[go: up one dir, main page]

CN109473511B - A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method - Google Patents

A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method Download PDF

Info

Publication number
CN109473511B
CN109473511B CN201811063800.2A CN201811063800A CN109473511B CN 109473511 B CN109473511 B CN 109473511B CN 201811063800 A CN201811063800 A CN 201811063800A CN 109473511 B CN109473511 B CN 109473511B
Authority
CN
China
Prior art keywords
type semiconductor
semiconductor layer
magnesium
layer
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811063800.2A
Other languages
Chinese (zh)
Other versions
CN109473511A (en
Inventor
王倩
洪威威
陆香花
周飚
胡加辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boe Huacan Optoelectronics Suzhou Co ltd
Original Assignee
HC Semitek Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Semitek Suzhou Co Ltd filed Critical HC Semitek Suzhou Co Ltd
Priority to CN201811063800.2A priority Critical patent/CN109473511B/en
Publication of CN109473511A publication Critical patent/CN109473511A/en
Application granted granted Critical
Publication of CN109473511B publication Critical patent/CN109473511B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • H10H20/01335Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/8215Bodies characterised by crystalline imperfections, e.g. dislocations; characterised by the distribution of dopants, e.g. delta-doping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种氮化镓基发光二极管外延片及其生长方法,属于半导体技术领域。所述生长方法包括:提供一衬底;在所述衬底上生长N型半导体层;在所述N型半导体层上生长有源层;在由氢气形成的生长气氛中,在所述有源层上生长第一P型半导体层;在由氮气形成的生长气氛中,在所述第一P型半导体层上生长第二P型半导体层;其中,所述第一P型半导体层和所述第二P型半导体层均包括多个氮化镁层和多个掺杂镁的氮化镓层,所述多个氮化镁层和所述多个掺杂镁的氮化镓层交替层叠设置。本发明可以提高P型半导体层中的空穴浓度,最终提高LED的发光效率。

Figure 201811063800

The invention discloses a gallium nitride-based light-emitting diode epitaxial wafer and a growth method thereof, belonging to the technical field of semiconductors. The growth method includes: providing a substrate; growing an N-type semiconductor layer on the substrate; growing an active layer on the N-type semiconductor layer; in a growth atmosphere formed of hydrogen, in the active layer A first P-type semiconductor layer is grown on the layer; in a growth atmosphere formed of nitrogen, a second P-type semiconductor layer is grown on the first P-type semiconductor layer; wherein the first P-type semiconductor layer and the The second P-type semiconductor layers each include a plurality of magnesium nitride layers and a plurality of magnesium-doped gallium nitride layers, and the plurality of magnesium nitride layers and the plurality of magnesium-doped gallium nitride layers are alternately stacked. . The invention can increase the hole concentration in the P-type semiconductor layer, and finally improve the luminous efficiency of the LED.

Figure 201811063800

Description

一种氮化镓基发光二极管外延片及其生长方法A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method

技术领域technical field

本发明涉及半导体技术领域,特别涉及一种氮化镓基发光二极管外延片及其生长方法。The invention relates to the technical field of semiconductors, in particular to a gallium nitride-based light-emitting diode epitaxial wafer and a growth method thereof.

背景技术Background technique

发光二极管(英文:Light Emitting Diode,简称:LED)是一种能发光的半导体电子元件。随着LED行业的快速发展,LED广泛应用在交通灯、路灯、景观灯、照明、背光源等领域,对LED亮度的要求越来越高。外延片是LED制备过程中的初级成品,很多LED的专家和学者通过调整外延片的结构,实现LED亮度的提高。Light Emitting Diode (English: Light Emitting Diode, LED for short) is a semiconductor electronic component that can emit light. With the rapid development of the LED industry, LEDs are widely used in traffic lights, street lights, landscape lights, lighting, backlights and other fields, and the requirements for LED brightness are getting higher and higher. Epitaxial wafers are the primary products in the LED manufacturing process. Many LED experts and scholars adjust the structure of the epitaxial wafers to improve the brightness of LEDs.

氮化镓(GaN)具有良好的热导性能,同时具有耐高温、耐酸碱、高硬度等优良特性,使氮化镓(GaN)基LED受到越来越多的关注和研究。现有的氮化镓基LED包括衬底、N型半导体层、有源层和P型半导体层,N型半导体层、有源层和P型半导体层依次层叠在衬底上。P型半导体层用于提供进行复合发光的空穴,N型半导体层用于提供进行复合发光的电子,有源层用于进行电子和空穴的辐射复合发光,衬底用于为外延材料提供生长表面。Gallium nitride (GaN) has good thermal conductivity, high temperature resistance, acid and alkali resistance, high hardness and other excellent characteristics, so that gallium nitride (GaN)-based LEDs have received more and more attention and research. The existing gallium nitride-based LED includes a substrate, an N-type semiconductor layer, an active layer and a P-type semiconductor layer, and the N-type semiconductor layer, the active layer and the P-type semiconductor layer are sequentially stacked on the substrate. The P-type semiconductor layer is used to provide holes for recombination emission, the N-type semiconductor layer is used to provide electrons for recombination emission, the active layer is used for radiative recombination emission of electrons and holes, and the substrate is used to provide epitaxial materials growth surface.

在实现本发明的过程中,发明人发现现有技术至少存在以下问题:In the process of realizing the present invention, the inventor found that the prior art has at least the following problems:

由于镁原子和镓原子的半径大小差不多,容易形成替位原子,因此P型半导体层通常采用掺杂镁的氮化镓。理论上来说,P型半导体层中镁元素的掺杂浓度与P型半导体层中自由空穴的浓度正相关。如果P型半导体层中镁元素的掺杂浓度较低,则P型半导体层中自由空穴的浓度较低,会限制有源层中电子和空穴的复合发光,导致LED的发光效率较低。因此,P型半导体层中镁元素的掺杂浓度通常较高。Since the radii of magnesium atoms and gallium atoms are similar in size, substitution atoms are easily formed, so the P-type semiconductor layer usually adopts magnesium-doped gallium nitride. Theoretically, the doping concentration of magnesium in the P-type semiconductor layer is positively correlated with the concentration of free holes in the P-type semiconductor layer. If the doping concentration of magnesium in the P-type semiconductor layer is low, the concentration of free holes in the P-type semiconductor layer will be low, which will limit the recombination of electrons and holes in the active layer, resulting in low luminous efficiency of the LED. . Therefore, the doping concentration of magnesium in the P-type semiconductor layer is usually high.

镁元素的掺杂浓度较高会带来镁补偿的问题,P型半导体层中容易形成中性的络合物,降低镁的激活效率,同时产生大量的点缺陷,导致P型半导体层的晶体质量较差,影响P型半导体层中自由空穴的浓度,限制有源层中电子和空穴的复合发光,造成LED的发光效率较低。即LED的发光效率受到P型半导体层的晶体质量和镁原子在P型半导体层中的激活效率的制约。The high doping concentration of magnesium element will bring about the problem of magnesium compensation. It is easy to form a neutral complex in the P-type semiconductor layer, which reduces the activation efficiency of magnesium and produces a large number of point defects, resulting in the crystal of the P-type semiconductor layer. The quality is poor, which affects the concentration of free holes in the P-type semiconductor layer and limits the recombination of electrons and holes in the active layer, resulting in low luminous efficiency of the LED. That is, the luminous efficiency of the LED is restricted by the crystal quality of the P-type semiconductor layer and the activation efficiency of magnesium atoms in the P-type semiconductor layer.

然而P型半导体层一般在由氮气和氢气的混合气体形成的生长气氛中生长。氢气中的氢原子会与镁原子形成Mg-H键,造成镁的激活效率较低;同时P型半导体层在氮气的生长气氛下晶体质量较差。因此,P型半导体层中自由空穴的浓度较低,严重影响LED的发光效率。However, the P-type semiconductor layer is generally grown in a growth atmosphere formed of a mixed gas of nitrogen and hydrogen. Hydrogen atoms in hydrogen will form Mg-H bonds with magnesium atoms, resulting in low activation efficiency of magnesium; at the same time, the crystal quality of the P-type semiconductor layer is poor in the growth atmosphere of nitrogen. Therefore, the concentration of free holes in the P-type semiconductor layer is low, which seriously affects the luminous efficiency of the LED.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供了一种氮化镓基发光二极管外延片及其生长方法,能够解决现有技术P型半导体层中自由空穴的浓度较低,造成LED的发光效率较低的问题。所述技术方案如下:The embodiments of the present invention provide a gallium nitride-based light emitting diode epitaxial wafer and a growth method thereof, which can solve the problem that the concentration of free holes in the P-type semiconductor layer in the prior art is low, resulting in low luminous efficiency of the LED. The technical solution is as follows:

一方面,本发明实施例提供了一种氮化镓基发光二极管外延片的生长方法,所述生长方法包括:In one aspect, an embodiment of the present invention provides a method for growing a gallium nitride-based light-emitting diode epitaxial wafer, the growth method comprising:

提供一衬底;providing a substrate;

在所述衬底上生长N型半导体层;growing an N-type semiconductor layer on the substrate;

在所述N型半导体层上生长有源层;growing an active layer on the N-type semiconductor layer;

在由氢气形成的生长气氛中,在所述有源层上生长第一P型半导体层;growing a first P-type semiconductor layer on the active layer in a growth atmosphere formed of hydrogen;

在由氮气形成的生长气氛中,在所述第一P型半导体层上生长第二P型半导体层;growing a second P-type semiconductor layer on the first P-type semiconductor layer in a growth atmosphere formed of nitrogen;

其中,所述第一P型半导体层和所述第二P型半导体层均包括多个氮化镁层和多个掺杂镁的氮化镓层,所述多个氮化镁层和所述多个掺杂镁的氮化镓层交替层叠设置。Wherein, the first P-type semiconductor layer and the second P-type semiconductor layer each include a plurality of magnesium nitride layers and a plurality of magnesium-doped gallium nitride layers, and the plurality of magnesium nitride layers and the A plurality of magnesium-doped gallium nitride layers are alternately stacked.

可选地,所述第一P型半导体层中氮化镁层的数量与所述第一P型半导体层中掺杂镁的氮化镓层的数量相同;所述第一P型半导体层中氮化镁层的数量为5个~10个。Optionally, the number of magnesium nitride layers in the first P-type semiconductor layer is the same as the number of magnesium-doped gallium nitride layers in the first P-type semiconductor layer; The number of magnesium nitride layers is 5 to 10.

可选地,所述第二P型半导体层中氮化镁层的数量与所述第二P型半导体层中掺杂镁的氮化镓层的数量相同;所述第二P型半导体层中氮化镁层的数量为5个~10个。Optionally, the number of magnesium nitride layers in the second P-type semiconductor layer is the same as the number of magnesium-doped gallium nitride layers in the second P-type semiconductor layer; The number of magnesium nitride layers is 5 to 10.

可选地,所述氮化镁层的厚度为1nm~3nm。Optionally, the thickness of the magnesium nitride layer is 1 nm˜3 nm.

可选地,所述掺杂镁的氮化镓层的厚度为4nm~7nm。Optionally, the thickness of the magnesium-doped gallium nitride layer is 4 nm˜7 nm.

可选地,所述掺杂镁的氮化镓层中镁元素的掺杂浓度为1020cm-3~3*1020cm-3Optionally, the doping concentration of magnesium in the magnesium-doped gallium nitride layer is 10 20 cm -3 to 3*10 20 cm -3 .

可选地,所述第二P型半导体层和所述第一P型半导体层的厚度之和为100nm~200nm。Optionally, the sum of the thicknesses of the second P-type semiconductor layer and the first P-type semiconductor layer is 100 nm˜200 nm.

可选地,所述第一P型半导体层的生长条件与所述第二P型半导体层生长条件相同,所述生长条件包括生长温度和生长压力。Optionally, the growth conditions of the first P-type semiconductor layer are the same as the growth conditions of the second P-type semiconductor layer, and the growth conditions include growth temperature and growth pressure.

优选地,所述第一P型半导体层的生长温度为800℃~1000℃,所述第一P型半导体层的生长压力为200torr~600torr。Preferably, the growth temperature of the first P-type semiconductor layer is 800° C.˜1000° C., and the growth pressure of the first P-type semiconductor layer is 200 torr˜600 torr.

另一方面,本发明实施例提供了一种氮化镓基发光二极管外延片,所述氮化镓基发光二极管外延片包括衬底、N型半导体层、有源层、第一P型半导体层和第二P型半导体层,所述N型半导体层、所述有源层、所述第一P型半导体层和所述第二P型半导体层依次层叠在所述衬底上,所述第一P型半导体层在由氢气形成的生长气氛中生长,所述第二P型半导体层在由氮气形成的生长气氛中生长;所述第一P型半导体层和所述第二P型半导体层均包括多个氮化镁层和多个掺杂镁的氮化镓层,所述多个氮化镁层和所述多个掺杂镁的氮化镓层交替层叠设置。On the other hand, an embodiment of the present invention provides a gallium nitride-based light-emitting diode epitaxial wafer, the gallium nitride-based light-emitting diode epitaxial wafer includes a substrate, an N-type semiconductor layer, an active layer, and a first P-type semiconductor layer and a second P-type semiconductor layer, the N-type semiconductor layer, the active layer, the first P-type semiconductor layer and the second P-type semiconductor layer are sequentially stacked on the substrate, the first A P-type semiconductor layer is grown in a growth atmosphere formed of hydrogen gas, the second P-type semiconductor layer is grown in a growth atmosphere formed of nitrogen; the first P-type semiconductor layer and the second P-type semiconductor layer are grown Each includes a plurality of magnesium nitride layers and a plurality of magnesium-doped gallium nitride layers, and the plurality of magnesium nitride layers and the plurality of magnesium-doped gallium nitride layers are alternately stacked.

本发明实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solutions provided in the embodiments of the present invention are:

通过先在由氢气形成的生长气氛中生长第一P型半导体层,氢气具有刻蚀作用,可以对第一P型半导体层进行处理,有效掩盖外延生长过程中延伸到P型半导体层的缺陷,大大改善P型半导体层的晶体质量;再在由氮气形成的生长气氛中生长第二P型半导体层,可以避免由氢气形成的生长气氛中的氢原子与镁原子形成Mg-H键,相当于增加了P型半导体层中镁的掺入量,即提高了P型半导体层中镁的激活效率。第一P型半导体层和第二P型半导体层分别从P型半导体层的晶体质量和镁原子在P型半导体层中的激活效率两个方面对P型半导体层进行了改善,可以有效提高P型半导体层中的空穴浓度,最终提高LED的发光效率。而且第一P型半导体层和第二P型半导体层均包括交替层叠设置的多个氮化镁层和多个掺杂镁的氮化镓层,镁原子在氮化镓中形成替位原子,可以有效掺杂在P型半导体层中,提高处于镓位的镁原子的比例,同时减少填充类型的镁原子,避免镁原子以杂质的形式存在于P型半导体层中,提高P型半导体层的晶体质量,进一步提高LED的发光效率。By first growing the first P-type semiconductor layer in the growth atmosphere formed by hydrogen, the hydrogen has an etching effect, and the first P-type semiconductor layer can be processed, effectively covering the defects extending to the P-type semiconductor layer during the epitaxial growth process, The crystal quality of the P-type semiconductor layer is greatly improved; the second P-type semiconductor layer is grown in the growth atmosphere formed by nitrogen, which can avoid the formation of Mg-H bonds between hydrogen atoms and magnesium atoms in the growth atmosphere formed by hydrogen, which is equivalent to The doping amount of magnesium in the P-type semiconductor layer is increased, that is, the activation efficiency of magnesium in the P-type semiconductor layer is improved. The first P-type semiconductor layer and the second P-type semiconductor layer respectively improve the P-type semiconductor layer from the crystal quality of the P-type semiconductor layer and the activation efficiency of magnesium atoms in the P-type semiconductor layer, which can effectively improve the P-type semiconductor layer. The hole concentration in the type semiconductor layer will ultimately improve the luminous efficiency of the LED. Moreover, both the first P-type semiconductor layer and the second P-type semiconductor layer include a plurality of magnesium nitride layers and a plurality of magnesium-doped gallium nitride layers that are alternately stacked, and the magnesium atoms form substitution atoms in the gallium nitride, It can be effectively doped in the P-type semiconductor layer to increase the proportion of magnesium atoms in the gallium position, while reducing the filling type of magnesium atoms, avoiding the presence of magnesium atoms in the P-type semiconductor layer in the form of impurities, and improving the P-type semiconductor layer. The crystal quality further improves the luminous efficiency of the LED.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.

图1是本发明实施例提供的一种氮化镓基发光二极管外延片的生长方法的流程图;1 is a flowchart of a method for growing a GaN-based light-emitting diode epitaxial wafer provided by an embodiment of the present invention;

图2是本发明实施例提供的一种氮化镓基发光二极管外延片的结构示意图;2 is a schematic structural diagram of a gallium nitride-based light-emitting diode epitaxial wafer provided by an embodiment of the present invention;

图3是本发明实施例提供的第一P型半导体层和第二P型半导体层的结构示意图。FIG. 3 is a schematic structural diagram of a first P-type semiconductor layer and a second P-type semiconductor layer provided by an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.

本发明实施例提供了一种氮化镓基发光二极管外延片的生长方法。图1为本发明实施例提供的一种氮化镓基发光二极管外延片的生长方法的流程图。参见图1,该生长方法包括:Embodiments of the present invention provide a method for growing a gallium nitride-based light-emitting diode epitaxial wafer. FIG. 1 is a flowchart of a method for growing a GaN-based light-emitting diode epitaxial wafer according to an embodiment of the present invention. Referring to Figure 1, the growth method includes:

步骤101:提供一衬底。Step 101: Provide a substrate.

具体地,衬底的材料可以采用蓝宝石(主要材料为三氧化二铝),如晶向为[0001]的蓝宝石。Specifically, the material of the substrate can be sapphire (the main material is aluminum oxide), such as sapphire with a crystal orientation of [0001].

具体地,该步骤101可以包括:Specifically, this step 101 may include:

控制温度为1000℃~1200℃(优选为1100℃),在氢气气氛中对衬底进行1分钟~10分钟(优选为5分钟)退火处理;The temperature is controlled to be 1000°C to 1200°C (preferably 1100°C), and the substrate is annealed for 1 minute to 10 minutes (preferably 5 minutes) in a hydrogen atmosphere;

对衬底进行氮化处理。The substrate is nitrided.

通过上述步骤清洁衬底的表面,避免杂质掺入外延片中,有利于提高外延片的生长质量。The above steps are used to clean the surface of the substrate to avoid doping impurities into the epitaxial wafer, which is beneficial to improve the growth quality of the epitaxial wafer.

步骤102:在衬底上生长N型半导体层。Step 102: growing an N-type semiconductor layer on the substrate.

具体地,N型半导体层的材料可以采用N型掺杂(如硅)的氮化镓。Specifically, the material of the N-type semiconductor layer can be N-type doped (eg, silicon) gallium nitride.

进一步地,N型半导体层的厚度可以为1μm~5μm,优选为3μm;N型半导体层中N型掺杂剂的掺杂浓度可以为1018cm-3~1019cm-3,优选为5*1018cm-3Further, the thickness of the N-type semiconductor layer may be 1 μm˜5 μm, preferably 3 μm; the doping concentration of the N-type dopant in the N-type semiconductor layer may be 10 18 cm -3 -10 19 cm -3 , preferably 5 *10 18 cm -3 .

具体地,该步骤102可以包括:Specifically, this step 102 may include:

控制温度为1000℃~1200℃(优选为1100℃),压力为100torr~500torr(优选为300torr),在衬底上生长N型半导体层。The temperature is controlled to be 1000°C to 1200°C (preferably 1100°C), the pressure is controlled to be 100torr to 500torr (preferably 300torr), and an N-type semiconductor layer is grown on the substrate.

可选地,在步骤102之前,该制备方法可以包括:Optionally, before step 102, the preparation method may include:

采用物理气相沉积(英文:Physical Vapor Deposition,简称:PVD)技术在衬底上形成缓冲层。A buffer layer is formed on the substrate by using a physical vapor deposition (English: Physical Vapor Deposition, PVD for short) technology.

相应地,N型半导体层生长在缓冲层上。Accordingly, the N-type semiconductor layer is grown on the buffer layer.

通过设置缓冲层缓解衬底材料与氮化镓之间晶格失配产生的应力和缺陷,并为氮化镓材料外延生长提供成核中心。The stress and defects caused by lattice mismatch between the substrate material and the gallium nitride are relieved by arranging the buffer layer, and a nucleation center is provided for the epitaxial growth of the gallium nitride material.

具体地,缓冲层的材料可以采用氮化铝或者氮化铝镓。Specifically, the material of the buffer layer can be aluminum nitride or aluminum gallium nitride.

具体地,采用PVD技术在衬底上形成缓冲层,可以包括:Specifically, using PVD technology to form a buffer layer on the substrate may include:

控制温度为400℃~800℃(优选为600℃),压力为4torr~6torr(优选为5torr),溅射功率为3000W~5000W(优选为4000W),采用磁控溅射技术在衬底上形成缓冲层。The temperature is controlled to be 400°C to 800°C (preferably 600°C), the pressure is 4torr to 6torr (preferably 5torr), the sputtering power is 3000W to 5000W (preferably 4000W), and the magnetron sputtering technology is used to form the substrate on the substrate. The buffer layer.

优选地,在采用PVD技术在衬底上形成缓冲层之后,该制备方法还可以包括:Preferably, after the buffer layer is formed on the substrate using PVD technology, the preparation method may further include:

采用MOCVD技术在缓冲层上生长未掺杂氮化镓层。The undoped gallium nitride layer is grown on the buffer layer using MOCVD technology.

相应地,N型半导体层生长在未掺杂氮化镓层上。Accordingly, the N-type semiconductor layer is grown on the undoped gallium nitride layer.

通过设置未掺杂氮化镓层进一步缓解衬底材料与氮化镓之间晶格失配产生的应力和缺陷,为外延片主体结构提供晶体质量较好的生长表面。The stress and defects caused by lattice mismatch between the substrate material and the gallium nitride are further relieved by providing the undoped gallium nitride layer, and a growth surface with better crystal quality is provided for the main structure of the epitaxial wafer.

在具体实现时,首先在缓冲层进行氮化镓的纵向生长,会形成多个相互独立的三维岛状结构,称为三维成核层;然后在所有三维岛状结构上和各个三维岛状结构之间进行氮化镓的横向生长,形成二维平面结构,称为二维恢复层;最后在二维生长层上高温生长一层较厚的氮化镓,称为本征氮化镓层。本实施例中将三维成核层、二维恢复层和本征氮化镓层统称为未掺杂氮化镓层。In the specific implementation, firstly, the vertical growth of gallium nitride is carried out on the buffer layer, and multiple independent three-dimensional island-like structures will be formed, which are called three-dimensional nucleation layers; then, on all three-dimensional island-like structures and each three-dimensional island-like structure The lateral growth of gallium nitride is carried out between them to form a two-dimensional planar structure, which is called a two-dimensional recovery layer; finally, a thicker layer of gallium nitride is grown on the two-dimensional growth layer at a high temperature, which is called an intrinsic gallium nitride layer. In this embodiment, the three-dimensional nucleation layer, the two-dimensional recovery layer and the intrinsic gallium nitride layer are collectively referred to as the undoped gallium nitride layer.

进一步地,未掺杂氮化镓层的厚度可以为1μm~5μm,优选为3μm。Further, the thickness of the undoped gallium nitride layer may be 1 μm˜5 μm, preferably 3 μm.

具体地,采用MOCVD技术在缓冲层上生长未掺杂氮化镓层,可以包括:Specifically, using MOCVD technology to grow an undoped gallium nitride layer on the buffer layer may include:

控制温度为1000℃~1100℃(优选为1050℃),压力为100torr~500torr(优选为300torr),在缓冲层上生长未掺杂氮化镓层。The temperature is controlled to be 1000°C to 1100°C (preferably 1050°C), the pressure is controlled to be 100torr to 500torr (preferably 300torr), and an undoped gallium nitride layer is grown on the buffer layer.

步骤103:在N型半导体层上生长有源层。Step 103: growing an active layer on the N-type semiconductor layer.

具体地,有源层可以包括多个量子阱和多个量子垒,多个量子阱和多个量子垒交替层叠设置;量子阱的材料可以采用氮化铟镓(InGaN),如InxGa1-xN,0<x<1,量子垒的材料可以采用氮化镓。Specifically, the active layer may include multiple quantum wells and multiple quantum barriers, and multiple quantum wells and multiple quantum barriers are alternately stacked; the material of the quantum wells may be indium gallium nitride (InGaN), such as In x Ga 1 -x N, 0<x<1, the material of the quantum barrier can be gallium nitride.

进一步地,量子阱的厚度可以为2nm~3nm,优选为2.5nm;量子垒的厚度可以为9nm~20nm,优选为15nm;量子阱的数量与量子垒的数量相同,量子垒的数量可以为5个~11个,优选为8个。Further, the thickness of the quantum wells can be 2nm to 3nm, preferably 2.5nm; the thickness of the quantum barriers can be 9nm to 20nm, preferably 15nm; the number of quantum wells is the same as the number of quantum barriers, and the number of quantum barriers can be 5 1 to 11, preferably 8.

具体地,该步骤103可以包括:Specifically, this step 103 may include:

在N型半导体层上生长有源层;其中,量子阱的生长温度为720℃~829℃(优选为760℃),压力为100torr~500torr(优选为300torr);量子垒的生长温度为850℃~959℃(优选为900℃),压力为100torr~500torr(优选为300torr)。The active layer is grown on the N-type semiconductor layer; wherein, the growth temperature of the quantum well is 720°C to 829°C (preferably 760°C), and the pressure is 100torr to 500torr (preferably 300torr); the growth temperature of the quantum barrier is 850°C ~959°C (preferably 900°C), and the pressure is 100torr to 500torr (preferably 300torr).

可选地,在步骤103之前,该制备方法可以包括:Optionally, before step 103, the preparation method may include:

采用MOCVD技术在N型半导体层上生长应力释放层。The stress relief layer is grown on the N-type semiconductor layer by using MOCVD technology.

相应地,有源层生长在应力释放层上。Accordingly, the active layer is grown on the stress release layer.

通过设置应力释放层对蓝宝石和氮化镓之间晶格失配产生的应力进行释放,提高有源层的晶体质量,有利于电子和空穴在有源层进行辐射复合发光,提高LED的内量子效率,进而提高LED的发光效率。By setting the stress release layer, the stress caused by the lattice mismatch between sapphire and gallium nitride is released, and the crystal quality of the active layer is improved, which is conducive to the radiative recombination of electrons and holes in the active layer, and improves the internal performance of the LED. Quantum efficiency, thereby improving the luminous efficiency of LEDs.

具体地,应力释放层的材料可以采用镓铟铝氮(AlInGaN),可以有效释放蓝宝石和氮化镓晶格失配产生的应力,改善外延片的晶体质量,提高LED的发光效率。Specifically, the material of the stress release layer can be gallium indium aluminum nitride (AlInGaN), which can effectively release the stress caused by the lattice mismatch between sapphire and gallium nitride, improve the crystal quality of the epitaxial wafer, and improve the luminous efficiency of the LED.

优选地,应力释放层中铝组分的摩尔含量可以小于或等于0.2,应力释放层中铟组分的摩尔含量可以小于或等于0.05,以避免造成不良影响。Preferably, the molar content of the aluminum component in the stress release layer may be less than or equal to 0.2, and the molar content of the indium component in the stress release layer may be less than or equal to 0.05 to avoid adverse effects.

进一步地,应力释放层的厚度可以为50nm~500nm,优选为300nm。Further, the thickness of the stress release layer may be 50 nm to 500 nm, preferably 300 nm.

具体地,采用MOCVD技术在N型半导体层上生长应力释放层,可以包括:Specifically, using the MOCVD technology to grow the stress release layer on the N-type semiconductor layer may include:

控制温度为800℃~1100℃(优选为950℃),压力为100torr~500torr(优选为300torr),在N型半导体层上生长应力释放层。The temperature is controlled to be 800°C to 1100°C (preferably 950°C), and the pressure is controlled to be 100torr to 500torr (preferably 300torr), and a stress release layer is grown on the N-type semiconductor layer.

步骤104:在由氢气形成的生长气氛中,在有源层上生长第一P型半导体层。Step 104 : growing a first P-type semiconductor layer on the active layer in a growth atmosphere formed of hydrogen gas.

步骤105:在由氮气形成的生长气氛中,在第一P型半导体层上生长第二P型半导体层。Step 105: A second P-type semiconductor layer is grown on the first P-type semiconductor layer in a growth atmosphere formed of nitrogen.

其中,第一P型半导体层和第二P型半导体层均包括多个氮化镁层和多个掺杂镁的氮化镓层,多个氮化镁层和多个掺杂镁的氮化镓层交替层叠设置。Wherein, both the first P-type semiconductor layer and the second P-type semiconductor layer include a plurality of magnesium nitride layers and a plurality of magnesium-doped gallium nitride layers, a plurality of magnesium nitride layers and a plurality of magnesium-doped nitride layers The gallium layers are alternately stacked.

本发明实施例通过先在由氢气形成的生长气氛中生长第一P型半导体层,氢气具有刻蚀作用,可以对第一P型半导体层进行处理,有效掩盖外延生长过程中延伸到P型半导体层的缺陷,大大改善P型半导体层的晶体质量;再在由氮气形成的生长气氛中生长第二P型半导体层,可以避免由氢气形成的生长气氛中的氢原子与镁原子形成Mg-H键,相当于增加了P型半导体层中镁的掺入量,即提高了P型半导体层中镁的激活效率。第一P型半导体层和第二P型半导体层分别从P型半导体层的晶体质量和镁原子在P型半导体层中的激活效率两个方面对P型半导体层进行了改善,可以有效提高P型半导体层中的空穴浓度,最终提高LED的发光效率。而且第一P型半导体层和第二P型半导体层均包括交替层叠设置的多个氮化镁层和多个掺杂镁的氮化镓层,镁原子在氮化镓中形成替位原子,可以有效掺杂在P型半导体层中,提高处于镓位的镁原子的比例,同时减少填充类型的镁原子,避免镁原子以杂质的形式存在于P型半导体层中,提高P型半导体层的晶体质量,进一步提高LED的发光效率。In the embodiment of the present invention, the first P-type semiconductor layer is first grown in a growth atmosphere formed by hydrogen, and the hydrogen has an etching effect, so that the first P-type semiconductor layer can be processed, effectively covering the extension to the P-type semiconductor during the epitaxial growth process. The defects of the layer can greatly improve the crystal quality of the P-type semiconductor layer; then growing the second P-type semiconductor layer in the growth atmosphere formed by nitrogen can avoid the formation of Mg-H by hydrogen atoms and magnesium atoms in the growth atmosphere formed by hydrogen bond, which is equivalent to increasing the doping amount of magnesium in the P-type semiconductor layer, that is, improving the activation efficiency of magnesium in the P-type semiconductor layer. The first P-type semiconductor layer and the second P-type semiconductor layer respectively improve the P-type semiconductor layer from the crystal quality of the P-type semiconductor layer and the activation efficiency of magnesium atoms in the P-type semiconductor layer, which can effectively improve the P-type semiconductor layer. The hole concentration in the type semiconductor layer will ultimately improve the luminous efficiency of the LED. Moreover, both the first P-type semiconductor layer and the second P-type semiconductor layer include a plurality of magnesium nitride layers and a plurality of magnesium-doped gallium nitride layers that are alternately stacked, and the magnesium atoms form substitution atoms in the gallium nitride, It can be effectively doped in the P-type semiconductor layer to increase the proportion of magnesium atoms in the gallium position, while reducing the filling type of magnesium atoms, avoiding the presence of magnesium atoms in the P-type semiconductor layer in the form of impurities, and improving the P-type semiconductor layer. The crystal quality further improves the luminous efficiency of the LED.

可选地,第一P型半导体层中氮化镁层的数量与第一P型半导体层中掺杂镁的氮化镓层的数量相同;第一P型半导体层中氮化镁层的数量可以为5个~10个,优选为8个。Optionally, the number of magnesium nitride layers in the first P-type semiconductor layer is the same as the number of magnesium-doped gallium nitride layers in the first P-type semiconductor layer; the number of magnesium nitride layers in the first P-type semiconductor layer It may be 5 to 10, preferably 8.

如果第一P型半导体中氮化镁层和掺杂镁的氮化镓层的数量小于5个,则可能由于第一P型半导体中氮化镁层和掺杂镁的氮化镓层的数量较少而无法有效提高P型半导体层的晶体质量;如果第一P型半导体中氮化镁层和掺杂镁的氮化镓层的数量大于10个,则可能导致P型半导体的厚度较厚,P型半导体层吸光严重,影响LED的出光效率。If the number of magnesium nitride layers and magnesium-doped gallium nitride layers in the first P-type semiconductor is less than 5, it may be due to the number of magnesium nitride layers and magnesium-doped gallium nitride layers in the first P-type semiconductor It is too small to effectively improve the crystal quality of the P-type semiconductor layer; if the number of magnesium nitride layers and magnesium-doped gallium nitride layers in the first P-type semiconductor is greater than 10, the thickness of the P-type semiconductor may be thicker , The P-type semiconductor layer absorbs light seriously, which affects the light-emitting efficiency of the LED.

可选地,第二P型半导体层中氮化镁层的数量与第二P型半导体层中掺杂镁的氮化镓层的数量相同;第二P型半导体层中氮化镁层的数量可以为5个~10个,优选为8个。Optionally, the number of magnesium nitride layers in the second P-type semiconductor layer is the same as the number of magnesium-doped gallium nitride layers in the second P-type semiconductor layer; the number of magnesium nitride layers in the second P-type semiconductor layer It may be 5 to 10, preferably 8.

如果第二P型半导体中氮化镁层和掺杂镁的氮化镓层的数量小于5个,则可能由于第二P型半导体中氮化镁层和掺杂镁的氮化镓层的数量较少而无法有效提高P型半导体层的晶体质量;如果第二P型半导体中氮化镁层和掺杂镁的氮化镓层的数量大于10个,则可能由于第二P型半导体中氮化镁层和掺杂镁的氮化镓层的数量较多而增加工艺的复杂度和实现成本。If the number of magnesium nitride layers and magnesium-doped gallium nitride layers in the second P-type semiconductor is less than 5, it may be due to the number of magnesium nitride layers and magnesium-doped gallium nitride layers in the second P-type semiconductor It is too small to effectively improve the crystal quality of the P-type semiconductor layer; if the number of the magnesium nitride layer and the magnesium-doped gallium nitride layer in the second P-type semiconductor is greater than 10, it may be due to the nitrogen in the second P-type semiconductor. The number of magnesium oxide layers and magnesium-doped gallium nitride layers is large, which increases the complexity of the process and the implementation cost.

可选地,氮化镁层的厚度可以为1nm~3nm,优选为2nm。Optionally, the thickness of the magnesium nitride layer may be 1 nm˜3 nm, preferably 2 nm.

如果氮化镁层的厚度小于1nm,则可能由于氮化镁层较薄而无法有效增加P型半导体层中有效空穴的浓度,导致LED的发光效率提升效果不明显;如果氮化镁层的厚度大于3nm,则可能由于氮化镁层较厚,Mg偏多而影响到P型半导体层的晶体结构。If the thickness of the magnesium nitride layer is less than 1 nm, the concentration of effective holes in the P-type semiconductor layer may not be effectively increased due to the thin magnesium nitride layer, resulting in an insignificant improvement in the luminous efficiency of the LED; If the thickness is greater than 3 nm, the crystal structure of the P-type semiconductor layer may be affected due to the thick magnesium nitride layer and excessive Mg.

可选地,掺杂镁的氮化镓层的厚度可以为4nm~7nm,优选为5.5nm。Optionally, the thickness of the magnesium-doped gallium nitride layer may be 4 nm˜7 nm, preferably 5.5 nm.

如果掺杂镁的氮化镓层的厚度小于4nm,则可能由于掺杂镁的氮化镓层较薄而影响到P型半导体层的晶体结构;如果掺杂镁的氮化镓层的厚度大于7nm,则可能由于掺杂镁的氮化镓层太厚而影响到与氮化镁层的配合,无法有效增加P型半导体层中有效空穴的浓度,导致LED的发光效率提升效果不明显。If the thickness of the magnesium-doped gallium nitride layer is less than 4 nm, the crystal structure of the P-type semiconductor layer may be affected because the magnesium-doped gallium nitride layer is thinner; if the thickness of the magnesium-doped gallium nitride layer is greater than If the thickness of the Mg-doped gallium nitride layer is too thick, the coordination with the magnesium nitride layer may be affected, and the concentration of effective holes in the P-type semiconductor layer cannot be effectively increased, resulting in an insignificant improvement in the luminous efficiency of the LED.

可选地,掺杂镁的氮化镓层中镁元素的掺杂浓度可以为1020cm-3~3*1020cm-3,优选为2*1020cm-3Optionally, the doping concentration of magnesium in the magnesium-doped gallium nitride layer may be 10 20 cm -3 to 3*10 20 cm -3 , preferably 2*10 20 cm -3 .

如果掺杂镁的氮化镓层中镁元素的掺杂浓度小于1020cm-3,则可能由于掺杂镁的氮化镓层中镁元素的掺杂浓度较小而造成与氮化镁层之间的晶格不匹配,降低P型半导体层的晶体质量;如果掺杂镁的氮化镓层中镁元素的掺杂浓度大于3*1020cm-3,则可能由于掺杂镁的氮化镓层中镁元素的掺杂浓度较大而导致P型半导体层中的杂质太多,降低P型半导体层的晶体质量。If the doping concentration of magnesium in the magnesium-doped gallium nitride layer is less than 10 20 cm -3 , it may be caused by the small doping concentration of magnesium in the magnesium-doped gallium nitride layer and the magnesium nitride layer. The lattice mismatch between them reduces the crystal quality of the P-type semiconductor layer; if the doping concentration of magnesium in the magnesium-doped gallium nitride layer is greater than 3*10 20 cm -3 , it may be due to the nitrogen doped with magnesium. The doping concentration of magnesium element in the gallium nitride layer is relatively high, resulting in too many impurities in the P-type semiconductor layer, which reduces the crystal quality of the P-type semiconductor layer.

可选地,第一P型半导体层和第二P型半导体层的厚度之和可以为100nm~200nm。Optionally, the sum of the thicknesses of the first P-type semiconductor layer and the second P-type semiconductor layer may be 100 nm˜200 nm.

如果第一P型半导体层和第二P型半导体层的厚度之和小于100nm,则可能由于第一P型半导体层和第二P型半导体层的厚度之和较小而无法为有源层提供足够数量的空穴,影响到LED的发光效率;如果第一P型半导体层和第二P型半导体层的厚度之和大于200nm,则可能导致P型半导体层太厚,P型半导体层的吸光较严重,影响LED的发光效率。If the sum of the thicknesses of the first P-type semiconductor layer and the second P-type semiconductor layer is less than 100 nm, it may not be possible to provide the active layer due to the small sum of the thicknesses of the first P-type semiconductor layer and the second P-type semiconductor layer. A sufficient number of holes will affect the luminous efficiency of the LED; if the sum of the thicknesses of the first P-type semiconductor layer and the second P-type semiconductor layer is greater than 200 nm, the P-type semiconductor layer may be too thick, and the light absorption of the P-type semiconductor layer may occur. More serious, affecting the luminous efficiency of the LED.

可选地,第一P型半导体层的生长条件与第二P型半导体层生长条件可以相同,生长条件包括生长温度和生长压力。采用相同的生长条件,实现更为方便。Optionally, the growth conditions of the first P-type semiconductor layer and the growth conditions of the second P-type semiconductor layer may be the same, and the growth conditions include growth temperature and growth pressure. It is more convenient to use the same growth conditions.

优选地,第一P型半导体层的生长温度可以为800℃~1000℃,第一P型半导体层的生长压力可以为200torr~600torr。配合生长温度和生长压力,形成的P型半导体层的质量较好。Preferably, the growth temperature of the first P-type semiconductor layer may be 800° C.˜1000° C., and the growth pressure of the first P-type semiconductor layer may be 200torr˜600torr. According to the growth temperature and growth pressure, the quality of the formed P-type semiconductor layer is good.

可选地,在步骤104之前,该制备方法还可以包括:Optionally, before step 104, the preparation method may further include:

采用MOCVD技术在有源层上生长电子阻挡层。The electron blocking layer is grown on the active layer using MOCVD technology.

相应地,P型半导体层生长在电子阻挡层上。Accordingly, the P-type semiconductor layer is grown on the electron blocking layer.

通过设置电子阻挡层避免电子跃迁到空穴提供层中与空穴进行非辐射复合,降低LED的发光效率。The luminous efficiency of the LED is reduced by disposing the electron blocking layer to prevent the electrons from transitioning to the hole providing layer for non-radiative recombination with the holes.

具体地,电子阻挡层的材料可以采用P型掺杂的氮化铝镓(AlGaN),如AlyGa1-yN,0.1<y<0.5。Specifically, the material of the electron blocking layer can be P-type doped aluminum gallium nitride (AlGaN), such as AlyGa1 -yN , 0.1<y<0.5.

进一步地,电子阻挡层的厚度可以为20nm~100nm,优选为60nm。Further, the thickness of the electron blocking layer may be 20 nm to 100 nm, preferably 60 nm.

具体地,采用MOCVD技术在有源层上生长电子阻挡层,可以包括:Specifically, using MOCVD technology to grow an electron blocking layer on the active layer may include:

控制温度为700℃~1000℃(优选为850℃),压力为100torr~500torr(优选为300torr),在有源层上生长电子阻挡层。The temperature is controlled to be 700°C to 1000°C (preferably 850°C), and the pressure is controlled to be 100torr to 500torr (preferably 300torr), and an electron blocking layer is grown on the active layer.

优选地,在采用MOCVD技术在有源层上生长电子阻挡层之前,该制备方法还可以包括:Preferably, before using the MOCVD technology to grow the electron blocking layer on the active layer, the preparation method may further include:

采用MOCVD技术在有源层上生长低温P型层。A low temperature P-type layer is grown on the active layer by MOCVD technology.

相应地,电子阻挡层生长在低温P型层上。Accordingly, the electron blocking layer is grown on the low temperature P-type layer.

通过设置低温P型层避免电子阻挡层较高的生长温度造成有源层中的铟原子析出,影响发光二极管的发光效率。By setting the low temperature P-type layer, it is avoided that the high growth temperature of the electron blocking layer causes the precipitation of indium atoms in the active layer, which affects the luminous efficiency of the light emitting diode.

具体地,低温P型层的材料可以为P型掺杂的氮化镓。Specifically, the material of the low-temperature P-type layer may be P-type doped gallium nitride.

进一步地,低温P型层的厚度可以为50nm~100nm,优选为75nm;低温P型层中P型掺杂剂的掺杂浓度可以为1018/cm3~1020/cm3,优选为1019/cm3Further, the thickness of the low-temperature P-type layer may be 50 nm to 100 nm, preferably 75 nm; the doping concentration of the P-type dopant in the low-temperature P-type layer may be 10 18 /cm 3 to 10 20 /cm 3 , preferably 10 19 /cm 3 .

具体地,采用MOCVD技术在有源层上生长低温P型层,可以包括:Specifically, using MOCVD technology to grow a low-temperature P-type layer on the active layer may include:

控制温度为600℃~800℃(优选为700℃),压力为200torr~500torr(优选为350torr),在有源层上生长低温P型层。The temperature is controlled to be 600°C to 800°C (preferably 700°C), and the pressure is controlled to be 200torr to 500torr (preferably 350torr), and a low temperature P-type layer is grown on the active layer.

可选地,在步骤105之后,该制备方法还可以包括:Optionally, after step 105, the preparation method may further include:

采用MOCVD技术在P型半导体层上生长接触层。The contact layer is grown on the P-type semiconductor layer using MOCVD technology.

通过设置接触层以与芯片制作工艺中形成的电极或者透明导电薄膜之间形成欧姆接触。The contact layer is arranged to form an ohmic contact with the electrode or the transparent conductive film formed in the chip fabrication process.

具体地,P型接触层的材料可以采用P型掺杂的氮化铟镓。Specifically, the material of the P-type contact layer may be P-type doped indium gallium nitride.

进一步地,P型接触层的厚度可以为5nm~100nm,优选为50nm;P型接触层中P型掺杂剂的掺杂浓度可以为1021/cm3~1022/cm3,优选为5*1021/cm3Further, the thickness of the P-type contact layer may be 5 nm to 100 nm, preferably 50 nm; the doping concentration of the P-type dopant in the P-type contact layer may be 10 21 /cm 3 to 10 22 /cm 3 , preferably 5 *10 21 /cm 3 .

具体地,采用MOCVD技术在P型半导体层上生长接触层,可以包括:Specifically, the MOCVD technology is used to grow the contact layer on the P-type semiconductor layer, which may include:

控制温度为850℃~1050℃(优选为950℃),压力为100torr~300torr(优选为200torr),在P型半导体层上生长接触层。The temperature is controlled to be 850°C to 1050°C (preferably 950°C), and the pressure is controlled to be 100torr to 300torr (preferably 200torr), and a contact layer is grown on the P-type semiconductor layer.

需要说明的是,在上述外延生长结束之后,会先将温度降低至650℃~850℃(优选为750℃),在氮气气氛中对外延片进行5分钟~15分钟(优选为10分钟)的退火处理,然后再将外延片的温度降低至室温。It should be noted that, after the above epitaxial growth is completed, the temperature is first lowered to 650°C to 850°C (preferably 750°C), and the epitaxial wafer is subjected to 5 minutes to 15 minutes (preferably 10 minutes) in a nitrogen atmosphere. Annealing treatment, and then the temperature of the epitaxial wafer is reduced to room temperature.

控制温度、压力均是指控制生长外延片的反应腔中的温度、压力,具体为金属有机化合物化学气相沉淀(英文:Metal-organic Chemical Vapor Deposition,简称:MOCVD)设备的反应腔。实现时以三甲基镓或三乙基镓作为镓源,高纯氨气作为氮源,三甲基铟作为铟源,三甲基铝作为铝源,N型掺杂剂选用硅烷,P型掺杂剂选用二茂镁。Controlling the temperature and pressure both refers to controlling the temperature and pressure in the reaction chamber for growing the epitaxial wafer, specifically the reaction chamber of the metal-organic chemical vapor deposition (English: Metal-organic Chemical Vapor Deposition, MOCVD for short) equipment. Trimethylgallium or triethylgallium is used as the gallium source, high-purity ammonia is used as the nitrogen source, trimethylindium is used as the indium source, trimethylaluminum is used as the aluminum source, the N-type dopant is silane, and the P-type dopant is used. The dopant is magnesium dimethylocene.

本发明实施例提供了一种氮化镓基发光二极管外延片,适用于采用图1所示的氮化镓基发光二极管外延片的生长方法生长而成。图2为本发明实施例提供的一种氮化镓基发光二极管外延片的结构示意图。参见图2,该氮化镓基发光二极管外延片衬底10、N型半导体层20、有源层30、第一P型半导体层41和第二P型半导体层42,N型半导体层20、有源层30、第一P型半导体层41和第二P型半导体层42依次层叠在衬底10上。The embodiment of the present invention provides a gallium nitride-based light-emitting diode epitaxial wafer, which is suitable for growing by the growth method of the gallium nitride-based light-emitting diode epitaxial wafer shown in FIG. 1 . FIG. 2 is a schematic structural diagram of a gallium nitride-based light emitting diode epitaxial wafer according to an embodiment of the present invention. Referring to FIG. 2, the GaN-based light-emitting diode epitaxial wafer substrate 10, N-type semiconductor layer 20, active layer 30, first P-type semiconductor layer 41 and second P-type semiconductor layer 42, N-type semiconductor layer 20, The active layer 30 , the first P-type semiconductor layer 41 and the second P-type semiconductor layer 42 are sequentially stacked on the substrate 10 .

在本实施例中,第一P型半导体层41在由氢气形成的生长气氛中生长,第二P型半导体层42在由氮气形成的生长气氛中生长。图3为本发明实施例提供的第一P型半导体层和第二P型半导体层的结构示意图。参见图3,第一P型半导体层41和第二P型半导体层42均包括多个氮化镁层43和多个掺杂镁的氮化镓层44,多个氮化镁层43和多个掺杂镁的氮化镓层44交替层叠设置。In this embodiment, the first P-type semiconductor layer 41 is grown in a growth atmosphere formed of hydrogen gas, and the second P-type semiconductor layer 42 is grown in a growth atmosphere formed of nitrogen gas. FIG. 3 is a schematic structural diagram of a first P-type semiconductor layer and a second P-type semiconductor layer according to an embodiment of the present invention. Referring to FIG. 3, the first P-type semiconductor layer 41 and the second P-type semiconductor layer 42 each include a plurality of magnesium nitride layers 43 and a plurality of magnesium-doped gallium nitride layers 44, a plurality of magnesium nitride layers 43 and a plurality of magnesium nitride layers 44. The magnesium-doped gallium nitride layers 44 are alternately stacked.

可选地,如图2所示,该发光二极管外延片还可以包括缓冲层51,缓冲层51设置在衬底10和N型半导体层20之间。Optionally, as shown in FIG. 2 , the light-emitting diode epitaxial wafer may further include a buffer layer 51 , and the buffer layer 51 is disposed between the substrate 10 and the N-type semiconductor layer 20 .

优选地,如图2所示,该发光二极管外延片还可以包括未掺杂氮化镓层52,未掺杂氮化镓层52设置在缓冲层51和N型半导体层20之间。Preferably, as shown in FIG. 2 , the light-emitting diode epitaxial wafer may further include an undoped gallium nitride layer 52 , and the undoped gallium nitride layer 52 is disposed between the buffer layer 51 and the N-type semiconductor layer 20 .

可选地,如图2所示,该发光二极管外延片还可以包括应力释放层60,应力释放层60设置在N型半导体层20和有源层30之间。Optionally, as shown in FIG. 2 , the light emitting diode epitaxial wafer may further include a stress release layer 60 , and the stress release layer 60 is disposed between the N-type semiconductor layer 20 and the active layer 30 .

可选地,如图2所示,该发光二极管外延片还可以包括电子阻挡层71,电子阻挡层71设置在有源层30和第一P型半导体层41之间。Optionally, as shown in FIG. 2 , the light emitting diode epitaxial wafer may further include an electron blocking layer 71 , and the electron blocking layer 71 is disposed between the active layer 30 and the first P-type semiconductor layer 41 .

优选地,如图2所示,该发光二极管外延片还可以包括低温P型层72,低温P型层72设置在有源层30和电子阻挡层71之间。Preferably, as shown in FIG. 2 , the light-emitting diode epitaxial wafer may further include a low-temperature P-type layer 72 , and the low-temperature P-type layer 72 is disposed between the active layer 30 and the electron blocking layer 71 .

可选地,如图2所示,该发光二极管外延片还可以包括接触层80,接触层80设置在第二P型半导体层42上。Optionally, as shown in FIG. 2 , the light-emitting diode epitaxial wafer may further include a contact layer 80 , and the contact layer 80 is disposed on the second P-type semiconductor layer 42 .

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection of the present invention. within the range.

Claims (8)

1.一种氮化镓基发光二极管外延片的生长方法,其特征在于,所述生长方法包括:1. A growth method of a gallium nitride-based light-emitting diode epitaxial wafer, wherein the growth method comprises: 提供一衬底;providing a substrate; 在所述衬底上生长N型半导体层;growing an N-type semiconductor layer on the substrate; 在所述N型半导体层上生长有源层;growing an active layer on the N-type semiconductor layer; 在由氢气形成的生长气氛中,在所述有源层上生长第一P型半导体层;growing a first P-type semiconductor layer on the active layer in a growth atmosphere formed of hydrogen; 在由氮气形成的生长气氛中,在所述第一P型半导体层上生长第二P型半导体层;growing a second P-type semiconductor layer on the first P-type semiconductor layer in a growth atmosphere formed of nitrogen; 其中,所述第一P型半导体层和所述第二P型半导体层均包括多个氮化镁层和多个掺杂镁的氮化镓层,所述多个氮化镁层和所述多个掺杂镁的氮化镓层交替层叠设置;所述掺杂镁的氮化镓层中镁元素的掺杂浓度为1020cm-3~3*1020cm-3,所述第二P型半导体层的生长条件与所述第一P型半导体层生长条件相同,所述生长条件包括生长温度和生长压力。Wherein, the first P-type semiconductor layer and the second P-type semiconductor layer each include a plurality of magnesium nitride layers and a plurality of magnesium-doped gallium nitride layers, and the plurality of magnesium nitride layers and the A plurality of magnesium-doped gallium nitride layers are alternately stacked; the doping concentration of magnesium in the magnesium-doped gallium nitride layers is 10 20 cm -3 to 3*10 20 cm -3 , and the second The growth conditions of the P-type semiconductor layer are the same as the growth conditions of the first P-type semiconductor layer, and the growth conditions include growth temperature and growth pressure. 2.根据权利要求1所述的生长方法,其特征在于,所述第一P型半导体层中氮化镁层的数量与所述第一P型半导体层中掺杂镁的氮化镓层的数量相同;所述第一P型半导体层中氮化镁层的数量为5个~10个。2 . The growth method according to claim 1 , wherein the number of the magnesium nitride layers in the first P-type semiconductor layer is the same as that of the magnesium-doped gallium nitride layers in the first P-type semiconductor layer. 3 . The number is the same; the number of magnesium nitride layers in the first P-type semiconductor layer is 5-10. 3.根据权利要求1或2所述的生长方法,其特征在于,所述第二P型半导体层中氮化镁层的数量与所述第二P型半导体层中掺杂镁的氮化镓层的数量相同;所述第二P型半导体层中氮化镁层的数量为5个~10个。3 . The growth method according to claim 1 , wherein the number of magnesium nitride layers in the second P-type semiconductor layer is the same as that of magnesium-doped gallium nitride in the second P-type semiconductor layer. 4 . The number of layers is the same; the number of magnesium nitride layers in the second P-type semiconductor layer is 5-10. 4.根据权利要求1或2所述的生长方法,其特征在于,所述氮化镁层的厚度为1nm~3nm。4 . The growth method according to claim 1 , wherein the thickness of the magnesium nitride layer is 1 nm˜3 nm. 5 . 5.根据权利要求1或2所述的生长方法,其特征在于,所述掺杂镁的氮化镓层的厚度为4nm~7nm。5 . The growth method according to claim 1 , wherein the thickness of the magnesium-doped gallium nitride layer is 4 nm˜7 nm. 6 . 6.根据权利要求1或2所述的生长方法,其特征在于,所述第一P型半导体层和所述第二P型半导体层的厚度之和为100nm~200nm。6 . The growth method according to claim 1 , wherein the sum of the thicknesses of the first P-type semiconductor layer and the second P-type semiconductor layer is 100 nm to 200 nm. 7 . 7.根据权利要求1或2所述的生长方法,其特征在于,所述第一P型半导体层的生长温度为800℃~1000℃,所述第一P型半导体层的生长压力为200torr~600torr。7 . The growth method according to claim 1 , wherein the growth temperature of the first P-type semiconductor layer is 800° C. to 1000° C., and the growth pressure of the first P-type semiconductor layer is 200 torr to 200 torr. 8 . 600torr. 8.一种氮化镓基发光二极管外延片,其特征在于,所述氮化镓基发光二极管外延片包括衬底、N型半导体层、有源层、第一P型半导体层和第二P型半导体层,所述N型半导体层、所述有源层、所述第一P型半导体层和所述第二P型半导体层依次层叠在所述衬底上,所述第一P型半导体层在由氢气形成的生长气氛中生长,所述第二P型半导体层在由氮气形成的生长气氛中生长;所述第一P型半导体层和所述第二P型半导体层均包括多个氮化镁层和多个掺杂镁的氮化镓层,所述多个氮化镁层和所述多个掺杂镁的氮化镓层交替层叠设置;所述掺杂镁的氮化镓层中镁元素的掺杂浓度为1020cm-3~3*1020cm-3,所述第二P型半导体层的生长条件与所述第一P型半导体层生长条件相同,所述生长条件包括生长温度和生长压力。8. A gallium nitride-based light-emitting diode epitaxial wafer, characterized in that the gallium-nitride-based light-emitting diode epitaxial wafer comprises a substrate, an N-type semiconductor layer, an active layer, a first P-type semiconductor layer and a second P-type semiconductor layer. type semiconductor layer, the N-type semiconductor layer, the active layer, the first P-type semiconductor layer and the second P-type semiconductor layer are sequentially stacked on the substrate, the first P-type semiconductor layer The layer is grown in a growth atmosphere formed of hydrogen, and the second P-type semiconductor layer is grown in a growth atmosphere formed of nitrogen; both the first P-type semiconductor layer and the second P-type semiconductor layer include a plurality of A magnesium nitride layer and a plurality of magnesium-doped gallium nitride layers, the plurality of magnesium nitride layers and the plurality of magnesium-doped gallium nitride layers are alternately stacked; the magnesium-doped gallium nitride The doping concentration of magnesium in the layer is 10 20 cm -3 to 3*10 20 cm -3 , and the growth conditions of the second P-type semiconductor layer are the same as the growth conditions of the first P-type semiconductor layer. Conditions include growth temperature and growth pressure.
CN201811063800.2A 2018-09-12 2018-09-12 A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method Active CN109473511B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811063800.2A CN109473511B (en) 2018-09-12 2018-09-12 A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811063800.2A CN109473511B (en) 2018-09-12 2018-09-12 A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method

Publications (2)

Publication Number Publication Date
CN109473511A CN109473511A (en) 2019-03-15
CN109473511B true CN109473511B (en) 2020-07-07

Family

ID=65664604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811063800.2A Active CN109473511B (en) 2018-09-12 2018-09-12 A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method

Country Status (1)

Country Link
CN (1) CN109473511B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085711B (en) * 2019-04-30 2021-10-26 芜湖德豪润达光电科技有限公司 Light emitting diode and forming method thereof
CN112331752A (en) * 2020-12-03 2021-02-05 至芯半导体(杭州)有限公司 Deep ultraviolet LED epitaxial manufacturing method with low-resistivity P-type layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330118B (en) * 2007-06-22 2010-06-09 晶能光电(江西)有限公司 Method for fabricating a p-type semiconductor structure
WO2015181656A1 (en) * 2014-05-27 2015-12-03 The Silanna Group Pty Limited Electronic devices comprising n-type and p-type superlattices
CN104103721B (en) * 2014-08-04 2017-04-05 湘能华磊光电股份有限公司 P-type LED epitaxial structure, growing method
KR102249640B1 (en) * 2014-10-29 2021-05-10 엘지이노텍 주식회사 Light emitting device, light emitting device package having the same, and light system having the same

Also Published As

Publication number Publication date
CN109473511A (en) 2019-03-15

Similar Documents

Publication Publication Date Title
CN110112269B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109786529B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN110311022B (en) GaN-based light-emitting diode epitaxial wafer and its manufacturing method
CN109860359B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN109860358B (en) Gallium nitride-based light emitting diode epitaxial wafer and preparation method thereof
CN107195737B (en) A kind of LED epitaxial slice and its manufacturing method
CN109346576B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN110718612A (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN109103303B (en) Method for preparing light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer
CN109256445B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN106129207A (en) Epitaxial wafer of gallium nitride-based light-emitting diode and preparation method
CN109473514A (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and its manufacturing method
CN109545918B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and preparation method thereof
CN109346568B (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN108447952A (en) A light-emitting diode epitaxial wafer and its preparation method
CN108987544A (en) A kind of LED epitaxial slice and its manufacturing method
CN116598396A (en) LED epitaxial wafer, preparation method thereof and LED
CN109103312B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN109671817B (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN108717954A (en) A kind of LED epitaxial slice and its growing method
CN109273571B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN109065682B (en) A kind of LED epitaxial slice and its manufacturing method
CN109192829B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method
CN109473511B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method
CN110364598A (en) Light-emitting diode epitaxial wafer and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province

Patentee after: BOE Huacan Optoelectronics (Suzhou) Co.,Ltd.

Country or region after: China

Address before: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province

Patentee before: HC SEMITEK (SUZHOU) Co.,Ltd.

Country or region before: China