[go: up one dir, main page]

CN109608198A - 一种Ta2AlC-Ta4AlC3复合材料的制备方法 - Google Patents

一种Ta2AlC-Ta4AlC3复合材料的制备方法 Download PDF

Info

Publication number
CN109608198A
CN109608198A CN201910044598.7A CN201910044598A CN109608198A CN 109608198 A CN109608198 A CN 109608198A CN 201910044598 A CN201910044598 A CN 201910044598A CN 109608198 A CN109608198 A CN 109608198A
Authority
CN
China
Prior art keywords
alc
powder
composite material
tantalum
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910044598.7A
Other languages
English (en)
Inventor
应国兵
马凤辰
刘璐
宿琳
张晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201910044598.7A priority Critical patent/CN109608198A/zh
Publication of CN109608198A publication Critical patent/CN109608198A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种Ta2AlC‑Ta4AlC3复合材料的制备方法,其特征在于,包括以下步骤:以钽粉、铝粉和碳化钽粉为原料,按一定摩尔比进行配比并加入质量分数为10%~50%的碳化钽粉末配置复合材料的原料;将上述原料置入球磨罐中,在行星式球磨机上湿混15h;采用旋转蒸发仪将混料烘干,然后置入石墨磨具中进行预压;将模具放在放电等离子烧结炉中,在Ar气保护下,加热;与现有技术相比具有以下优点:提出一种制备Ta2AlC‑Ta4AlC3复合材料块体陶瓷的新方法,工艺简单,合成时间较短;在加压过程中烧结,脉冲电流产生的等离子体及烧结过程中的加压有利于降低粉末的烧结温度,同时低电压、高电流的特征,能使粉末快速烧结致密。

Description

一种Ta2AlC-Ta4AlC3复合材料的制备方法
技术领域
本发明属于新型结构材料制备技术领域,特别涉及一种放电等离子烧结工艺制备Ta2AlC-Ta4AlC3复合材料块体陶瓷的方法。
背景技术
三元层状陶瓷Mn+1AXn (其中:M为早期过渡金属;A为ⅢA或ⅣA族元素;X为C或N;n=1,2,3;简称MAX)。Mn+1AXn属于六方晶系结构,空间点群为P63/mmc。Ta2AlC、Ta4AlC3分别为MAX相中211相和413相的代表,其中Ta2AlC晶格参数为a=3.075Å,c=13.83Å,Ta4AlC3晶格参数为a=3.10884 ± 0.00004 Å,c=24.0776 ± 0.0004 Å。MAX相综合了金属和陶瓷的性质,既像金属一样具有良好的导电性、导热性、机械加工性、抗热震性及良好的损伤容限,又与陶瓷一样具有高熔点、高弹性模量、高热稳定性及优异的耐摩擦性及抗氧化性等性能。Ta2AlC、Ta4AlC3及其复合材料优异的综合性能使其在航天航空、核工业、机械、电子信息等领域具有广阔的应用前景。
目前的研究表明,Ta2AlC块体主要是通过热等静压法和热压法等工艺制备而成,如胡春峰等(材料研究杂志,Int. J. Mater. Res. 99(2008)8)采用原位反应/热压法,以Ta、Al和C粉为原料,在1550°C,30MPa压力下热压30min后,在1400°C热处理60min得到单相Ta2AlC块体陶瓷。但是这类工艺往往合成时间较长,经过长时间的加热,材料组织粗化,导致其力学性能降低。放电等离子烧结工艺利用上、下模冲及通电电极将特定烧结电源和压制压力施加于烧结粉末,经放电活化、热塑变形和冷却完成制取高性能材料,能够有效解决以上问题。 关于Ta4AlC3块体的合成制备报道较少,同时,至今也未有关于任何一种方法合成制备Ta2AlC-Ta4AlC3复合材料的报道,Ta2AlC-Ta4AlC3复合材料的SPS烧结合成制备更无法查询。
发明内容
本发明的目的在于利用放电等离子烧结工艺制备致密度高、晶粒细小且性能优异的Ta2AlC-Ta4AlC3复合材料块体陶瓷,首次利用了Ta-Al-TaC体系,SPS技术合成制备出细晶Ta2AlC-Ta4AlC3复合材料,制备的Ta2AlC-Ta4AlC3块体陶瓷纯度、致密度较高,晶粒细小且力学性能优异。
本发明是通过以下技术方案实现的:一种Ta2AlC-Ta4AlC3复合材料的制备方法,其特征在于,包括以下步骤:
(1) 以钽粉、铝粉和碳化钽粉为原料,按一定摩尔比进行配比并加入质量分数为10%~50%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料的原料;
(2) 将上述原料置入球磨罐中,在行星式球磨机上湿混15h;
(3) 采用旋转蒸发仪将混料烘干,然后置入石墨磨具中进行预压;
(4) 将模具放在放电等离子烧结炉中,在Ar气保护下,以80~500°C/min升温速率加热至1300~1500°C,在30~500MPa压力下保温5~10min。
进一步的,原料钽粉、铝粉和碳化钽粉均为单质粉体,粒径大小在1μm~75μm,钽粉、铝粉和碳化钽粉按摩尔比Ta:Al:TaC =1:1.4:1混合并加入质量分数为10%~50%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料。
进一步的,钽粉、铝粉和碳化钽粉按摩尔比 Ta:Al:TaC=1:1.4:1混合并加入质量分数为10%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料的原料。
进一步的,钽粉、铝粉和碳化钽粉按摩尔比 Ta:Al:TaC=1:1.4:1混合并加入质量分数为20%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料的原料。
进一步的,钽粉、铝粉和碳化钽粉按摩尔比 Ta:Al:TaC=1:1.4:1混合并加入质量分数为30%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料的原料。
进一步的,将烘干的混料置入涂有BN石墨磨具中进行预压,预压压力为10~50Mpa。
本发明所述一种利用放电等离子烧结工艺制备Ta2AlC-Ta4AlC3复合材料块体陶瓷,与现有技术相比具有以下优点:提出一种制备Ta2AlC-Ta4AlC3复合材料块体陶瓷的新方法,工艺简单,合成时间较短;在加压过程中烧结,脉冲电流产生的等离子体及烧结过程中的加压有利于降低粉末的烧结温度,同时低电压、高电流的特征,能使粉末快速烧结致密。
附图说明
图1为放电等离子烧结工艺制备Ta2AlC-Ta4AlC3复合材料陶瓷的X射线衍射谱。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1:一种Ta2AlC-Ta4AlC3复合材料的制备方法包括以下步骤:
(1) 以钽粉、铝粉和碳化钽粉为原料,按Ta:Al:TaC =1:1.4:1的摩尔比并加入质量分数为10%的碳化钽粉末配料;
(2) 将上述配料置入球磨罐中,在行星式球磨机上湿混15h;
(3)采用旋转蒸发仪将混料烘干,然后置入石墨磨具中进行预压,预压压力为20Mpa;
(4) 将模具放在放电等离子烧结炉中,在Ar气保护下,以200°C/min升温速率加热至1500°C,在500MPa压力下保温5min。保温结束后随炉冷却至室温,即得Ta2AlC-Ta4AlC3复合材料块体陶瓷。
实施例2:一种Ta2AlC-Ta4AlC3复合材料的制备方法包括以下步骤:
(1) 以钽粉、铝粉和碳化钽粉为原料,按Ta:Al:TaC =1:1.4:1的摩尔比并加入质量分数为20%的碳化钽粉末配料;
(2) 将上述配料置入球磨罐中,在行星式球磨机上湿混15h;
(3)采用旋转蒸发仪将混料烘干,然后置入石墨磨具中进行预压,预压压力为20Mpa;
(4) 将模具放在放电等离子烧结炉中,在Ar气保护下,以200°C/min升温速率加热至1500°C,在500MPa压力下保温5min。保温结束后随炉冷却至室温,即得Ta2AlC-Ta4AlC3复合材料块体陶瓷。
实施例3:一种Ta2AlC-Ta4AlC3复合材料的制备方法包括以下步骤:
(1) 以钽粉、铝粉和碳化钽粉为原料,按Ta:Al:TaC =1:1.4:1的摩尔比并加入质量分数为30%的碳化钽粉末配料;
(2) 将上述配料置入球磨罐中,在行星式球磨机上湿混15h;
(3)采用旋转蒸发仪将混料烘干,然后置入石墨磨具中进行预压,预压压力为20Mpa;
(4) 将模具放在放电等离子烧结炉中,在Ar气保护下,以200°C/min升温速率加热至1500°C,在500MPa压力下保温5min。保温结束后随炉冷却至室温,即得Ta2AlC-Ta4AlC3复合材料块体陶瓷。
如图1所示,为放电等离子烧结工艺制备Ta2AlC-Ta4AlC3复合材料陶瓷的X射线衍射谱,图中显示Ta2AlC的XRD图谱,以及典型添加10%、20%和30%的TaC粉末制备的复合材料的XRD图谱。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (6)

1.一种Ta2AlC-Ta4AlC3复合材料的制备方法,其特征在于,包括以下步骤:
(1) 以钽粉、铝粉和碳化钽粉为原料,按一定摩尔比进行配比并加入质量分数为10%~50%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料的原料;
(2) 将上述原料置入球磨罐中,在行星式球磨机上湿混15h;
(3) 采用旋转蒸发仪将混料烘干,然后置入石墨磨具中进行预压;
(4) 将模具放在放电等离子烧结炉中,在Ar气保护下,以80~500°C/min升温速率加热至1300~1500°C,在30~500MPa压力下保温5~10min。
2.根据权利要求1所述的一种Ta2AlC-Ta4AlC3复合材料的制备方法,其特征在于,原料钽粉、铝粉和碳化钽粉均为单质粉体,钽粉、铝粉和碳化钽粉按摩尔比Ta:Al:TaC =1:1.4:1混合并加入质量分数为10%~50%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料。
3.根据权利要求2所述的一种Ta2AlC-Ta4AlC3复合材料的制备方法,其特征在于,钽粉、铝粉和碳化钽粉按摩尔比 Ta:Al:TaC=1:1.4:1混合并加入质量分数为10%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料的原料。
4.根据权利要求2所述的一种Ta2AlC-Ta4AlC3复合材料的制备方法,其特征在于,钽粉、铝粉和碳化钽粉按摩尔比 Ta:Al:TaC=1:1.4:1混合并加入质量分数为20%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料的原料。
5.根据权利要求2所述的一种Ta2AlC-Ta4AlC3复合材料的制备方法,其特征在于,钽粉、铝粉和碳化钽粉按摩尔比 Ta:Al:TaC=1:1.4:1混合并加入质量分数为30%的碳化钽粉末配置Ta2AlC-Ta4AlC3复合材料的原料。
6.根据权利要求1所述的一种Ta2AlC-Ta4AlC3复合材料的制备方法,其特征在于,将烘干的混料置入涂有BN石墨磨具中进行预压,预压压力为10~50Mpa。
CN201910044598.7A 2019-01-17 2019-01-17 一种Ta2AlC-Ta4AlC3复合材料的制备方法 Pending CN109608198A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910044598.7A CN109608198A (zh) 2019-01-17 2019-01-17 一种Ta2AlC-Ta4AlC3复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910044598.7A CN109608198A (zh) 2019-01-17 2019-01-17 一种Ta2AlC-Ta4AlC3复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN109608198A true CN109608198A (zh) 2019-04-12

Family

ID=66017801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910044598.7A Pending CN109608198A (zh) 2019-01-17 2019-01-17 一种Ta2AlC-Ta4AlC3复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109608198A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024575A (zh) * 2006-02-17 2007-08-29 中国科学院金属研究所 一种原位热压/固液相反应制备钽铝碳陶瓷的方法
CN104628386A (zh) * 2015-02-05 2015-05-20 河海大学 一种Ta2AlC块体陶瓷的制备方法
CN105294106A (zh) * 2015-10-15 2016-02-03 河海大学 放电等离子烧结工艺制备的Ta2AlC块体陶瓷及其制备方法
CN106744732A (zh) * 2017-01-11 2017-05-31 苏州大学 绿色合成二维过渡金属碳化物或者氮化物纳米片的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024575A (zh) * 2006-02-17 2007-08-29 中国科学院金属研究所 一种原位热压/固液相反应制备钽铝碳陶瓷的方法
CN104628386A (zh) * 2015-02-05 2015-05-20 河海大学 一种Ta2AlC块体陶瓷的制备方法
CN105294106A (zh) * 2015-10-15 2016-02-03 河海大学 放电等离子烧结工艺制备的Ta2AlC块体陶瓷及其制备方法
CN106744732A (zh) * 2017-01-11 2017-05-31 苏州大学 绿色合成二维过渡金属碳化物或者氮化物纳米片的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
陈尚策: "《机械工程材料及工艺基础 上》", 31 December 1983, 重庆大学出版社 *
马凤辰: "Ta2AlC–Ta4AlC3 复合材料放电等离子烧结制备与力学性能", 《硅酸盐学报》 *

Similar Documents

Publication Publication Date Title
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN103833363B (zh) 一种碳化硅石墨复合材料及其制备方法
JP2022531868A (ja) ハイエントロピー希土類高靭性タンタル酸塩セラミックス及びその製造方法
CN104276823B (zh) 高绝缘碳化硅/氮化硼陶瓷材料及其制备方法
CN105236943B (zh) 一种Al2O3/Ti(C,N)复合陶瓷刀具材料及其微波烧结工艺
CN112919908A (zh) 一种新型钙钛矿结构高熵陶瓷及其制备方法
CN102701773B (zh) 自生氮化硅晶须增韧碳化钨复合材料及其制备方法
CN109608203A (zh) 高熵二硅化物及其制备方法
CN102534331B (zh) 一种高导热金刚石/铝复合材料的制备方法
CN105272229B (zh) 含烧绿石相锆酸钆粉体的陶瓷及其制备方法
CN114230339B (zh) 一种稀土钽酸盐高熵陶瓷材料及其制备方法和应用
CN106187199A (zh) 一种高度织构化Ti2AlN陶瓷的制备方法
CN105174967B (zh) 一种超高温CNTs/TiB2‑SiC陶瓷复合材料及其制备方法
CN105838920A (zh) 一种Ti/AlN金属陶瓷复合材料及其制备方法
CN109251033A (zh) 一种微波合成Ti2AlC块体材料的方法
CN106007727A (zh) 一种快速烧结制备LaB6/ZrB2共晶复合材料的方法
CN104058749A (zh) 一种无压烧结制备钛硅碳陶瓷块体材料的方法
CN102731096A (zh) 一种织构化硼化物基超高温陶瓷材料及其制备方法
CN114671679A (zh) 一种焦磷酸锆复相陶瓷材料及其制备方法
CN101717253A (zh) 一种Al2O3/Ti2AlC陶瓷复合材料及其制备方法
CN104529456B (zh) 一种B4C‑HfB2高温共晶自生复合陶瓷的制备方法
CN102992765B (zh) 一种钨掺杂的钛硅铝碳陶瓷块体材料的制备方法
CN109608198A (zh) 一种Ta2AlC-Ta4AlC3复合材料的制备方法
CN108503370A (zh) 一种单相氮化硅陶瓷及其sps制备工艺
CN101486576B (zh) 一种原位反应热压合成V2AlC块体陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190412

RJ01 Rejection of invention patent application after publication