[go: up one dir, main page]

CN109576644A - 一种制备涂层导体用高钨合金基带的方法 - Google Patents

一种制备涂层导体用高钨合金基带的方法 Download PDF

Info

Publication number
CN109576644A
CN109576644A CN201811528780.1A CN201811528780A CN109576644A CN 109576644 A CN109576644 A CN 109576644A CN 201811528780 A CN201811528780 A CN 201811528780A CN 109576644 A CN109576644 A CN 109576644A
Authority
CN
China
Prior art keywords
base band
tungsten
alloy base
ni5w
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811528780.1A
Other languages
English (en)
Inventor
张晨曦
马麟
索红莉
崔瑾
纪耀堂
武鑫宇
刘敏
王毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201811528780.1A priority Critical patent/CN109576644A/zh
Publication of CN109576644A publication Critical patent/CN109576644A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种制备涂层导体用高钨合金基带的方法属于金属加工技术领域。清洗Ni5W(W元素的含量=5at.%)合金基带后,采用物理或化学的方法在其外表面均匀涂覆厚度为100~200nm的纯钨层。将上述涂覆钨层的Ni5W合金基带在氩氢或氢气的保护气氛下进行扩散热处理,热处理温度为1100~1200℃,保温时间2~3h,随炉冷却,使镀层表面的钨原子以置换固溶体的方式大量扩散至芯层置换晶格中的镍原子,以提高具有立方织构的NiW合金基带的钨含量,以获得具有强立方织构的高钨复合基带。本发明使表层的W原子大量渗入芯层,提高整体钨含量,获得织构高钨合金基带。该方法操作简单,成本较低,可实现性强。

Description

一种制备涂层导体用高钨合金基带的方法
技术领域
本发明涉及一种用于第二代高温超导YBCO(YBa2Cu3O7-u,钇钡铜氧)涂层导体的高钨含量(W元素的含量≥7at.%)NiW合金基带的制备方法,属于金属加工技术领域。
背景技术
YBCO高温超导材料作为超导材料中的核心之一,具有良好的应用发展前景以及现实可行的实现路径,对高性能涂层超导材料的研究具有巨大的社会效益,而作为外延生长YBCO的织构NiW合金基带是RABiTS技术路线研究的热点。NiW合金基带在超导带材的结构中位于整个结构的底层,其主要作用是外延生长过渡层和超导层,同时承受一定的应力应变。在NiW合金中,虽然低钨含量的NiW合金容易获得强立方织构,但其强度及磁性能依然不能满足涂层导体应用的广泛要求;而高钨含量的NiW合金能实现应用温度下(77K,液氮温区)低铁磁性甚至无磁性,同时也带来了另一个不可避免的难题,即W元素固溶含量的增加降低了NiW合金的层错能,使材料形变与再结晶过程不再容易获得强立方织构。因此如何在提高钨含量的同时又能获得强立方织构,成为高钨合金基带进一步发展的方向与目标。
制备复合基带是一种获得高强度低磁性的NiW合金基带的有效思路。目前为止,研究人员提出多种方法来制备RABiTS路线的复合基带,主要有套管法、共轧制法和粉末冶金法等,这些方法的主要思路是将易形成立方织构的低钨含量NiW合金放在外层,机械强度高、铁磁性低的高钨含量NiW合金放在内层,形成“三明治”结构,以便获得立方织构和机械性能、铁磁性相统一的NiW合金基带。其中套管法是最早提出制备复合基带技术路线之一,但该技术路线无论是在形变过程中,还是在再结晶过程中,都受内、外层材料性质严重影响,并且加工工艺比较复杂。共轧制法虽是一种可大规模生产复合基带的方法,但这种工艺对轧制设备要求较高,一般较难实现。而粉末冶金法制备出的复合基带不同W含量的层间结合力相对较弱造成轧制过程中复合坯锭容易产生开裂现象,以及W由高浓度区域向低浓度区域发生扩散影响低钨层强立方织构的形成。
第二代高温超导YBCO涂层导体对NiW合金基带的要求是具有一定长度、表面具有强立方织构,同时基带整体又拥有高机械强度和低铁磁性,上述方法都是采用的外低钨内高钨结构、先加工形变再进行热处理获得立方织构的技术路线来制备复合基带。如果采用先低钨获得强立方织构、再进行渗钨的操作来提高钨含量,将是一条全新的制备路线,可有效前述制备方法的弊端。
发明内容
本发明的目的是提出一种先利用低钨含量NiW合金基带获得强立方织构、再通过在基带表面制备纯钨镀层形成外高钨内低钨的结构,利用钨原子扩散来提升NiW合金基带的整体钨含量,进而获得涂层导体用高钨合金基带的方法,该方法可以有效地提高合金基带的钨含量,提升NiW合金基带整体的机械性能,降低铁磁性。
一种制备涂层导体用高钨合金基带的方法包括以下步骤:
(1)清洗Ni5W(W元素的含量=5at.%)合金基带后,采用物理或化学的方法在其外表面均匀涂覆厚度为100~200nm的纯钨层。
(2)将上述涂覆钨层的Ni5W合金基带在氩氢或氢气的保护气氛下进行扩散热处理,热处理温度为1100~1200℃,保温时间2~3h,随炉冷却,使镀层表面的钨原子以置换固溶体的方式大量扩散至芯层置换晶格中的镍原子,以提高具有立方织构的NiW合金基带的钨含量,以获得具有强立方织构的高钨复合基带。
本发明设计的制备涂层导体用高钨合金基带的方法,与传统工艺相比,创新性地在具有强立方织构的低钨合金基带表面涂覆一定厚度的纯钨镀层,形成外高钨内低钨的结构;再整体进行扩散退火热处理,可有效减少镀层中的应力,提高金属基底与镀层间的结合力;而后利用表层与芯层的浓度差,进行扩散热处理,使表层的W原子大量渗入芯层,提高整体钨含量,获得织构高钨合金基带。该方法操作简单,成本较低,可实现性强,具有大规模实际应用的前景。
附图说明
图1、实施例1中合金基带在1100℃下保温3h后的(111)极图;
图2、实施例2中合金基带在1200℃下保温2h后的(111)极图;
具体实施方式
以下所述为本发明较佳的一些实施例,对本发明的内容进行进一步详细描述,但是本发明的保护范围不限于这些实施例,凡是未脱离本发明技术方案的专利的内容,依据实施例进行任何简单修改、等同替换等都属于本发明的保护范围。
实例1【磁控溅射方法】
磁控溅射技术是在真空中利用荷能粒子轰击靶表面,使被轰击出的粒子沉积在基片上的技术,其特点是成膜速率高,基片温度低,镀膜层致密、均匀、膜的粘附性好,可实现大面积镀膜,因此我们首先采用磁控溅射法在低钨合金基带表面溅镀纯钨层,再结合扩散热处理工艺,得到低磁性、高强度、强立方织构的复合合金基带。
以纯度为99.9%的高纯钨靶作为溅射靶材,将其安放在高真空磁控溅射系统的直流靶位上。其次对退火后的Ni5W基底先使用丙酮和无水乙醇分别超声清洗5min并快速吹干后,将基带转移至磁控溅射设备样品台中心部位,关闭磁控溅射进样室。然后进行抽真空,至背底真空度为8×10-4Pa时,打开气路,对反应室通入氩气,同时对样品台加热至350℃,调节样品台转速为15r/min,溅射功率为100W,溅射时长为40min,在基底表面溅镀均匀致密的纯钨镀层。最后在H2体积分数为4%的氩氢混合气氛下进行扩散热处理,随炉升温至1100℃,保温时间为3h,随炉冷却后,用XRD对其进行测试,结果如图1所示。
实例2【化学气相沉积方法】
化学气相沉积技术是在高温下,通过气态初始化合物之间的气相化学反应而形成固体物质沉积在基体上的工艺技术,其特点是沉积成膜装置简单,薄膜表面致密性、均匀性均较高,内部应力均匀,缺陷少。
首先将Ni5W基底使用丙酮和无水乙醇分别超声清洗5min并快速吹干,其次将Ni5W基带放置到化学气相沉积装置的恒温加热区并抽真空至1×10-4Pa后,打开气路,对其通入反应气,气体成分的体积百分比为WF:H2=6:4,气流量控制在60sccm,在生长过程中保持流速稳定不变,同时对样品加热至600℃后,保温20min,在基底表面沉积均匀致密的纯钨层。最后在H2气氛下进行扩散热处理,随炉升温至1200℃,保温时间为2h,随炉冷却。用XRD对其进行测试,结果如图2所示。

Claims (3)

1.一种制备涂层导体用高钨合金基带的方法,其特征在于,包括以下步骤:
(1)清洗Ni5W合金基带后,即合金基带中W元素的含量=5at.%;采用物理或化学的方法在其外表面均匀涂覆厚度为100~200nm的纯钨层;
(2)将上述涂覆钨层的Ni5W合金基带在氩氢混合气氛或氢气的保护气氛下进行扩散热处理,热处理温度为1100~1200℃,保温时间2~3h,随炉冷却,得到高钨合金基带。
2.根据权利要求1所述的方法,其特征在于:
对退火后的Ni5W基底先使用丙酮和无水乙醇分别超声清洗5min并吹干后,将基带转移至磁控溅射设备样品台中心部位,关闭磁控溅射进样室;然后进行抽真空,至背底气压为8×10-4Pa以下时,打开气路,对反应室通入氩气,同时对样品台加热至350℃,调节样品台转速为15r/min,以钨靶作为溅射靶材,溅射功率为100W,溅射时长为40min,在基底表面溅镀均匀致密的纯钨镀层;最后在H2体积分数为4%的氩氢混合气氛下进行扩散热处理,随炉升温至1100℃,保温时间为3h,随炉冷却。
3.根据权利要求1所述的方法,其特征在于:
首先将Ni5W基底使用丙酮和无水乙醇分别超声清洗5min并吹干,其次将Ni5W基带放置到化学气相沉积装置的恒温加热区并抽真空至气压为1×10-4Pa以下后,打开气路,对其通入反应气,反应气体成分的体积比为WF:H2=6:4,气流量控制在60sccm,在生长过程中保持流速稳定不变,同时对样品加热至600℃后,保温20min,在基底表面沉积均匀致密的纯钨层;最后在H2气氛下进行扩散热处理,随炉升温至1200℃,保温时间为2h,随炉冷却。
CN201811528780.1A 2018-12-14 2018-12-14 一种制备涂层导体用高钨合金基带的方法 Pending CN109576644A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811528780.1A CN109576644A (zh) 2018-12-14 2018-12-14 一种制备涂层导体用高钨合金基带的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811528780.1A CN109576644A (zh) 2018-12-14 2018-12-14 一种制备涂层导体用高钨合金基带的方法

Publications (1)

Publication Number Publication Date
CN109576644A true CN109576644A (zh) 2019-04-05

Family

ID=65928519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811528780.1A Pending CN109576644A (zh) 2018-12-14 2018-12-14 一种制备涂层导体用高钨合金基带的方法

Country Status (1)

Country Link
CN (1) CN109576644A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893446A (zh) * 2020-07-05 2020-11-06 河南师范大学 一种强织构的金属复合基带的制备方法
CN112725748A (zh) * 2020-11-10 2021-04-30 北京工业大学 一种超细纳米晶钨材料的制备方法
CN113564546A (zh) * 2020-04-28 2021-10-29 安泰科技股份有限公司 一种用于金属双极板的预涂层金属带材的制备方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2155958A (en) * 1984-03-14 1985-10-02 Secr Defence Chemical vapour deposition
CN101319304A (zh) * 2007-06-05 2008-12-10 中国人民解放军装甲兵工程学院 制备单质钨膜的方法
CN102756512A (zh) * 2012-07-04 2012-10-31 北京工业大学 低或无磁性、高强度Ni-W合金复合基带及其制备方法
CN106702216A (zh) * 2017-02-28 2017-05-24 安阳师范学院 一种无铁磁性立方织构镍钨合金基带的制备方法
CN106825104A (zh) * 2017-01-25 2017-06-13 郑州师范学院 一种强立方织构的高强度镍钨合金基带及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2155958A (en) * 1984-03-14 1985-10-02 Secr Defence Chemical vapour deposition
CN101319304A (zh) * 2007-06-05 2008-12-10 中国人民解放军装甲兵工程学院 制备单质钨膜的方法
CN102756512A (zh) * 2012-07-04 2012-10-31 北京工业大学 低或无磁性、高强度Ni-W合金复合基带及其制备方法
CN106825104A (zh) * 2017-01-25 2017-06-13 郑州师范学院 一种强立方织构的高强度镍钨合金基带及其制备方法
CN106702216A (zh) * 2017-02-28 2017-05-24 安阳师范学院 一种无铁磁性立方织构镍钨合金基带的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564546A (zh) * 2020-04-28 2021-10-29 安泰科技股份有限公司 一种用于金属双极板的预涂层金属带材的制备方法及系统
CN113564546B (zh) * 2020-04-28 2023-09-19 安泰科技股份有限公司 一种用于金属双极板的预涂层金属带材的制备方法及系统
CN111893446A (zh) * 2020-07-05 2020-11-06 河南师范大学 一种强织构的金属复合基带的制备方法
CN112725748A (zh) * 2020-11-10 2021-04-30 北京工业大学 一种超细纳米晶钨材料的制备方法
CN112725748B (zh) * 2020-11-10 2022-09-09 北京工业大学 一种超细纳米晶钨材料的制备方法

Similar Documents

Publication Publication Date Title
CN100374596C (zh) Ni基合金复合基带及其粉末冶金制备方法
CN101635185B (zh) 一种无/低磁性立方织构Ni-W合金基带的制备方法
CN100571970C (zh) 一种涂层超导高W含量Ni-W合金基带的制备方法
CN109576644A (zh) 一种制备涂层导体用高钨合金基带的方法
CN102610322B (zh) 高温超导涂层导体双层缓冲层结构及其动态沉积方法
CN1312301C (zh) 用于高温超导的Ni-W合金的制备方法
JP4316070B2 (ja) 高強度配向多結晶金属基板および酸化物超電導線材
CN102751040B (zh) 高温超导双面带材的制备方法
CN112981326B (zh) 一种金属基超导带材及其制备方法
CN110205602A (zh) 一种生长第二代高温超导带材阻挡层复合膜的镀膜方法
JPH0769796A (ja) 熱プラズマ蒸発法による金属基板上への酸化物の成膜方法
Wang et al. High quality uniform YBCO film growth by the metalorganic deposition using trifluoroacetates
EP3042978B1 (en) Layered substrate for epitaxial growth and process for producing same
CN109338161A (zh) 一种立方织构镍合金基带及其制备方法
CN102251219A (zh) 制备ysz缓冲层的多通道激光镀膜方法
JP2008066168A (ja) MgB2超伝導線材及びその製造法
Xie et al. Epitaxy of HgBa 2 CaCu 2 O 6 superconducting films on biaxially textured Ni substrates
CN116259442A (zh) 一种提高二代高温超导带材强磁场环境下载流能力的方法
CN105648401A (zh) 高性能rebco多层膜、应用及其制备方法
US20200091397A1 (en) Mgb2 superconductive thin film wire material and production method therefor
CN103233205A (zh) 利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法
CN100368597C (zh) 在无织构的金属基带上制备ybco高温超导薄膜的方法
CN109371284A (zh) 一种高性能立方织构金属基带及其制备方法
Zhao et al. Effect of $\hbox {Y} _ {2}\hbox {O} _ {3} $ Seed Layer on Epitaxial Growth of Oxide Barrier Layer for YBCO Coated Conductor
Lockman et al. Surface oxidation of cube-textured Ni–Cr for the formation of a NiO buffer layer for superconducting coated conductors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190405