[go: up one dir, main page]

CN109517811B - 一种β-酮脂酰-ACP合成酶突变体 - Google Patents

一种β-酮脂酰-ACP合成酶突变体 Download PDF

Info

Publication number
CN109517811B
CN109517811B CN201811443458.9A CN201811443458A CN109517811B CN 109517811 B CN109517811 B CN 109517811B CN 201811443458 A CN201811443458 A CN 201811443458A CN 109517811 B CN109517811 B CN 109517811B
Authority
CN
China
Prior art keywords
ala
ketoacyl
val
gly
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811443458.9A
Other languages
English (en)
Other versions
CN109517811A (zh
Inventor
耿枫
代现平
李孟顺
刘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Binzhou Medical College
Original Assignee
Binzhou Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binzhou Medical College filed Critical Binzhou Medical College
Priority to CN201811443458.9A priority Critical patent/CN109517811B/zh
Publication of CN109517811A publication Critical patent/CN109517811A/zh
Application granted granted Critical
Publication of CN109517811B publication Critical patent/CN109517811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01179Beta-ketoacyl-acyl-carrier-protein synthase II (2.3.1.179)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及具体涉及一种β‑酮脂酰‑ACP合成酶突变体及其应用,即通过改造源自肠杆菌科的β‑酮脂酰‑ACP合成酶(fabH),使其能够非天然催化反应,在肠杆菌中实现新型脂肪酸的大量积累。其特征在于,所述的改造是将β‑酮脂酰‑ACP合成酶(fabH)中的189位点由亮氨酸突变为丝氨酸,和/或将157位点由苯丙氨酸突变为天冬氨酸。本发明通过结构生物学的方法,通过将β‑酮脂酰‑ACP合成酶进行位点突变,使其能够催化非天然反应。将上述突变的基因连接到质粒上,并在野生型的大肠杆菌中过量表达,大大提高了肠杆菌中脂肪酸的产量。

Description

一种β-酮脂酰-ACP合成酶突变体
技术领域
本发明属于代谢工程和酶的理性设计领域,具体涉及一种β-酮脂酰-ACP合成酶突变体及其应用,即通过改造源自肠杆菌科的β-酮脂酰-ACP合成酶(fabH),使其能够非天然催化反应,在肠杆菌中实现脂肪酸的大量积累。
背景技术
在生物体内,脂肪酸合成(FAS)途径包括两种类型:FASⅠ和FASⅡ。FASⅠ型存在于哺乳动物体内,属于高效能但产物单一的脂肪酸合成途径;FASⅡ存在于动植物、细菌、真菌等体内,此途径是一个分散的蛋白系统,脂肪酸合成的每一步都是由不同的单功能酶催化合成,代谢产物多样,靶点丰富,对于研究对抗细菌耐药性的新型抗菌药物有很大的帮助。β-酮脂酰-ACP合成酶Ⅲ(fabH或KASⅢ)是细菌FASⅡ型途径中单功能酶之一。之所以选择该靶点的优势在于:①FabH酶催化细菌FAS途径的第一个缩合反应,链的延长由此启动,控制着细菌脂肪酸合成的起始,并且为后面链的延长提供底物,是反应过程中的关键酶;②细菌的脂肪酸合成酶系与人体的不同,没有同源性。因此,以fabH酶为新型抗菌药物作用靶标的抑制剂的研究成为国内外的热点。目前,国内外已报道的针对fabH靶点有抑制作用的化合物有:浅蓝菌素;硫霉菌素;平板霉素;含硫化合物;肉桂酸衍生物等。
通过过量表达酮脂酰-ACP合成酶,可实现了脂肪酸在肠杆菌中的大量积累。β-酮脂酰-ACP合成酶作为脂肪酸合成过程中关键酶,广泛存在细菌中,且与人体无同源性。然而,fabH只能催化乙酰辅酶A进行反应,因此极大的限制了能够生产的产物的种类及产量,目前,对β-酮脂酰-ACP合成酶的改造是实现新型脂肪酸生产以及高产脂肪酸的关键技术。
发明内容
本发明的目的是提供一种β-酮脂酰-ACP合成酶突变体及其应用。对来源于肠杆菌科及其他革兰氏阴性菌细菌的fabH基因进行定点突变,使其能够催化新型底物;将带有突变型fabH基因的质粒导入埃希氏属的细菌中进行发酵生产,实现脂肪酸的积累,从而弥补现有技术的不足。
本发明的β-酮脂酰-ACP合成酶突变体,其特征在于,所述的改造是将大肠杆菌来源的β-酮脂酰-ACP合成酶中的189位点有亮氨酸突变为丝氨酸,和/或将157位点由苯丙氨酸突变为天冬氨酸。
上述的β-酮脂酰-ACP合成酶突变体的氨基酸序列为SEQ IDNO:1-3中任一种。
本发明的另一方面涉及编码β-酮脂酰-ACP合成酶突变体的基因,该基因的核苷酸序列为SEQ ID NO:4-6中任一种。
考虑到密码子的简并性,编码本发明β-酮脂酰-ACP合成酶突变体的基因序列可以有多种,但优选为埃希氏属的偏好密码子。
本发明还包括有表达β-酮脂酰-ACP合成酶突变体的重组质粒。
本发明通过将β-酮脂酰-ACP合成酶编码基因进行点突变,使其能够催化非天然底物丁酰辅酶A的酰化反应。
具体实施方式
下面结合实例对本发明做进一步说明,在实施例中未注明具体条件的实验方法,通常可按常规条件,如萨姆布鲁克(J.Sambrook)等编写的《分子克隆实验指南》中所述的条件,或按照设备或试剂生产厂商所建议的条件运行。
实施例1、FABH突变体的获得
1.FABH野生基因的获得
将E.coli MG1655在LB培养基中,37℃,200rpm,培养12-16h后,收集细胞,采用Biomiga基因组小提试剂盒,提取细胞的基因组DNA。使用下述引物对:正向引物GCGCCATATGTCGCGATTGAACAGG(SEQ ID NO:7),反向引物5`-3`CTCACTCGAGCTTCAGCAAACGTTTCTTCGACA(SEQ IDNO:8),从E.coli MG1655基因组DNA上扩增fabH基因。其中正向引物引入了Nde1酶切位点,反向引物引入了Xho1的酶切位点。用Nde1酶和Xho1酶对扩增片段进行酶切,利用相同的酶切位点切开用于表达的质粒pET21a+,获得共同的粘性末端,通过连接酶进行连接。连接产物通过电转化的方式转入大肠杆菌中,如E.coli BL21(DE3),获得质粒pGFB1。pGFB1质粒在fabH基因的C端引入了6个组氨酸标签。
2.定点突变的实现
利用Stratagene系列
Figure BDA0001885224030000032
XL-Ⅱ定点突变试剂盒,通过引物Leu189Ser-F/Leu189Ser-R(见表1)对质粒pGFB1进行PCR引入突变位点Leu189Ser,即将fabH 189位的亮氨酸替换为丝氨酸。获得的质粒经过PCR产物回收,除去PCR体系中的酶及缓冲体系中的盐离子后,采用Dpn1酶切1h,除去甲基化的模板质粒DNA。处理后的质粒进行化学转化,转入感受态细胞Tran10。正确突变质粒命名为pGFB5,携带的fabH突变体核苷酸序列为SEQ IDNO:5,翻译的氨基酸序列为SEQ ID NO:1。
通过引物Phe157Asp F/Phe157Asp R(见表1)采用相同的方法对质粒pGFB1进行PCR引入突变位点Phe157Asp,即将fabH 157位的苯丙氨酸替换为天冬氨酸。并转化入感受态细胞Tran10中。正确突变质粒命名为pGFB6,携带的fabH突变体核苷酸序列为SEQ IDNO:4,翻译的氨基酸序列为SEQ ID NO:2。
同理,用Phe157Asp F/Phe157Asp R对携带fabH基因的质粒pGFB5进行PCR获得具有双突变位点(Leu189Ser/Phe157Asp)的fabH基因,命名为pGFB7,其核苷酸序列为SEQ IDNO:6,氨基酸序列为SEQ ID NO:3,是具有双突变位点的fabH突变体。最后通过电转化方法分别将pGFB5、pGFB6、pGFB7转入表达宿主E.coli BL21(DE3)中。
表1:点突变所用引物表
Figure BDA0001885224030000031
Figure BDA0001885224030000041
实施例2、FABH突变体的体外效果检测
1、蛋白的表达及纯化
首先从平板上挑BL21(DE3)(pGFB1)(含fabH),BL21(DE3)(pGFB5)(含fabH 189*)、BL21(DE3)(pGFB6)(含fabH 157*)、BL21(DE3)(pGFB7)(含fabH 189*/157*)的单菌落接于5ml含100μg/ml氨苄青霉素的LB培养基中,37度200rpm培养5小时至OD600为1.0左右。取2mlOD为1.0左右的一级种子液,转接于100ml含100μg/ml氨苄青霉素的新鲜LB培养基中,采用20度培养过夜。收集菌体后,超声波破碎菌体10分钟,超声1秒停3秒,用镍柱对蛋白进行纯化。通过BCA(Bicinchoninic Acid)法进行蛋白定量,用SDS-PAGE的方法确定蛋白纯度。结果表明蛋白纯度均大于90%。
2、体外实验(fabH活力测定)
采用如下的反应体系进行酶活性测定,如下表2:
表2酶活测定反应体系
Figure BDA0001885224030000042
突变菌株是将大肠杆菌fabH的189位氨基酸从亮氨酸突变为丝氨酸(Leu189Ser,氨基酸序列为SEQ ID NO:1),将157位变为苯丙突变为天冬氨酸(Phe157Asp,氨基酸序列为SEQ ID NO:2)。其中,一个酶活单位定义为1分钟消耗1mM底物所需蛋白量(mg)。
表3:野生型和突变型绝对酶活比较(1mg蛋白所包含的酶活单位)
Figure BDA0001885224030000051
实施例3:突变体的应用
1、发酵方法
将上述构建的质粒转入大肠杆菌MG1655中在摇瓶中培养,培养基成分如下:
表4:培养基的配方组分
Figure BDA0001885224030000052
其中葡萄糖和CaCO3单独灭菌。
发酵液通过加入0.5M的HCl中和CaCO3后,测定OD600值。每隔3小时会加入50-100μL氨水调节pH≥7。在37℃和200rpm的条件下振荡培养至OD600约为0.8,加入诱导剂IPTG至终浓1mmol·L-1,继续培养32小时,离心收集菌体。
2、发酵结果:
在相同的发酵条件下,过量表达fabH基因的三株菌,生长及耗糖情况基本一致,但在32小时残糖耗尽时,过量表达突变189位氨基酸的fabH可以产1.255g/L的脂肪酸(混合产物),而过量表达野生型的fabH只能产0.631g/L的酸,突变体比野生型菌株脂肪酸产量提高近50%。若将两个位点同时突变,产酸效果与单突变相近。
表5:发酵32h时脂肪酸产量
Figure BDA0001885224030000061
上述结果表明,本发明的三种突变体的重组质粒转入大肠杆菌后,都具有显著提高脂肪酸产量的作用,提高脂肪酸的产量是提高脂肪酸为前体的其它化合物产量的基础,因而具有很好的应用前景。
序列表
<110> 滨州医学院
<120> 一种β-酮脂酰-ACP合成酶突变体
<130> 1
<141> 2018-11-29
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 317
<212> PRT
<213> Artificial Sequence
<400> 1
Met Tyr Thr Lys Ile Ile Gly Thr Gly Ser Tyr Leu Pro Glu Gln Val
1 5 10 15
Arg Thr Asn Ala Asp Leu Glu Lys Met Val Asp Thr Ser Asp Glu Trp
20 25 30
Ile Val Thr Arg Thr Gly Ile Arg Glu Arg His Ile Ala Ala Pro Asn
35 40 45
Glu Thr Val Ser Thr Met Gly Phe Glu Ala Ala Thr Arg Ala Ile Glu
50 55 60
Met Ala Gly Ile Glu Lys Asp Gln Ile Gly Leu Ile Val Val Ala Thr
65 70 75 80
Thr Ser Ala Thr His Ala Phe Pro Ser Ala Ala Cys Gln Ile Gln Ser
85 90 95
Met Leu Gly Ile Lys Gly Cys Pro Ala Phe Asp Val Ala Ala Ala Cys
100 105 110
Ala Gly Phe Thr Tyr Ala Leu Ser Val Ala Asp Gln Tyr Val Lys Ser
115 120 125
Gly Ala Val Lys Tyr Ala Leu Val Val Gly Ser Asp Val Leu Ala Arg
130 135 140
Thr Cys Asp Pro Thr Asp Arg Gly Thr Ile Ile Ile Phe Gly Asp Gly
145 150 155 160
Ala Gly Ala Ala Val Leu Ala Ala Ser Glu Glu Pro Gly Ile Ile Ser
165 170 175
Thr His Leu His Ala Asp Gly Ser Tyr Gly Glu Leu Leu Thr Leu Pro
180 185 190
Asn Ala Asp Arg Val Asn Pro Glu Asn Ser Ile His Leu Thr Met Ala
195 200 205
Gly Asn Glu Val Phe Lys Val Ala Val Thr Glu Leu Ala His Ile Val
210 215 220
Asp Glu Thr Leu Ala Ala Asn Asn Leu Asp Arg Ser Gln Leu Asp Trp
225 230 235 240
Leu Val Pro His Gln Ala Asn Leu Arg Ile Ile Ser Ala Thr Ala Lys
245 250 255
Lys Leu Gly Met Ser Met Asp Asn Val Val Val Thr Leu Asp Arg His
260 265 270
Gly Asn Thr Ser Ala Ala Ser Val Pro Cys Ala Leu Asp Glu Ala Val
275 280 285
Arg Asp Gly Arg Ile Lys Pro Gly Gln Leu Val Leu Leu Glu Ala Phe
290 295 300
Gly Gly Gly Phe Thr Trp Gly Ser Ala Leu Val Arg Phe
305 310 315
<210> 2
<211> 317
<212> PRT
<213> Artificial Sequence
<400> 2
Met Tyr Thr Lys Ile Ile Gly Thr Gly Ser Tyr Leu Pro Glu Gln Val
1 5 10 15
Arg Thr Asn Ala Asp Leu Glu Lys Met Val Asp Thr Ser Asp Glu Trp
20 25 30
Ile Val Thr Arg Thr Gly Ile Arg Glu Arg His Ile Ala Ala Pro Asn
35 40 45
Glu Thr Val Ser Thr Met Gly Phe Glu Ala Ala Thr Arg Ala Ile Glu
50 55 60
Met Ala Gly Ile Glu Lys Asp Gln Ile Gly Leu Ile Val Val Ala Thr
65 70 75 80
Thr Ser Ala Thr His Ala Phe Pro Ser Ala Ala Cys Gln Ile Gln Ser
85 90 95
Met Leu Gly Ile Lys Gly Cys Pro Ala Phe Asp Val Ala Ala Ala Cys
100 105 110
Ala Gly Phe Thr Tyr Ala Leu Ser Val Ala Asp Gln Tyr Val Lys Ser
115 120 125
Gly Ala Val Lys Tyr Ala Leu Val Val Gly Ser Asp Val Leu Ala Arg
130 135 140
Thr Cys Asp Pro Thr Asp Arg Gly Thr Ile Ile Ile Asp Gly Asp Gly
145 150 155 160
Ala Gly Ala Ala Val Leu Ala Ala Ser Glu Glu Pro Gly Ile Ile Ser
165 170 175
Thr His Leu His Ala Asp Gly Ser Tyr Gly Glu Leu Leu Thr Leu Pro
180 185 190
Asn Ala Asp Arg Val Asn Pro Glu Asn Ser Ile His Leu Thr Met Ala
195 200 205
Gly Asn Glu Val Phe Lys Val Ala Val Thr Glu Leu Ala His Ile Val
210 215 220
Asp Glu Thr Leu Ala Ala Asn Asn Leu Asp Arg Ser Gln Leu Asp Trp
225 230 235 240
Leu Val Pro His Gln Ala Asn Leu Arg Ile Ile Ser Ala Thr Ala Lys
245 250 255
Lys Leu Gly Met Ser Met Asp Asn Val Val Val Thr Leu Asp Arg His
260 265 270
Gly Asn Thr Ser Ala Ala Ser Val Pro Cys Ala Leu Asp Glu Ala Val
275 280 285
Arg Asp Gly Arg Ile Lys Pro Gly Gln Leu Val Leu Leu Glu Ala Phe
290 295 300
Gly Gly Gly Phe Thr Trp Gly Ser Ala Leu Val Arg Phe
305 310 315
<210> 3
<211> 317
<212> PRT
<213> Artificial Sequence
<400> 3
Met Tyr Thr Lys Ile Ile Gly Thr Gly Ser Tyr Leu Pro Glu Gln Val
1 5 10 15
Arg Thr Asn Ala Asp Leu Glu Lys Met Val Asp Thr Ser Asp Glu Trp
20 25 30
Ile Val Thr Arg Thr Gly Ile Arg Glu Arg His Ile Ala Ala Pro Asn
35 40 45
Glu Thr Val Ser Thr Met Gly Phe Glu Ala Ala Thr Arg Ala Ile Glu
50 55 60
Met Ala Gly Ile Glu Lys Asp Gln Ile Gly Leu Ile Val Val Ala Thr
65 70 75 80
Thr Ser Ala Thr His Ala Phe Pro Ser Ala Ala Cys Gln Ile Gln Ser
85 90 95
Met Leu Gly Ile Lys Gly Cys Pro Ala Phe Asp Val Ala Ala Ala Cys
100 105 110
Ala Gly Phe Thr Tyr Ala Leu Ser Val Ala Asp Gln Tyr Val Lys Ser
115 120 125
Gly Ala Val Lys Tyr Ala Leu Val Val Gly Ser Asp Val Leu Ala Arg
130 135 140
Thr Cys Asp Pro Thr Asp Arg Gly Thr Ile Ile Ile Asp Gly Asp Gly
145 150 155 160
Ala Gly Ala Ala Val Leu Ala Ala Ser Glu Glu Pro Gly Ile Ile Ser
165 170 175
Thr His Leu His Ala Asp Gly Ser Tyr Gly Glu Leu Leu Thr Leu Pro
180 185 190
Asn Ala Asp Arg Val Asn Pro Glu Asn Ser Ile His Leu Thr Met Ala
195 200 205
Gly Asn Glu Val Phe Lys Val Ala Val Thr Glu Leu Ala His Ile Val
210 215 220
Asp Glu Thr Leu Ala Ala Asn Asn Leu Asp Arg Ser Gln Leu Asp Trp
225 230 235 240
Leu Val Pro His Gln Ala Asn Leu Arg Ile Ile Ser Ala Thr Ala Lys
245 250 255
Lys Leu Gly Met Ser Met Asp Asn Val Val Val Thr Leu Asp Arg His
260 265 270
Gly Asn Thr Ser Ala Ala Ser Val Pro Cys Ala Leu Asp Glu Ala Val
275 280 285
Arg Asp Gly Arg Ile Lys Pro Gly Gln Leu Val Leu Leu Glu Ala Phe
290 295 300
Gly Gly Gly Phe Thr Trp Gly Ser Ala Leu Val Arg Phe
305 310 315
<210> 4
<211> 1273
<212> DNA
<213> Artificial Sequence
<400> 4
tcgcgattga acaggcagtg caggcggtgc agcgacaagt tcctcagcga attgccgctc 60
gcctggaatc tgtataccca gctggttttg agctgctgga cggtggcaaa agcggaactc 120
tgcggtagca ggacgctgcc agcgaactcg cagtttgcaa gtgacggtat ataaccgaaa 180
agtgactgag cgtacatgta tacgaagatt attggtactg gcagctatct gcccgaacaa 240
gtgcggacaa acgccgattt ggaaaaaatg gtggacacct ctgacgagtg gattgtcact 300
cgtaccggta tccgcgaacg ccacattgcc gcgccaaacg aaaccgtttc aaccatgggc 360
tttgaagcgg cgacacgcgc aattgagatg gcgggcattg agaaagacca gattggcctg 420
atcgttgtgg caacgacttc tgctacgcac gctttcccga gcgcagcttg tcagattcaa 480
agcatgttgg gcattaaagg ttgcccggca tttgacgttg cagcagcctg cgcaggtttc 540
acctatgcat taagcgtagc cgatcaatac gtgaaatctg gggcggtgaa gtatgctctg 600
gtcgtcggtt ccgatgtact ggcgcgcacc tgcgatccaa ccgatcgtgg gactattatt 660
attattggcg atggcgcggg cgctgcggtg ctggctgcct ctgaagagcc gggaatcatt 720
tccacccatc tgcatgccga cggtagttat ggtgaattgc tgacgctgcc aaacgccgac 780
cgcgtgaatc cagagaattc aattcatctg acgatggcgg gcaacgaagt cttcaaggtt 840
gcggtaacgg aactggcgca catcgttgat gagacgctgg cggcgaataa tcttgaccgt 900
tctcaactgg actggctggt tccgcatcag gctaacctgc gtattatcag tgcaacggcg 960
aaaaaactcg gtatgtctat ggataatgtc gtggtgacgc tggatcgcca cggtaatacc 1020
tctgcggcct ctgtcccgtg cgcgctggat gaagctgtac gcgacgggcg cattaagccg 1080
gggcagttgg ttctgcttga agcctttggc ggtggattca cctggggctc cgcgctggtt 1140
cgtttctagg ataaggatta aaacatgacg caatttgcat ttgtgttccc tggacagggt 1200
tctcaaaccg ttggaatgct ggctgatatg gcggcgagct atccaattgt cgaagaaacg 1260
tttgctgaag ctt 1273
<210> 5
<211> 1273
<212> DNA
<213> Artificial Sequence
<400> 5
tcgcgattga acaggcagtg caggcggtgc agcgacaagt tcctcagcga attgccgctc 60
gcctggaatc tgtataccca gctggttttg agctgctgga cggtggcaaa agcggaactc 120
tgcggtagca ggacgctgcc agcgaactcg cagtttgcaa gtgacggtat ataaccgaaa 180
agtgactgag cgtacatgta tacgaagatt attggtactg gcagctatct gcccgaacaa 240
gtgcggacaa acgccgattt ggaaaaaatg gtggacacct ctgacgagtg gattgtcact 300
cgtaccggta tccgcgaacg ccacattgcc gcgccaaacg aaaccgtttc aaccatgggc 360
tttgaagcgg cgacacgcgc aattgagatg gcgggcattg agaaagacca gattggcctg 420
atcgttgtgg caacgacttc tgctacgcac gctttcccga gcgcagcttg tcagattcaa 480
agcatgttgg gcattaaagg ttgcccggca tttgacgttg cagcagcctg cgcaggtttc 540
acctatgcat taagcgtagc cgatcaatac gtgaaatctg gggcggtgaa gtatgctctg 600
gtcgtcggtt ccgatgtact ggcgcgcacc tgcgatccaa ccgatcgtgg gactattatt 660
atttttggcg atggcgcggg cgctgcggtg ctggctgcct ctgaagagcc gggaatcatt 720
tccacccatc tgcatgccga cggtagttat ggtgaattgg ctacgctgcc aaacgccgac 780
cgcgtgaatc cagagaattc aattcatctg acgatggcgg gcaacgaagt cttcaaggtt 840
gcggtaacgg aactggcgca catcgttgat gagacgctgg cggcgaataa tcttgaccgt 900
tctcaactgg actggctggt tccgcatcag gctaacctgc gtattatcag tgcaacggcg 960
aaaaaactcg gtatgtctat ggataatgtc gtggtgacgc tggatcgcca cggtaatacc 1020
tctgcggcct ctgtcccgtg cgcgctggat gaagctgtac gcgacgggcg cattaagccg 1080
gggcagttgg ttctgcttga agcctttggc ggtggattca cctggggctc cgcgctggtt 1140
cgtttctagg ataaggatta aaacatgacg caatttgcat ttgtgttccc tggacagggt 1200
tctcaaaccg ttggaatgct ggctgatatg gcggcgagct atccaattgt cgaagaaacg 1260
tttgctgaag ctt 1273
<210> 6
<211> 1273
<212> DNA
<213> Artificial Sequence
<400> 6
tcgcgattga acaggcagtg caggcggtgc agcgacaagt tcctcagcga attgccgctc 60
gcctggaatc tgtataccca gctggttttg agctgctgga cggtggcaaa agcggaactc 120
tgcggtagca ggacgctgcc agcgaactcg cagtttgcaa gtgacggtat ataaccgaaa 180
agtgactgag cgtacatgta tacgaagatt attggtactg gcagctatct gcccgaacaa 240
gtgcggacaa acgccgattt ggaaaaaatg gtggacacct ctgacgagtg gattgtcact 300
cgtaccggta tccgcgaacg ccacattgcc gcgccaaacg aaaccgtttc aaccatgggc 360
tttgaagcgg cgacacgcgc aattgagatg gcgggcattg agaaagacca gattggcctg 420
atcgttgtgg caacgacttc tgctacgcac gctttcccga gcgcagcttg tcagattcaa 480
agcatgttgg gcattaaagg ttgcccggca tttgacgttg cagcagcctg cgcaggtttc 540
acctatgcat taagcgtagc cgatcaatac gtgaaatctg gggcggtgaa gtatgctctg 600
gtcgtcggtt ccgatgtact ggcgcgcacc tgcgatccaa ccgatcgtgg gactattatt 660
attattggcg atggcgcggg cgctgcggtg ctggctgcct ctgaagagcc gggaatcatt 720
tccacccatc tgcatgccga cggtagttat ggtgaattgg ctacgctgcc aaacgccgac 780
cgcgtgaatc cagagaattc aattcatctg acgatggcgg gcaacgaagt cttcaaggtt 840
gcggtaacgg aactggcgca catcgttgat gagacgctgg cggcgaataa tcttgaccgt 900
tctcaactgg actggctggt tccgcatcag gctaacctgc gtattatcag tgcaacggcg 960
aaaaaactcg gtatgtctat ggataatgtc gtggtgacgc tggatcgcca cggtaatacc 1020
tctgcggcct ctgtcccgtg cgcgctggat gaagctgtac gcgacgggcg cattaagccg 1080
gggcagttgg ttctgcttga agcctttggc ggtggattca cctggggctc cgcgctggtt 1140
cgtttctagg ataaggatta aaacatgacg caatttgcat ttgtgttccc tggacagggt 1200
tctcaaaccg ttggaatgct ggctgatatg gcggcgagct atccaattgt cgaagaaacg 1260
tttgctgaag ctt 1273
<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 7
gcgccatatg tcgcgattga acagg 25
<210> 8
<211> 33
<212> DNA
<213> Artificial Sequence
<400> 8
ctcactcgag cttcagcaaa cgtttcttcg aca 33
<210> 9
<211> 33
<212> DNA
<213> Artificial Sequence
<400> 9
ctcactcgag cttcagcaaa cgtttcttcg aca 33
<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence
<400> 10
gaattggcta cgctgccaaa cgccgac 27
<210> 11
<211> 32
<212> DNA
<213> Artificial Sequence
<400> 11
catcgccaat aataataata gtcccacgat cg 32
<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 12
tattattatt ggcgatggcg cgggc 25

Claims (4)

1.一种β-酮脂酰-ACP合成酶突变体,是对β-酮脂酰-ACP合成酶突变体进行遗传改造获得的,其特征在于,
所述的遗传改造是将大肠杆菌来源的β-酮脂酰-ACP合成酶中的189位点由亮氨酸突变为丝氨酸,和/或将157位点由苯丙氨酸突变为天冬氨酸;
所述大肠杆菌为E.coli MG 1655。
2.一种基因,所述的基因用于编码权利要求1所述的β-酮脂酰-ACP合成酶突变体。
3.一种重组质粒,其特征在于,所述的重组质粒用于表达权利要求1所述的β-酮脂酰-ACP合成酶。
4.一种提高脂肪酸产量的方法,其特征在于,是在脂肪酸合成菌中表达β-酮脂酰-ACP合成酶突变体,所述β-酮脂酰-ACP合成酶突变体为如下任意一种或两种:
(a)将大肠杆菌来源的β-酮脂酰-ACP合成酶中的189位点由亮氨酸突变为丝氨酸后获得;
(b)将大肠杆菌来源的β-酮脂酰-ACP合成酶中的189位点由亮氨酸突变为丝氨酸,和将157位点由苯丙氨酸突变为天冬氨酸后获得;
所述大肠杆菌为E.coli MG 1655。
CN201811443458.9A 2018-11-29 2018-11-29 一种β-酮脂酰-ACP合成酶突变体 Active CN109517811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811443458.9A CN109517811B (zh) 2018-11-29 2018-11-29 一种β-酮脂酰-ACP合成酶突变体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811443458.9A CN109517811B (zh) 2018-11-29 2018-11-29 一种β-酮脂酰-ACP合成酶突变体

Publications (2)

Publication Number Publication Date
CN109517811A CN109517811A (zh) 2019-03-26
CN109517811B true CN109517811B (zh) 2022-11-11

Family

ID=65794507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811443458.9A Active CN109517811B (zh) 2018-11-29 2018-11-29 一种β-酮脂酰-ACP合成酶突变体

Country Status (1)

Country Link
CN (1) CN109517811B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408603B (zh) * 2019-08-01 2022-09-23 上海交通大学 脂酰选择性改变的a54145c1突变体及其构建和应用
CN114717208B (zh) * 2022-05-18 2024-07-09 上海交通大学 一种酰基CoA合成酶及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906845A (zh) * 2010-09-15 2014-07-02 Ls9公司 在重组微生物细胞中制备奇数链脂肪酸衍生物
CN106795483A (zh) * 2013-07-19 2017-05-31 嘉吉公司 用于生产脂肪酸和脂肪酸衍生产物的微生物及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040181038A1 (en) * 1999-06-07 2004-09-16 Smithkline Beecham Corporation Novel fabh enzyme, compositions capable of binding to said enzyme and methods of use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906845A (zh) * 2010-09-15 2014-07-02 Ls9公司 在重组微生物细胞中制备奇数链脂肪酸衍生物
CN106795483A (zh) * 2013-07-19 2017-05-31 嘉吉公司 用于生产脂肪酸和脂肪酸衍生产物的微生物及方法

Also Published As

Publication number Publication date
CN109517811A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
CN110791494B (zh) 一种天冬氨酸酶突变体、包含天冬氨酸酶突变体的重组表达载体和重组菌及应用
CN108795916B (zh) 一种赖氨酸脱羧酶突变体、其编码基因及其表达和应用
WO2017143945A1 (zh) 一种头孢菌素c酰化酶突变体
CN107858340B (zh) 高催化活性的d-果糖-6-磷酸醛缩酶a突变体、重组表达载体、基因工程菌及其应用
CN104152505A (zh) 一种利用重组菌株转化制备4-羟基-l-异亮氨酸的方法
CN113151201A (zh) 高热稳定性高活性异丁香酚单加氧酶突变体及其应用
CN101392241B (zh) β-甘露聚糖酶及基因和制备方法以及载体和宿主细胞
CN112626057B (zh) 一种嵌合型植物腈水解酶突变体、编码基因及其应用
CN109517811B (zh) 一种β-酮脂酰-ACP合成酶突变体
CN110499301B (zh) 一种催化效率提高的内消旋-二氨基庚二酸脱氢酶突变体
CN110129305B (zh) 一种用于制备7-aca的头孢菌素c酰化酶突变体
CN113462678B (zh) 一种谷氨酸脱羧酶突变体
CN105713883A (zh) 一种l-脯氨酸-4-羟基化酶及其应用
CN113106082B (zh) 动物粪便宏基因组来源的丙氨酸消旋酶及其制备和应用
WO2018165881A1 (zh) 一种头孢菌素c酰化酶突变体及其应用
KR100888513B1 (ko) 신규 n―아세틸글루코사민―2―에피머라아제 및 이를이용한 cmp―n―아세틸뉴라민산의 제조방법
KR101836719B1 (ko) O-아세틸호모세린 설피드릴라제 변이체 및 이를 이용한 l-메치오닌 제조 방법
CN110846333B (zh) 一种deoB基因改造的重组菌株及其构建方法与应用
CN113151240B (zh) 一种葡萄糖异构酶、突变体及其编码基因与应用
CN112011495B (zh) 一种表达嗜热菌蛋白酶突变体的重组大肠杆菌及其应用
CN112011494B (zh) 重组大肠杆菌及其在全细胞转化合成阿斯巴甜中的应用
WO2002055715A1 (fr) Adn codant pour une d-myo-inositol 1-épimérase
CN112391373A (zh) 一种高产γ-氨基丁酸的谷氨酸脱羧酶GADZ1及其基因和应用
KR101778878B1 (ko) 박테로이데스 속 미생물 유래의 gaba 생성 고활성 글루탐산탈탄산효소 및 이의 용도
CN106591338B (zh) 一种增加植物来源糖基转移酶基因可溶性异源表达的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant