻的光学半导体元件之间的白色层和光扩散层而单片化后,剥离临时固定片(图2E)。Next, after cutting the white layer and the light-diffusion layer between the adjacent optical semiconductor elements with a dicing machine and singulation, the temporary fixing sheet is peeled off ( FIG. 2E ).
由此,制作三层覆盖元件A。Thus, the three-layer covering element A was produced.
(三层覆盖元件的制作方法B)(Manufacturing method B of three-layer covering element)
以与上述方法同样的方式,得到荧光体层覆盖元件集合体(图4A)。In the same manner as described above, a phosphor layer-covered element assembly was obtained ( FIG. 4A ).
接着,作为形成光扩散层侧部的材料,使用由实施例16制备的光扩散组成物。将所述光扩散组成物填充在荧光体层覆盖元件之间,通过加热形成光扩散层侧部。形成的光扩散层侧部的上表面与光学半导体元件的上表面位于同一平面(图4B)。Next, as a material for forming the side portion of the light-diffusion layer, the light-diffusing composition prepared in Example 16 was used. The light-diffusing composition is filled between the phosphor layer covering elements, and the light-diffusing layer side portions are formed by heating. The upper surface of the formed light-diffusion layer side portion and the upper surface of the optical semiconductor element are on the same plane ( FIG. 4B ).
接着,以荧光体层覆盖元件成为上侧的方式,将荧光体层覆盖元件集合体固定在热压合机下板的上表面,另一方面,以光扩散层成为下侧的方式,将实施例16的覆盖片固定在热压合机上板的下表面(图4C)。此后,在90℃、0.1MPa、2分钟的条件下进行热压合(图4D)。此时,配置在荧光体层覆盖元件的上表面的光扩散层未被压缩。即,在得到的三层覆盖元件中,荧光体层上表面的光扩散层的厚度与层积前的覆盖片的光扩散层的厚度相同。Next, the phosphor layer-covered element assembly was fixed to the upper surface of the lower plate of the thermocompressor so that the phosphor layer covered the element on the upper side, and on the other hand, the light-diffusion layer was on the lower side. The cover sheet of Example 16 was attached to the lower surface of the upper plate of the thermocompressor (FIG. 4C). Thereafter, thermocompression bonding was performed under the conditions of 90° C., 0.1 MPa, and 2 minutes ( FIG. 4D ). At this time, the light-diffusion layer arranged on the upper surface of the phosphor layer covering element is not compressed. That is, in the obtained three-layer cover element, the thickness of the light-diffusion layer on the upper surface of the phosphor layer was the same as the thickness of the light-diffusion layer of the cover sheet before lamination.
接着,对剥离片进行剥离,利用150℃的烘箱加热120分钟,使光扩散层C阶段化(图4E)。Next, the peeling sheet was peeled off, and the light-diffusion layer was C-staged by heating in an oven at 150° C. for 120 minutes ( FIG. 4E ).
接着,利用切割机将相邻的光学半导体元件之间的白色层、光扩散层和光扩散层侧部切断而单一化后,剥离临时固定片(图4F)。Next, after the white layer, the light-diffusion layer, and the light-diffusion layer side part between adjacent optical-semiconductor elements were cut|disconnected by a dicing machine, and the temporary fixing sheet was peeled off (FIG. 4F).
由此,制作三层覆盖元件B。Thus, the three-layer covering element B was produced.
(角度方向上的颜色均匀性的测量)(Measurement of color uniformity in the angular direction)
将各实施例和各比较例的三层覆盖元件A~B倒装片安装在二极管基板上,得到光学半导体装置。向所述光学半导体装置施加300mA的电流,使光学半导体装置发光。测量此时从正面方向(0°:上方向)向倾斜方向(-60°~60°)发出的光的色度(CIE、y),得出0°的光的色度与±60的光的色度的差(Δu′v′)。The three-layer cover elements A to B of the respective Examples and Comparative Examples were flip-chip mounted on a diode substrate to obtain an optical semiconductor device. A current of 300 mA was applied to the optical semiconductor device to cause the optical semiconductor device to emit light. At this time, the chromaticity (CIE, y) of light emitted from the frontal direction (0°: upward direction) to the oblique direction (-60° to 60°) is measured, and the chromaticity of light at 0° and the light at ±60 are obtained. The difference in chromaticity (Δu'v').
在测量中,利用多通道光谱仪(“MCPD-9800”、大冢电子公司制造)来进行测量。表1表示其结果。In the measurement, a multi-channel spectrometer ("MCPD-9800", manufactured by Otsuka Electronics Co., Ltd.) was used for measurement. Table 1 shows the results.
另外,由于如果差(Δu′v′)小于0.0040,则观察不到黄环,所以能够判断为非常良好。此外,由于如果超过0.040、小于0.0050,则几乎观察不到黄环,所以判断为良好。由于如果超过0.0050、小于0.0060,则仅能够稍许观察到黄环,所以判断为可。由于如果超过0.0050,则明显能够观察到黄环,所以判断为不可。In addition, if the difference (Δu'v') is less than 0.0040, since no yellow ring is observed, it can be judged as very good. In addition, when it exceeds 0.040 and is less than 0.0050, since a yellow ring is hardly observed, it is judged to be good. If it exceeds 0.0050 and is less than 0.0060, the yellow ring is only slightly observed, so it is judged as possible. If it exceeds 0.0050, since a yellow ring is clearly observed, it is judged as impossible.
(三层覆盖元件的外观)(Appearance of three-layer covering element)
从白色层一侧通过目视观察各实施例和各比较例的三层覆盖元件A~B的外观,以如下方式进行评价。表1表示结果。The appearances of the three-layer covering elements A to B of the respective Examples and Comparative Examples were visually observed from the white layer side, and evaluated as follows. Table 1 shows the results.
◎:完全不能确认基底(荧光体层)的颜色(黄色)。⊚: The color (yellow) of the base (phosphor layer) could not be confirmed at all.
○:几乎不能确认基底的颜色。○: The color of the base could hardly be confirmed.
△:能够稍许确认基底的颜色。△: The color of the base can be slightly confirmed.
×:能够清楚地确认基底的颜色。×: The color of the base can be clearly confirmed.
(三层覆盖元件的亮度的测量)(Measurement of the brightness of the three-layer covering element)
将各实施例和各比较例的三层覆盖元件A~B倒装片安装在二极管基板上,得到光学半导体装置。向所述光学半导体装置施加300mA的电流,测量总光通量。另外,利用多通道光谱仪(“MCPD-9800”、大冢电子公司制造),以曝光时间19ms、累计次数16次的测量条件来进行测量。表1表示结果。The three-layer cover elements A to B of the respective Examples and Comparative Examples were flip-chip mounted on a diode substrate to obtain an optical semiconductor device. A current of 300 mA was applied to the optical semiconductor device, and the total luminous flux was measured. In addition, the measurement was performed using a multi-channel spectrometer (“MCPD-9800”, manufactured by Otsuka Electronics Co., Ltd.) under the measurement conditions of an exposure time of 19 ms and a cumulative count of 16 times. Table 1 shows the results.
[表1][Table 1]
另外,上述发明作为本发明示例的实施方式进行了表述,其只不过为示例,并非限定性的解释。本领域技术人员可明了的本发明的变形例也包含在本发明要求保护的范围中。In addition, the above-mentioned invention has been described as an exemplary embodiment of the present invention, but it is merely an example and is not intended to be interpreted as a limitation. Modifications of the present invention that are apparent to those skilled in the art are also included in the scope of the claims of the present invention.
【产业上的可利用性】【Industrial Availability】
本发明的光学半导体元件覆盖用片能够适用于各种工业产品,例如,能够用于白色光学半导体装置等发光装置等。The optical semiconductor element covering sheet of the present invention can be applied to various industrial products, for example, can be used for light-emitting devices such as white optical semiconductor devices.
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016175379A JP6902838B2 (en) | 2016-09-08 | 2016-09-08 | Sheet for coating optical semiconductor devices |
JP2016-175379 | 2016-09-08 | ||
PCT/JP2017/030761 WO2018047658A1 (en) | 2016-09-08 | 2017-08-28 | Optical semiconductor element coating sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109690181A CN109690181A (en) | 2019-04-26 |
CN109690181B true CN109690181B (en) | 2022-07-19 |
Family
ID=61561484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780055044.6A Active CN109690181B (en) | 2016-09-08 | 2017-08-28 | Sheet for covering optical semiconductor element |
Country Status (6)
Country | Link |
---|---|
US (1) | US11269118B2 (en) |
EP (1) | EP3511612B1 (en) |
JP (1) | JP6902838B2 (en) |
CN (1) | CN109690181B (en) |
TW (1) | TWI749058B (en) |
WO (1) | WO2018047658A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108922954A (en) * | 2018-06-25 | 2018-11-30 | 江苏罗化新材料有限公司 | A kind of duplicature CSPLED production method |
TWI751394B (en) * | 2018-12-20 | 2022-01-01 | 健策精密工業股份有限公司 | Pre-molded substrate and manufacturing method thereof |
CN112563396B (en) * | 2019-09-25 | 2022-04-22 | 天津德高化成新材料股份有限公司 | A chip-scale package structure and manufacturing method for moisture-sensitive high-color gamut backlight applications |
JP7553235B2 (en) | 2019-10-31 | 2024-09-18 | 株式会社きもと | Light Diffusion Film |
CN112462554B (en) * | 2020-07-16 | 2024-05-17 | 江西晶亮光电科技协同创新有限公司 | Novel light-emitting device and preparation method thereof, backlight module |
TWI759049B (en) * | 2020-12-31 | 2022-03-21 | 李宛儒 | A method chip of fabricating scale packaging light-emitting chip structure capable of decreasing temperature at light-out surface and application therefore |
JP2022169991A (en) | 2021-04-28 | 2022-11-10 | 株式会社きもと | Molded Diffusion Laminated Film |
JP7369761B2 (en) | 2021-12-24 | 2023-10-26 | 日東電工株式会社 | Sheet for encapsulating optical semiconductor devices |
JP7369760B2 (en) | 2021-12-24 | 2023-10-26 | 日東電工株式会社 | Sheet for encapsulating optical semiconductor devices |
CN117133851A (en) * | 2023-10-26 | 2023-11-28 | 罗化芯显示科技开发(江苏)有限公司 | An LED packaging film and LED packaging structure |
CN118888651B (en) * | 2024-09-27 | 2025-02-07 | 天津德高化成新材料股份有限公司 | Preparation method of four-side luminous white light CSP and prepared CSP |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010271517A (en) * | 2009-05-21 | 2010-12-02 | Oji Paper Co Ltd | Luminance leveling sheet and surface light source device |
CN104471692A (en) * | 2012-07-17 | 2015-03-25 | 日东电工株式会社 | Encapsulation layer covering semiconductor element and manufacturing method of semiconductor device |
TW201605075A (en) * | 2014-04-30 | 2016-02-01 | Osram Opto Semiconductors Gmbh | Light emitting device and method of manufacturing the same |
CN105518882A (en) * | 2013-09-06 | 2016-04-20 | 日东电工株式会社 | Optical semiconductor element encapsulation composition, optical semiconductor element encapsulation molding, optical semiconductor element encapsulation sheet, optical semiconductor device, and encapsulated optical semiconductor element |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7514867B2 (en) * | 2004-04-19 | 2009-04-07 | Panasonic Corporation | LED lamp provided with optical diffusion layer having increased thickness and method of manufacturing thereof |
JP2006140362A (en) * | 2004-11-15 | 2006-06-01 | Nitto Denko Corp | Optical semiconductor element sealing sheet and method for manufacturing optical semiconductor device using the sheet |
US8080828B2 (en) * | 2006-06-09 | 2011-12-20 | Philips Lumileds Lighting Company, Llc | Low profile side emitting LED with window layer and phosphor layer |
JP4969948B2 (en) | 2006-08-18 | 2012-07-04 | 北越紀州製紙株式会社 | Lighting adjustment tool sheet and lighting adjustment tool using the sheet |
US7652301B2 (en) * | 2007-08-16 | 2010-01-26 | Philips Lumileds Lighting Company, Llc | Optical element coupled to low profile side emitting LED |
US8471281B2 (en) | 2007-12-11 | 2013-06-25 | Koninklijke Philips Electronics N.V. | Side emitting device with hybrid top reflector |
JP2012504860A (en) * | 2008-10-01 | 2012-02-23 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | LED with particles in encapsulant for increased light extraction and non-yellow off-state color |
JP2010168525A (en) * | 2008-12-24 | 2010-08-05 | Hitachi Chem Co Ltd | Transparent film, laminated film using the transparent film, inorganic particle supporting film, and panel for display |
WO2010106999A1 (en) | 2009-03-17 | 2010-09-23 | 積水化学工業株式会社 | Tape base material for assembling display device, and adhesive sheet for assembling display device and display module unit using the same |
JP5376230B2 (en) | 2009-06-30 | 2013-12-25 | 平岡織染株式会社 | Manufacturing method of industrial material sheet capable of rear projection |
US8110839B2 (en) * | 2009-07-13 | 2012-02-07 | Luxingtek, Ltd. | Lighting device, display, and method for manufacturing the same |
CN102116959B (en) * | 2009-12-31 | 2013-08-14 | 北京京东方光电科技有限公司 | Optical element of liquid crystal display and manufacturing method thereof |
JP2013077811A (en) * | 2011-09-14 | 2013-04-25 | Nitto Denko Corp | Sealing sheet, manufacturing method of sealing sheet, light emitting diode device, and manufacturing method of light emitting diode device |
JP5278526B2 (en) * | 2011-12-19 | 2013-09-04 | 大日本印刷株式会社 | Surface light source device, transmissive display device |
JP5953797B2 (en) | 2012-02-17 | 2016-07-20 | 東レ株式会社 | Manufacturing method of semiconductor light emitting device |
JP2013232479A (en) * | 2012-04-27 | 2013-11-14 | Toshiba Corp | Semiconductor light-emitting device |
JP2014038757A (en) * | 2012-08-15 | 2014-02-27 | Mitsubishi Chemicals Corp | Large-sized organic electroluminescent device |
US9093618B2 (en) * | 2012-08-24 | 2015-07-28 | Tsmc Solid State Lighting Ltd. | Method and apparatus for fabricating phosphor-coated LED dies |
JP2014157989A (en) | 2013-02-18 | 2014-08-28 | Toshiba Corp | Semiconductor light-emitting device and method of manufacturing the same |
KR20150025231A (en) | 2013-08-28 | 2015-03-10 | 서울반도체 주식회사 | Light source module and manufacturing method thereof, backlight unit |
JP2016048764A (en) * | 2014-08-28 | 2016-04-07 | 日東電工株式会社 | Optical semiconductor element sealing composition, optical semiconductor element sealing mold, optical semiconductor element sealing sheet, optical semiconductor device and sealed optical semiconductor element |
JP5996037B2 (en) | 2015-05-12 | 2016-09-21 | シチズン電子株式会社 | LED light emitting device |
CN110083005A (en) * | 2018-01-23 | 2019-08-02 | 台湾扬昕股份有限公司 | Rear projection screen |
-
2016
- 2016-09-08 JP JP2016175379A patent/JP6902838B2/en active Active
-
2017
- 2017-08-28 EP EP17848599.1A patent/EP3511612B1/en active Active
- 2017-08-28 WO PCT/JP2017/030761 patent/WO2018047658A1/en unknown
- 2017-08-28 CN CN201780055044.6A patent/CN109690181B/en active Active
- 2017-08-28 US US16/331,716 patent/US11269118B2/en active Active
- 2017-09-04 TW TW106130084A patent/TWI749058B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010271517A (en) * | 2009-05-21 | 2010-12-02 | Oji Paper Co Ltd | Luminance leveling sheet and surface light source device |
CN104471692A (en) * | 2012-07-17 | 2015-03-25 | 日东电工株式会社 | Encapsulation layer covering semiconductor element and manufacturing method of semiconductor device |
CN105518882A (en) * | 2013-09-06 | 2016-04-20 | 日东电工株式会社 | Optical semiconductor element encapsulation composition, optical semiconductor element encapsulation molding, optical semiconductor element encapsulation sheet, optical semiconductor device, and encapsulated optical semiconductor element |
TW201605075A (en) * | 2014-04-30 | 2016-02-01 | Osram Opto Semiconductors Gmbh | Light emitting device and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
WO2018047658A1 (en) | 2018-03-15 |
US11269118B2 (en) | 2022-03-08 |
CN109690181A (en) | 2019-04-26 |
TW201820653A (en) | 2018-06-01 |
EP3511612A1 (en) | 2019-07-17 |
US20200116905A1 (en) | 2020-04-16 |
JP2018041638A (en) | 2018-03-15 |
JP6902838B2 (en) | 2021-07-14 |
EP3511612A4 (en) | 2020-04-01 |
EP3511612B1 (en) | 2024-01-10 |
TWI749058B (en) | 2021-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109690181B (en) | Sheet for covering optical semiconductor element | |
KR102393760B1 (en) | Light emitting device and method for manufacturing the same | |
JP2019102614A (en) | Light-emitting device and manufacturing method thereof | |
US11073654B2 (en) | Light emitting module with recesses in light guide plate | |
JP2014168033A (en) | Reflection layer-phosphor layer covered led, manufacturing method of the same, led device, and manufacturing method of led device | |
JP2014168032A (en) | Phosphor layer covered led, manufacturing method of the same, and led device | |
JP2014168036A (en) | Sealing layer covered semiconductor element, manufacturing method of the same, and semiconductor device | |
JP2014168035A (en) | Sealing layer covered semiconductor element, manufacturing method of the same, and semiconductor device | |
JP7111939B2 (en) | Light emitting device and manufacturing method thereof | |
WO2014119161A1 (en) | Sheet for optical semiconductor, and optical semiconductor device | |
WO2017221606A1 (en) | Optical semiconductor element having phosphor layer, and method for manufacturing optical semiconductor element | |
JP2018041860A (en) | Wavelength conversion sheet, sheet covering element, and optical semiconductor device | |
WO2017221607A1 (en) | Optical semiconductor device with phosphor layer | |
JP2018014480A (en) | Optical semiconductor element with reflective layer and phosphor layer | |
WO2018008197A1 (en) | Photosemiconductor element with reflection layer and phosphor layer | |
JP2013138106A (en) | Sealing sheet, method of manufacturing optical semiconductor device, optical semiconductor device, and lighting fixture | |
JP6720470B2 (en) | Method for producing phosphor-containing silicone sheet | |
JP5630966B2 (en) | Light emitting element chip assembly and method for manufacturing the same | |
JP2013183089A (en) | Light emitting device, lighting device, light emitting device aggregate, and manufacturing method of light emitting device | |
JP2019040895A (en) | Light emitting device | |
JP2018041858A (en) | Cover sheet, sheet covering element, and optical semiconductor device | |
WO2017221608A1 (en) | Phosphor layer sheet, and manufacturing method of optical semiconductor element with phosphor layer | |
TWI824331B (en) | Thin sheet for covering the optical semiconductor element | |
US11398587B2 (en) | Method of manufacturing light-transmissive sheet | |
JP2018041857A (en) | Optical semiconductor element coated with phosphor layer and light diffusion layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |