CN109631887B - Inertial navigation high-precision positioning method based on binocular, acceleration and gyroscope - Google Patents
Inertial navigation high-precision positioning method based on binocular, acceleration and gyroscope Download PDFInfo
- Publication number
- CN109631887B CN109631887B CN201811632825.XA CN201811632825A CN109631887B CN 109631887 B CN109631887 B CN 109631887B CN 201811632825 A CN201811632825 A CN 201811632825A CN 109631887 B CN109631887 B CN 109631887B
- Authority
- CN
- China
- Prior art keywords
- coordinate system
- inertial navigation
- binocular
- navigation
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000001133 acceleration Effects 0.000 title claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 230000010354 integration Effects 0.000 claims abstract description 13
- 230000008030 elimination Effects 0.000 claims abstract description 6
- 238000003379 elimination reaction Methods 0.000 claims abstract description 6
- 238000013461 design Methods 0.000 claims abstract description 5
- 230000001186 cumulative effect Effects 0.000 claims abstract 2
- 238000004422 calculation algorithm Methods 0.000 claims description 29
- 230000009466 transformation Effects 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 19
- 239000011159 matrix material Substances 0.000 claims description 13
- 230000000007 visual effect Effects 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 7
- 238000009825 accumulation Methods 0.000 claims description 4
- 238000013519 translation Methods 0.000 claims description 4
- 238000000844 transformation Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000010187 selection method Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/49—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
Abstract
本发明请求保护一种基于双目、加速度与陀螺仪的惯性导航高精度定位方法,本发明设计基于双目定位+高精度GPS信息确定惯性导航参考位置特征点三维坐标,通过特征点坐标值作为参考点来实时更新惯性导航三维坐标,来消除惯性导航由于积分产生的累计误差,实现基于惯性导航和双目定位结合辅助室内停车场车辆的高精确定位。本发明结构框图包括以下几个部分:一、高精度惯性导航系统组成及参考坐标系结构;二、惯性导航导航起始坐标的获取方法;三、双目高精度定位参考点的选择方法;四、高精度惯性导航坐标系的选择与设计;五、高精度惯性导航坐标系的转换方法;六、惯性导航累计误差的消除方法。
The present invention claims to protect a high-precision positioning method of inertial navigation based on binocular, acceleration and gyroscope. The present invention is designed to determine the three-dimensional coordinates of the feature point of the inertial navigation reference position based on binocular positioning + high-precision GPS information, and the coordinate value of the feature point is used as the The reference point is used to update the three-dimensional coordinates of inertial navigation in real time to eliminate the cumulative error caused by the integration of inertial navigation, and realize high-precision positioning of vehicles based on inertial navigation and binocular positioning combined with auxiliary indoor parking lots. The structural block diagram of the present invention includes the following parts: 1. the composition of the high-precision inertial navigation system and the structure of the reference coordinate system; 2. the acquisition method of the initial coordinates of the inertial navigation and navigation; 3. the selection method of the binocular high-precision positioning reference point; 4. . The selection and design of the high-precision inertial navigation coordinate system; 5. The conversion method of the high-precision inertial navigation coordinate system; 6. The elimination method of the accumulated error of the inertial navigation.
Description
技术领域technical field
本发明属于组合导航高精度定位领域,具体涉及一种基于室内停车的视觉导航辅助惯性导航高精度定位的方法。The invention belongs to the field of high-precision positioning of integrated navigation, and in particular relates to a high-precision positioning method for visual navigation aided inertial navigation based on indoor parking.
背景技术Background technique
GPS作为一种流行的定位方法,在陆地车辆定位中得到了广泛的应用,但对于室内停车GPS的信号往往会受到阻塞。室内的高精度定位利于车辆快速的通过导航路线找到合适的停车位,在现在室内停车场分布众多的情形下,这种技术是非常有必要的。As a popular positioning method, GPS has been widely used in terrestrial vehicle positioning, but the signal of GPS for indoor parking is often blocked. Indoor high-precision positioning is helpful for vehicles to quickly find suitable parking spaces through navigation routes. In the current situation where many indoor parking lots are distributed, this technology is very necessary.
惯性导航系统(Inertial Navigation System,INS)以牛顿力学定律为工作原理,利用安装在载体上的惯性测量元件(Inertial Mcasurement Unit,IMU)来测量载体的角速度和加速度信息,通过积分运算得到载体的位置、速度和姿态等导航参数。惯性导航具有完全的自主性和抗干扰性,短时间内具有高精度,但是由于积分原理,其误差随时间累积,因此长时间工作的精度较差。为了减少误差累积,要引入外部观测值来对惯导系统进行修正。The Inertial Navigation System (INS) uses Newton's laws of mechanics as its working principle, and uses the inertial measurement unit (IMU) installed on the carrier to measure the angular velocity and acceleration information of the carrier, and obtain the position of the carrier through integral operation. , speed and attitude and other navigation parameters. Inertial navigation has complete autonomy and anti-interference, and has high accuracy in a short time, but due to the principle of integration, its errors accumulate over time, so the accuracy of long-term work is poor. In order to reduce the accumulation of errors, external observations should be introduced to correct the inertial navigation system.
视觉辅助惯性导航系统(INS)的常见形式是将单目或双目摄像系统与低成本的IMU相结合,后者已广泛应用于机器人技术和自主车辆导航。该方法在很大程度上可以减小空间中视觉特征提取的不确定性所造成的定位误差,减小漂移现象,克服惯性测量定位中积累的误差。视觉辅助惯性导航方法主要是利用前视摄像机捕捉突出特征,利用各种特征辅助人造建筑的导航。本文利用双目视觉系统获得的三维特征;因此,将双目视觉系统与惯性导航系统相结合的方法可以应用于角特征较为普遍的环境中。A common form of vision-aided inertial navigation system (INS) combines a monocular or binocular camera system with a low-cost IMU, which is widely used in robotics and autonomous vehicle navigation. This method can reduce the positioning error caused by the uncertainty of visual feature extraction in space to a large extent, reduce the drift phenomenon, and overcome the error accumulated in the inertial measurement positioning. The visual aided inertial navigation method mainly uses the forward-looking camera to capture prominent features, and uses various features to assist the navigation of man-made buildings. This paper utilizes the 3D features obtained by the binocular vision system; therefore, the method of combining the binocular vision system with the inertial navigation system can be applied to environments where angular features are common.
现如今有很多关于视觉导航和惯性导航的数据融合算法,但是这些融合算法始终不能很好的消除惯性导航的累计误差,且相关算法比较复杂。Nowadays, there are many data fusion algorithms for visual navigation and inertial navigation, but these fusion algorithms can not eliminate the accumulated error of inertial navigation very well, and the related algorithms are relatively complex.
发明内容SUMMARY OF THE INVENTION
本发明旨在解决以上现有技术的问题。提出了一种消除惯性导航由于积分产生的累计误差、大大的提高了匹配的精度、速度和准确率,匹配的稳定性和鲁棒性也有很大提高,在更新惯性导航位置信息时实时性好的基于双目、加速度与陀螺仪的惯性导航高精度定位方法。本发明的技术方案如下:The present invention aims to solve the above problems of the prior art. A method is proposed to eliminate the accumulated error caused by the integration of inertial navigation, which greatly improves the accuracy, speed and accuracy of the matching, and the stability and robustness of the matching are also greatly improved, and the real-time performance is good when updating the position information of the inertial navigation. The high-precision positioning method of inertial navigation based on binocular, acceleration and gyroscope. The technical scheme of the present invention is as follows:
一种基于双目、加速度与陀螺仪的惯性导航高精度定位方法,其包括以下步骤:A high-precision positioning method for inertial navigation based on binocular, acceleration and gyroscope, which comprises the following steps:
步骤1、建立基于惯性导航模组、双目立体视觉系统与车辆的高精度惯性系统,及建立参考坐标系结构;
步骤2、惯性导航起始坐标的获取:车辆以起始坐标点作为起始点进行惯性导航,并采用基于SIFT算法的改进立体匹配法,根据角点特征显著的点在图像中的位置关系选定感兴趣的区域,车辆在行驶过程中通过不断位置累积完成对感兴趣区域的定位和跟踪,在此后的过程中可以仅对感兴趣的区域进行图像匹配,完成初始时刻双目视觉的特征点提取,达到匹配精度高、速度快的目的;
步骤3、双目高精度定位参考点的选择:选择在室内停车场的角点特征显著的角落或者拐角作为双目高精度定位的参考点以参考点为原点建立参考坐标系;Step 3. Selection of the reference point for binocular high-precision positioning: select the corner or corner with significant corner features in the indoor parking lot as the reference point for binocular high-precision positioning, and use the reference point as the origin to establish a reference coordinate system;
步骤4、高精度惯性导航坐标系的选择与设计:选择在导航过程中包括地球坐标系、导航坐标系、载体坐标系、摄像机坐标系、世界坐标系在内的坐标系,满足最后对相关坐标的解算;Step 4. Selection and design of high-precision inertial navigation coordinate system: select the coordinate system including the earth coordinate system, navigation coordinate system, carrier coordinate system, camera coordinate system, and world coordinate system in the navigation process, so as to satisfy the final pair of relevant coordinates. the solution;
步骤5、高精度惯性导航坐标系的转换:得到特征点在世界坐标系的位置信息,车辆在惯性导航导航坐标系中的位置信息,以及世界坐标系与惯性导航导航坐标系之间的转换关系;Step 5. Conversion of high-precision inertial navigation coordinate system: obtain the position information of the feature point in the world coordinate system, the position information of the vehicle in the inertial navigation and navigation coordinate system, and the conversion relationship between the world coordinate system and the inertial navigation and navigation coordinate system ;
步骤6、惯性导航累计误差的消除:基于双目定位和高精度GPS信息确定惯性导航参考位置特征点三维坐标,通过特征点坐标值作为参考点来实时更新惯性导航三维坐标,来消除惯性导航由于积分产生的累计误差,实现基于惯性导航和双目定位结合辅助室内停车场车辆的精确定位。Step 6. Elimination of accumulated errors of inertial navigation: Determine the three-dimensional coordinates of the inertial navigation reference position feature points based on binocular positioning and high-precision GPS information, and use the feature point coordinate values as reference points to update the three-dimensional inertial navigation coordinates in real time to eliminate inertial navigation due to The accumulated error generated by the integration realizes the precise positioning of vehicles based on inertial navigation and binocular positioning combined with auxiliary indoor parking lot.
进一步的,所述步骤1的惯性导航模组由三轴加速度传感器、三轴陀螺仪和三轴磁力计组成,测量得到各传感器的参数,通过四元数算法解算得到惯性导航系统中的坐标系转换,通过速度积分和位置积分得到搭载惯性导航模组载体的位置参数,利用双目视觉的图像信息,通过视觉相关算法确定惯性导航参考位置特征点三维坐标,通过将当前时刻与上一时刻特征点坐标值差值作为参考点来实时更新惯性导航三维坐标,来消除惯性导航由积分产生的累计误差。Further, the inertial navigation module of the
进一步的,所述步骤2起始坐标点的获取具体包括:在进入无GPS信号或者GPS信号非常微弱的室内车库时,车辆以最后获得的有效GPS信息基础,判断在起始点处车辆上双目立体视觉系统是否能获取到特征角点的位置信息,将这个过程的延迟时间和车辆的速度、航向角信息等,进行位置信息插补,得到惯性导航导航起始坐标,车辆以起始坐标为初始位置进行惯性导航。Further, the acquisition of the starting coordinate point in
进一步的,所述步骤2基于SIFT算法的改进立体匹配法步骤具体包括:首先通过对采集的左右图像进行极线约束,其次从左图中选择ROI(Region ofInterest)区域,在降低特征向量维数来减少耗时,采用基于KD树的BBF(Best Bin First)算法加快匹配速度,最后用RANSAC(Random Sample Consensus)算法去除误匹配。Further, the
进一步的,所述步骤3利用角点的特征,即角点是目标轮廓上曲率的局部极大值点,是物体轮廓的决定性特征,并且角点还具有旋转不变性,当车辆从车库进入室内停车场后,车辆上的双目摄像头选取车辆行驶方向上的最近的一个角点特征显著的物体作为双目定位提取特征点的参考对象,将获取的角点作为双目高精度定位参考点。Further, the step 3 uses the characteristics of the corner points, that is, the corner points are the local maximum points of curvature on the target contour, which are the decisive features of the object contour, and the corner points also have rotation invariance, when the vehicle enters the room from the garage. After the parking lot, the binocular camera on the vehicle selects the nearest object with significant corner features in the driving direction of the vehicle as the reference object for binocular positioning to extract feature points, and uses the acquired corner as the binocular high-precision positioning reference point.
进一步的,所述步骤5还包括以下坐标系之间的转换:Further, the step 5 also includes conversion between the following coordinate systems:
第一、载体坐标系与导航坐标系的转换:将载体在空间内的姿态转换类比为载体坐标系b到导航坐标系n绕俯仰轴、横滚轴以及航向轴经过3次基本旋转变换得到: First, the conversion of the carrier coordinate system and the navigation coordinate system: the attitude conversion of the carrier in space is analogous to the carrier coordinate system b to the navigation coordinate system n after three basic rotation transformations around the pitch axis, roll axis and heading axis:
第二,摄像机坐标系与世界坐标系之间的转换:选择世界坐标系与导航坐标系重合,空间特征点在摄像机坐标系中的坐标(xc,yc,zc)经过转换得到空间特征点在世界坐标系中的坐标(xw,yw,zw),即得到了空间特征点在导航坐标系中的坐标点(xn,yn,zn):Second, the conversion between the camera coordinate system and the world coordinate system: select the world coordinate system to coincide with the navigation coordinate system, and the coordinates (x c , y c , z c ) of the spatial feature points in the camera coordinate system are converted to obtain spatial features The coordinates of the point in the world coordinate system (x w , y w , z w ), that is, the coordinate points (x n , y n , z n ) of the spatial feature point in the navigation coordinate system are obtained:
第三,地球坐标系与导航坐标系之间的转换:首先将地球坐标系Oexeyeze绕ze轴旋转λ角,得到Oe1-xe1ye1ze1。然后绕ye1轴旋转90°-L角,得到Oe2-xe2ye2ze2。最后绕ze2轴旋90°,经过以上步骤就可以将地球坐标系Oe-xeyeze,转换到导航坐标系On-xnynzn,两坐标系之间的相互的变换可通过矩阵来表示。Third, the conversion between the earth coordinate system and the navigation coordinate system: firstly, rotate the earth coordinate system O e x e y e z e around the z e axis by an angle of λ to obtain O e1 -x e1 y e1 z e1 . Then rotate 90°-L around the y e1 axis to get O e2 -x e2 y e2 z e2 . Finally, rotate 90° around the z e2 axis. After the above steps, the earth coordinate system O e -x e y e z e can be converted to the navigation coordinate system O n -x n y n z n , the mutual relationship between the two coordinate systems The transformation of can be done by the matrix To represent.
进一步的,所述空间特征点在摄像机坐标系中的坐标(xc,yc,zc)经过转换得到空间特征点在世界坐标系中的坐标(xw,yw,zw),具体包括:Further, the coordinates (x c , y c , z c ) of the spatial feature points in the camera coordinate system are converted to obtain the coordinates (x w , y w , z w ) of the spatial feature points in the world coordinate system, specifically include:
空间特征点在世界坐标系和摄像机坐标系下的齐次坐标分别为(xw,yw,zw,1)和(xc,yc,zc,1),其中齐次坐标系就是把维数为n的向量用n+1维的向量来表示,世界坐标系的原点在摄像机坐标系中的坐标值为t=(tx,ty,tz)T,这个3维的向量为平移向量,方向矢量R为摄像机坐标系在世界坐标系中用来描述二者关系的方向矢量,由三个姿态角的正余弦关系组合起来3×3的正交矩阵,则世界坐标系与摄像头坐标系之间的关系为其中R表示3×3的旋转矩阵,OT=(0,0,0)。The homogeneous coordinates of the spatial feature points in the world coordinate system and the camera coordinate system are (x w , y w , z w , 1) and (x c , y c , z c , 1) respectively, where the homogeneous coordinate system is A vector of dimension n is represented by a vector of n+1 dimension, and the coordinate value of the origin of the world coordinate system in the camera coordinate system is t=(t x , ty , t z ) T , this 3-dimensional vector is the translation vector, and the direction vector R is the direction vector used by the camera coordinate system to describe the relationship between the two in the world coordinate system. Combining the sine and cosine relationships of the three attitude angles to form a 3×3 orthogonal matrix, the world coordinate system and The relationship between the camera coordinate systems is where R represents a 3×3 rotation matrix, O T =(0, 0, 0).
进一步的,所述步骤6惯性导航累计误差的消除:由双目立体视觉定位和高精度GPS信息确定惯性导航起始点坐标,车辆在进入无GPS信号或者GPS信号非常微弱的区域时,开启惯性导航模式,利用双目立体视觉系统获取角点特征显著的墙角或者拐点的位置信息,并将特征点的位置信息作为参考点建立三维参考坐标系,根据不同时刻车辆在不同位置获取的同一参考点位置信息,通过坐标转换的到相邻时刻车辆位置的差值,以此来更新车辆位置。车辆在行驶过程中通过判断参考点的距离和设定的参考点最小距离阈值来选择是否更换参照物及参考点。最终实现基于惯性导航和双目定位结合辅助室内停车场车辆的精确定位。Further, the elimination of the accumulated error of the inertial navigation in the step 6: the coordinates of the starting point of the inertial navigation are determined by the binocular stereo vision positioning and high-precision GPS information, and the inertial navigation is turned on when the vehicle enters an area with no GPS signal or a very weak GPS signal. In the mode, the binocular stereo vision system is used to obtain the position information of the corners or inflection points with significant corner features, and the position information of the feature points is used as the reference point to establish a three-dimensional reference coordinate system, and the position of the same reference point obtained by the vehicle at different positions at different times is used. information, and update the vehicle position through the difference between the coordinate transformation and the vehicle position at the adjacent time. During the driving process, the vehicle chooses whether to replace the reference object and the reference point by judging the distance of the reference point and the set minimum distance threshold of the reference point. Finally, the precise positioning of vehicles based on inertial navigation and binocular positioning combined with auxiliary indoor parking lot is realized.
本发明的优点及有益效果如下:The advantages and beneficial effects of the present invention are as follows:
本发明为一种基于双目、加速度与陀螺仪的惯性导航高精度定位方法,利用双目视觉导航系统获取参考角点的位置信息更新惯性导航的导航信息,最终实现对室内车辆的高精度定位。本发明中系统产生的误差与双目定位的精度有关,与惯性导航没有关系,且车辆在惯性导航过程中,距离参考点越近,双目定位的精度就越高,即整个系统的精度就越高,通过设定距离阈值不断更新参考点,以此来消除惯性导航由于积分产生的累计误差。The present invention is a high-precision positioning method of inertial navigation based on binocular, acceleration and gyroscope. The binocular vision navigation system is used to obtain the position information of reference corner points to update the navigation information of inertial navigation, and finally high-precision positioning of indoor vehicles is realized. . The error generated by the system in the present invention is related to the accuracy of binocular positioning, not inertial navigation. In the process of inertial navigation, the closer the vehicle is to the reference point, the higher the accuracy of binocular positioning, that is, the accuracy of the entire system is higher. The higher it is, the reference point is continuously updated by setting the distance threshold, so as to eliminate the accumulated error of inertial navigation due to integration.
第二,本发明方法简单可靠,使用工具及流程简单,并且双目视觉导航系统基于SIFT算法的改进立体匹配法,大大的提高了匹配的精度、速度和准确率,匹配的稳定性和鲁棒性也有很大提高,在更新惯性导航位置信息时实时性好。Second, the method of the present invention is simple and reliable, with simple tools and procedures, and the improved stereo matching method of the binocular vision navigation system based on the SIFT algorithm greatly improves the accuracy, speed and accuracy of matching, as well as the stability and robustness of matching. The performance has also been greatly improved, and the real-time performance is good when updating the inertial navigation position information.
综上所述,本发明使用位置插补算法获取惯性导航起始坐标,通过加速度与陀螺仪的惯性导航在室内得到位置矢量,利用双目视觉数据更新惯性导航在室内导航的位置信息,最终实现对室内车辆的运动轨迹的重建,从而使室内停车场车辆通过导航信息准确到达停车位置。To sum up, the present invention uses the position interpolation algorithm to obtain the initial coordinates of the inertial navigation, obtains the position vector indoors through the inertial navigation of acceleration and gyroscope, and uses the binocular visual data to update the position information of the inertial navigation in the indoor navigation, and finally realizes the The reconstruction of the motion trajectory of the indoor vehicle, so that the indoor parking lot vehicle can accurately arrive at the parking position through the navigation information.
附图说明Description of drawings
图1是本发明提供优选实施例的惯性导航高精度定位方法总体结构框图。FIG. 1 is a general structural block diagram of an inertial navigation high-precision positioning method according to a preferred embodiment of the present invention.
图2为本发明的高精度惯性导航系统组成及参考坐标系结构示意图。FIG. 2 is a schematic diagram of the composition of the high-precision inertial navigation system and the structure of the reference coordinate system of the present invention.
图3为本发明的基于双目视觉的惯性导航坐标更新的结构框图。FIG. 3 is a structural block diagram of the inertial navigation coordinate update based on binocular vision of the present invention.
图4为本发明的高精度惯性导航系统参考点的动态坐标系变换示意图。FIG. 4 is a schematic diagram of the dynamic coordinate system transformation of the reference point of the high-precision inertial navigation system of the present invention.
图5为本发明的车辆在室内停车场停车平面示意图。FIG. 5 is a schematic plan view of a vehicle parking in an indoor parking lot according to the present invention.
图6为基于SIFT算法的改进立体匹配法步骤示意图。FIG. 6 is a schematic diagram of the steps of the improved stereo matching method based on the SIFT algorithm.
附图标记说明:Description of reference numbers:
①—搭载九轴惯性导航测量器件、双目摄像头和计算机的测量车辆;①—Measurement vehicle equipped with nine-axis inertial navigation measurement device, binocular camera and computer;
②—导航坐标N;③—室内车库入口点;②—Navigation coordinate N; ③—Indoor garage entry point;
④—载体坐标系;⑤—摄像机坐标系;④—carrier coordinate system; ⑤—camera coordinate system;
⑥—下一时刻车辆的位置;⑦—室内停车场角点特征显著的物体;⑥—The position of the vehicle at the next moment; ⑦—Objects with significant corner features of the indoor parking lot;
⑧—参考角点;⑧—reference corner;
⑨—t0时刻双目摄像头获取第一个特征点的位置;⑨—The position of the first feature point obtained by the binocular camera at time t 0 ;
⑩—t1时刻双目摄像头获取第一个特征点的位置;⑩—The position of the first feature point obtained by the binocular camera at time t1 ;
a—搭载九轴惯性导航测量器件、双目摄像头和计算机的测量车辆;a—measurement vehicle equipped with nine-axis inertial navigation measurement device, binocular camera and computer;
b—参考点角点特征显著的建筑物的角点;b—reference point corners of buildings with significant corner characteristics;
c—由车主选好车位后在室内车库高精度地图上显示的导航路线;c—The navigation route displayed on the high-precision map of the indoor garage after the owner has selected the parking space;
d—车主选择的停车位置。d—The parking location selected by the owner.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、详细地描述。所描述的实施例仅仅是本发明的一部分实施例。The technical solutions in the embodiments of the present invention will be described clearly and in detail below with reference to the accompanying drawings in the embodiments of the present invention. The described embodiments are only some of the embodiments of the invention.
本发明解决上述技术问题的技术方案是:The technical scheme that the present invention solves the above-mentioned technical problems is:
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
(1)高精度惯性导航系统组成及参考坐标系结构(1) Composition and reference coordinate system structure of high-precision inertial navigation system
图2为本发明的高精度惯性导航系统组成及参考坐标系结构示意图,图中①为搭载九轴惯性导航测量器件、双目摄像头和计算机的测量的车辆,在分布着众多角点特征显著的物体⑦的室内停车场场景,其中室内停车场的高精度地图是已经获得的。坐标系Oe-xeyeze为地球坐标系,为了说明本发明的思路在图2中有说明的作用,并非地球坐标实际位置。图中坐标(λ0,L0,H0)为车辆在室内车库入口点③由高精度GPS获取的坐标信息。建立坐标系②,即导航坐系标On-xnynzn和世界坐标系Ow-xwywzw。车辆进入室内停车场后,双目立体视觉系统通过双目摄像头对参考点⑧即第1个角点特征显著建筑物的角点进行特征点的提取和定位,获取参考角点在摄像机坐标系中初始时刻的位置参数⑨(xw0yw0zw0),同时,惯性导航测量器件④开始获取车辆在导航坐标系的位置信息,⑤为载体坐标系Ob-xbybzb。在下一时刻车辆的位置处⑥,双目立体视觉系统获取这一时刻特征点的位置信息⑩(xw1yw1zw1),通过将两个时刻特征点坐标值差值作为参考点,来实时更新惯性导航在导航坐标系中的位置信息,并通过地球坐标系和导航坐标系的转换得到在高精度室内停车场地图中位置信息。以达到利用双目立体视觉定位坐标更新惯性导航系统导航位置参数消除惯性导航系统的位置误差的目的。Figure 2 is a schematic diagram of the composition of the high-precision inertial navigation system and the structure of the reference coordinate system of the present invention, and ① in the figure is a vehicle equipped with a nine-axis inertial navigation measurement device, a binocular camera and a computer for measurement. The indoor parking lot scene of object ⑦, where the high-precision map of the indoor parking lot has been obtained. The coordinate system O e -x e y e ze is the earth coordinate system, which is used in FIG. 2 to illustrate the idea of the present invention, and is not the actual position of the earth coordinate. The coordinates (λ 0 , L 0 , H 0 ) in the figure are the coordinate information obtained by the high-precision GPS at the entry point ③ of the indoor garage. Establish a coordinate
图3为基于双目视觉的惯性导航坐标更新的结构框图,其中,惯性导航模组由三轴加速度传感器、三轴陀螺仪和三轴磁力计组成,测量得到各传感器的参数,通过四元数算法解算得到惯性导航系统中的坐标系转换,通过速度积分和位置积分得到搭载惯性导航模组载体的位置参数。利用双目视觉的图像信息,通过视觉相关算法确定惯性导航参考位置特征点三维坐标,通过将当前时刻特征点坐标值作为参考点来实时更新惯性导航三维坐标,来消除惯性导航由积分产生的累计误差。Figure 3 is a structural block diagram of the inertial navigation coordinate update based on binocular vision, wherein the inertial navigation module is composed of a three-axis acceleration sensor, a three-axis gyroscope and a three-axis magnetometer. The parameters of each sensor are measured and obtained through the quaternion The algorithm solves the coordinate system transformation in the inertial navigation system, and obtains the position parameters of the carrier carrying the inertial navigation module through the speed integral and the position integral. Using the image information of binocular vision, the three-dimensional coordinates of the inertial navigation reference position feature points are determined by the visual correlation algorithm, and the three-dimensional coordinates of the inertial navigation are updated in real time by using the coordinate value of the feature point at the current moment as the reference point, so as to eliminate the accumulation of inertial navigation generated by integration. error.
(2)惯性导航导航起始坐标的获取方法(2) Acquisition method of inertial navigation navigation starting coordinates
根据本发明的对象场景,在车辆进入车库之前,获取还能接受到的有效GPS信息,其中包括车辆在车库入口位置的地球坐标系中的三维坐标,即利用高精度GPS模组获取当前的经度、纬度、高度位置信息。起始点的判断方法,根据发明要求,在本发明中惯性导航导航的起始点需要满足的重要条件为车辆上双目立体视觉系统能获取到特征点的位置信息,即车辆从车库入口进入后能够获取得到第一个角点特征显著的建筑物角点的位置信息。在进入无GPS信号或者GPS信号非常微弱的室内车库时,车辆以最后获得的有效GPS信息作为初始位置进行惯性导航。但实际上由于获取最后的有效GPS信息后,由于环境因素和双目视觉系统可能不能及时获取特征点的位置信息,存在一段延迟时间。在这个过程中车辆在继续行驶,需要利用最后获取的有效GPS信息(λ′0,L′0,H′0)为基础,根据延迟时间和车辆的车速、航向角等计算车辆惯性导航起始位置坐标(λ0,L0,H0)进行插补。假设延迟时间TX,根据车辆的车速、航向角解算出车辆的准确位置,即插补延迟时间TX内车辆的误差位置(Δλ,ΔL,ΔH),最后得到的惯性导航起始位置坐标为(λ0,L0,H0)=(λ′0+Δλ,L′0+ΔL,H′0+ΔH)。考虑在实际室内停车场中,车辆在进入停车场后双目立体视觉系统获取特征点的过程时间一般不是很长,即对应的延迟时间很短,且车辆速度很低,则通过插补方法得到的惯性导航起始位置坐标误差很小。According to the object scene of the present invention, before the vehicle enters the garage, obtain valid GPS information that can still be received, including the three-dimensional coordinates of the vehicle in the earth coordinate system of the garage entrance position, that is, use the high-precision GPS module to obtain the current longitude , latitude, altitude location information. The method for judging the starting point, according to the requirements of the invention, the important condition that the starting point of inertial navigation and navigation in the present invention needs to meet is that the binocular stereo vision system on the vehicle can obtain the position information of the feature point, that is, the vehicle can enter from the garage entrance. Obtain the location information of the first building corner with significant corner features. When entering an indoor garage with no GPS signal or very weak GPS signal, the vehicle uses the last valid GPS information as the initial position for inertial navigation. But in fact, after obtaining the last valid GPS information, due to environmental factors and the binocular vision system may not be able to obtain the location information of the feature points in time, there is a delay time. During this process, the vehicle continues to drive, and it is necessary to use the last acquired valid GPS information (λ′ 0 , L′ 0 , H′ 0 ) as the basis to calculate the vehicle inertial navigation start according to the delay time and the vehicle’s speed and heading angle. Position coordinates (λ 0 , L 0 , H 0 ) are interpolated. Assuming the delay time T X , the exact position of the vehicle is calculated according to the speed and heading angle of the vehicle, that is, the error position (Δλ, ΔL, ΔH) of the vehicle within the interpolation delay time T X , and the finally obtained inertial navigation starting position coordinates are: (λ 0 , L 0 , H 0 )=(λ′ 0 +Δλ, L′ 0 +ΔL, H′ 0 +ΔH). Considering that in the actual indoor parking lot, the process time for the binocular stereo vision system to obtain feature points after the vehicle enters the parking lot is generally not very long, that is, the corresponding delay time is very short, and the vehicle speed is very low, then the interpolation method is used to obtain The inertial navigation starting position coordinate error is very small.
(3)双目高精度定位参考点的选择方法(3) Selection method of binocular high-precision positioning reference point
角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。角点在保留图像图形重要特征的同时,可以有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配,使得实时处理成为可能。角点在三维场景重建运动估计,目标跟踪、目标识别、图像配准与匹配等计算机视觉领域起着非常重要的作用。Corner points are very important features of images, which play a very important role in the understanding and analysis of image graphics. Corner points can effectively reduce the amount of information data while retaining the important features of image graphics, make the information content very high, effectively improve the speed of calculation, and facilitate the reliable matching of images, making real-time processing possible. Corners play a very important role in 3D scene reconstruction, motion estimation, object tracking, object recognition, image registration and matching and other computer vision fields.
室内停车场车辆双目定位的参照物的选取方案有很多,本发明选择在室内停车场普遍存在且容易辨别和特征提取的角点特征显著的角落或者拐角作为双目高精度定位的参考点。当车辆从车库进入室内停车场后,车辆上的双目摄像头选取车辆行驶方向上的最近的一个角点特征显著的物体作为双目定位提取特征点的参考对象,并通过图6所示的基于SIFT算法的改进立体匹配法进行特征点提取,选择特征点中最近的一点作为双目定位参考点,并获取这一点在摄像机坐标系中的三维坐标。在后面利用这一点的坐标信息对惯性导航进行误差校正。There are many options for selecting reference objects for binocular positioning of vehicles in indoor parking lots. The present invention selects corners or corners with significant corner features that are ubiquitous in indoor parking lots and are easy to identify and feature extraction as reference points for binocular high-precision positioning. When the vehicle enters the indoor parking lot from the garage, the binocular camera on the vehicle selects the nearest object with significant corner features in the driving direction of the vehicle as the reference object for binocular positioning to extract feature points. The improved stereo matching method of the SIFT algorithm extracts feature points, selects the closest point in the feature points as the reference point for binocular positioning, and obtains the three-dimensional coordinates of this point in the camera coordinate system. Error correction of inertial navigation is performed later using the coordinate information of this point.
(4)高精度惯性导航坐标系的选择与设计(4) Selection and design of high-precision inertial navigation coordinate system
本发明,一种基于双目、加速度与陀螺仪的惯性导航高精度定位方法中导航坐标系,如图2,由以下几部分组成:In the present invention, a navigation coordinate system in a high-precision positioning method of inertial navigation based on binocular, acceleration and gyroscope, as shown in Figure 2, consists of the following parts:
第一,地球坐标系Oe-xeyeze,地球坐标系与地球保持同步旋转,ze轴指向地区自转轴,xe轴指向本初子午线与赤道的交点,ye轴在赤道平面内与xe轴和ze轴构成右手坐标系;First, the earth coordinate system O e -x e y e z e , the earth coordinate system rotates synchronously with the earth, the z e axis points to the regional rotation axis, the x e axis points to the intersection of the prime meridian and the equator, and the y e axis is at the equator In the plane, it forms a right-handed coordinate system with the x e axis and the z e axis;
第二,导航坐系标On-xnynzn,其原点O与载体即车辆的重心重合,坐标轴分别指向北向、东向和天向;Second, the navigation coordinate system O n -x n y n z n , its origin O coincides with the center of gravity of the carrier, that is, the vehicle, and the coordinate axes point to the north, east and sky directions respectively;
第三,载体坐标系Ob-xbybzb,以车辆重心为原点创建的坐标系,其中xb轴指向载体前方,yb轴沿载体纵向方向,zb轴指向载体的竖轴方向;Third, the carrier coordinate system O b -x b y b z b , a coordinate system created with the center of gravity of the vehicle as the origin, where the x b axis points to the front of the carrier, the y b axis is along the longitudinal direction of the carrier, and the z b axis points to the vertical axis of the carrier direction;
第四,摄像机坐标系Oc-xcyczc,以相机的光心为坐标原点,zc轴与图像坐标系平面垂直,yc轴垂直向下;Fourth, the camera coordinate system O c -x c y c z c takes the optical center of the camera as the coordinate origin, the z c axis is perpendicular to the plane of the image coordinate system, and the y c axis is vertically downward;
第五,世界坐标系Ow-xwywzw,世界坐标系描述实际环境中物体的相对位置关系,它将图像像素坐标系和物理坐标系、摄像机坐标系以及空间物体关联在一起,本发明中世界坐标系选择与惯性导航系统中导航坐标系重合;Fifth, the world coordinate system O w -x w y w z w , the world coordinate system describes the relative positional relationship of objects in the actual environment, which associates the image pixel coordinate system with the physical coordinate system, the camera coordinate system and space objects, The selection of the world coordinate system in the present invention coincides with the navigation coordinate system in the inertial navigation system;
此外还包含图像像素坐标系和图像物理坐标系。Also includes image pixel coordinate system and image physical coordinate system.
(5)高精度惯性导航坐标系的转换方法(5) Conversion method of high-precision inertial navigation coordinate system
一种基于双目、加速度与陀螺仪的惯性导航高精度定位方法中惯性导航坐标变换方法,令刚体围绕固定轴心做一次旋转的运动称为基本旋转,如果将空间坐标系类比为刚体,那么两个坐标系间的角位置关系可以通过多次基本旋转来表示,则坐标系间的转换矩阵可以通过刚体的基本旋转矩阵的连乘得到。An inertial navigation coordinate transformation method in an inertial navigation high-precision positioning method based on binocular, acceleration and gyroscope. The movement of making a rigid body rotate once around a fixed axis is called basic rotation. If the space coordinate system is analogous to a rigid body, then The angular position relationship between the two coordinate systems can be represented by multiple basic rotations, and the transformation matrix between the coordinate systems can be obtained by multiplying the basic rotation matrices of the rigid body.
第一,载体坐标系与导航坐标系的转换:将载体在空间内的姿态转换类比为载体坐标系b到导航坐标系n绕俯仰轴、横滚轴以及航向轴经过3次基本旋转变换得到: First, the conversion between the carrier coordinate system and the navigation coordinate system: the attitude transformation of the carrier in space is analogous to the carrier coordinate system b to the navigation coordinate system n after three basic rotation transformations around the pitch axis, roll axis and heading axis:
第二,摄像机坐标系与世界坐标系之间的转换:根据发明需求以及方便计算,在本发明中选择世界坐标系与导航坐标系重合,如图2所示。空间特征点在摄像机坐标系中的坐标(xc,yc,zc)经过转换得到空间特征点在世界坐标系中的坐标(xw,yw,zw),即得到了空间特征点在导航坐标系中的坐标点(xn,yn,zn),其转换过程为:空间特征点在世界坐标系和摄像机坐标系下的齐次坐标分别为(xw,yw,zw,1)和(xc,yc,zc,1),其中齐次坐标系就是把维数为n的向量用(n+1)维的向量来表示,世界坐标系的原点在摄像机坐标系中的坐标值为t=(tx,ty,tz)T,这个3维的向量为平移向量,方向矢量R为摄像机坐标系在世界坐标系中用来描述二者关系的方向矢量,由三个姿态角的正余弦关系组合起来3×3的正交矩阵,则世界坐标系与摄像头坐标系之间的关系为其中OT=(0,0,0);Second, the conversion between the camera coordinate system and the world coordinate system: according to the requirements of the invention and convenient calculation, in the present invention, the world coordinate system and the navigation coordinate system are selected to overlap, as shown in FIG. 2 . The coordinates (x c , y c , z c ) of the spatial feature points in the camera coordinate system are transformed to obtain the coordinates (x w , y w , z w ) of the spatial feature points in the world coordinate system, that is, the spatial feature points are obtained. The coordinate point (x n , y n , z n ) in the navigation coordinate system, the transformation process is: the homogeneous coordinates of the spatial feature point in the world coordinate system and the camera coordinate system are (x w , y w , z ) w , 1) and (x c , y c , z c , 1), in which the homogeneous coordinate system is to represent the vector of dimension n by the vector of (n+1) dimension, and the origin of the world coordinate system is at the camera. The coordinate value in the coordinate system is t=(t x , ty , t z ) T , this 3-dimensional vector is the translation vector, and the direction vector R is the direction used by the camera coordinate system to describe the relationship between the two in the world coordinate system Vector, a 3×3 orthogonal matrix combined by the sine and cosine relationship of the three attitude angles, the relationship between the world coordinate system and the camera coordinate system is where O T = (0, 0, 0);
第三,地球坐标系与导航坐标系之间的转换:首先将地球坐标系Oexeyeze绕ze轴旋转λ角,得到Oe1-xe1ye1ze1。然后绕ye1轴旋转90°-L角,得到Oe2-xe2ye2ze2。最后绕ze2轴旋90°。经过以上步骤就可以将地球坐标系Oe-xeyeze,转换到导航坐标系On-xnynzn,两坐标系之间的相互的变换可通过矩阵来表示。Third, the conversion between the earth coordinate system and the navigation coordinate system: firstly, rotate the earth coordinate system O e x e y e z e around the z e axis by an angle of λ to obtain O e1 -x e1 y e1 z e1 . Then rotate 90°-L around the y e1 axis to get O e2 -x e2 y e2 z e2 . Finally, rotate 90° around the z e2 axis. After the above steps, the earth coordinate system O e -x e y e z e can be converted to the navigation coordinate system O n -x n y n z n , and the mutual transformation between the two coordinate systems can be done through the matrix To represent.
(6)惯性导航累计误差的消除方法:(6) Elimination method of inertial navigation accumulated error:
基于本发明的导航方法的前提是已有室内车库的高精度地图,在室内车库高精度地图中可准确显示每个车位的相关信息,包括车位的位置信息和是否为空车位,车主可通过服务系统选择合适的空车位停放自己的车辆。在车主选好车位后,在室内车库高精度地图上显示导航路线。其中模拟停车的过程如图5,图5为室内停车场停车平面示意图。其中a为配备惯性导航传感器和双目摄像头的车辆,b为在室内停车场中分布的角点特征显著的建筑物,c为由车主选好车位后在室内车库高精度地图上显示的导航路线,d为车主选择的停车位置。The premise of the navigation method based on the present invention is that there is a high-precision map of the indoor garage, and the relevant information of each parking space can be accurately displayed in the high-precision map of the indoor garage, including the position information of the parking space and whether it is an empty parking space. The system selects a suitable empty parking space to park its own vehicle. After the owner selects the parking space, the navigation route is displayed on the high-precision map of the indoor garage. The process of simulating parking is shown in Figure 5, and Figure 5 is a schematic diagram of a parking lot in an indoor parking lot. Among them, a is a vehicle equipped with inertial navigation sensors and binocular cameras, b is a building with significant corner characteristics distributed in the indoor parking lot, and c is the navigation route displayed on the high-precision map of the indoor garage after the car owner has selected a parking space , d is the parking location selected by the owner.
图2为高精度惯性导航系统组成及参考坐标系结构示意图,以参考角点⑧为坐标原点建立动态坐标系。假设在t0=0时刻,车辆在车库入口由高精度GPS获取的位置信息为(λ0,L0,H0),并在此时刻由双目视觉系统检测到第一个角点特征显著的建筑物的特征角点⑧的位置,同时解算出角点在世界坐标系下的坐标(xw0,yw0,zw0),则在以特征角点为坐标建立的坐标系中,车辆当前的位置为(-xw0,-yw0,-zw0),当前时刻下惯性导航系统中,车辆在导航坐标系下的坐标为(xn0,yn0,zn0)。在经过一段时间后,t1时刻下,双目视觉系统检测到这个特征角点⑧的位置,并解算出t1时刻下角点在世界坐标系下的坐标(xw1,yw1,zw1),在以特征角点为坐标建立的坐标系中,车辆当前的位置为(-xw1,-yw1,-zw1),在此时刻下惯性导航系统得到车辆的位置(xn1,yn1,zn1)。获取了前面t0、t1两个时刻的位置信息,则由双目立体视觉系统获取的位置信息得到t1时刻车辆在t0时刻世界坐标系下的位置信息,即(xw1-xw0,yw1-yw0,zw1-zw0)。在本发明中,选择的世界坐标系和导航坐标系是同一坐标系,则由双目视觉系统测得车辆在导航坐标系中的坐标为(xn1′,yn1′,zn1′)=(xw1-xw0,yw1-yw0,zw1-zw0)。利用导航坐标系下位置信息(xn1′,yn1′,zn1′)代替惯性导航系统车辆在t1时刻导航坐标系中的位置信息(xn1,yn1,zn1),即更新了惯性导航系统车辆在导航坐标系中的位置信息,以此来消除从t0时刻t1惯性导航的累计误差。通过地球坐标系与导航坐标系的转换,得到车辆在室内停车场高精度地图中的位置信息(λ1,L1,H1)。车辆继续行驶,在t2时刻,以室内停车场高精度地图中的位置(λ1,L1,H1)为起点,并以(λ1,L1,H1)为原点建立相对的地球坐标系,同样的方法进行消除在t2时刻惯性导航系统的累计误差,同样得到在t2时刻车辆在室内停车场高精度地图中的位置(λ2,L2,H2)。后面时刻惯性导航系统的累计误差的消除方法跟前面时刻的方法相同,其中t0、t1、t2时刻间隔时间相等。Figure 2 is a schematic diagram of the composition of the high-precision inertial navigation system and the structure of the reference coordinate system. The dynamic coordinate system is established with the reference corner ⑧ as the coordinate origin. Assume that at the moment t 0 =0, the position information of the vehicle at the entrance of the garage obtained by high-precision GPS is (λ 0 , L 0 , H 0 ), and at this moment, the binocular vision system detects the first corner with significant features The position of the characteristic corner point ⑧ of the building, and the coordinates of the corner point in the world coordinate system (x w0 , y w0 , z w0 ) are calculated, then in the coordinate system established with the characteristic corner point as the coordinates, the vehicle is currently The position of is (-x w0 , -y w0 , -z w0 ), and in the inertial navigation system at the current moment, the coordinates of the vehicle in the navigation coordinate system are (x n0 , y n0 , z n0 ). After a period of time, at time t 1 , the binocular vision system detects the position of the feature corner ⑧, and calculates the coordinates of the lower corner point in the world coordinate system at time t 1 (x w1 , y w1 , z w1 ) , in the coordinate system established with the characteristic corners as coordinates, the current position of the vehicle is (-x w1 ,-y w1 ,-z w1 ), at this moment the inertial navigation system obtains the position of the vehicle (x n1 ,y n1 ,z n1 ). The position information of the previous two times t 0 and t 1 is obtained, then the position information obtained by the binocular stereo vision system obtains the position information of the vehicle in the world coordinate system at time t 1 at time t 1, namely (x w1 -x w0 , y w1 -y w0 , z w1 -z w0 ). In the present invention, the selected world coordinate system and the navigation coordinate system are the same coordinate system, then the coordinates of the vehicle in the navigation coordinate system measured by the binocular vision system are (x n1 ′, y n1 ′, z n1 ′)= (x w1 -x w0 , y w1 -y w0 , z w1 -z w0 ). The position information (x n1 ', y n1 ', z n1 ') in the navigation coordinate system is used to replace the position information (x n1 , y n1 , z n1 ) in the navigation coordinate system of the inertial navigation system vehicle at time t 1 , that is, the updated The position information of the inertial navigation system vehicle in the navigation coordinate system, so as to eliminate the accumulated error of inertial navigation from time t0 to time t1 . Through the transformation of the earth coordinate system and the navigation coordinate system, the position information (λ 1 , L 1 , H 1 ) of the vehicle in the high-precision map of the indoor parking lot is obtained. The vehicle continues to drive, and at time t 2 , the position (λ 1 , L 1 , H 1 ) in the high-precision map of the indoor parking lot is used as the starting point, and the relative earth is established with (λ 1 , L 1 , H 1 ) as the origin Coordinate system, the same method is used to eliminate the accumulated error of the inertial navigation system at time t 2 , and the position (λ 2 , L 2 , H 2 ) of the vehicle in the high-precision map of the indoor parking lot at time t 2 is also obtained. The method of eliminating the accumulated error of the inertial navigation system at the later time is the same as the method at the previous time, wherein the intervals of time t 0 , t 1 , and t 2 are equal.
当在tn时刻双目立体视觉系统检测到车辆的位置离第一个角点特征显著的建筑物的距离sn<p,其中p为根据实际要求设定的一个阈值,如图4所示,tn时刻双目立体视觉系统检测到第一个角点的位置信息为(xwn,ywn,zwn),并在此时刻获取下一个距离最近的角点特征显著的建筑物的角点位置信息,即第二个角点特征显著的建筑物的位置信息(xwn′,ywn′,zwn′)。在室内高精度地图中的位置信息由前一时刻tn-1时刻的车辆位置信息进行更新得到,为(λn,Ln,Hn)。在tn+1时刻双目立体视觉系统获取的第二个角点特征显著的建筑物的角点位置信息(xwn+1,ywn+1,zwn+1)和上一时刻获取的位置信息(xwn′,ywn′,zwn′),更新tn+1时刻车辆的位置信息(λn+1,Ln+1,Hn+1)。后面时刻中,当车辆行驶到离角点特征显著的建筑物小于一个设定的阈值的时候,通过以上算法进行更换参考角点。系统产生的误差与双目定位的精度有关,与惯性导航没有关系,且车辆在惯性导航过程中,距离参考点越近,双目定位的精度就越高,即整个系统的精度就越高,以此来消除惯性导航由于积分产生的累计误差。When the binocular stereo vision system detects the distance of the vehicle from the first building with significant corner features at time t n , s n < p, where p is a threshold set according to actual requirements, as shown in Figure 4 , the position information of the first corner detected by the binocular stereo vision system at time t n is (x wn , y wn , z wn ), and at this moment, the corner of the building with the next nearest corner point with significant features is obtained. Point location information, that is, the location information (x wn ′, y wn ′, z wn ′) of the building with significant second corner features. The position information in the indoor high-precision map is obtained by updating the vehicle position information at the previous time t n-1 , which is (λ n , L n , H n ). The corner position information (x wn+1 , y wn+1 , z wn+1 ) of the second building with significant corner features obtained by the binocular stereo vision system at time t n+1 and the information obtained at the previous time Position information (x wn ', y wn ', z wn '), update the position information (λ n+1 , L n+1 , H n+1 ) of the vehicle at time t n+1 . In the following moments, when the vehicle travels to a building with significant off-corner features less than a set threshold, the reference corner is replaced by the above algorithm. The error generated by the system is related to the accuracy of binocular positioning, and has nothing to do with inertial navigation. In the process of inertial navigation, the closer the vehicle is to the reference point, the higher the accuracy of binocular positioning, that is, the higher the accuracy of the entire system. In this way, the accumulated error of inertial navigation due to integration is eliminated.
本发明的目的是基于双目定位+高精度GPS信息确定惯性导航参考位置特征点三维坐标,通过特征点坐标值作为参考点来实时更新惯性导航三维坐标,来消除惯性导航由于积分产生的累计误差,实现基于惯性导航和双目定位结合辅助室内停车场车辆的精确定位。为达到此目的,具体的实施方式如下:The purpose of the present invention is to determine the three-dimensional coordinates of the inertial navigation reference position feature points based on binocular positioning + high-precision GPS information, and to update the three-dimensional coordinates of the inertial navigation in real time by using the feature point coordinate values as the reference points to eliminate the accumulated errors of the inertial navigation due to integration. , to achieve accurate positioning of vehicles based on inertial navigation and binocular positioning combined with auxiliary indoor parking lots. In order to achieve this purpose, the specific implementation manner is as follows:
根据实际情况,车辆在进入停车场并完成停车的整个动作过程,本发明首先提供了惯性导航导航起始坐标的获取方法。在本发明中惯性导航导航的起始点需要满足的重要条件为车辆上双目立体视觉系统能获取到特征点的位置信息,即车辆从车库入口进入后能够获取得到第一个角点的位置信息。在进入无GPS信号或者GPS信号非常微弱的室内车库时,车辆以最后获得的有效GPS信息作为初始位置进行惯性导航。但实际上由于获取最后的有效GPS信息后,由于环境因素和双目视觉系统可能不能及时获取特征点的位置信息,存在一段延迟时间。在这个过程中车辆在继续行驶,需要利用最后获取的有效GPS信息(λ′0,L′0,H′0)为基础,根据延迟时间和车辆的车速、航向角等计算车辆惯性导航起始位置坐标(λ0,L0,H0)进行插补。假设延迟时间TX,根据车辆的车速、航向角解算出车辆的准确位置,即插补延迟时间TX内车辆的误差位置(Δλ,ΔL,ΔH),最后得到的惯性导航起始位置坐标为(λ0,L0,H0)=(λ′0+Δλ,L′0+ΔL,H′0+ΔH)。According to the actual situation, when the vehicle enters the parking lot and completes the entire action process of parking, the present invention first provides a method for acquiring the starting coordinates of inertial navigation. In the present invention, the important condition that the starting point of inertial navigation and navigation needs to meet is that the binocular stereo vision system on the vehicle can obtain the position information of the feature point, that is, the position information of the first corner point can be obtained after the vehicle enters from the garage entrance. . When entering an indoor garage with no GPS signal or very weak GPS signal, the vehicle uses the last valid GPS information as the initial position for inertial navigation. But in fact, after obtaining the last valid GPS information, due to environmental factors and the binocular vision system may not be able to obtain the location information of the feature points in time, there is a delay time. During this process, the vehicle continues to drive, and it is necessary to use the last acquired valid GPS information (λ′ 0 , L′ 0 , H′ 0 ) as the basis to calculate the start of the vehicle inertial navigation according to the delay time and the vehicle’s speed and heading angle. Position coordinates (λ 0 , L 0 , H 0 ) are interpolated. Assuming the delay time T X , the exact position of the vehicle is calculated according to the speed and heading angle of the vehicle, that is, the error position (Δλ, ΔL, ΔH) of the vehicle within the interpolation delay time T X , and the finally obtained inertial navigation starting position coordinates are: (λ 0 , L 0 , H 0 )=(λ′ 0 +Δλ, L′ 0 +ΔL, H′ 0 +ΔH).
在车辆获取了导航起点后,针对本发明的惯性导航高精度定位方法中需利用选择参考点建立相对坐标系来实现双目高精度定位,本发明提供双目高精度定位参考点的选择方法。After the vehicle obtains the navigation starting point, the inertial navigation high-precision positioning method of the present invention needs to use the selected reference point to establish a relative coordinate system to achieve binocular high-precision positioning. The present invention provides a method for selecting a binocular high-precision positioning reference point.
角点在保留图像图形重要特征的同时,可以有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配,使得实时处理成为可能。室内停车场车辆双目定位的参照物的选取方案有很多,本发明选择在室内停车场普遍存在且容易辨别和特征提取的角点特征显著的角落或者拐角作为双目高精度定位的参考点。当车辆从车库进入室内停车场后,车辆上的双目摄像头选取车辆行驶方向上的最近的一个角点特征显著的物体作为双目定位提取特征点的参考对象,并通过图6所示的基于SIFT算法的改进立体匹配法进行特征点提取,选择特征点中最近的一点作为双目定位参考点,并获取这一点在摄像机坐标系中的三维坐标。在后面利用这一点的坐标信息对惯性导航进行误差校正。While retaining the important features of image graphics, corner points can effectively reduce the amount of information data, make the information content very high, effectively improve the speed of calculation, and be conducive to reliable image matching, making real-time processing possible. There are many options for selecting reference objects for binocular positioning of vehicles in indoor parking lots. The present invention selects corners or corners with significant corner features that are ubiquitous in indoor parking lots and are easy to identify and feature extraction as reference points for binocular high-precision positioning. When the vehicle enters the indoor parking lot from the garage, the binocular camera on the vehicle selects the nearest object with significant corner features in the driving direction of the vehicle as the reference object for binocular positioning to extract feature points. The improved stereo matching method of the SIFT algorithm extracts feature points, selects the closest point in the feature points as the reference point for binocular positioning, and obtains the three-dimensional coordinates of this point in the camera coordinate system. Error correction of inertial navigation is performed later using the coordinate information of this point.
接着是双目立体视觉系统对周围环境的特征点提取并作为本发明中的双目该精度定位的参考点,双目定位特征点的提取与定位方法。本发明应用一种基于室内停车的改进的SIFT匹配方法,即根据墙角在图像中的位置关系以自主限定ROI(Region ofInterest)区域,即以感兴趣区域的方式进行匹配,车辆行驶时通过位置累积,可以完成对ROI区域的定位和跟踪。此后,可以仅对ROI区域内的图像进行匹配,大大的提高了匹配的精度、速度和准确率,匹配的稳定性和鲁棒性也有很大提高。采用一种基于SIFT算法的改进立体匹配法应用于室内停车导航的特征点提取与定位,图6为基于SIFT算法的改进立体匹配法步骤示意图,首先通过对采集的左右图像进行极线约束,其次从左图中选择目标区域ROI,再降低特征向量维数来减少耗时,采用基于KD树的BBF算法加快匹配速度,最后用RANSAC算法去除误匹配。Next, the binocular stereo vision system extracts the feature points of the surrounding environment and serves as the reference point for the accurate positioning of the binocular in the present invention, and the extraction and positioning method of the binocular positioning feature point. The present invention applies an improved SIFT matching method based on indoor parking, that is, according to the positional relationship of the wall corner in the image, the ROI (Region of Interest) region is defined autonomously, that is, the matching is performed in the way of the region of interest, and the vehicle travels by accumulating the position , can complete the positioning and tracking of the ROI area. After that, only the images in the ROI area can be matched, which greatly improves the accuracy, speed and accuracy of the matching, and also greatly improves the stability and robustness of the matching. An improved stereo matching method based on SIFT algorithm is applied to feature point extraction and positioning of indoor parking navigation. Figure 6 is a schematic diagram of the steps of the improved stereo matching method based on SIFT algorithm. Select the target area ROI from the left image, then reduce the dimension of the feature vector to reduce the time-consuming, use the BBF algorithm based on the KD tree to speed up the matching speed, and finally use the RANSAC algorithm to remove the mismatch.
针对车辆完成停车的整个过程中双目高精度定位参考点的更新选择,参考图4所示,提供以下具体方式:在t0=0时刻,双目视觉系统检测到最近角点特征显著的物体,即第1个角点特征显著的物体的角点在摄像机坐标系中的位置信息(xc0,yc0,zc0);在t0时刻,加速度计、陀螺仪组成的惯性导航系统以初始位置(λ0,L0,H0)为起点开始导航,在t1时刻获取得到在载体坐标系下各轴的加速度ax、ay、az和姿态角γ、θ、在t1时刻,双目视觉系统检测到第1个角点特征显著的物体的角点在摄像机坐标系中的位置信息(xc1,yc1,zc1);在t2时刻,惯性导航高精度定位系统有上一时刻解算得到的车辆在室内停车场高精度地图中的位置信息(λ1,L1,H1)为起点,继续完成以上步骤的数据采集,当在tn时刻双目立体视觉系统检测到车辆的位置离第1个角点特征显著的物体的距离sn<p,其中p为根据实际要求设定的一个阈值,tn时刻双目立体视觉系统检测到第1个角点特征显著的物体角点的在摄像机坐标系中的位置信息为(xcn,ycn,zcn),并在此时刻获取下一个距离最近的角点特征显著的物体的角点位置信息,即第2个角点特征显著的物体的位置信息(xcn′,ycn′,zcn′)。在室内高精度地图中的位置信息由前一时刻tn-1时刻的车辆位置信息进行更新得到,为(λn,Ln,Hn)。在tn+1时刻双目立体视觉系统获取的第二个角点特征显著的物体角点位置信息(xcn+1,ycn+1,zcn+1)和上一时刻获取的位置信息(xcn′,ycn′,zcn′),通过坐标系之间的转换,得到各特征点在世界坐标系(导航坐标系)中的位置信息,并通过数据处理,更新tn+1时刻车辆的位置信息(λn+1,Ln+1,Hn+1)。后面时刻中,当车辆行驶到离角点特征显著的物体小于一个设定的阈值的时候,通过以上算法进行更换角点特征显著的物体参考角点,直到车辆到达目标车位。For the update selection of the binocular high-precision positioning reference point during the entire process of the vehicle parking, the following specific method is provided with reference to Fig. 4 : At the moment t 0 =0, the binocular vision system detects the nearest object with significant corner point features , that is, the position information ( x c0 , y c0 , z c0 ) of the corner of the first object with significant corner features in the camera coordinate system; Position (λ 0 , L 0 , H 0 ) is the starting point to start navigation, and at time t 1 , the accelerations a x , a y , a z and attitude angles γ, θ, and γ of each axis in the carrier coordinate system are obtained. At time t 1 , the binocular vision system detects the position information (x c1 , y c1 , z c1 ) of the corner of the first object with significant corner features in the camera coordinate system; at time t 2 , the inertial navigation high The precision positioning system has the position information (λ 1 , L 1 , H 1 ) of the vehicle in the high-precision map of the indoor parking lot calculated at the previous moment as the starting point, and continues to complete the data collection of the above steps. The distance between the position of the vehicle detected by the binocular stereo vision system and the first object with significant corner features s n <p, where p is a threshold set according to actual requirements, and the binocular stereo vision system detects the first object at time t n . The position information of the corners of each object with significant corner features in the camera coordinate system is (x cn , y cn , z cn ), and at this moment, the position of the next closest object with significant corner features is obtained. information, that is, the position information (x cn ′, y cn ′, z cn ′) of the object with significant second corner features. The position information in the indoor high-precision map is obtained by updating the vehicle position information at the previous time t n-1 , which is (λ n , L n , H n ). The corner position information (x cn+1 , y cn+1 , z cn+1 ) of the second object with significant corner features obtained by the binocular stereo vision system at time t n+1 and the position information obtained at the previous moment (x cn ′, y cn ′, z cn ′), through the transformation between coordinate systems, the position information of each feature point in the world coordinate system (navigation coordinate system) is obtained, and through data processing, t n+1 is updated Position information of the vehicle at time (λ n+1 , L n+1 , H n+1 ). In the following moments, when the vehicle travels to an object with significant off-corner characteristics smaller than a set threshold, the above algorithm is used to replace the reference corner of the object with significant corner characteristics until the vehicle reaches the target parking space.
参照图2所示,本发明中高精度惯性导航坐标系的选择与设计由以下几部分组成:Referring to Figure 2, the selection and design of the high-precision inertial navigation coordinate system in the present invention consists of the following parts:
第一,地球坐标系Oe-xeyeze,地球坐标系与地球保持同步旋转,ze轴指向地区自转轴,xe轴指向本初子午线与赤道的交点,ye轴在赤道平面内与xe轴和ze轴构成右手坐标系;First, the earth coordinate system O e -x e y e z e , the earth coordinate system rotates synchronously with the earth, the z e axis points to the regional rotation axis, the x e axis points to the intersection of the prime meridian and the equator, and the y e axis is at the equator In the plane, it forms a right-handed coordinate system with the x e axis and the z e axis;
第二,导航坐系标On-xnynzn,其原点O与载体即车辆的重心重合,坐标轴分别指向北向、东向和天向;Second, the navigation coordinate system O n -x n y n z n , its origin O coincides with the center of gravity of the carrier, that is, the vehicle, and the coordinate axes point to the north, east and sky directions respectively;
第三,载体坐标系Ob-xbybzb,以车辆重心为原点创建的坐标系,其中xb轴指向载体前方,yb轴沿载体纵向方向,zb轴指向载体的竖轴方向;Third, the carrier coordinate system O b -x b y b z b , a coordinate system created with the center of gravity of the vehicle as the origin, where the x b axis points to the front of the carrier, the y b axis is along the longitudinal direction of the carrier, and the z b axis points to the vertical axis of the carrier direction;
第四,摄像机坐标系Oc-xcyczc,以相机的光心为坐标原点,zc轴与图像坐标系平面垂直,yc轴垂直向下;Fourth, the camera coordinate system O c -x c y c z c takes the optical center of the camera as the coordinate origin, the z c axis is perpendicular to the plane of the image coordinate system, and the y c axis is vertically downward;
第五,世界坐标系Ow-xwywzw,世界坐标系描述实际环境中物体的相对位置关系,它将图像像素坐标系和物理坐标系、摄像机坐标系以及空间物体关联在一起,本发明中世界坐标系选择与惯性导航系统中导航坐标系重合。Fifth, the world coordinate system O w -x w y w z w , the world coordinate system describes the relative positional relationship of objects in the actual environment, which associates the image pixel coordinate system with the physical coordinate system, the camera coordinate system and space objects, The selection of the world coordinate system in the present invention coincides with the navigation coordinate system in the inertial navigation system.
针对本发明中,各个坐标系之间的转换,提供高精度惯性导航坐标系的转换方法,主要包含:惯性导航系统坐标变换,由采集到加速度和姿态角进行姿态解算、速度更新及位置更新:利用积分分别求得载体运动的瞬时速度vx、vy和vz以及瞬时位置x、y和z,载体的姿态就是载体处于机体坐标系下时,其相对于导航坐标系的三个旋转角的大小。本发明采用四元数法进行姿态的更新,通过求解转换矩阵即可实现载体坐标系与导航坐标系的转换,得到在ti(i=0,1,2…)时刻车辆在导航坐标系下的位置信息(xni,yni,zni);双目视觉系统摄像机坐标系与世界坐标系的转换,由ti(i=0,1,2…)时刻双目视觉系统检测到的角点特征显著的物体角点在摄像机坐标系中的位置信息(xci,yci,zci),得到在世界坐标系Ow-xwywzw下角点的位置(xwi,ywi,zwi)。界坐标系描述实际环境中物体的相对位置关系,它将图像像素坐标系和物理坐标系、摄像机坐标系以及空间物体关联在一起。空间特征点在世界坐标系和摄像机坐标系下的齐次坐标分别为(xw,yw,zw,1)和(xc,yc,zc,1),其中齐次坐标系就是把维数为n的向量用(n+1)维的向量来表示,世界坐标系的原点在摄像机坐标系中的坐标值为t=(tx,ty,tz)T,这个3维的向量为平移向量,方向矢量R为摄像机坐标系在世界坐标系中用来描述二者关系的方向矢量,由三个姿态角的正余弦关系组合起来3×3的正交矩阵,则世界坐标系与摄像头坐标系之间的关系为其中OT=(0,0,0);地球坐标系与导航坐标系的转换,首先将地球坐标系Oexeyeze绕ze轴旋转λ角,得到Oe1-xe1ye1ze1。然后绕ye1轴旋转90°-L角,得到Oe2-xe2ye2ze2。最后绕ze2轴旋90°。经过以上步骤可以实现地球坐标系Oe-xeyeze和导航坐标系On-xnynzn,两坐标系之间的变换可通过矩阵来表示,式中L,λ分别代表当地纬度和当地经度。Aiming at the conversion between each coordinate system in the present invention, a conversion method of high-precision inertial navigation coordinate system is provided, which mainly includes: coordinate transformation of the inertial navigation system, attitude calculation, speed update and position update from acquisition of acceleration and attitude angle : The instantaneous velocity v x , v y and v z and the instantaneous position x, y and z of the carrier motion are obtained by integral respectively. The attitude of the carrier is the three rotations of the carrier relative to the navigation coordinate system when the carrier is in the body coordinate system. horn the size of. The invention adopts the quaternion method to update the attitude, and solves the transformation matrix by solving the transformation matrix. The conversion between the carrier coordinate system and the navigation coordinate system can be realized, and the position information (x ni , y ni , z ni ) of the vehicle in the navigation coordinate system at time t i (i=0, 1, 2...) can be obtained; binocular The conversion between the camera coordinate system of the vision system and the world coordinate system, the position information of the corner points of the object with significant corner features detected by the binocular vision system at the time t i (i=0, 1, 2...) in the camera coordinate system ( x ci , y ci , z ci ), obtain the position (x wi , y wi , z wi ) of the lower corner point in the world coordinate system O w -x w y w z w . The bounded coordinate system describes the relative positional relationship of objects in the actual environment, which associates the image pixel coordinate system with the physical coordinate system, the camera coordinate system, and space objects. The homogeneous coordinates of the spatial feature points in the world coordinate system and the camera coordinate system are (x w , y w , z w , 1) and (x c , y c , z c , 1) respectively, where the homogeneous coordinate system is A vector of dimension n is represented by a vector of (n+1) dimension, and the coordinate value of the origin of the world coordinate system in the camera coordinate system is t=(t x , ty , t z ) T , this 3-dimensional The vector of is the translation vector, and the direction vector R is the direction vector used by the camera coordinate system to describe the relationship between the two in the world coordinate system. Combining the sine and cosine relationship of the three attitude angles is a 3×3 orthogonal matrix, then the world coordinate The relationship between the system and the camera coordinate system is Where O T = (0, 0, 0); for the conversion between the earth coordinate system and the navigation coordinate system, first rotate the earth coordinate system O e x e y e z e around the z e axis by an angle of λ to obtain O e1 -x e1 y e1 z e1 . Then rotate 90°-L around the y e1 axis to get O e2 -x e2 y e2 z e2 . Finally, rotate 90° around the z e2 axis. After the above steps, the earth coordinate system O e -x e y e z e and the navigation coordinate system O n -x n y n z n can be realized, and the transformation between the two coordinate systems can be achieved through the matrix where L and λ represent the local latitude and local longitude, respectively.
针对车辆在室内利用惯性导航系统获取的位置误差,本发明提供惯性导航累计误差的消除方法,其实施方案包括以下步骤:Aiming at the position error obtained by the vehicle using the inertial navigation system indoors, the present invention provides a method for eliminating the accumulated error of the inertial navigation, the implementation of which includes the following steps:
第一,参照图2高精度惯性导航系统组成及参考坐标系结构示意图,以参考角点⑧为坐标原点建立动态坐标系。假设在t0=0时刻,车辆在车库入口由高精度GPS获取的位置信息为(λ0,L0,H0),并在此时刻由双目视觉系统检测到第一个角点特征显著的物体特征角点⑧的位置,同时解算出角点特征显著的物体角点在世界坐标系下的坐标(xw0,yw0,zw0),则在以特征角点为坐标建立的坐标系中,车辆当前的位置为(-xw0,-yw0,-zw0),当前时刻下惯性导航系统中,车辆在导航坐标系下的坐标为(xn0,yn0,zn0)。在经过一段时间后,t1时刻下,双目视觉系统检测到这个角点特征显著的物体特征角点⑧的位置,并解算出t1时刻下角点特征显著的物体角点在世界坐标系下的坐标(xw1,yw1,zw1),在以特征角点为坐标建立的坐标系中,车辆当前的位置为(-xw1,-yw1,-zw1),在此时刻下惯性导航系统得到车辆的位置(xn1,yn1,zn1)。获取了前面t0、t1两个时刻的位置信息,则由双目立体视觉系统获取的位置信息得到t1时刻车辆在t0时刻世界坐标系下的位置信息,即(xw1-xw0,yw1-yw0,zw1-zw0)。在本发明中,选择的世界坐标系和导航坐标系是同一坐标系,则由双目视觉系统测得车辆在导航坐标系中的坐标为(xn1′,yn1′,zn1′)=(xw1-xw0,yw1-yw0,zw1-zw0)。利用导航坐标系下位置信息(xn1′,yn1′,zn1′)代替惯性导航系统车辆在t1时刻导航坐标系中的位置信息(xn1,yn1,zn1),即更新了惯性导航系统车辆在导航坐标系中的位置信息,以此来消除从t0时刻t1惯性导航的累计误差。通过地球坐标系与导航坐标系的转换,得到车辆在室内停车场高精度地图中的位置信息(λ1,L1,H1)。First, referring to the schematic diagram of the composition of the high-precision inertial navigation system and the structure of the reference coordinate system in Fig. 2, a dynamic coordinate system is established with the reference corner point ⑧ as the coordinate origin. Assume that at the moment t 0 =0, the position information of the vehicle at the entrance of the garage obtained by high-precision GPS is (λ 0 , L 0 , H 0 ), and at this moment, the binocular vision system detects that the first corner has significant features At the same time, the coordinates (x w0 , y w0 , z w0 ) of the corner points of the object with significant corner characteristics in the world coordinate system are calculated, then in the coordinate system established with the characteristic corner points as the coordinates , the current position of the vehicle is (-x w0 ,-y w0 ,-z w0 ), and in the inertial navigation system at the current moment, the coordinates of the vehicle in the navigation coordinate system are (x n0 , y n0 , z n0 ). After a period of time, at time t 1 , the binocular vision system detects the position of the corner point ⑧ of the object with significant corner features, and calculates that the corner point of the object with significant corner features at time t 1 is in the world coordinate system The coordinates of (x w1 , y w1 , z w1 ), in the coordinate system established with the characteristic corners as the coordinates, the current position of the vehicle is (-x w1 ,-y w1 ,-z w1 ), at this moment the inertial The navigation system obtains the position of the vehicle (x n1 , y n1 , z n1 ). The position information of the previous two times t 0 and t 1 is obtained, then the position information obtained by the binocular stereo vision system obtains the position information of the vehicle in the world coordinate system at time t 1 at time t 1, namely (x w1 -x w0 , y w1 -y w0 , z w1 -z w0 ). In the present invention, the selected world coordinate system and the navigation coordinate system are the same coordinate system, then the coordinates of the vehicle in the navigation coordinate system measured by the binocular vision system are (x n1 ′, y n1 ′, z n1 ′)= (x w1 -x w0 ,y w1 -y w0 ,z w1 -z w0 ). The position information (x n1 ′, y n1 ′, z n1 ′) in the navigation coordinate system is used to replace the position information (x n1 , y n1 , z n1 ) in the navigation coordinate system of the inertial navigation system vehicle at time t 1 , that is, the updated The position information of the inertial navigation system vehicle in the navigation coordinate system, so as to eliminate the accumulated error of inertial navigation from time t0 to time t1 . Through the transformation between the earth coordinate system and the navigation coordinate system, the position information (λ 1 , L 1 , H 1 ) of the vehicle in the high-precision map of the indoor parking lot is obtained.
第二,车辆继续行驶,在t2时刻,以室内停车场高精度地图中的位置(λ1,L1,H1)为起点,并以(λ1,L1,H1)为原点建立相对的地球坐标系,同样的方法进行消除在t2时刻惯性导航系统的累计误差,同样得到在t2时刻车辆在室内停车场高精度地图中的位置(λ2,L2,H2)。后面时刻惯性导航系统的累计误差的消除方法跟前面时刻的方法相同,其中t0、t1、t2时刻间隔时间相等。Second, the vehicle continues to drive, and at time t 2 , the location (λ 1 , L 1 , H 1 ) in the high-precision map of the indoor parking lot is used as the starting point, and (λ 1 , L 1 , H 1 ) is used as the origin to establish Relative to the earth coordinate system, the same method is used to eliminate the accumulated error of the inertial navigation system at time t 2 , and the position (λ 2 , L 2 , H 2 ) of the vehicle in the high-precision map of the indoor parking lot at time t 2 is also obtained. The method of eliminating the accumulated error of the inertial navigation system at the later time is the same as the method at the previous time, wherein the intervals of time t 0 , t 1 , and t 2 are equal.
第三,当在tn时刻双目立体视觉系统检测到车辆的位置离第一个角点特征显著的物体的距离sn<p,其中p为根据实际要求设定的一个阈值,如图4高精度惯性导航系统参考点的动态坐标系变换示意图中所示,tn时刻双目立体视觉系统检测到第一个角点特征显著的物体角点的位置信息为(xwn,ywn,zwn),并在此时刻获取下一个距离最近的角点特征显著的物体的角点位置信息,即第二个角点特征显著的物体的位置信息(xwn′,ywn′,zwn′)。在室内高精度地图中的位置信息由前一时刻tn-1时刻的车辆位置信息进行更新得到,为(λn,Ln,Hn)。在tn+1时刻双目立体视觉系统获取的第二个角点特征显著的物体角点位置信息(xwn+1,ywn+1,zwn+1)和上一时刻获取的位置信息(xwn′,ywn′,zwn′),更新tn+1时刻车辆的位置信息(λn+1,Ln+1,Hn+1)。后面时刻中,当车辆行驶到离角点特征显著的物体小于一个设定的阈值的时候,通过以上算法进行更换参照物和参考角点。Thirdly, when the binocular stereo vision system detects the distance between the position of the vehicle and the first object with significant corner features at time t n , s n < p, where p is a threshold set according to actual requirements, as shown in Figure 4 As shown in the dynamic coordinate system transformation diagram of the reference point of the high-precision inertial navigation system, the position information of the corner point of the first object detected by the binocular stereo vision system at time t n is (x wn , y wn , z wn ), and obtain the corner position information of the next closest object with significant corner features at this moment, that is, the position information of the second object with significant corner features (x wn ′, y wn ′, z wn ′ ). The position information in the indoor high-precision map is obtained by updating the vehicle position information at the previous time t n-1 , which is (λ n , L n , H n ). The corner position information (x wn+1 , y wn+1 , z wn+1 ) of the second object with significant corner features obtained by the binocular stereo vision system at time t n+1 and the position information obtained at the previous moment (x wn ′, y wn ′, z wn ′), and the position information (λ n+1 , L n+1 , H n+1 ) of the vehicle at time t n+1 is updated. In the following moments, when the vehicle travels to an object with significant off-corner characteristics that is smaller than a set threshold, the above algorithm is used to replace the reference object and reference corner.
不断更新ti(i=0,1,2…)时刻车辆在室内高精度地图中的位置,直到车辆到达目标车位。The position of the vehicle in the indoor high-precision map at time t i (i=0, 1, 2...) is continuously updated until the vehicle reaches the target parking space.
以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。The above embodiments should be understood as only for illustrating the present invention and not for limiting the protection scope of the present invention. After reading the contents of the description of the present invention, the skilled person can make various changes or modifications to the present invention, and these equivalent changes and modifications also fall within the scope defined by the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811632825.XA CN109631887B (en) | 2018-12-29 | 2018-12-29 | Inertial navigation high-precision positioning method based on binocular, acceleration and gyroscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811632825.XA CN109631887B (en) | 2018-12-29 | 2018-12-29 | Inertial navigation high-precision positioning method based on binocular, acceleration and gyroscope |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109631887A CN109631887A (en) | 2019-04-16 |
CN109631887B true CN109631887B (en) | 2022-10-18 |
Family
ID=66079243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811632825.XA Active CN109631887B (en) | 2018-12-29 | 2018-12-29 | Inertial navigation high-precision positioning method based on binocular, acceleration and gyroscope |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109631887B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110118987A (en) * | 2019-04-28 | 2019-08-13 | 桂林电子科技大学 | A kind of positioning navigation method, device and storage medium |
CN113390420A (en) * | 2019-05-27 | 2021-09-14 | 深圳市海柔创新科技有限公司 | Navigation method, mobile carrier and navigation system |
CN112179336B (en) * | 2019-07-02 | 2023-08-18 | 南京理工大学 | Automatic luggage transportation method based on combined positioning of binocular vision and inertial navigation |
CN112304302B (en) * | 2019-07-26 | 2023-05-12 | 北京魔门塔科技有限公司 | Multi-scene high-precision vehicle positioning method and device and vehicle-mounted terminal |
CN112556720B (en) * | 2019-09-25 | 2023-08-18 | 上海汽车集团股份有限公司 | Vehicle inertial navigation calibration method and system and vehicle |
CN110823225A (en) * | 2019-10-29 | 2020-02-21 | 北京影谱科技股份有限公司 | Positioning method and device under indoor dynamic situation |
CN111121768B (en) * | 2019-12-23 | 2021-10-29 | 深圳市优必选科技股份有限公司 | Robot pose estimation method and device, readable storage medium and robot |
CN110952427A (en) * | 2019-12-26 | 2020-04-03 | 招商局公路信息技术(重庆)有限公司 | Modular road intelligent perception equipment and system based on driving experience |
CN111220118B (en) * | 2020-03-09 | 2021-03-02 | 燕山大学 | Laser range finder and ranging method based on visual inertial navigation system |
CN111721282B (en) * | 2020-05-09 | 2022-05-03 | 中国人民解放军63686部队 | Strapdown inertial navigation coordinate system dynamic alignment method based on astronomical navigation principle |
CN111795695B (en) * | 2020-05-15 | 2022-06-03 | 阿波罗智联(北京)科技有限公司 | Position information determining method, device and equipment |
CN112249089A (en) * | 2020-09-27 | 2021-01-22 | 卡斯柯信号有限公司 | Rail transit emergency positioning system and method |
CN112097767B (en) * | 2020-10-15 | 2022-07-12 | 杭州知路科技有限公司 | Pre-integration auxiliary assembly for inertial navigation and data processing method |
CN112614219B (en) * | 2020-12-07 | 2024-06-11 | 灵鹿科技(嘉兴)股份有限公司 | Space coordinate conversion method based on identification points for map navigation positioning |
CN112697131B (en) * | 2020-12-17 | 2024-07-23 | 中国矿业大学 | Underground mobile equipment positioning method and system based on vision and inertial navigation system |
CN112598705B (en) * | 2020-12-17 | 2024-05-03 | 太原理工大学 | Binocular vision-based vehicle body posture detection method |
CN112550377A (en) * | 2020-12-18 | 2021-03-26 | 卡斯柯信号有限公司 | Rail transit emergency positioning method and system based on video identification and IMU (inertial measurement Unit) equipment |
CN112698051B (en) * | 2021-03-23 | 2021-06-18 | 天津所托瑞安汽车科技有限公司 | Vehicle speed determination method and device, equipment and medium |
CN115014374A (en) * | 2022-05-27 | 2022-09-06 | 重庆长安汽车股份有限公司 | A lane-level path planning method incorporating dynamic events |
CN115372659B (en) * | 2022-08-05 | 2025-03-11 | 东莞市中辉创新技术有限公司 | A method for calculating battery motion trajectory and speed using a three-axis gyroscope |
CN116164740B (en) * | 2023-02-28 | 2025-04-22 | 长安大学 | A multi-sensor fusion multi-scenario unmanned vibratory roller |
CN116459421A (en) * | 2023-04-23 | 2023-07-21 | 首都医科大学宣武医院 | Self-adaptive oxygen inhalation system |
CN117053816A (en) * | 2023-08-17 | 2023-11-14 | 惠州市德赛西威汽车电子股份有限公司 | Path determination method, device, equipment and medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103278177A (en) * | 2013-04-27 | 2013-09-04 | 中国人民解放军国防科学技术大学 | Calibration method of inertial measurement unit based on camera network measurement |
CN108481327A (en) * | 2018-05-31 | 2018-09-04 | 珠海市微半导体有限公司 | A kind of positioning device, localization method and the robot of enhancing vision |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128874A (en) * | 1990-01-02 | 1992-07-07 | Honeywell Inc. | Inertial navigation sensor integrated obstacle detection system |
CN102435172A (en) * | 2011-09-02 | 2012-05-02 | 北京邮电大学 | Spherical robot vision positioning system and vision positioning method |
CN102538781B (en) * | 2011-12-14 | 2014-12-17 | 浙江大学 | Machine vision and inertial navigation fusion-based mobile robot motion attitude estimation method |
CN102768042B (en) * | 2012-07-11 | 2015-06-24 | 清华大学 | Visual-inertial combined navigation method |
CN103438904B (en) * | 2013-08-29 | 2016-12-28 | 深圳市宇恒互动科技开发有限公司 | A kind of inertial positioning method and system using vision auxiliary corrective |
US9406171B2 (en) * | 2014-08-25 | 2016-08-02 | Daqri, Llc | Distributed aperture visual inertia navigation |
CN108489486B (en) * | 2015-06-01 | 2021-07-02 | 北京极智嘉科技股份有限公司 | Two-dimensional code and vision-inertia combined navigation system and method for robot |
CN105652305B (en) * | 2016-01-08 | 2018-02-06 | 深圳大学 | The three-dimensional localization method for determining posture and system of a kind of dynamic environment lower railway detection platform |
CN106525049B (en) * | 2016-11-08 | 2019-06-28 | 山东大学 | A kind of quadruped robot ontology posture tracking method based on computer vision |
US20180365900A1 (en) * | 2017-06-20 | 2018-12-20 | Immerex Inc. | Mixed Reality Head Mounted Display Device |
CN107600067B (en) * | 2017-09-08 | 2019-09-20 | 中山大学 | An autonomous parking system and method based on multi-visual inertial navigation fusion |
CN107590827A (en) * | 2017-09-15 | 2018-01-16 | 重庆邮电大学 | A kind of indoor mobile robot vision SLAM methods based on Kinect |
-
2018
- 2018-12-29 CN CN201811632825.XA patent/CN109631887B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103278177A (en) * | 2013-04-27 | 2013-09-04 | 中国人民解放军国防科学技术大学 | Calibration method of inertial measurement unit based on camera network measurement |
CN108481327A (en) * | 2018-05-31 | 2018-09-04 | 珠海市微半导体有限公司 | A kind of positioning device, localization method and the robot of enhancing vision |
Also Published As
Publication number | Publication date |
---|---|
CN109631887A (en) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109631887B (en) | Inertial navigation high-precision positioning method based on binocular, acceleration and gyroscope | |
CN112894832B (en) | Three-dimensional modeling method, three-dimensional modeling device, electronic equipment and storage medium | |
CN109540126B (en) | An Inertial Vision Integrated Navigation Method Based on Optical Flow Method | |
CN111024066B (en) | Unmanned aerial vehicle vision-inertia fusion indoor positioning method | |
CN109166140B (en) | A method and system for vehicle trajectory estimation based on multi-line lidar | |
CN102967305B (en) | Multi-rotor unmanned aerial vehicle pose acquisition method based on markers in shape of large and small square | |
JP4232167B1 (en) | Object identification device, object identification method, and object identification program | |
JP2023021098A (en) | Map construction method, device and storage medium | |
CN110345937A (en) | Appearance localization method and system are determined in a kind of navigation based on two dimensional code | |
CN109579825B (en) | Robot positioning system and method based on binocular vision and convolutional neural network | |
CN110411457B (en) | Positioning method, system, terminal and storage medium based on stroke perception and vision fusion | |
CN111238494A (en) | Carrier, carrier positioning system and carrier positioning method | |
CN106017463A (en) | Aircraft positioning method based on positioning and sensing device | |
CN109596121B (en) | A method for automatic target detection and spatial positioning of a mobile station | |
CN108534782A (en) | A kind of instant localization method of terrestrial reference map vehicle based on binocular vision system | |
CN112179357A (en) | Monocular camera-based visual navigation method and system for plane moving target | |
CN110458885B (en) | Positioning system and mobile terminal based on stroke perception and vision fusion | |
CN116907469A (en) | Synchronous positioning and mapping method and system for joint optimization of multi-modal data | |
CN112862818B (en) | Underground parking lot vehicle positioning method combining inertial sensor and multi-fisheye camera | |
CN113580134A (en) | Visual positioning method, device, robot, storage medium and program product | |
Hoang et al. | 3D motion estimation based on pitch and azimuth from respective camera and laser rangefinder sensing | |
CN113403942B (en) | Label-assisted bridge detection unmanned aerial vehicle visual navigation method | |
CN117109568B (en) | Inertial/multi-dimensional vision joint positioning method | |
CN113030960A (en) | Monocular vision SLAM-based vehicle positioning method | |
CN113869203B (en) | Vehicle positioning method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |