CN109428480B - Low current and low noise charge pump circuit and frequency synthesizer - Google Patents
Low current and low noise charge pump circuit and frequency synthesizer Download PDFInfo
- Publication number
- CN109428480B CN109428480B CN201710778829.8A CN201710778829A CN109428480B CN 109428480 B CN109428480 B CN 109428480B CN 201710778829 A CN201710778829 A CN 201710778829A CN 109428480 B CN109428480 B CN 109428480B
- Authority
- CN
- China
- Prior art keywords
- switch
- signal
- bypass
- phase
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/06—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
一种低电流低噪声的电荷泵电路,包含输出电容、第一、第二电流源单元、充电开关、放电开关以及旁路开关。充电开关响应开关信号于开关信号的导通区间导通而使来自第一电流源单元的充电电流对输出电容充电。放电开关响应开关信号于开关信号的断开区间导通而使输出电容经由第二电流源单元放电。其中,开关信号于导通区间控制充电开关导通前及后,旁路信号控制旁路开关导通而使充电电流流至接地端。在开关信号于导通区间控制充电开关导通的期间,旁路信号控制旁路开关不导通。
A low current and low noise charge pump circuit includes an output capacitor, first and second current source units, a charging switch, a discharging switch and a bypass switch. The charging switch is turned on in the conduction interval of the switching signal in response to the switching signal, so that the charging current from the first current source unit charges the output capacitor. The discharge switch is turned on in the off interval of the switch signal in response to the switch signal to discharge the output capacitor through the second current source unit. Among them, the switch signal controls the conduction of the charging switch before and after the conduction interval, and the bypass signal controls the conduction of the bypass switch so that the charging current flows to the ground terminal. During the period when the switch signal controls the charging switch to be conductive in the conduction interval, the bypass signal controls the bypass switch not to conduct.
Description
技术领域technical field
本发明是关于电荷泵电路,特别是一种低电流低噪声的电荷泵电路及频率合成器。The present invention relates to a charge pump circuit, in particular to a charge pump circuit with low current and low noise and a frequency synthesizer.
背景技术Background technique
于无线通信系统中一般会具有频率合成器。此些频率合成器供应所决定的频带内的高频信号,以涵盖电信频带,例如美国ISM频带(902至928MHz)。A frequency synthesizer is generally provided in a wireless communication system. Such frequency synthesizers supply high frequency signals within a determined frequency band to cover telecommunication frequency bands such as the US ISM band (902 to 928 MHz).
一般而言,频率合成器于运行时,其中的相位检测器把晶体振荡器输出和降频后的压控振荡器输出的相位差检出。此相位差信号会传送至电荷泵,以控制电荷泵对电容进行充放电。接着于电容的输出端经滤波以形成电压信号,以进一步控制压控振荡器。如此形成回路,以提供稳定频率。Generally speaking, when the frequency synthesizer is running, the phase detector in the frequency synthesizer detects the phase difference between the output of the crystal oscillator and the output of the voltage-controlled oscillator after the frequency reduction. The phase difference signal is sent to the charge pump to control the charge pump to charge and discharge the capacitor. Then, the output terminal of the capacitor is filtered to form a voltage signal to further control the voltage-controlled oscillator. The loop is thus formed to provide a stable frequency.
其中,早期的相位检测器控制以驱动开关电荷泵电路时,整个电荷泵电路会被关闭。这会导致瞬时电压形成于电流源的漏极处。进而使电流源输出发生抖动,会造成相位和输出电流之间的关系呈现非线性。接着此非线性的现象会让电荷泵电路的高频噪声折叠到低频。Among them, when the early phase detector control is used to drive the switching charge pump circuit, the entire charge pump circuit will be turned off. This causes a transient voltage to develop at the drain of the current source. This in turn causes jitter at the output of the current source, resulting in a nonlinear relationship between phase and output current. This nonlinearity then folds the high frequency noise of the charge pump circuit to low frequencies.
因此,目前现有广泛采用的电荷泵电路,它多一路由放大器供应电压的旁路(如图1A所示)。当电荷泵900对电容901充放电时,其电流源的电流的波形示意图如图1B所示。其电容的输出电流的波形示意图如1C所示。当电荷泵900不对电容901充放电时,旁路会被导通。也就是说,当电荷泵900的切换开关经切换而使电流源不对电容901充放电时,电流源的电流会改走旁路路径。藉此能让电流源输出的电流保持流动,以避免在电流源的漏极处产生瞬时电压。但是当频率合成器锁定时,电荷泵900只对电容901做短时充放电时,其充放电时间只占晶体振荡周期的一小部份。这会造成大部分时间电流源的电流都经旁路路径而被弃置。换句话说,此一设计会导致不必要的能源浪费。Therefore, a widely used charge pump circuit currently has an additional bypass for the supply voltage of the routing amplifier (as shown in FIG. 1A ). When the charge pump 900 charges and discharges the
有鉴于此,又必要提出一种可行的解决方案以解决前述的问题,以减少不必要的浪费。In view of this, it is necessary to propose a feasible solution to solve the aforementioned problems, so as to reduce unnecessary waste.
发明内容SUMMARY OF THE INVENTION
本发明一实施例提供一种低电流低噪声的电荷泵电路,包含输出电容、第一电流源单元、第二电流源单元、充电开关、放电开关以及旁路开关。第一电流源单元根据额定电压提供充电电流。第二电流源单元耦接输出电容与接地端之间。充电开关耦接于输出电容与第一电流源单元之间,并受控于开关信号。充电开关接收开关信号并且于开关信号的导通区间导通而使充电电流对输出电容充电。放电开关耦接于输出电容与第二电流源单元之间并受控于开关信号。其中放电开关接收开关信号并且于开关信号的断开区间导通而使输出电容放电。旁路开关耦接于第一电流源单元与接地端之间并受控于旁路信号。其中,在开关信号于导通区间控制充电开关导通前以及后,旁路信号控制旁路开关导通而使充电电流流至接地端。其中,在开关信号于导通区间控制充电开关导通的期间,旁路信号控制旁路开关不导通。An embodiment of the present invention provides a low-current and low-noise charge pump circuit, including an output capacitor, a first current source unit, a second current source unit, a charging switch, a discharging switch, and a bypass switch. The first current source unit provides the charging current according to the rated voltage. The second current source unit is coupled between the output capacitor and the ground. The charging switch is coupled between the output capacitor and the first current source unit, and is controlled by the switch signal. The charging switch receives the switching signal and conducts in the conduction period of the switching signal so that the charging current charges the output capacitor. The discharge switch is coupled between the output capacitor and the second current source unit and controlled by the switch signal. The discharge switch receives the switch signal and conducts in the off interval of the switch signal to discharge the output capacitor. The bypass switch is coupled between the first current source unit and the ground terminal and controlled by the bypass signal. Wherein, before and after the switch signal controls the conduction of the charging switch in the conduction interval, the bypass signal controls the conduction of the bypass switch so that the charging current flows to the ground terminal. The bypass signal controls the bypass switch to be non-conductive during the period when the switch signal controls the charging switch to be turned on in the conduction interval.
本发明另一实施例提供一种频率合成器,包含电荷泵电路、相位频率检测电路、相移式脉波宽调变电路以及逻辑运算电路。电荷泵电路包含输出电容、第一电流源单元、第二电流源单元、充电开关、放电开关以及旁路开关。第一电流源单元根据额定电压提供充电电流。第二电流源单元耦接输出电容与接地端之间。充电开关耦接于输出电容与第一电流源单元之间,并受控于开关信号。充电开关接收开关信号并且于开关信号的导通区间导通而使充电电流对输出电容充电。放电开关耦接于输出电容与第二电流源单元之间并受控于开关信号。其中放电开关接收开关信号并且于开关信号的断开区间导通而使输出电容放电。旁路开关耦接于第一电流源单元与接地端之间并受控于旁路信号。相位频率检测电路耦接充电开关与放电开关。相位频率检测电路依据频率信号与除频信号而输出开关信号。相移式脉波宽调变电路根据频率信号输出移相脉波信号。移相脉波信号位于高电位的时间是涵盖开关信号的导通区间。逻辑运算电路耦接相位频率检测电路、移相电路与旁路开关之间。逻辑运算电路依据开关信号与移相脉波信号生成旁路信号。Another embodiment of the present invention provides a frequency synthesizer, which includes a charge pump circuit, a phase frequency detection circuit, a phase shift pulse width modulation circuit, and a logic operation circuit. The charge pump circuit includes an output capacitor, a first current source unit, a second current source unit, a charging switch, a discharging switch, and a bypass switch. The first current source unit provides the charging current according to the rated voltage. The second current source unit is coupled between the output capacitor and the ground. The charging switch is coupled between the output capacitor and the first current source unit, and is controlled by the switch signal. The charging switch receives the switching signal and conducts in the conduction period of the switching signal so that the charging current charges the output capacitor. The discharge switch is coupled between the output capacitor and the second current source unit and controlled by the switch signal. The discharge switch receives the switch signal and conducts in the off interval of the switch signal to discharge the output capacitor. The bypass switch is coupled between the first current source unit and the ground terminal and controlled by the bypass signal. The phase frequency detection circuit is coupled to the charging switch and the discharging switch. The phase frequency detection circuit outputs the switch signal according to the frequency signal and the frequency division signal. The phase-shifted pulse width modulation circuit outputs the phase-shifted pulse signal according to the frequency signal. The time when the phase-shifted pulse signal is at a high level covers the conduction period of the switching signal. The logic operation circuit is coupled between the phase frequency detection circuit, the phase shift circuit and the bypass switch. The logic operation circuit generates the bypass signal according to the switch signal and the phase-shifted pulse signal.
依据前述实施例,电荷泵电路于不使用时关闭,并且在充放电开关要切换成导通之前以及充放电开关要切换成不导通之前,先导通旁路开关使电流源单元的漏极达到稳态电压后再切换旁路开关为不导通,并进行充放电开关的切换。如此能维持电流源单元与充放电开关之间的稳态电压。且能避免第一电流源单元与充电开关之间因充电电流而堆积所生成的电压。并且还能减少经旁路开关弃置的电流以节省电流。另外还能使相位和输出电流之间保持线性关系以避免电荷泵电路的高频噪声折叠到低频。再者,应用至频率合成器时,其不干扰频率合成器工作。According to the foregoing embodiment, the charge pump circuit is turned off when not in use, and before the charge and discharge switch is to be turned on and the charge and discharge switch is to be turned off, the bypass switch is first turned on so that the drain of the current source unit reaches After the steady-state voltage, the bypass switch is switched to be non-conductive, and the charging and discharging switch is switched. In this way, the steady-state voltage between the current source unit and the charge-discharge switch can be maintained. In addition, the voltage generated between the first current source unit and the charging switch due to the charging current accumulation can be avoided. It also reduces the current discarded by the bypass switch to save current. It is also possible to maintain a linear relationship between phase and output current to avoid the high frequency noise of the charge pump circuit from folding into low frequencies. Furthermore, when applied to a frequency synthesizer, it does not interfere with the operation of the frequency synthesizer.
附图说明Description of drawings
图1A是现有技术的一架构示意图。FIG. 1A is a schematic diagram of a structure of the prior art.
图1B是现有技术的电流源的输出电流的波形示意图。FIG. 1B is a schematic diagram of a waveform of an output current of a current source in the prior art.
图1C是现有技术的电容的输出电流的波形示意图。FIG. 1C is a schematic diagram of a waveform of an output current of a capacitor in the prior art.
图2是本发明的电荷泵电路一实施例的一架构示意图。FIG. 2 is a schematic structural diagram of an embodiment of a charge pump circuit of the present invention.
图3A是图2的频率信号一实施例的波形示意图。FIG. 3A is a schematic waveform diagram of the frequency signal of FIG. 2 according to an embodiment.
图3B是图2的开关信号一实施例的波形示意图。FIG. 3B is a schematic diagram of waveforms of the switching signal of FIG. 2 according to an embodiment.
图3C是图2的旁路信号一实施例的波形示意图。FIG. 3C is a schematic diagram of waveforms of the bypass signal of FIG. 2 according to an embodiment.
图3D是图2的移相脉波信号一实施例的波形示意图。FIG. 3D is a schematic waveform diagram of an embodiment of the phase-shifted pulse signal of FIG. 2 .
图3E是图2的第一电流源单元的输出电压一实施例的波形示意图。FIG. 3E is a schematic waveform diagram of an output voltage of the first current source unit of FIG. 2 according to an embodiment.
图3F是图2的输出电容的输出电压一实施例的波形示意图。FIG. 3F is a schematic diagram of waveforms of an output voltage of the output capacitor of FIG. 2 according to an embodiment.
图3G是图2的第一电流源单元的输出电流一实施例的波形示意图。FIG. 3G is a schematic waveform diagram of an output current of the first current source unit of FIG. 2 according to an embodiment.
图3H是图2的输出电容的输出电流一实施例的波形示意图。FIG. 3H is a schematic diagram of a waveform of an output current of the output capacitor of FIG. 2 according to an embodiment.
图4是本发明的电荷泵电路另一实施例的架构示意图。FIG. 4 is a schematic structural diagram of another embodiment of the charge pump circuit of the present invention.
其中附图标记为:The reference numerals are:
10输出电容 20第一电流源单元10
30第二电流源单元 40充电开关30 Second
50放电开关 60旁路开关50
61旁路开关 62放大器61
70相位频率检测电路 80相移式脉波宽调变电路70 phase
90逻辑运算电路 900电荷泵90 logic operation circuit 900 charge pump
901电容SS-U、SS-D、S-switch开关信号901 capacitor SS-U, SS-D, S-switch switch signal
SB-U、SB-D、S-bypass旁路信号SB-U, SB-D, S-bypass bypass signal
t11、t21、t22导通区间t11, t21, t22 conduction interval
t12、t23、t24断开区间t12, t23, t24 disconnection interval
S-clk频率信号S-clk frequency signal
S-div除频信号S-div frequency division signal
S-shift移相脉波信号S-shift phase-shifted pulse signal
Vi1、Vcout输出电压Vi1, Vcout output voltage
Ii1、Icout输出电流Ii1, Icout output current
具体实施方式Detailed ways
图2是本发明的电荷泵电路一实施例的一架构示意图。请参阅图2,电荷泵电路包含有:输出电容10、第一电流源单元20、第二电流源单元30、充电开关40、放电开关50与旁路开关60。充电开关40耦接于第一电流源单元20与输出电容10之间。放电开关50耦接于第二电流源单元30与输出电容10之间。旁路开关60耦接于第一电流源单元20与接地端之间。第一电流源单元20耦接充电开关40与旁路开关60。第二电流源单元30耦接于放电开关50与接地端之间。FIG. 2 is a schematic structural diagram of an embodiment of a charge pump circuit of the present invention. Referring to FIG. 2 , the charge pump circuit includes: an
于一实施例中,第一电流源单元20相对于充电开关40的另端是耦接至一额定电压电路(其提供一额定电压)。也就是说,第一电流源单元20的输入端耦接额定电压电路并且接收额定电压电路所供给的额定电压。第一电流源单元20的输出端耦接至充电开关40的第一端以及耦接至旁路开关60的第一端。充电开关40的第二端耦接至输出电容10。第一电流源单元20用以根据额定电压提供固定值的充电电流,并且此充电电流可经由充电开关40而对输出电容10充电。其中,额定电压为一固定值。In one embodiment, the other end of the first
于一实施例中,第二电流源单元30相对于放电开关50的另端是耦接至接地端。也就是说,第二电流源单元30的输入端耦接放电开关50的第一端。第二电流源单元30的输出端耦接至接地端。放电开关50的第二端耦接至输出电容10。于放电开关50导通时,输出电容10能以固定值的放电电流经由放电开关50与第二电流源单元30进行放电。于此,充电开关40与放电开关50不会同时导通。In one embodiment, the other end of the second
其中,充电电流与放电电流的电流值可为相同,亦可以为不同,但充电电流的电流值与放电电流的电流值于本发明中并非为限制。The current value of the charging current and the discharging current may be the same or different, but the current value of the charging current and the current value of the discharging current are not limited in the present invention.
于一实施例中,开关信号SS-U或SS-D(以下统称S-switch)具有一导通区间与一断开区间。In one embodiment, the switch signal SS-U or SS-D (hereinafter collectively referred to as S-switch) has an on interval and an off interval.
充电开关40的控制端接收开关信号SS-U,并且充电开关40根据开关信号SS-U于导通区间t11为导通,以致充电电流经由充电开关40对输出电容10充电。换言之,充电开关40于断开区间t12响应开关信号SS-U为不导通。The control terminal of the charging
放电开关50的控制端接收开关信号SS-D,并且放电开关50根据开关信号SS-D于导通区间为导通,进而使输出电容10以第二电流源单元30的额定电流值(放电电流)进行放电。换言之,放电开关50于断开区间响应开关信号SS-U为不导通。The control terminal of the
于一实施例中,开关信号S-switch维持在高电位的时间为导通区间,并且开关信号S-switch维持在低电位的时间为断开区间。换句话说,充电开关40的控制端接收到高电位的开关信号SS-U时,充电开关40会切换为导通,并且充电开关40在开关信号SS-U维持在高电位的期间(即导通区间)会维持导通状态。当充电开关40为导通时,第一电流源单元20输出的充电电流会流经充电开关40,然后流至输出电容10以对输出电容10进行充电。In one embodiment, the time when the switch signal S-switch is maintained at a high level is an on period, and the time when the switch signal S-switch is maintained at a low level is an off period. In other words, when the control terminal of the charging
同样地,放电开关50的控制端接收到高电位的开关信号SS-D时,放电开关50会切换为导通,并且放电开关50在开关信号SS-D维持在高电位的期间(即导通区间)会维持导通状态。当放电开关50为导通时,输出电容10经由放电开关50耦接第二电流源单元30,并且经由放电开关50与第二电流源单元30耦接至接地端,以致以第二电流源单元30的额定电流值(放电电流)进行放电。Similarly, when the control terminal of the
于一些实施例中,充电开关40与放电开关50分别可以为NMOS、PMOS、CMOS、晶体管等切换开关组件,本发明非以此为限制。In some embodiments, the charging
举例来说,若充电开关40为MOS的切换开关组件,且充电开关40具有栅极、源极与漏极。源极是连接至额定电压电路,以接收额定电压。漏极是连接至充电开关40。栅极则是接收开关信号S-switch,并根据开关信号S-switch而能使源极与漏极之间形成导通或不导通。For example, if the charging
于一实施例中,旁路信号S-bypass(SB-D或SB-U)具有一导通区间与一断开区间。In one embodiment, the bypass signal S-bypass (SB-D or SB-U) has an on interval and an off interval.
于一实施例中,旁路开关60的控制端接收一旁路信号SB-D,并且旁路开关60根据旁路信号SB-D而导通或不导通。换言之,旁路开关60于旁路信号SB-D的导通区间响应旁路信号SB-D为导通,并且旁路开关60于旁路信号SB-D的断开区间响应旁路信号SB-U为不导通。当旁路开关60为导通时,第一电流源单元20所提的充电电流可经由旁路开关60流至接地端。In one embodiment, the control terminal of the
于此,于充电开关40根据开关信号SS-U导通前以及于充电开关40根据开关信号SS-U从导通切换为不导通后,旁路开关60根据旁路信号SB-D为导通。并且,于充电开关40根据开关信号SS-U导通期间,旁路开关60根据旁路信号SB-U为不导通。换言之,开关信号SS-U的导通区间发生前及后,旁路信号SB-D会分别发生一既定时间的导通区间。而开关信号SS-U的导通区间发生的同时,旁路信号SB-D的断开区间发生。如此能避免电荷泵电路在第一电流源单元20与充电开关40之间因充电电流而堆积所生成的电压。并且还能减少经旁路开关60弃置的电流以节省电流,并且还能使相位和输出电流之间保持线性关系以避免电荷泵电路的高频噪声折叠到低频。Here, before the charging
于一些实施例中,电荷泵电路可更包含有一另一旁路开关61。旁路开关61耦接放电开关50与第二电流源单元30。旁路开关61是根据旁路信号SB-D而导通或不导通。于此,旁路开关60与旁路开关61不会同时导通。In some embodiments, the charge pump circuit may further include another
于此,于放电开关50根据开关信号SS-D导通前以及于放电开关50根据开关信号SS-D从导通切换为不导通后,旁路开关61根据旁路信号SB-U为导通。并且,于放电开关50根据开关信号SS-D导通期间,旁路开关61根据旁路信号SB-D为不导通。如此能让电荷泵电路在第二电流源单元30与放电开关50之间不会堆积电压。并且能使相位和输出电流之间保持线性关系,更能免于高频噪声折叠的问题产生。Here, before the
于一些实施例中,旁路开关60、61可以为NMOS、PMOS、CMOS、晶体管等切换开关组件,本发明非以此为限制。图3A是图2的开关信号S-switch一实施例的波形示意图。请参阅图3A,开关信号S-switch包含导通区间t11与断开区间t12。于此,开关信号S-switch在导通区间t11为高电位,如图3A所示的开关信号S-switch为约1伏特(V)的期间。并且,开关信号S-switch于断开区间t12为低电位,如图3B中所示的开关信号S-switch为约0V的期间。In some embodiments, the bypass switches 60 and 61 may be switch components such as NMOS, PMOS, CMOS, transistors, etc., but the present invention is not limited thereto. FIG. 3A is a schematic waveform diagram of the switch signal S-switch of FIG. 2 according to an embodiment. Referring to FIG. 3A , the switch signal S-switch includes an on interval t11 and an off interval t12 . Here, the switch signal S-switch is at a high level in the conduction period t11 , and the switch signal S-switch is about 1 volt (V) as shown in FIG. 3A . In addition, the switch signal S-switch is at a low level in the off interval t12, and the switch signal S-switch is about 0V as shown in FIG. 3B.
图3B是图2的旁路信号S-bypass一实施例的波形示意图。参阅图3B,旁路信号S-bypass包含包含导通区间t21、t22与断开区间t23、t24。于此,旁路信号S-bypass在导通区间t21、t22为高电位,如图3B中所示的旁路信号S-bypass为约1伏特(V)的期间。并且,旁路信号S-bypass于断开区间t23、t24为低电位,如图3C中所示的旁路信号S-bypass为约0V的期间。FIG. 3B is a schematic waveform diagram of the bypass signal S-bypass of FIG. 2 according to an embodiment. Referring to FIG. 3B , the bypass signal S-bypass includes on intervals t21 and t22 and off intervals t23 and t24 . Here, the bypass signal S-bypass is at a high level during the conduction periods t21 and t22, and the bypass signal S-bypass is about 1 volt (V) as shown in FIG. 3B . In addition, the bypass signal S-bypass is at a low level in the off periods t23 and t24, and the bypass signal S-bypass is about 0V as shown in FIG. 3C.
请参阅图3A与3B,于开关信号S-switch的导通区间t11,开关信号S-switch驱动充电开关40(或放电开关50)导通的过程,旁路信号S-bypass驱动旁路开关60(或61)不导通(即旁路信号S-bypass为断开区间t23)。也就是说,开关信号S-switch要进入导通区间t11前的一预设时间(t21的时间长度),旁路信号S-bypass会先拉至高电位(进入导通区间t21)。而当开关信号S-switch进入导通区间t11的当下,旁路信号S-bypass会瞬间拉至低电位(t21与t23的时间交界点)。且旁路信号S-bypass位于此低电位的时间长度(断开区间t23)约等于开关信号S-switch的导通区间t11的时间长度。另外,开关信号S-switch的导通区间t11结束且将进入断开区间t12(t23与t12的时间交界点)时,旁路信号S-bypass又会瞬间拉至高电位(进入导通区间t22)并维持一预设时间(t22的时间长度)后再下拉回于低电位(t22与t24的时间交界点)。换言之,旁路信号S-bypass的导通区间t21、断开区间t23与导通区间t22依序发生,并且旁路信号S-bypass的断开区间t23与开关信号S-switch的导通区间t11大致上同步。Referring to FIGS. 3A and 3B , in the conduction period t11 of the switch signal S-switch, the switch signal S-switch drives the charging switch 40 (or the discharge switch 50 ) to conduct, and the bypass signal S-bypass drives the bypass switch 60 (or 61) is not turned on (that is, the bypass signal S-bypass is in the off interval t23). That is to say, the bypass signal S-bypass will be pulled to a high level first (into the conduction period t21 ) before the switch signal S-switch enters the conduction interval t11 for a predetermined time (the time length of t21 ). When the switch signal S-switch enters the conduction interval t11, the bypass signal S-bypass is instantly pulled to a low level (the time boundary between t21 and t23). And the time length of the bypass signal S-bypass at the low level (the off interval t23 ) is approximately equal to the time length of the on interval t11 of the switch signal S-switch. In addition, when the ON period t11 of the switch signal S-switch ends and will enter the OFF period t12 (the time boundary between t23 and t12), the bypass signal S-bypass will be instantly pulled to a high level (into the ON period t22) And maintain for a preset time (the time length of t22), and then pull back to the low level (the time boundary between t22 and t24). In other words, the on period t21, the off period t23 and the on period t22 of the bypass signal S-bypass occur in sequence, and the off period t23 of the bypass signal S-bypass and the on period t11 of the switch signal S-switch occur in sequence. roughly in sync.
换句话说,开关信号S-switch的导通区间t11是如图3A中电压为1V的时间区间。而于此时间区间(导通区间t11)的同时,图3B中的旁路信号S-bypass是会位于低电位(断开区间t23)。此时,充电开关40(或放电开关50)导通,且旁路开关60(或61)不导通。而在开关信号S-switch的导通区间t11的前后预设时间中,即在开关信号S-switch的电压为1V的时间区间的前后的预设时间中,让旁路信号S-bypass是位于高电位(导通区间t21、t22)。此时,充电开关40(或放电开关50)不导通,但旁路开关60(或61)导通,以藉此让电流源单元(20或30)和充放电开关(充电开关40或放电开关50)之间的电压得以流向至接地端。如此能让充放电开关于导通之前,使电流源单元和充放电开关之间预先达到稳态电压。进一步能避免充电开关40导通瞬间时的高电压流向至输出电容10。如此能使相位和输出电流之间保持线性关系,更能免于高频噪声折叠的问题产生。其中,预设时间的时间长度于本发明中并非为限制。另外,旁路信号S-bypass于开关信号S-switch的导通区间t11的前后的预设时间可以为相同(即导通区间t21的时间长度相同于导通区间t22),亦可以为不同(即导通区间t21的时间长度不同于导通区间t22),其可视需求调整。In other words, the conduction period t11 of the switch signal S-switch is the time period when the voltage is 1V as shown in FIG. 3A . At the same time as this time interval (on interval t11 ), the bypass signal S-bypass in FIG. 3B is at a low level (off interval t23 ). At this time, the charging switch 40 (or the discharging switch 50 ) is turned on, and the bypass switch 60 (or 61 ) is not turned on. In the preset time before and after the conduction interval t11 of the switch signal S-switch, that is, in the preset time before and after the time interval in which the voltage of the switch signal S-switch is 1V, the bypass signal S-bypass is located at High potential (conduction interval t21, t22). At this time, the charge switch 40 (or the discharge switch 50) is not turned on, but the bypass switch 60 (or 61) is turned on, so as to allow the current source unit (20 or 30) and the charge and discharge switch (the
于一实施例中,请回头参阅图2,当电荷泵电路应用于频率合成器时,电荷泵电路进一步耦接有相位频率检测电路70、相移式脉波宽调变电路80与逻辑运算电路90。相位频率检测电路70的输出端耦接逻辑运算电路90的输入端、充电开关40的控制端与放电开关50的控制端。相移式脉波宽调变电路80的输入端接收频率信号S-clk。相移式脉波宽调变电路80的输出端耦接逻辑运算电路90的输入端。逻辑运算电路90的输出端耦接至旁路开关60的控制端(与旁路开关61的控制端)。In an embodiment, please refer back to FIG. 2 , when the charge pump circuit is applied to the frequency synthesizer, the charge pump circuit is further coupled with a phase
相位频率检测电路70接收频率信号S-clk与除频信号S-div,并且根据频率信号S-clk与除频信号S-div输出开关信号SS-U(或SS-D)。相移式脉波宽调变电路80接收频率信号S-clk,并且对频率信号S-clk进行相位位移及脉波宽调变而生成移相脉波信号S-shift。逻辑运算电路90依据开关信号SS-U(或SS-D)与移相脉波信号S-shift生成旁路信号SB-U(或SB-D)。The phase
于一实施例中,逻辑运算电路90包含有互斥或门。互斥或门的输入端分别耦接相位频率检测电路70与相移式脉波宽调变电路80,并且分别接收开关信号S-switch与移相脉波信号S-shift。互斥或门的输出端耦接旁路开关60的控制端(与旁路开关61的控制端),并且输出旁路信号S-bypass。也就是说,开关信号S-switch与移相脉波信号S-shift之间有电位不同时,互斥或门输出的旁路信号S-bypass为低电位。开关信号S-switch与移相脉波信号S-shift之间相同电位时,互斥或门输出的旁路信号S-bypass则为高电位。如此即可让开关信号S-switch的导通区间驱动充电开关40导通过程中,致使旁路开关60不导通。In one embodiment, the
举例来说,当电荷泵电路采用二旁路开关60、61时,逻辑运算电路90可利用二互斥或门来生成旁路信号SB-U、SB-D。换言之,互斥或门中之一者接收开关信号SS-U与移相脉波信号S-shift并输出旁路信号SB-U,而互斥或门中的另一者则接收开关信号SS-D与移相脉波信号S-shift并输出旁路信号SB-D。For example, when the charge pump circuit adopts two
于一些实施例中,频率信号S-clk是能由振荡电路生成(图未示)。其中,除频信号S-div是可以由除频电路生成(图未示)。In some embodiments, the frequency signal S-clk can be generated by an oscillator circuit (not shown). The frequency dividing signal S-div can be generated by a frequency dividing circuit (not shown).
图3C是图2的频率信号S-clk一实施例的波形示意图。请参阅图3C,相位频率检测电路70会以频率信号S-clk为参考信号进行除频信号S-div的相位检测,并且于除频信号S-div与频率信号S-clk不同步时生成相应的开关信号SS-U或SS-D。于此实施例中,频率信号S-clk具有约50%的责任周期。FIG. 3C is a schematic waveform diagram of the frequency signal S-clk of FIG. 2 according to an embodiment. Referring to FIG. 3C , the phase
参照图3A至3C,当相位频率检测电路70检测到频率信号S-clk超前除频信号S-div时,相位频率检测电路70会输出高电位的开关信号SS-U(导通区间t11)直至频率信号S-clk与除频信号S-div同步,而不输出开关信号SS-D(或维持在低电位的开关信号SS-D)。此时,图3A所示的开关信号S-switch是代表开关信号SS-U,并且图3B所示的旁路信号S-bypass是代表旁路信号SB-U。3A to 3C , when the phase
当相位频率检测电路70检测到除频信号S-div超前频率信号S-clk时,相位频率检测电路70会输出高电位的开关信号SS-D(导通区间t11)直至频率信号S-clk与除频信号S-div同步,而不输出开关信号SS-U(或维持在低电位的开关信号SS-U)。此时,图3A所示的开关信号S-switch是代表开关信号SS-D,并且图3B所示的旁路信号S-bypass是代表旁路信号SB-D。When the phase
当相位频率检测电路70检测到频率信号S-clk与除频信号S-div同步时,相位频率检测电路70则不输出开关信号SS-U、SS-D(或均维持在低电位的开关信号SS-U、SS-U)。此时,旁路信号SB-U、SB-D亦均维持在低电位。When the phase
图3D是图2的移相脉波信号S-shift一实施例的波形示意图。于一实施例中,请回头参阅图3A至3D,相移式脉波宽调变电路80是位移频率信号S-clk的一相位差以及一脉波宽差以输出移相脉波信号S-shift。于此,移相脉波信号S-shift位于高电位的时间是涵盖开关信号S-switch的导通区间t11的时间。也就是说,在移相脉波信号S-shift维持在高电位的期间中,发生有开关信号S-switch的导通区间t11。并且,开关信号S-switch的导通区间t11小于移相脉波信号S-shift维持在高电位的期间。FIG. 3D is a schematic waveform diagram of an embodiment of the phase-shifted pulse signal S-shift of FIG. 2 . In an embodiment, referring back to FIGS. 3A to 3D , the phase-shifted pulse
于一实施例中,移相脉波信号S-shift的周期等于旁路信号S-bypass的周期,且移相脉波信号S-shift位于高电位的时间长度大致等于旁路信号S-bypass的导通区间t21、t22的时间长度加上开关信号S-switch的导通区间t11的时间长度。In one embodiment, the period of the phase-shifted pulse signal S-shift is equal to the period of the bypass signal S-bypass, and the time period during which the phase-shifted pulse signal S-shift is at a high level is approximately equal to the period of the bypass signal S-bypass. The time length of the conduction intervals t21 and t22 is added to the time length of the conduction interval t11 of the switch signal S-switch.
于此,旁路信号S-bypass的导通区间t21、t22的时间长度(预设时间)可藉由调整移相脉波信号S-shift位于高电位的时间点及时间长度而决定。其中,移相脉波信号S-shift位于高电位的时间长度于本发明中并非为限制,其可视需求调等。Here, the time lengths (predetermined time) of the conduction intervals t21 and t22 of the bypass signal S-bypass can be determined by adjusting the time point and time length when the phase-shifted pulse signal S-shift is at a high level. Wherein, the length of time that the phase-shifted pulse signal S-shift is at a high level is not limited in the present invention, and can be adjusted according to requirements.
图3E是图2的第一电流源单元20的输出电压Vi1一实施例的波形示意图。图3F是图2的输出电容10的输出电压Vcout一实施例的波形示意图。图3G是图2的第一电流源单元20的输出电流Ii1一实施例的波形示意图。图3H是图2的输出电容10的输出电流Icout一实施例的波形示意图。请参阅图3A至图3H,经由旁路信号S-bypass驱动旁路开关60的导通与不导通,能让充电电流在第一电流源单元20与充电开关40之间不会堆积电压。并且能使相位和输出电流之间保持线性关系,能免于高频噪声折叠的问题产生。FIG. 3E is a schematic waveform diagram of an embodiment of the output voltage Vi1 of the first
于一实施例中,电荷泵电路可不采用放大器,此时,旁路开关60的第二端耦接至接地端。因此,于旁路开关60导通时,第一电流源单元20所提供的充电电流能经由旁路开关60流至接地端。此外,当电荷泵电路设置有旁路开关61时,旁路开关61的第一端耦接放电开关50与第二电流源单元30,并且旁路开关61的第二端耦接额定电压电路。In one embodiment, the charge pump circuit may not use an amplifier. In this case, the second terminal of the
于一实施例中,电荷泵电路可采用放大器。图4是本发明的电荷泵电路另一实施例的架构示意图。请参阅图4,电荷泵电路可更包含放大器62。放大器62的输入端与充电开关40的第二端及输出电容10耦接。放大器62的输出端耦接旁路开关60的第二端(与另一旁路开关61的第二端)。也就是说,另一旁路开关61的第二端同时耦接至旁路开关60的第二端与放大器62的输出端。旁路开关61的第一端则耦接至第二电流源单元30与放电开关50的第一端。如此亦能让旁路开关61于放电开关50导通的前后期间为导通,且于放电开关50导通过程中是为不导通。另外,旁路开关61于充电开关40导通期间是为不导通。In one embodiment, the charge pump circuit may employ an amplifier. FIG. 4 is a schematic structural diagram of another embodiment of the charge pump circuit of the present invention. Referring to FIG. 4 , the charge pump circuit may further include an
依据上述各实施例,电荷泵电路于不使用时关闭,然后在充放电开关(充电开关40或放电开关50)要切换成导通之前以及充放电开关要切换成不导通之前,先导通旁路开关60(或61)使电流源单元(20或30)的漏极达到稳态电压后再切换旁路开关60(或61)为不导通,并进行充放电开关的切换。如此能维持电流源单元与充放电开关之间的稳态电压。还能避免第一电流源单元20与充电开关40之间因充电电流而堆积所生成的电压。并且还能减少经旁路开关60(或61)弃置的电流以节省电流。另外还能使相位和输出电流之间保持线性关系以避免电荷泵电路的高频噪声折叠到低频。再者,应用至频率合成器时,其不干扰频率合成器工作。According to the above-mentioned embodiments, the charge pump circuit is turned off when not in use, and then the bypass is turned on before the charge and discharge switch (the
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106129405 | 2017-08-29 | ||
TW106129405A TWI645660B (en) | 2017-08-29 | 2017-08-29 | Low current and low noise charge pump circuit and frequency synthesizer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109428480A CN109428480A (en) | 2019-03-05 |
CN109428480B true CN109428480B (en) | 2020-07-24 |
Family
ID=65431868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710778829.8A Expired - Fee Related CN109428480B (en) | 2017-08-29 | 2017-09-01 | Low current and low noise charge pump circuit and frequency synthesizer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109428480B (en) |
TW (1) | TWI645660B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6420914B1 (en) * | 1999-03-15 | 2002-07-16 | Nec Corporation | Charge pump circuit having switching circuits for reducing leakage currents |
CN102957316A (en) * | 2011-08-31 | 2013-03-06 | 深圳艾科创新微电子有限公司 | Low-charge-injection charge pump and low charge injection method |
CN104796136A (en) * | 2014-01-17 | 2015-07-22 | 苏州芯动科技有限公司 | Charge pump device for phase locked loop clock data restorer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI302058B (en) * | 2005-10-17 | 2008-10-11 | Realtek Semiconductor Corp | Power management for low-jitter phase-locked loop in portable application |
US7439784B2 (en) * | 2006-12-29 | 2008-10-21 | Mediatek Inc. | Charge pump for reducing current mismatch |
TWI419451B (en) * | 2011-05-06 | 2013-12-11 | Ralink Technology Corp | Charge pump circuit |
US20130154696A1 (en) * | 2011-12-16 | 2013-06-20 | Issc Technologies Corp. | Charge pump circuit and phase lock loop circuit |
-
2017
- 2017-08-29 TW TW106129405A patent/TWI645660B/en not_active IP Right Cessation
- 2017-09-01 CN CN201710778829.8A patent/CN109428480B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6420914B1 (en) * | 1999-03-15 | 2002-07-16 | Nec Corporation | Charge pump circuit having switching circuits for reducing leakage currents |
CN102957316A (en) * | 2011-08-31 | 2013-03-06 | 深圳艾科创新微电子有限公司 | Low-charge-injection charge pump and low charge injection method |
CN104796136A (en) * | 2014-01-17 | 2015-07-22 | 苏州芯动科技有限公司 | Charge pump device for phase locked loop clock data restorer |
Also Published As
Publication number | Publication date |
---|---|
TWI645660B (en) | 2018-12-21 |
TW201914188A (en) | 2019-04-01 |
CN109428480A (en) | 2019-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7893778B2 (en) | Flexible low current oscillator for multiphase operations | |
US8212596B2 (en) | PLL circuit | |
CN107294506B (en) | Crystal oscillator circuit | |
KR20050070110A (en) | Capacitive charge pump | |
CN105703769B (en) | Voltage generator | |
CN107534436B (en) | Circuit and method for implementing charge/discharge switch in integrated circuit | |
US20160087525A1 (en) | Charge pump with suppressed feedthrough effect | |
CN205566250U (en) | Electronic equipment | |
US20130169324A1 (en) | Fully integrated circuit for generating a ramp signal | |
EP2290821A1 (en) | Charge pump circuit and PLL circuit using the same | |
CN111033274B (en) | Low power low duty cycle switched capacitor voltage divider | |
CN109428480B (en) | Low current and low noise charge pump circuit and frequency synthesizer | |
US9407137B2 (en) | Charge pump circuit and PLL circuit | |
US10277232B2 (en) | Charge pump circuit and PLL circuit | |
US10581416B2 (en) | External and dual ramp clock synchronization | |
US12184234B2 (en) | Semiconductor device | |
US20150372591A1 (en) | Positive and negative potential generating circuit | |
CN100385790C (en) | Switched capacitor circuit capable of reducing clock feedthrough effect and related method | |
US10483845B2 (en) | Charge pump having level-shifting mechanism | |
KR20050028172A (en) | High-speed voltage controlled oscillator | |
JPH08102643A (en) | Variable delay circuit, ring oscillation circuit using the delay circuit and pll circuit using the oscillation circuit | |
US20250096805A1 (en) | Charge pump circuit and phase-locked loop circuit | |
US10056910B2 (en) | Oscillation circuit device | |
CN119574964A (en) | Periodic signal sampling circuit | |
CN119010891A (en) | Oscillator frequency setting circuit utilizing external resistor or same-frequency external clock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200724 |