[go: up one dir, main page]

CN109346572B - Manufacturing method of light emitting diode epitaxial wafer and light emitting diode epitaxial wafer - Google Patents

Manufacturing method of light emitting diode epitaxial wafer and light emitting diode epitaxial wafer Download PDF

Info

Publication number
CN109346572B
CN109346572B CN201810961474.0A CN201810961474A CN109346572B CN 109346572 B CN109346572 B CN 109346572B CN 201810961474 A CN201810961474 A CN 201810961474A CN 109346572 B CN109346572 B CN 109346572B
Authority
CN
China
Prior art keywords
type semiconductor
semiconductor layer
type
layer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810961474.0A
Other languages
Chinese (zh)
Other versions
CN109346572A (en
Inventor
郭炳磊
王群
葛永晖
吕蒙普
胡加辉
李鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Semitek Zhejiang Co Ltd
Original Assignee
HC Semitek Zhejiang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Semitek Zhejiang Co Ltd filed Critical HC Semitek Zhejiang Co Ltd
Priority to CN201810961474.0A priority Critical patent/CN109346572B/en
Publication of CN109346572A publication Critical patent/CN109346572A/en
Application granted granted Critical
Publication of CN109346572B publication Critical patent/CN109346572B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/8215Bodies characterised by crystalline imperfections, e.g. dislocations; characterised by the distribution of dopants, e.g. delta-doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0137Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials

Landscapes

  • Led Devices (AREA)

Abstract

本发明公开了一种发光二极管外延片的制作方法及发光二极管外延片,属于半导体技术领域。所述制作方法包括:提供一衬底;在所述衬底上依次生长N型半导体层、有源层和P型半导体层,所述N型半导体层为N型掺杂的氮化物;在所述P型半导体层上开设延伸至所述N型半导体的凹槽;对所述凹槽内的N型半导体层的表面进行电子辐照,增加所述凹槽内的N型半导体层中的氮空位,所述凹槽内的N型半导体层的表面用于设置N型电极。本发明通过对N型半导体层设置N型电极的表面进行电子辐照,增加N型半导体层中的氮空位,促进N型掺杂剂的并入,提高掺杂元素并入的有效性,改变由于重掺杂导致的高杂质状态,提高载流子的迁移率,提高整个发光二极管的光效。

Figure 201810961474

The invention discloses a manufacturing method of a light-emitting diode epitaxial wafer and a light-emitting diode epitaxial wafer, belonging to the technical field of semiconductors. The manufacturing method includes: providing a substrate; growing an N-type semiconductor layer, an active layer and a P-type semiconductor layer on the substrate in sequence, and the N-type semiconductor layer is an N-type doped nitride; A groove extending to the N-type semiconductor is opened on the P-type semiconductor layer; electron irradiation is performed on the surface of the N-type semiconductor layer in the groove to increase nitrogen in the N-type semiconductor layer in the groove Vacancy, the surface of the N-type semiconductor layer in the groove is used for setting the N-type electrode. The invention increases the nitrogen vacancy in the N-type semiconductor layer by irradiating the surface of the N-type semiconductor layer with the N-type electrode, promotes the incorporation of the N-type dopant, improves the effectiveness of the incorporation of the doping element, and changes the Due to the high impurity state caused by heavy doping, the mobility of carriers is improved, and the light efficiency of the entire light-emitting diode is improved.

Figure 201810961474

Description

一种发光二极管外延片的制作方法及发光二极管外延片A manufacturing method of a light-emitting diode epitaxial wafer and a light-emitting diode epitaxial wafer

技术领域technical field

本发明涉及半导体技术领域,特别涉及一种发光二极管外延片的制作方法及发光二极管外延片。The invention relates to the technical field of semiconductors, and in particular, to a method for manufacturing a light emitting diode epitaxial wafer and a light emitting diode epitaxial wafer.

背景技术Background technique

发光二极管(英文:Light Emitting Diode,简称:LED)是一种能发光的半导体电子元件。氮化镓(GaN)具有良好的热导性能,同时具有耐高温、耐酸碱、高硬度等优良特性,使氮化镓(GaN)基LED受到越来越多的关注和研究。Light Emitting Diode (English: Light Emitting Diode, LED for short) is a semiconductor electronic component that can emit light. Gallium nitride (GaN) has good thermal conductivity, high temperature resistance, acid and alkali resistance, high hardness and other excellent characteristics, so that gallium nitride (GaN)-based LEDs have received more and more attention and research.

外延片是LED制备过程中的初级成品。现有的LED外延片包括衬底、N型半导体层、有源层和P型半导体层,N型半导体层、有源层和P型半导体层依次层叠在衬底上。P型半导体层用于提供进行复合发光的空穴,N型半导体层用于提供进行复合发光的电子,有源层用于进行电子和空穴的辐射复合发光,衬底用于为外延材料提供生长表面。Epitaxial wafers are the primary finished products in the LED fabrication process. The existing LED epitaxial wafer includes a substrate, an N-type semiconductor layer, an active layer and a P-type semiconductor layer, and the N-type semiconductor layer, the active layer and the P-type semiconductor layer are sequentially stacked on the substrate. The P-type semiconductor layer is used to provide holes for recombination emission, the N-type semiconductor layer is used to provide electrons for recombination emission, the active layer is used for radiative recombination emission of electrons and holes, and the substrate is used to provide epitaxial materials growth surface.

芯片是LED的核心组件,芯片包括外延片和设置在外延片上电极。在芯片工艺中,通常会在P型半导体层上开设延伸至N型半导体层的凹槽,将N型电极设置在凹槽内的N型半导体层上。另外,P型电极设置在P型半导体层上。The chip is the core component of the LED, and the chip includes an epitaxial wafer and electrodes arranged on the epitaxial wafer. In the chip process, a groove extending to the N-type semiconductor layer is usually formed on the P-type semiconductor layer, and the N-type electrode is arranged on the N-type semiconductor layer in the groove. In addition, a P-type electrode is provided on the P-type semiconductor layer.

为了与电极形成良好的欧姆接触,N型半导体层为重掺杂,通过重掺杂获得超薄势垒。超薄势垒对载流子无阻挡能力,载流子可以自由穿过势垒,形成很大的隧道电流,从而获得欧姆接触(不产生明显的附加阻挡,电流在接触层上产生的压降小于在器件本身上所产生的压降)。In order to form a good ohmic contact with the electrode, the N-type semiconductor layer is heavily doped, and an ultra-thin barrier is obtained by heavy doping. The ultra-thin barrier has no blocking ability for carriers, and the carriers can freely pass through the barrier to form a large tunnel current, thereby obtaining an ohmic contact (no obvious additional barrier is generated, and the voltage drop generated by the current on the contact layer) less than the voltage drop developed across the device itself).

在实现本发明的过程中,发明人发现现有技术至少存在以下问题:In the process of realizing the present invention, the inventor found that the prior art has at least the following problems:

衬底的材料通常选择蓝宝石,N型半导体层等的材料通常选择氮化镓,蓝宝石和氮化镓为异质材料,晶格常数差异较大,两者之间存在较大的晶格失配。晶格失配产生的应力和缺陷会较多引入氮化镓中,并在外延生长过程中不断积累,导致N型半导体层中存在较大的晶体缺陷。而且N型半导体层为重掺杂,重掺杂的过程中会引入过多的杂质缺陷,因此N型半导体层中的缺陷浓度很高。高浓度的缺陷会束缚载流子的迁移,影响到整个发光二极管的光效。The material of the substrate is usually sapphire, and the material of the N-type semiconductor layer is usually gallium nitride. Sapphire and gallium nitride are heterogeneous materials, the lattice constants are quite different, and there is a large lattice mismatch between the two. . The stress and defects generated by the lattice mismatch will be introduced into the gallium nitride more and accumulate continuously during the epitaxial growth process, resulting in large crystal defects in the N-type semiconductor layer. In addition, the N-type semiconductor layer is heavily doped, and excessive impurity defects will be introduced in the process of heavy doping, so the defect concentration in the N-type semiconductor layer is very high. The high concentration of defects will constrain the migration of carriers and affect the light efficiency of the entire light-emitting diode.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供了一种发光二极管外延片的制作方法及发光二极管外延片,能够解决现有技术N型半导体层内高浓度的缺陷会束缚载流子的迁移、影响到整个发光二极管的光效的问题。所述技术方案如下:The embodiments of the present invention provide a method for fabricating a light-emitting diode epitaxial wafer and a light-emitting diode epitaxial wafer, which can solve the problem that high-concentration defects in the N-type semiconductor layer in the prior art will constrain the migration of carriers and affect the light emission of the entire light-emitting diode. effectiveness issue. The technical solution is as follows:

一方面,本发明实施例提供了一种发光二极管外延片的制作方法,所述制作方法包括:In one aspect, an embodiment of the present invention provides a method for fabricating a light-emitting diode epitaxial wafer, the fabrication method comprising:

提供一衬底;providing a substrate;

在所述衬底上依次生长N型半导体层、有源层和P型半导体层,所述N型半导体层为N型掺杂的氮化物;growing an N-type semiconductor layer, an active layer and a P-type semiconductor layer on the substrate in sequence, and the N-type semiconductor layer is an N-type doped nitride;

在所述P型半导体层上开设延伸至所述N型半导体的凹槽;opening a groove extending to the N-type semiconductor on the P-type semiconductor layer;

对所述凹槽内的N型半导体层的表面进行电子辐照,增加所述凹槽内的N型半导体层中的氮空位,所述凹槽内的N型半导体层的表面用于设置N型电极。The surface of the N-type semiconductor layer in the groove is irradiated with electrons to increase nitrogen vacancies in the N-type semiconductor layer in the groove, and the surface of the N-type semiconductor layer in the groove is used for setting N type electrode.

可选地,电子辐照的辐射剂量为1016/cm2~1022/cm2Optionally, the radiation dose of electron irradiation is 10 16 /cm 2 to 10 22 /cm 2 .

可选地,所述对所述凹槽内的N型半导体层的表面进行电子辐照,增加所述凹槽内的N型半导体层中的氮空位,包括:Optionally, performing electron irradiation on the surface of the N-type semiconductor layer in the groove to increase nitrogen vacancies in the N-type semiconductor layer in the groove includes:

采用透射电子显微镜提供的电子束作为光源,照射所述凹槽内的N型半导体层的表面。The surface of the N-type semiconductor layer in the groove is irradiated with an electron beam provided by a transmission electron microscope as a light source.

优选地,所述电子束的直径为8μm~30μm。Preferably, the diameter of the electron beam is 8 μm˜30 μm.

可选地,所述制作方法还包括:Optionally, the manufacturing method further includes:

在所述对所述凹槽内的N型半导体层的表面进行电子辐照之后,对所述凹槽内的N型半导体层进行退火处理。After the electron irradiation is performed on the surface of the N-type semiconductor layer in the groove, the N-type semiconductor layer in the groove is annealed.

在本发明实施例一种可能的实现方式中,所述制作方法还包括:In a possible implementation manner of the embodiment of the present invention, the manufacturing method further includes:

对所述P型半导体层的表面进行电子辐照,增加所述P型半导体层中的氮空位,所述P型半导体层为P型掺杂的氮化物,所述P型半导体层的表面用于设置P型电极。The surface of the P-type semiconductor layer is irradiated with electrons to increase nitrogen vacancies in the P-type semiconductor layer, the P-type semiconductor layer is a P-type doped nitride, and the surface of the P-type semiconductor layer is for setting P-type electrodes.

可选地,所述制作方法还包括:Optionally, the manufacturing method further includes:

在所述对所述P型半导体层的表面进行电子辐照之后,对所述P型半导体层进行退火处理。After the electron irradiation to the surface of the P-type semiconductor layer, the P-type semiconductor layer is subjected to annealing treatment.

在本发明实施例另一种可能的实现方式中,所述制作方法还包括:In another possible implementation manner of the embodiment of the present invention, the manufacturing method further includes:

在所述P型半导体层上生长接触层,所述接触层为P型掺杂的氮化物,所述接触层的表面用于设置P型电极;growing a contact layer on the P-type semiconductor layer, the contact layer is a P-type doped nitride, and the surface of the contact layer is used for arranging a P-type electrode;

对所述接触层的表面进行电子辐照,增加所述接触层中的氮空位。The surface of the contact layer is irradiated with electrons to increase nitrogen vacancies in the contact layer.

可选地,所述制作方法还包括:Optionally, the manufacturing method further includes:

在所述对所述接触层的表面进行电子辐照之后,对所述接触层进行退火处理。After the electron irradiation of the surface of the contact layer, the contact layer is annealed.

另一方面,本发明实施例提供了一种发光二极管外延片,所述发光二极管外延片包括衬底、N型半导体层、有源层和P型半导体层,所述N型半导体层、所述有源层和所述P型半导体层依次层叠在所述衬底上,所述P型半导体层上设有延伸至所述N型半导体层的凹槽,所述凹槽内的N型半导体层的表面用于设置N型电极,所述凹槽内的N型半导体层的表面为经过电子辐照处理的表面。On the other hand, an embodiment of the present invention provides a light-emitting diode epitaxial wafer, the light-emitting diode epitaxial wafer includes a substrate, an N-type semiconductor layer, an active layer and a P-type semiconductor layer, the N-type semiconductor layer, the The active layer and the P-type semiconductor layer are sequentially stacked on the substrate, the P-type semiconductor layer is provided with a groove extending to the N-type semiconductor layer, and the N-type semiconductor layer in the groove The surface of the N-type semiconductor layer is used for setting the N-type electrode, and the surface of the N-type semiconductor layer in the groove is the surface treated by electron irradiation.

本发明实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solutions provided in the embodiments of the present invention are:

通过对N型半导体层设置N型电极的表面进行电子辐照,改变N型半导体层晶体的微观结构,影响N型半导体层内缺陷的形态和数量,在不改变氮元素比例的情况下产生较多的氮空位,增加N型半导体层中的氮空位,促进N型掺杂剂的并入,提高掺杂元素并入的有效性,改变由于重掺杂导致的高杂质状态,提高载流子的迁移率,改善N型电极与N型半导体层的电学接触,降低串联电阻,提高整个发光二极管的光效。By irradiating the surface of the N-type semiconductor layer with the N-type electrode, the microstructure of the N-type semiconductor layer crystal is changed, and the shape and quantity of the defects in the N-type semiconductor layer are affected. Many nitrogen vacancies increase the nitrogen vacancies in the N-type semiconductor layer, promote the incorporation of N-type dopants, improve the effectiveness of the incorporation of doping elements, change the high impurity state caused by heavy doping, and improve the carrier The mobility of the N-type electrode is improved, the electrical contact between the N-type electrode and the N-type semiconductor layer is improved, the series resistance is reduced, and the light efficiency of the entire light-emitting diode is improved.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.

图1是本发明实施例提供的一种发光二极管外延片的制作方法的流程图;FIG. 1 is a flowchart of a method for fabricating a light-emitting diode epitaxial wafer provided by an embodiment of the present invention;

图2是本发明实施例提供的制作方法在步骤101执行之后得到的发光二极管外延片的结构示意图;FIG. 2 is a schematic structural diagram of a light-emitting diode epitaxial wafer obtained after step 101 of the manufacturing method provided by an embodiment of the present invention;

图3是本发明实施例提供的制作方法在步骤102执行之后得到的发光二极管外延片的结构示意图;3 is a schematic structural diagram of a light-emitting diode epitaxial wafer obtained after step 102 is performed by the manufacturing method provided by the embodiment of the present invention;

图4是本发明实施例提供的制作方法在步骤103执行之后得到的发光二极管外延片的结构示意图;FIG. 4 is a schematic structural diagram of a light-emitting diode epitaxial wafer obtained after step 103 of the manufacturing method provided by the embodiment of the present invention;

图5是本发明实施例提供的制作方法在步骤104执行过程中的发光二极管外延片的结构示意图;5 is a schematic structural diagram of a light-emitting diode epitaxial wafer during the execution of step 104 of the manufacturing method provided by the embodiment of the present invention;

图6是本发明实施例提供的一种发光二极管外延片的结构示意图。FIG. 6 is a schematic structural diagram of a light emitting diode epitaxial wafer provided by an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.

本发明实施例提供了一种发光二极管外延片的制作方法。图1为本发明实施例提供的一种发光二极管外延片的制作方法的流程图。参见图1,该制作方法包括:Embodiments of the present invention provide a method for fabricating a light-emitting diode epitaxial wafer. FIG. 1 is a flowchart of a method for fabricating a light-emitting diode epitaxial wafer according to an embodiment of the present invention. Referring to Figure 1, the manufacturing method includes:

步骤101:提供一衬底。Step 101: Provide a substrate.

图2为本发明实施例提供的制作方法在步骤101执行之后得到的发光二极管外延片的结构示意图。其中,10表示衬底。FIG. 2 is a schematic structural diagram of a light-emitting diode epitaxial wafer obtained after step 101 is performed by the manufacturing method provided by the embodiment of the present invention. Wherein, 10 represents the substrate.

具体地,衬底的材料可以采用蓝宝石(主要材料为三氧化二铝),如晶向为[0001]的蓝宝石。Specifically, the material of the substrate can be sapphire (the main material is aluminum oxide), such as sapphire with a crystal orientation of [0001].

具体地,该步骤101可以包括:Specifically, this step 101 may include:

控制温度为1000℃~1200℃(优选为1100℃),在氢气气氛中对衬底进行6分钟~10分钟(优选为8分钟)的退火处理;The temperature is controlled to be 1000°C to 1200°C (preferably 1100°C), and the substrate is annealed for 6 minutes to 10 minutes (preferably 8 minutes) in a hydrogen atmosphere;

对衬底进行氮化处理。The substrate is nitrided.

采用上述步骤对衬底的表面进行清洗,避免杂质掺入外延片中,影响整体的晶体质量,降低LED的发光效率。The above steps are used to clean the surface of the substrate to avoid doping impurities into the epitaxial wafer, affecting the overall crystal quality and reducing the luminous efficiency of the LED.

步骤102:在衬底上依次生长N型半导体层、有源层和P型半导体层,N型半导体层为N型掺杂的氮化物。Step 102 : growing an N-type semiconductor layer, an active layer and a P-type semiconductor layer on the substrate in sequence, where the N-type semiconductor layer is an N-type doped nitride.

图3为本发明实施例提供的制作方法在步骤102执行之后得到的发光二极管外延片的结构示意图。其中,20表示N型半导体层,30表示有源层,40表示P型半导体层。参见图3,N型半导体层20、有源层30、P型半导体层40依次层叠在衬底10上。FIG. 3 is a schematic structural diagram of a light-emitting diode epitaxial wafer obtained after step 102 is performed by the manufacturing method provided by the embodiment of the present invention. Among them, 20 represents an N-type semiconductor layer, 30 represents an active layer, and 40 represents a P-type semiconductor layer. Referring to FIG. 3 , the N-type semiconductor layer 20 , the active layer 30 , and the P-type semiconductor layer 40 are sequentially stacked on the substrate 10 .

具体地,N型半导体层的材料可以采用N型掺杂(如硅)的氮化镓(GaN)。有源层可以包括多个量子阱和多个量子垒,多个量子阱和多个量子垒交替层叠设置;量子阱的材料可以采用氮化铟镓(InGaN),如InxGa1-xN,0<x<1;量子垒的材料可以采用氮化镓。P型半导体层的材料可以采用P型掺杂(如镁)的氮化镓。Specifically, the material of the N-type semiconductor layer may be N-type doped (eg, silicon) gallium nitride (GaN). The active layer can include multiple quantum wells and multiple quantum barriers, and multiple quantum wells and multiple quantum barriers are alternately stacked; the material of the quantum wells can be indium gallium nitride (InGaN), such as In x Ga 1-x N , 0<x<1; the material of the quantum barrier can be gallium nitride. The material of the P-type semiconductor layer can be P-type doped (eg, magnesium) gallium nitride.

进一步地,N型半导体层的厚度可以为1μm~5μm,优选为3μm;N型半导体层中N型掺杂剂的掺杂浓度可以为1018cm-3~1019cm-3,优选为5*1018cm-3。量子阱的数量和量子垒的数量相同,量子垒的数量可以为3个~15个(优选为9个);量子阱的厚度可以为2.5nm~3.5nm(优选为3nm),量子垒的厚度可以为9nm~20nm(优选为15nm)。P型半导体层的厚度可以为100nm~800nm,优选为450nm;P型半导体层中P型掺杂剂的掺杂浓度可以为1018cm-3~1019cm-3,优选为5*1018cm-3Further, the thickness of the N-type semiconductor layer may be 1 μm˜5 μm, preferably 3 μm; the doping concentration of the N-type dopant in the N-type semiconductor layer may be 10 18 cm -3 -10 19 cm -3 , preferably 5 *10 18 cm -3 . The number of quantum wells is the same as the number of quantum barriers, and the number of quantum barriers can be 3 to 15 (preferably 9); the thickness of the quantum wells can be 2.5 nm to 3.5 nm (preferably 3 nm), and the thickness of the quantum barriers It may be 9 nm to 20 nm (preferably 15 nm). The thickness of the P-type semiconductor layer can be 100nm-800nm, preferably 450nm; the doping concentration of the P-type dopant in the P-type semiconductor layer can be 10 18 cm -3 -10 19 cm -3 , preferably 5*10 18 cm -3 .

具体地,该步骤102可以包括:Specifically, this step 102 may include:

第一步,控制温度为1000℃~1200℃(优选为1100℃),压力为100torr~500torr(优选为300torr),在衬底上生长N型半导体层;The first step is to control the temperature to be 1000°C to 1200°C (preferably 1100°C), and the pressure to be 100torr to 500torr (preferably 300torr), and grow an N-type semiconductor layer on the substrate;

第二步,在N型半导体层上生长有源层;量子阱的生长温度为720℃~829℃(优选为770℃),量子阱的生长压力为100torr~500torr(优选为300torr);量子垒的生长温度为850℃~959℃(优选为900℃),量子垒的生长压力为100torr~500torr(优选为300torr);In the second step, the active layer is grown on the N-type semiconductor layer; the growth temperature of the quantum well is 720°C to 829°C (preferably 770°C), and the growth pressure of the quantum well is 100torr to 500torr (preferably 300torr); the quantum barrier The growth temperature of the quantum barrier is 850°C to 959°C (preferably 900°C), and the growth pressure of the quantum barrier is 100torr to 500torr (preferably 300torr);

第三步,控制温度为850℃~1080℃(优选为960℃),压力为100torr~300torr(优选为200torr),在有源层上生长P型半导体层。The third step is to control the temperature to be 850°C to 1080°C (preferably 960°C) and the pressure to be 100torr to 300torr (preferably 200torr) to grow a P-type semiconductor layer on the active layer.

可选地,在第一步之前,该制作方法还可以包括:Optionally, before the first step, the manufacturing method may further include:

在衬底上生长缓冲层。A buffer layer is grown on the substrate.

利用缓冲层缓解衬底材料与氮化镓之间晶格失配产生的应力和缺陷,并为氮化镓材料外延生长提供成核中心。The buffer layer is used to relieve the stress and defects caused by the lattice mismatch between the substrate material and the gallium nitride, and provide a nucleation center for the epitaxial growth of the gallium nitride material.

相应地,N型半导体层生长在缓冲层上。Accordingly, the N-type semiconductor layer is grown on the buffer layer.

具体地,缓冲层的材料可以采用氮化镓(GaN)。Specifically, the material of the buffer layer can be gallium nitride (GaN).

进一步地,缓冲层的厚度可以为15nm~35nm,优选为25nm。Further, the thickness of the buffer layer may be 15 nm to 35 nm, preferably 25 nm.

具体地,在衬底上生长缓冲层,可以包括:Specifically, growing the buffer layer on the substrate may include:

控制温度为400℃~600℃(优选为500℃),压力为400torr~600torr(优选为500torr),在衬底上生长缓冲层;Control the temperature to be 400°C to 600°C (preferably 500°C), and the pressure to be 400torr to 600torr (preferably 500torr), and grow a buffer layer on the substrate;

控制温度为1000℃~1200℃(优选为1100℃),压力为400Torr~600Torr(优选为500torr),持续时间为5分钟~10分钟(优选为8分钟),对缓冲层进行原位退火处理。Control the temperature to be 1000°C to 1200°C (preferably 1100°C), the pressure to be 400 Torr to 600 Torr (preferably 500 torr), and the duration to be 5 minutes to 10 minutes (preferably 8 minutes), to perform in-situ annealing treatment on the buffer layer.

优选地,在衬底上生长缓冲层之后,该制作方法还可以包括:Preferably, after growing the buffer layer on the substrate, the manufacturing method may further include:

在缓冲层上生长未掺杂氮化镓层。An undoped gallium nitride layer is grown on the buffer layer.

利用进一步缓解衬底材料与氮化镓之间晶格失配产生的应力和缺陷,为外延片主体结构提供晶体质量较好的生长表面。By further alleviating the stress and defects generated by the lattice mismatch between the substrate material and the gallium nitride, a growth surface with better crystal quality is provided for the main structure of the epitaxial wafer.

相应地,N型半导体层生长在未掺杂氮化镓层上。Accordingly, the N-type semiconductor layer is grown on the undoped gallium nitride layer.

在具体实现时,缓冲层为首先在图形化衬底上低温生长的一层较薄的氮化镓,因此也称为低温缓冲层。再在低温缓冲层进行氮化镓的纵向生长,会形成多个相互独立的三维岛状结构,称为三维成核层;然后在所有三维岛状结构上和各个三维岛状结构之间进行氮化镓的横向生长,形成二维平面结构,称为二维恢复层;最后在二维生长层上高温生长一层较厚的氮化镓,称为本征氮化镓层。本实施例中将三维成核层、二维恢复层和本征氮化镓层统称为未掺杂氮化镓层。In a specific implementation, the buffer layer is a thin layer of gallium nitride that is first grown on the patterned substrate at a low temperature, so it is also called a low temperature buffer layer. Then, the longitudinal growth of gallium nitride in the low temperature buffer layer will form multiple independent three-dimensional island structures, which are called three-dimensional nucleation layers; then nitrogen is carried out on and between all three-dimensional island structures. The lateral growth of gallium nitride forms a two-dimensional planar structure, which is called a two-dimensional recovery layer; finally, a thicker layer of gallium nitride is grown on the two-dimensional growth layer at high temperature, which is called an intrinsic gallium nitride layer. In this embodiment, the three-dimensional nucleation layer, the two-dimensional recovery layer and the intrinsic gallium nitride layer are collectively referred to as the undoped gallium nitride layer.

进一步地,未掺杂氮化镓层的厚度可以为1μm~5μm,优选为3μm。Further, the thickness of the undoped gallium nitride layer may be 1 μm˜5 μm, preferably 3 μm.

具体地,在缓冲层上生长未掺杂氮化镓层,可以包括:Specifically, growing an undoped gallium nitride layer on the buffer layer may include:

控制温度为1000℃~1100℃(优选为1050℃),压力为100torr~500torr(优选为300torr),在缓冲层上生长未掺杂氮化镓层。The temperature is controlled to be 1000°C to 1100°C (preferably 1050°C), the pressure is controlled to be 100torr to 500torr (preferably 300torr), and an undoped gallium nitride layer is grown on the buffer layer.

可选地,在第二步之前,该制作方法还可以包括:Optionally, before the second step, the manufacturing method may further include:

在N型半导体层上生长应力释放层。A stress relief layer is grown on the N-type semiconductor layer.

利用应力释放层对蓝宝石和氮化镓之间晶格失配产生的应力进行释放,提高有源层的晶体质量,有利于电子和空穴在有源层进行辐射复合发光,提高LED的内量子效率,进而提高LED的发光效率。The stress release layer is used to release the stress caused by the lattice mismatch between sapphire and gallium nitride to improve the crystal quality of the active layer, which is conducive to the radiative recombination of electrons and holes in the active layer, and improves the internal quantum of the LED. efficiency, thereby improving the luminous efficiency of the LED.

相应地,有源层生长在应力释放层上。Accordingly, the active layer is grown on the stress release layer.

具体地,应力释放层的材料可以采用镓铟铝氮(AlInGaN),可以有效释放蓝宝石和氮化镓晶格失配产生的应力,改善外延片的晶体质量,提高LED的发光效率。Specifically, the material of the stress release layer can be gallium indium aluminum nitride (AlInGaN), which can effectively release the stress caused by the lattice mismatch between sapphire and gallium nitride, improve the crystal quality of the epitaxial wafer, and improve the luminous efficiency of the LED.

优选地,应力释放层中铝组分的摩尔含量可以小于或等于0.2,应力释放层中铟组分的摩尔含量可以小于或等于0.05,以避免造成不良影响。Preferably, the molar content of the aluminum component in the stress release layer may be less than or equal to 0.2, and the molar content of the indium component in the stress release layer may be less than or equal to 0.05 to avoid adverse effects.

进一步地,应力释放层的厚度可以为50nm~500nm,优选为250nm。Further, the thickness of the stress release layer may be 50 nm to 500 nm, preferably 250 nm.

具体地,在N型半导体层上生长应力释放层,可以包括:Specifically, growing the stress release layer on the N-type semiconductor layer may include:

控制温度为800℃~1100℃(优选为950℃),压力为100torr~500torr(优选为300torr),在N型半导体层上生长应力释放层。The temperature is controlled to be 800°C to 1100°C (preferably 950°C), and the pressure is controlled to be 100torr to 500torr (preferably 300torr), and a stress release layer is grown on the N-type semiconductor layer.

可选地,在第三步之前,该制作方法还可以包括:Optionally, before the third step, the manufacturing method may further include:

在有源层上生长电子阻挡层。An electron blocking layer is grown on the active layer.

利用电子阻挡层避免电子跃迁到P型半导体层中与空穴进行非辐射复合,降低LED的发光效率。The electron blocking layer is used to prevent electrons from transitioning to the P-type semiconductor layer for non-radiative recombination with holes, thereby reducing the luminous efficiency of the LED.

具体地,电子阻挡层的材料可以采用P型掺杂的氮化铝镓(AlGaN),如AlyGa1-yN,0.1<y<0.5。Specifically, the material of the electron blocking layer can be P-type doped aluminum gallium nitride (AlGaN), such as AlyGa1 -yN , 0.1<y<0.5.

进一步地,电子阻挡层的厚度可以为50nm~150nm,优选为100nm。Further, the thickness of the electron blocking layer may be 50 nm to 150 nm, preferably 100 nm.

具体地,在有源层上生长电子阻挡层,可以包括:Specifically, growing an electron blocking layer on the active layer may include:

控制温度为850℃~1080℃(优选为960℃),压力为200torr~500torr(优选为350torr),在有源层上生长电子阻挡层。The temperature is controlled to be 850°C to 1080°C (preferably 960°C), and the pressure is controlled to be 200torr to 500torr (preferably 350torr), and an electron blocking layer is grown on the active layer.

优选地,在有源层上生长电子阻挡层之前,该制作方法还可以包括:Preferably, before growing the electron blocking layer on the active layer, the fabrication method may further include:

在有源层上生长低温P型层。A low temperature P-type layer is grown on the active layer.

利用低温P型层避免电子阻挡层较高的生长温度造成有源层中的铟原子析出,影响发光二极管的发光效率。The low temperature P-type layer is used to avoid the precipitation of indium atoms in the active layer caused by the higher growth temperature of the electron blocking layer, which affects the luminous efficiency of the light emitting diode.

相应地,电子阻挡层生长在低温P型层上。Accordingly, the electron blocking layer is grown on the low temperature P-type layer.

具体地,低温P型层的材料可以为与P型半导体层的材料相同。在本实施例中,低温P型层的材料可以为P型掺杂的氮化镓。Specifically, the material of the low-temperature P-type layer may be the same as that of the P-type semiconductor layer. In this embodiment, the material of the low-temperature P-type layer may be P-type doped gallium nitride.

进一步地,低温P型层的厚度可以为10nm~50nm,优选为30nm;低温P型层中P型掺杂剂的掺杂浓度可以为1018/cm3~1020/cm3,优选为1019/cm3Further, the thickness of the low-temperature P-type layer may be 10 nm˜50 nm, preferably 30 nm; the doping concentration of the P-type dopant in the low-temperature P-type layer may be 10 18 /cm 3 ˜10 20 /cm 3 , preferably 10 19 /cm 3 .

具体地,在有源层上生长低温P型层,可以包括:Specifically, growing a low-temperature P-type layer on the active layer may include:

控制温度为600℃~850℃(优选为750℃),压力为100torr~600torr(优选为300torr),在有源层上生长低温P型层。The temperature is controlled to be 600°C to 850°C (preferably 750°C), the pressure is controlled to be 100torr to 600torr (preferably 300torr), and a low temperature P-type layer is grown on the active layer.

可选地,在步骤102之后,该制作方法还可以包括:Optionally, after step 102, the manufacturing method may further include:

在P型半导体层上生长接触层。A contact layer is grown on the P-type semiconductor layer.

具体地,接触层的材料可以采用P型掺杂(如镁)的铟镓氮或者氮化镓。Specifically, the material of the contact layer can be indium gallium nitride or gallium nitride doped with P-type (eg, magnesium).

进一步地,接触层的厚度可以为5nm~300nm,优选为150nm;接触层中P型掺杂剂的掺杂浓度可以为1021/cm3~1022/cm3,优选为5*1021cm-3Further, the thickness of the contact layer may be 5 nm to 300 nm, preferably 150 nm; the doping concentration of the P-type dopant in the contact layer may be 10 21 /cm 3 to 10 22 /cm 3 , preferably 5*10 21 cm -3 .

具体地,在P型半导体层上生长接触层,可以包括:Specifically, growing a contact layer on the P-type semiconductor layer may include:

控制温度为850℃~1050℃(优选为950℃),压力为100torr~300torr(优选为200torr),在P型半导体层上生长接触层。The temperature is controlled to be 850°C to 1050°C (preferably 950°C), and the pressure is controlled to be 100torr to 300torr (preferably 200torr), and a contact layer is grown on the P-type semiconductor layer.

需要说明的是,在上述步骤之后,会先将温度降低至650℃~850℃(优选为750℃),在氮气气氛中对外延片进行5分钟~15分钟(优选为10分钟)的退火处理,然后再将外延片的温度降低至室温,结束外延工艺生长。It should be noted that, after the above steps, the temperature is first lowered to 650°C to 850°C (preferably 750°C), and the epitaxial wafer is annealed for 5 minutes to 15 minutes (preferably 10 minutes) in a nitrogen atmosphere , and then the temperature of the epitaxial wafer is lowered to room temperature to end the growth of the epitaxial process.

控制温度、压力均是指控制生长外延片的反应腔中的温度、压力,如型号为VeecoK465i C4的金属有机化合物化学气相沉淀(英文:Metal Organic Chemical VaporDeposition,简称:MOCVD)设备中的温度、压力。实现时以高纯氢气、或者高纯氮气、或者氢气和氮气的混合气体作为载气,高纯氨气作为氮源,三甲基镓或三乙基镓作为镓源,三甲基铟作为铟源,三甲基铝作为铝源,硅烷作为N型掺杂剂,二茂镁作为P型掺杂剂。Controlling temperature and pressure refers to controlling the temperature and pressure in the reaction chamber for growing epitaxial wafers. . High-purity hydrogen, or high-purity nitrogen, or a mixture of hydrogen and nitrogen is used as carrier gas, high-purity ammonia is used as nitrogen source, trimethylgallium or triethylgallium is used as gallium source, and trimethylindium is used as indium source, trimethylaluminum as the aluminum source, silane as the N-type dopant, and MgO as the P-type dopant.

步骤103:在P型半导体层上开设延伸至N型半导体的凹槽。Step 103: Opening a groove extending to the N-type semiconductor on the P-type semiconductor layer.

图4为本发明实施例提供的制作方法在步骤103执行之后得到的发光二极管外延片的结构示意图。其中,100表示凹槽。参见图4,凹槽100从P型半导体层40延伸至N型半导体层20。FIG. 4 is a schematic structural diagram of a light-emitting diode epitaxial wafer obtained after step 103 is performed by the manufacturing method provided by the embodiment of the present invention. Among them, 100 represents a groove. Referring to FIG. 4 , the groove 100 extends from the P-type semiconductor layer 40 to the N-type semiconductor layer 20 .

具体地,该步骤103可以包括:Specifically, this step 103 may include:

采用光刻技术在P型半导体层上形成设定图形的光刻胶,设定图形的光刻胶设置在除凹槽所在区域之外的区域上;A photoresist with a set pattern is formed on the P-type semiconductor layer by using a photolithography technique, and the photoresist with a set pattern is arranged on an area other than the area where the groove is located;

采用干法刻蚀技术在P型半导体层上开设延伸至N型半导体层的凹槽;Using dry etching technology to open a groove extending to the N-type semiconductor layer on the P-type semiconductor layer;

去除光刻胶。Remove photoresist.

在具体实现时,采用光刻技术在P型半导体层上形成设定图形的光刻胶时,先在P型半导体层上铺设一层光刻胶,再通过一定图形的掩膜版对光刻胶进行曝光,最后将曝光后的光刻胶浸泡在显影液中,即可得到设定图形的光刻胶。In the specific implementation, when photolithography technology is used to form a photoresist with a set pattern on the P-type semiconductor layer, a layer of photoresist is first laid on the P-type semiconductor layer, and then the photolithography is performed through a mask of a certain pattern. The photoresist is exposed, and finally the exposed photoresist is immersed in a developing solution to obtain a photoresist with a set pattern.

容易知道,如果在P型半导体层上生长接触层,则凹槽从接触层延伸至N型半导体层。It is easy to know that if the contact layer is grown on the P-type semiconductor layer, the grooves extend from the contact layer to the N-type semiconductor layer.

步骤104:对凹槽内的N型半导体层的表面进行电子辐照,增加凹槽内的N型半导体层中的氮空位,凹槽内的N型半导体层的表面用于设置N型电极。Step 104: Electron irradiation is performed on the surface of the N-type semiconductor layer in the groove to increase nitrogen vacancies in the N-type semiconductor layer in the groove, and the surface of the N-type semiconductor layer in the groove is used for setting the N-type electrode.

在本实施例中,电子辐照(英文:Electron irradiation)是采用高能电子束照射材料,引起晶体原子位移,改善材料性能。In this embodiment, electron irradiation (English: Electron irradiation) uses high-energy electron beams to irradiate the material to cause displacement of crystal atoms and improve the properties of the material.

图5为本发明实施例提供的制作方法在步骤104执行过程中的发光二极管外延片的结构示意图。参见图5,电子辐照(图5中用箭头表示)作用在凹槽100内的N型半导体层上。FIG. 5 is a schematic structural diagram of a light-emitting diode epitaxial wafer during the execution of step 104 of the manufacturing method provided by the embodiment of the present invention. Referring to FIG. 5 , electron irradiation (indicated by arrows in FIG. 5 ) acts on the N-type semiconductor layer within the groove 100 .

本发明实施例通过对N型半导体层设置N型电极的表面进行电子辐照,改变N型半导体层晶体的微观结构,影响N型半导体层内缺陷的形态和数量,在不改变氮元素比例的情况下产生较多的氮空位,增加N型半导体层中的氮空位,促进N型掺杂剂的并入,提高掺杂元素并入的有效性,改变由于重掺杂导致的高杂质状态,提高载流子的迁移率,改善N型电极与N型半导体层的电学接触,降低串联电阻,提高整个发光二极管的光效。In the embodiment of the present invention, by irradiating the surface of the N-type semiconductor layer with the N-type electrode, the microstructure of the crystal of the N-type semiconductor layer is changed, and the shape and quantity of the defects in the N-type semiconductor layer are affected. In this case, more nitrogen vacancies are generated, which increases the nitrogen vacancies in the N-type semiconductor layer, promotes the incorporation of N-type dopants, improves the effectiveness of the incorporation of doping elements, and changes the high impurity state caused by heavy doping. The mobility of carriers is improved, the electrical contact between the N-type electrode and the N-type semiconductor layer is improved, the series resistance is reduced, and the light efficiency of the entire light-emitting diode is improved.

可选地,电子辐照的辐射剂量可以为1016/cm2~1022/cm2,优选为1019/cm2Alternatively, the radiation dose of electron irradiation may be 10 16 /cm 2 to 10 22 /cm 2 , preferably 10 19 /cm 2 .

如果电子辐照的辐射剂量小于1016/cm2,则可能由于电子辐照的辐射剂量太少而无法有效增加N型半导体层中的氮空位,发光二极管的光效提升效果不明显;如果电子辐照的辐射剂量大于1022/cm2,则可能由于电辐照的辐射剂量太多而影响到N型半导体层晶体的主体结构,反而降低发光二极管的光效。If the radiation dose of electron irradiation is less than 10 16 /cm 2 , the nitrogen vacancies in the N-type semiconductor layer may not be effectively increased due to the fact that the radiation dose of electron irradiation is too small, and the light efficiency improvement effect of the light-emitting diode is not obvious; If the irradiated radiation dose is greater than 10 22 /cm 2 , the main structure of the N-type semiconductor layer crystal may be affected due to too much electrical radiation dose, and on the contrary, the light efficiency of the light-emitting diode will be reduced.

其中,辐射剂量为电子辐照表面单位面积辐射的电子总数。Among them, the radiation dose is the total number of electrons radiated per unit area of the electron-irradiated surface.

可选地,电子辐照时N型半导体层所处环境的温度可以为20℃~150℃,优选为85℃。Optionally, the temperature of the environment where the N-type semiconductor layer is located during electron irradiation may be 20°C to 150°C, preferably 85°C.

可选地,电子辐照时N型半导体层所处环境的压力可以为5Torr~50Torr,如28Torr。Optionally, the pressure of the environment where the N-type semiconductor layer is located during the electron irradiation may be 5 Torr to 50 Torr, such as 28 Torr.

可选地,该步骤104可以包括:Optionally, this step 104 may include:

采用透射电子显微镜(英文:Transmission Electron Microscope,简称TEM)提供的电子束作为光源,照射凹槽内的N型半导体层的表面。An electron beam provided by a transmission electron microscope (English: Transmission Electron Microscope, TEM for short) is used as a light source to illuminate the surface of the N-type semiconductor layer in the groove.

直接采用现有设备进行电子辐照,实现上更为简单方便。Directly using existing equipment for electron irradiation is simpler and more convenient to implement.

具体地,透射电子显微镜可以包括电子枪、聚光镜、样品室、物镜、中间镜、透射镜等。其中,电子枪(英文:electronic gun)用于发射电子,由阴极(英文:cathode)、栅极(英文:guid)、阳极(英文:anode)组成。Specifically, a transmission electron microscope may include an electron gun, a condenser lens, a sample chamber, an objective lens, an intermediate mirror, a transmission mirror, and the like. Among them, the electron gun (English: electronic gun) is used to emit electrons, and is composed of a cathode (English: cathode), a grid (English: guid), and an anode (English: anode).

阴极是产生自由电子的源头。在TEM中通常由加热灯丝(英文:filament)兼做阴极,灯丝的材料可以采用钨或者六硼化镧。当几安培的加热电流流过灯丝时,基于场致电子发射或者热电子发射机制,灯丝开始发射出自由电子。在一定的范围内,灯丝发射出来的自由电子量与加热电流强度呈正比。The cathode is the source of free electrons. In TEM, a heating filament (English: filament) is usually used as a cathode, and the material of the filament can be tungsten or lanthanum hexaboride. When a heating current of several amperes flows through the filament, the filament begins to emit free electrons based on the field electron emission or thermionic emission mechanism. Within a certain range, the amount of free electrons emitted by the filament is proportional to the heating current intensity.

阳极为一中心有空的金属圆筒。阳极处于阴极下方。当阳极上加有数十千伏或者上百千伏的加速电压时,将对阴极受热发射出来的自由电子产生强烈的引力作用,并使之从杂乱无章的状态变为有序的定向运动,同时把自由电子加速到一定的运动速度,形成一股束流射向阳极靶面。凡在轴心运动的电子束流,将穿过阳极中心的圆孔射出电子枪外,成为照射样品的光源。The anode is a metal cylinder with an empty center. The anode is below the cathode. When an accelerating voltage of tens of kilovolts or hundreds of kilovolts is applied to the anode, it will have a strong gravitational effect on the free electrons emitted by the heating of the cathode, and make them change from a disordered state to an orderly directional movement, and at the same time Accelerate the free electrons to a certain speed to form a beam to the target surface of the anode. The electron beam current moving on the axis will pass through the circular hole in the center of the anode and shoot out of the electron gun, becoming the light source for illuminating the sample.

栅极位于阴极和阳极之间,靠近灯丝顶端。栅极为形似帽状的金属物,中心有一小孔供电子束通过。栅极上加有0~1000V的负电压(对阴极而言),这个负电压(称为栅偏压)能使电子束产生向中心轴汇聚的作用,同时对灯丝上自由电子的发射量也有一定的调控抑制作用。The grid is located between the cathode and anode, near the top of the filament. The grid is a cap-shaped metal object with a small hole in the center for the electron beam to pass through. A negative voltage of 0 to 1000V is applied to the grid (for the cathode), this negative voltage (called grid bias) can make the electron beam converge to the central axis, and at the same time, it also has a negative effect on the emission of free electrons on the filament. certain regulatory inhibition.

透射电子显微镜工作时,在灯丝电源的作用下,电流流过灯丝阴极,使灯丝发热。当灯丝发热达到2500℃以上时,灯丝产生自由电子,产生的自由电子逸出灯丝的表面。同时加速电压使阳极的表面聚集了密集的正电荷,形成了一个强大的正电场。在这个正电场的作用下,自由电子飞出了电子枪外。另外,调节栅偏压的大小可以控制电子束流量的大小。When the transmission electron microscope is working, under the action of the filament power supply, the current flows through the filament cathode, causing the filament to heat up. When the heating of the filament reaches above 2500°C, the filament generates free electrons, and the generated free electrons escape from the surface of the filament. At the same time, the accelerating voltage makes the surface of the anode gather dense positive charges, forming a strong positive electric field. Under the action of this positive electric field, free electrons fly out of the electron gun. In addition, adjusting the magnitude of the grid bias voltage can control the magnitude of the electron beam flux.

在实际应用中,可以采用200千电子伏特(英文:kilo electron volt,简称:keV)的TEM提供的电子束作为光源。进一步地,TEM的电源可以采用高达10万伏-30万伏的高压源。通过控制TEM中阴极的加热电流、TEM中阳极的加速电压、TEM中栅极的栅偏压、以及电子辐照的时长,实现电子辐照的辐射剂量为1016/cm2~1022/cm2In practical applications, an electron beam provided by a TEM of 200 kiloelectron volts (English: kilo electron volt, keV for short) can be used as a light source. Further, the power source of the TEM can use a high voltage source of up to 100,000 volts to 300,000 volts. By controlling the heating current of the cathode in the TEM, the accelerating voltage of the anode in the TEM, the grid bias voltage of the grid in the TEM, and the duration of the electron irradiation, the radiation dose of the electron irradiation is 10 16 /cm 2 -10 22 /cm 2 .

优选地,电子束的直径可以为8μm~30μm,优选为19μm。Preferably, the diameter of the electron beam may be 8 μm˜30 μm, preferably 19 μm.

如果电子束的直径小于8μm,则可能由于电子束的直径太小而导致电子束过于集中,进而对N型半导体层的主体结构造成破坏,影响LED的发光效率;如果电子束的直径大于30μm,则可能由于电子束的直径太大而造成电子束过于分散,无法有效增加N型半导体层中的氮空位,发光二极管的光效提升效果不明显。If the diameter of the electron beam is less than 8μm, the electron beam may be too concentrated because the diameter of the electron beam is too small, which will damage the main structure of the N-type semiconductor layer and affect the luminous efficiency of the LED; if the diameter of the electron beam is greater than 30μm, Then, the electron beam may be too scattered due to the large diameter of the electron beam, which cannot effectively increase the nitrogen vacancies in the N-type semiconductor layer, and the light efficiency improvement effect of the light emitting diode is not obvious.

可选地,在步骤104之后,该制作方法还可以包括:Optionally, after step 104, the manufacturing method may further include:

对凹槽内的N型半导体层进行退火处理。The N-type semiconductor layer in the groove is annealed.

通过退火处理消除部分缺陷和杂质态。Partial defects and impurity states are eliminated by annealing treatment.

可选地,退火处理的温度可以为700℃~900℃,实现效果较好。Optionally, the temperature of the annealing treatment may be 700° C.˜900° C., which achieves a better effect.

可选地,接触层在进行退火处理时可以处于氮气气氛中,实现效果较好。Optionally, the contact layer may be in a nitrogen atmosphere during the annealing treatment, which achieves a better effect.

优选地,氮气气氛的真空度可以为10-8Torr~10-6Torr,实现效果较好。Preferably, the vacuum degree of the nitrogen atmosphere can be 10 -8 Torr to 10 -6 Torr, which is better to achieve.

可选地,退火处理的时长可以为15min~50min,实现效果较好。Optionally, the duration of the annealing treatment may be 15 min to 50 min, which achieves a better effect.

在本实施例的一种实现方式中,当P型半导体层的表面用于设置P型电极时,该制作方法还可以包括:In an implementation manner of this embodiment, when the surface of the P-type semiconductor layer is used for arranging the P-type electrode, the manufacturing method may further include:

对P型半导体层的表面进行电子辐照,增加P型半导体层中的氮空位,P型半导体层为P型掺杂的氮化物。The surface of the P-type semiconductor layer is irradiated with electrons to increase nitrogen vacancies in the P-type semiconductor layer, and the P-type semiconductor layer is a P-type doped nitride.

通过对P型半导体层的表面进行电子辐照,改变P型半导体层晶体的微观结构,影响P型半导体层内缺陷的形态和数量,在不改变氮元素比例的情况下产生较多的氮空位,增加P型半导体层中的氮空位,促进P型掺杂剂的并入,提高掺杂元素并入的有效性,改变由于重掺杂导致的高杂质状态,提高载流子的迁移率,改善P型电极与P型半导体层的电学接触,降低串联电阻,提高整个发光二极管的光效。By irradiating the surface of the P-type semiconductor layer with electrons, the microstructure of the crystal of the P-type semiconductor layer is changed, the shape and quantity of the defects in the P-type semiconductor layer are affected, and more nitrogen vacancies are generated without changing the proportion of nitrogen elements. , increase the nitrogen vacancies in the P-type semiconductor layer, promote the incorporation of P-type dopants, improve the effectiveness of the incorporation of doping elements, change the high impurity state caused by heavy doping, and improve the mobility of carriers, The electrical contact between the P-type electrode and the P-type semiconductor layer is improved, the series resistance is reduced, and the light efficiency of the entire light-emitting diode is improved.

在实际应用中,可以同时对P型半导体层的表面和凹槽内的N型半导体层的表面进行电子辐照,以节省工艺步骤,方便实现,降低实现成本。也可以分别对P型半导体层的表面和凹槽内的N型半导体层的表面进行电子辐照,如在生长P型半导体层的之后对P型半导体层的表面进行电子辐照,然后在P型半导体层上开设延伸至N型半导体层的凹槽,对凹槽内的N型半导体层的表面进行电子辐照。In practical applications, electron irradiation can be performed on the surface of the P-type semiconductor layer and the surface of the N-type semiconductor layer in the groove at the same time, so as to save process steps, facilitate implementation, and reduce implementation costs. The surface of the P-type semiconductor layer and the surface of the N-type semiconductor layer in the groove can also be irradiated with electrons respectively, for example, after the P-type semiconductor layer is grown, the surface of the P-type semiconductor layer is irradiated with electrons, and then the surface of the P-type semiconductor layer is irradiated with electrons. A groove extending to the N-type semiconductor layer is formed on the type semiconductor layer, and the surface of the N-type semiconductor layer in the groove is irradiated with electrons.

具体地,对P型半导体层的表面进行电子辐照的参数可以与对凹槽内的N型半导体层的表面进行电子辐照参数相同,如电子辐照的辐射剂量为1016/cm2~1022/cm2Specifically, the parameters for irradiating the surface of the P-type semiconductor layer with electrons may be the same as those for irradiating the surface of the N-type semiconductor layer in the groove, for example, the radiation dose of the electron irradiation is 10 16 /cm 2 ~ 10 22 /cm 2 .

可选地,在上述实现方式中,该制作方法还可以包括:Optionally, in the above implementation manner, the manufacturing method may further include:

在对P型半导体层的表面进行电子辐照之后,对P型半导体层进行退火处理。After the surface of the P-type semiconductor layer is irradiated with electrons, the P-type semiconductor layer is subjected to annealing treatment.

具体地,对P型半导体层进行退火处理的参数可以与对凹槽内的N型半导体层进行退火处理的参数相同,如退火处理的温度为700℃~900℃。Specifically, the parameters for annealing the P-type semiconductor layer may be the same as the parameters for annealing the N-type semiconductor layer in the groove, for example, the annealing temperature is 700°C to 900°C.

在本实施例的另一种实现方式中,当接触层的表面用于设置P型电极时,该制作方法还可以包括:In another implementation manner of this embodiment, when the surface of the contact layer is used for arranging P-type electrodes, the manufacturing method may further include:

对接触层的表面进行电子辐照,增加接触层中的氮空位。The surface of the contact layer is irradiated with electrons to increase nitrogen vacancies in the contact layer.

通过对接触层的表面进行电子辐照,改变接触层晶体的微观结构,影响接触层内缺陷的形态和数量,在不改变氮元素比例的情况下产生较多的氮空位,增加接触层中的氮空位,促进P型掺杂剂的并入,提高掺杂元素并入的有效性,改变由于重掺杂导致的高杂质状态,提高载流子的迁移率,改善电极与接触层的电学接触,降低串联电阻,提高整个发光二极管的光效。By irradiating the surface of the contact layer with electrons, the microstructure of the crystal of the contact layer is changed, the shape and quantity of defects in the contact layer are affected, and more nitrogen vacancies are generated without changing the proportion of nitrogen elements, increasing the amount of nitrogen in the contact layer. Nitrogen vacancies, promote the incorporation of P-type dopants, improve the effectiveness of the incorporation of doping elements, change the high impurity state due to heavy doping, improve the mobility of carriers, and improve the electrical contact between the electrode and the contact layer , reduce the series resistance and improve the light efficiency of the entire LED.

在实际应用中,可以同时对接触层的表面和凹槽内的N型半导体层的表面进行电子辐照,以节省工艺步骤,方便实现,降低实现成本。也可以分别对接触层的表面和凹槽内的N型半导体层的表面进行电子辐照,如在生长接触层的之后对接触层的表面进行电子辐照,然后在接触层上开设延伸至N型半导体层的凹槽,对凹槽内的N型半导体层的表面进行电子辐照。In practical applications, the surface of the contact layer and the surface of the N-type semiconductor layer in the groove can be irradiated with electrons at the same time, so as to save process steps, facilitate implementation, and reduce implementation costs. It is also possible to irradiate the surface of the contact layer and the surface of the N-type semiconductor layer in the groove respectively, for example, after the growth of the contact layer, the surface of the contact layer is irradiated with electrons, and then the opening on the contact layer extends to the N-type semiconductor layer. The groove of the N-type semiconductor layer is irradiated with electrons on the surface of the N-type semiconductor layer in the groove.

具体地,对接触层的表面进行电子辐照的参数可以与对凹槽内的N型半导体层的表面进行电子辐照参数相同,如电子辐照的辐射剂量为1016/cm2~1022/cm2Specifically, the parameters of the electron irradiation on the surface of the contact layer can be the same as the electron irradiation parameters on the surface of the N-type semiconductor layer in the groove, for example, the radiation dose of the electron irradiation is 10 16 /cm 2 -10 22 /cm 2 .

可选地,在上述实现方式中,该制作方法还可以包括:Optionally, in the above implementation manner, the manufacturing method may further include:

在对接触层的表面进行电子辐照之后,对接触层进行退火处理。After irradiating the surface of the contact layer with electrons, the contact layer is annealed.

具体地,对接触层进行退火处理的参数可以与对凹槽内的N型半导体层进行退火处理的参数相同,如退火处理的温度为700℃~900℃。Specifically, the parameters for annealing the contact layer may be the same as the parameters for annealing the N-type semiconductor layer in the groove, for example, the annealing temperature is 700°C to 900°C.

图1所示的制备方法的一种具体实现方式可以包括:A specific implementation of the preparation method shown in Figure 1 may include:

步骤201:控制温度为1100℃,压力为300torr,在衬底上生长厚度为3μm的N型半导体层,N型半导体层中N型掺杂剂的掺杂浓度为5*1018cm-3Step 201 : control the temperature to be 1100° C. and the pressure to be 300 torr, and grow an N-type semiconductor layer with a thickness of 3 μm on the substrate. The doping concentration of the N-type dopant in the N-type semiconductor layer is 5*10 18 cm −3 .

步骤202:在N型半导体层上生长有源层;有源层包括交替生长的9个量子阱和9个量子垒;量子阱的厚度为3nm,量子阱的生长温度为770℃,量子阱的生长压力为300torr;量子垒的厚度为15nm,量子垒的生长温度为900℃,量子垒的生长压力为300torr。Step 202 : growing an active layer on the N-type semiconductor layer; the active layer includes 9 quantum wells and 9 quantum barriers grown alternately; the thickness of the quantum wells is 3 nm, the growth temperature of the quantum wells is 770° C., and the The growth pressure is 300torr; the thickness of the quantum barrier is 15nm, the growth temperature of the quantum barrier is 900°C, and the growth pressure of the quantum barrier is 300torr.

步骤203:控制温度为960℃,压力为200torr,在有源层上生长厚度为450nm的P型半导体层,P型半导体层中P型掺杂剂的掺杂浓度为5*1018cm-3Step 203 : controlling the temperature to be 960° C. and the pressure of 200 torr, growing a P-type semiconductor layer with a thickness of 450 nm on the active layer, and the doping concentration of the P-type dopant in the P-type semiconductor layer is 5*10 18 cm −3 .

步骤204:在P型半导体层上开设延伸至N型半导体层的凹槽。Step 204: Opening a groove extending to the N-type semiconductor layer on the P-type semiconductor layer.

步骤205:对凹槽内的N型半导体层的表面进行电子辐照,增加凹槽内的N型半导体层中的氮空位,电子辐照的辐射剂量为1016/cm2Step 205: Perform electron irradiation on the surface of the N-type semiconductor layer in the groove to increase nitrogen vacancies in the N-type semiconductor layer in the groove, and the radiation dose of the electron irradiation is 10 16 /cm 2 .

将得到的外延片制成芯片,与凹槽内的N型半导体层没有进行电子辐照相比,芯片的光效提高了3%~5%。The obtained epitaxial wafer is made into a chip, and the light efficiency of the chip is increased by 3% to 5% compared with that the N-type semiconductor layer in the groove is not irradiated with electrons.

图1所示的制备方法的另一种具体实现方式可以包括:Another specific implementation of the preparation method shown in Figure 1 may include:

步骤301:控制温度为1100℃,压力为300torr,在衬底上生长厚度为3μm的N型半导体层,N型半导体层中N型掺杂剂的掺杂浓度为5*1018cm-3Step 301 : control the temperature to 1100° C. and the pressure to 300 torr, grow an N-type semiconductor layer with a thickness of 3 μm on the substrate, and the doping concentration of the N-type dopant in the N-type semiconductor layer is 5*10 18 cm −3 .

步骤302:在N型半导体层上生长有源层;有源层包括交替生长的9个量子阱和9个量子垒;量子阱的厚度为3nm,量子阱的生长温度为770℃,量子阱的生长压力为300torr;量子垒的厚度为15nm,量子垒的生长温度为900℃,量子垒的生长压力为300torr。Step 302 : growing an active layer on the N-type semiconductor layer; the active layer includes 9 quantum wells and 9 quantum barriers grown alternately; the thickness of the quantum wells is 3 nm, the growth temperature of the quantum wells is 770° C., and the The growth pressure is 300torr; the thickness of the quantum barrier is 15nm, the growth temperature of the quantum barrier is 900°C, and the growth pressure of the quantum barrier is 300torr.

步骤303:控制温度为960℃,压力为200torr,在有源层上生长厚度为450nm的P型半导体层,P型半导体层中P型掺杂剂的掺杂浓度为5*1018cm-3Step 303 : control the temperature to be 960° C. and the pressure to be 200 torr, and grow a P-type semiconductor layer with a thickness of 450 nm on the active layer. The doping concentration of the P-type dopant in the P-type semiconductor layer is 5*10 18 cm −3 .

步骤304:在P型半导体层上开设延伸至N型半导体层的凹槽。Step 304: Opening a groove extending to the N-type semiconductor layer on the P-type semiconductor layer.

步骤305:对凹槽内的N型半导体层的表面进行电子辐照,增加凹槽内的N型半导体层中的氮空位,电子辐照的辐射剂量为1019/cm2Step 305: Perform electron irradiation on the surface of the N-type semiconductor layer in the groove to increase nitrogen vacancies in the N-type semiconductor layer in the groove, and the radiation dose of the electron irradiation is 10 19 /cm 2 .

将得到的外延片制成芯片,与凹槽内的N型半导体层没有进行电子辐照相比,芯片的光效提高了5%~7%。The obtained epitaxial wafer is made into a chip. Compared with the N-type semiconductor layer in the groove without electron irradiation, the light efficiency of the chip is improved by 5% to 7%.

图1所示的制备方法的又一种具体实现方式可以包括:Another specific implementation of the preparation method shown in Figure 1 may include:

步骤401:控制温度为1100℃,压力为300torr,在衬底上生长厚度为3μm的N型半导体层,N型半导体层中N型掺杂剂的掺杂浓度为5*1018cm-3Step 401 : control the temperature to be 1100° C. and the pressure to be 300 torr, and grow an N-type semiconductor layer with a thickness of 3 μm on the substrate. The doping concentration of the N-type dopant in the N-type semiconductor layer is 5*10 18 cm −3 .

步骤402:在N型半导体层上生长有源层;有源层包括交替生长的9个量子阱和9个量子垒;量子阱的厚度为3nm,量子阱的生长温度为770℃,量子阱的生长压力为300torr;量子垒的厚度为15nm,量子垒的生长温度为900℃,量子垒的生长压力为300torr。Step 402 : growing an active layer on the N-type semiconductor layer; the active layer includes 9 quantum wells and 9 quantum barriers grown alternately; the thickness of the quantum wells is 3 nm, the growth temperature of the quantum wells is 770° C., and the The growth pressure is 300torr; the thickness of the quantum barrier is 15nm, the growth temperature of the quantum barrier is 900°C, and the growth pressure of the quantum barrier is 300torr.

步骤403:控制温度为960℃,压力为200torr,在有源层上生长厚度为450nm的P型半导体层,P型半导体层中P型掺杂剂的掺杂浓度为5*1018cm-3Step 403 : controlling the temperature to be 960° C. and the pressure of 200 torr, growing a P-type semiconductor layer with a thickness of 450 nm on the active layer, and the doping concentration of the P-type dopant in the P-type semiconductor layer is 5*10 18 cm −3 .

步骤404:在P型半导体层上开设延伸至N型半导体层的凹槽。Step 404: Opening a groove extending to the N-type semiconductor layer on the P-type semiconductor layer.

步骤405:对凹槽内的N型半导体层的表面进行电子辐照,增加凹槽内的N型半导体层中的氮空位,电子辐照的辐射剂量为1022/cm2Step 405: Perform electron irradiation on the surface of the N-type semiconductor layer in the groove to increase nitrogen vacancies in the N-type semiconductor layer in the groove, and the radiation dose of the electron irradiation is 10 22 /cm 2 .

将得到的外延片制成芯片,与凹槽内的N型半导体层没有进行电子辐照相比,芯片的光效提高了2%~3%。The obtained epitaxial wafer is made into a chip. Compared with the N-type semiconductor layer in the groove without electron irradiation, the light efficiency of the chip is increased by 2% to 3%.

图1所示的制备方法的又一种具体实现方式可以包括:Another specific implementation of the preparation method shown in Figure 1 may include:

步骤501:控制温度为1100℃,压力为300torr,在衬底上生长厚度为3μm的N型半导体层,N型半导体层中N型掺杂剂的掺杂浓度为5*1018cm-3Step 501 : control the temperature to be 1100° C. and the pressure to be 300 torr, and grow an N-type semiconductor layer with a thickness of 3 μm on the substrate. The doping concentration of the N-type dopant in the N-type semiconductor layer is 5*10 18 cm −3 .

步骤502:在N型半导体层上生长有源层;有源层包括交替生长的9个量子阱和9个量子垒;量子阱的厚度为3nm,量子阱的生长温度为770℃,量子阱的生长压力为300torr;量子垒的厚度为15nm,量子垒的生长温度为900℃,量子垒的生长压力为300torr。Step 502 : growing an active layer on the N-type semiconductor layer; the active layer includes 9 quantum wells and 9 quantum barriers grown alternately; the thickness of the quantum wells is 3 nm, the growth temperature of the quantum wells is 770° C., and the The growth pressure is 300torr; the thickness of the quantum barrier is 15nm, the growth temperature of the quantum barrier is 900°C, and the growth pressure of the quantum barrier is 300torr.

步骤503:控制温度为960℃,压力为200torr,在有源层上生长厚度为450nm的P型半导体层,P型半导体层中P型掺杂剂的掺杂浓度为5*1018cm-3Step 503 : control the temperature to be 960° C. and the pressure to be 200 torr, and grow a P-type semiconductor layer with a thickness of 450 nm on the active layer. The doping concentration of the P-type dopant in the P-type semiconductor layer is 5*10 18 cm −3 .

步骤504:在P型半导体层上开设延伸至N型半导体层的凹槽。Step 504: Opening a groove extending to the N-type semiconductor layer on the P-type semiconductor layer.

步骤505:对P型半导体层的表面和凹槽内的N型半导体层的表面进行电子辐照,增加P型半导体层和凹槽内的N型半导体层中的氮空位,电子辐照的辐射剂量为1019/cm2Step 505 : irradiating the surface of the P-type semiconductor layer and the surface of the N-type semiconductor layer in the groove with electrons to increase nitrogen vacancies in the P-type semiconductor layer and the N-type semiconductor layer in the groove, and the radiation of electron irradiation The dose was 10 19 /cm 2 .

将得到的外延片制成芯片,与P型半导体层和凹槽内的N型半导体层没有进行电子辐照相比,芯片的光效提高了5%~7%。The obtained epitaxial wafer is made into a chip. Compared with the P-type semiconductor layer and the N-type semiconductor layer in the groove without electron irradiation, the light efficiency of the chip is improved by 5% to 7%.

图1所示的制备方法的一种具体实现方式可以包括:A specific implementation of the preparation method shown in Figure 1 may include:

步骤601:控制温度为1100℃,压力为300torr,在衬底上生长厚度为3μm的N型半导体层,N型半导体层中N型掺杂剂的掺杂浓度为5*1018cm-3Step 601 : control the temperature to be 1100° C. and the pressure to be 300 torr, and grow an N-type semiconductor layer with a thickness of 3 μm on the substrate. The doping concentration of the N-type dopant in the N-type semiconductor layer is 5*10 18 cm −3 .

步骤602:在N型半导体层上生长有源层;有源层包括交替生长的9个量子阱和9个量子垒;量子阱的厚度为3nm,量子阱的生长温度为770℃,量子阱的生长压力为300torr;量子垒的厚度为15nm,量子垒的生长温度为900℃,量子垒的生长压力为300torr。Step 602 : growing an active layer on the N-type semiconductor layer; the active layer includes 9 quantum wells and 9 quantum barriers grown alternately; the thickness of the quantum wells is 3 nm, the growth temperature of the quantum wells is 770° C., and the The growth pressure is 300torr; the thickness of the quantum barrier is 15nm, the growth temperature of the quantum barrier is 900°C, and the growth pressure of the quantum barrier is 300torr.

步骤603:控制温度为960℃,压力为200torr,在有源层上生长厚度为450nm的P型半导体层,P型半导体层中P型掺杂剂的掺杂浓度为5*1018cm-3Step 603 : control the temperature to be 960° C. and the pressure to be 200 torr, and grow a P-type semiconductor layer with a thickness of 450 nm on the active layer. The doping concentration of the P-type dopant in the P-type semiconductor layer is 5*10 18 cm −3 .

步骤604:控制温度为950℃,压力为200torr,在P型半导体层上生长厚度为150nm的接触层。Step 604 : control the temperature to be 950° C. and the pressure to be 200 torr, and grow a contact layer with a thickness of 150 nm on the P-type semiconductor layer.

步骤605:在接触层上开设延伸至N型半导体层的凹槽。Step 605: Opening a groove extending to the N-type semiconductor layer on the contact layer.

步骤606:对接触层和凹槽内的N型半导体层的表面进行电子辐照,增加接触层和凹槽内的N型半导体层中的氮空位,电子辐照的辐射剂量为1019/cm2Step 606: Perform electron irradiation on the surface of the contact layer and the N-type semiconductor layer in the groove to increase nitrogen vacancies in the contact layer and the N-type semiconductor layer in the groove, and the radiation dose of the electron irradiation is 10 19 /cm 2 .

将得到的外延片制成芯片,与接触层和凹槽内的N型半导体层没有进行电子辐照相比,芯片的光效提高了8%~10%。The obtained epitaxial wafer is made into a chip. Compared with the contact layer and the N-type semiconductor layer in the groove without electron irradiation, the light efficiency of the chip is improved by 8% to 10%.

本发明实施例提供了一种发光二极管外延片,适用于采用图1所示的制作方法制作而成。图6为本发明实施例提供的一种发光二极管外延片的结构示意图。参见图6,该发光二极管外延片包括衬底10、N型半导体层20、有源层30和P型半导体层40,N型半导体层20、有源层30和P型半导体层40依次层叠在衬底10上。P型半导体层40上设有延伸至N型半导体层20的凹槽100,凹槽100内的N型半导体层20的表面用于设置N型电极。The embodiment of the present invention provides a light emitting diode epitaxial wafer, which is suitable for being fabricated by the fabrication method shown in FIG. 1 . FIG. 6 is a schematic structural diagram of a light emitting diode epitaxial wafer according to an embodiment of the present invention. 6 , the light-emitting diode epitaxial wafer includes a substrate 10, an N-type semiconductor layer 20, an active layer 30 and a P-type semiconductor layer 40. The N-type semiconductor layer 20, the active layer 30 and the P-type semiconductor layer 40 are sequentially stacked on on the substrate 10 . The P-type semiconductor layer 40 is provided with a groove 100 extending to the N-type semiconductor layer 20 , and the surface of the N-type semiconductor layer 20 in the groove 100 is used for arranging an N-type electrode.

在本实施例中,凹槽100内的N型半导体层20的表面为经过电子辐照处理的表面。In this embodiment, the surface of the N-type semiconductor layer 20 in the groove 100 is the surface treated by electron irradiation.

可选地,如图6所示,该发光二极管外延片还可以包括缓冲层51,缓冲层51设置在衬底10和N型半导体层20之间。Optionally, as shown in FIG. 6 , the light-emitting diode epitaxial wafer may further include a buffer layer 51 , and the buffer layer 51 is disposed between the substrate 10 and the N-type semiconductor layer 20 .

优选地,如图6所示,该发光二极管外延片还可以包括未掺杂氮化镓层52,未掺杂氮化镓层52设置在缓冲层51和N型半导体层20之间。Preferably, as shown in FIG. 6 , the light emitting diode epitaxial wafer may further include an undoped gallium nitride layer 52 , and the undoped gallium nitride layer 52 is disposed between the buffer layer 51 and the N-type semiconductor layer 20 .

可选地,如图6所示,该发光二极管外延片还可以包括应力释放层60,应力释放层60设置在N型半导体层20和有源层30之间。Optionally, as shown in FIG. 6 , the light emitting diode epitaxial wafer may further include a stress release layer 60 , and the stress release layer 60 is disposed between the N-type semiconductor layer 20 and the active layer 30 .

可选地,如图6所示,该发光二极管外延片还可以包括电子阻挡层71,电子阻挡层71设置在有源层30和P型半导体层40之间。Optionally, as shown in FIG. 6 , the light-emitting diode epitaxial wafer may further include an electron blocking layer 71 , and the electron blocking layer 71 is disposed between the active layer 30 and the P-type semiconductor layer 40 .

优选地,如图6所示,该发光二极管外延片还可以包括低温P型层72,低温P型层72设置在有源层30和电子阻挡层71之间。Preferably, as shown in FIG. 6 , the light-emitting diode epitaxial wafer may further include a low-temperature P-type layer 72 , and the low-temperature P-type layer 72 is disposed between the active layer 30 and the electron blocking layer 71 .

可选地,如图6所示,该发光二极管外延片还可以包括接触层80,接触层80设置在P型半导体层40上。Optionally, as shown in FIG. 6 , the light-emitting diode epitaxial wafer may further include a contact layer 80 , and the contact layer 80 is disposed on the P-type semiconductor layer 40 .

在本实施例的一种实现方式中,当接触层的表面用于设置P型电极时,接触层的表面可以为经过电子辐照处理的表面。In an implementation manner of this embodiment, when the surface of the contact layer is used for arranging the P-type electrode, the surface of the contact layer may be a surface treated by electron irradiation.

在本实施例的另一种实现方式中,当P型半导体层的表面用于设置P型电极时,P型半导体层40的表面可以为经过电子辐照处理的表面。In another implementation manner of this embodiment, when the surface of the P-type semiconductor layer is used for disposing the P-type electrode, the surface of the P-type semiconductor layer 40 may be a surface treated by electron irradiation.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.

Claims (4)

1. A manufacturing method of a light emitting diode epitaxial wafer is characterized by comprising the following steps:
providing a substrate;
sequentially growing an N-type semiconductor layer, an active layer and a P-type semiconductor layer on the substrate, wherein the N-type semiconductor layer is N-type doped nitride, and the P-type semiconductor layer is P-type doped nitride;
forming a groove extending to the N-type semiconductor on the P-type semiconductor layer;
simultaneously carrying out electron irradiation on the surface of the P-type semiconductor layer and the surface of the N-type semiconductor layer in the groove to increase nitrogen vacancies in the P-type semiconductor layer and the N-type semiconductor layer in the groove, wherein the surface of the N-type semiconductor layer in the groove is used for arranging an N-type electrode, the P-type semiconductor layer is used for arranging a P-type electrode, and the radiation dose of the electron irradiation is 1016/cm2~1022/cm2The doping concentration of the P type dopant in the P type semiconductor layer and the doping concentration of the N type dopant in the N type semiconductor layer are 1018cm-3~1019cm-3
And annealing the P-type semiconductor layer and the N-type semiconductor layer in the groove.
2. The method for manufacturing according to claim 1, wherein the step of irradiating electrons to the surface of the N-type semiconductor layer in the groove to increase nitrogen vacancies in the N-type semiconductor layer in the groove comprises:
and irradiating the surface of the N-type semiconductor layer in the groove by using an electron beam provided by a transmission electron microscope as a light source.
3. The method of claim 2, wherein the diameter of the electron beam is 8 μm to 30 μm.
4. Hair-like hairThe light-emitting diode epitaxial wafer comprises a substrate, an N-type semiconductor layer, an active layer and a P-type semiconductor layer, wherein the N-type semiconductor layer, the active layer and the P-type semiconductor layer are sequentially stacked on the substrate, the N-type semiconductor layer is N-type doped nitride, the P-type semiconductor layer is P-type doped nitride, a groove extending to the N-type semiconductor layer is formed in the P-type semiconductor layer, an N-type electrode is arranged on the surface of the N-type semiconductor layer in the groove, the P-type semiconductor layer is used for arranging a P-type electrode, the light-emitting diode epitaxial wafer is characterized in that the surface of the P-type semiconductor layer and the surface of the N-type semiconductor layer in the groove are surfaces subjected to electron irradiation and annealing treatment, and the radiation dose of the electron irradiation is 1016/cm2~1022/cm2The doping concentration of the P type dopant in the P type semiconductor layer and the doping concentration of the N type dopant in the N type semiconductor layer are 1018cm-3~1019cm-3
CN201810961474.0A 2018-08-22 2018-08-22 Manufacturing method of light emitting diode epitaxial wafer and light emitting diode epitaxial wafer Active CN109346572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810961474.0A CN109346572B (en) 2018-08-22 2018-08-22 Manufacturing method of light emitting diode epitaxial wafer and light emitting diode epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810961474.0A CN109346572B (en) 2018-08-22 2018-08-22 Manufacturing method of light emitting diode epitaxial wafer and light emitting diode epitaxial wafer

Publications (2)

Publication Number Publication Date
CN109346572A CN109346572A (en) 2019-02-15
CN109346572B true CN109346572B (en) 2020-10-27

Family

ID=65297043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810961474.0A Active CN109346572B (en) 2018-08-22 2018-08-22 Manufacturing method of light emitting diode epitaxial wafer and light emitting diode epitaxial wafer

Country Status (1)

Country Link
CN (1) CN109346572B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118038775B (en) * 2024-04-09 2024-08-06 惠科股份有限公司 Detection method of light-emitting diode display panel and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030194826A1 (en) * 2002-04-16 2003-10-16 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor device
CN108075019A (en) * 2017-11-15 2018-05-25 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026374A (en) * 2011-07-20 2013-02-04 Ulvac Japan Ltd Semiconductor device and method of manufacturing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030194826A1 (en) * 2002-04-16 2003-10-16 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor device
CN108075019A (en) * 2017-11-15 2018-05-25 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and preparation method thereof

Also Published As

Publication number Publication date
CN109346572A (en) 2019-02-15

Similar Documents

Publication Publication Date Title
JP6466653B2 (en) Nitride semiconductor light emitting device and nitride semiconductor wafer
CN106098882B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN110112269B (en) Light emitting diode epitaxial wafer and preparation method thereof
KR20120028103A (en) Manufacturing method for nanorod light emitting device
CN107195737B (en) A kind of LED epitaxial slice and its manufacturing method
CN109346576B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN114512580B (en) Light-emitting diode
CN106876530B (en) Epitaxial wafer of gallium nitride-based light-emitting diode and manufacturing method thereof
TWI798695B (en) Ultraviolet LED and method of making the same
CN109346568B (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
TWI681570B (en) Light emitting device and manufacturing method thereof
CN110364598B (en) Light-emitting diode epitaxial wafer and method of making the same
CN108281514A (en) A kind of preparation method of LED epitaxial slice
CN109087976B (en) A kind of preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer
CN109273569B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN109309150B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN108598224B (en) A method for making a light-emitting diode epitaxial wafer and a light-emitting diode epitaxial wafer
CN109346572B (en) Manufacturing method of light emitting diode epitaxial wafer and light emitting diode epitaxial wafer
CN107658374B (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN101197405A (en) III-V metal oxide semiconductor light-emitting field-effect transistor and preparation method thereof
CN109119514B (en) A kind of preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer
TWI680587B (en) Light emitting device
CN108336192B (en) Preparation method of light-emitting diode epitaxial wafer
CN109301040B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN109192826B (en) A kind of LED epitaxial slice and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant