[go: up one dir, main page]

CN109346513B - 可提高晶体质量和耐压性能的氮化物外延层及其制备方法 - Google Patents

可提高晶体质量和耐压性能的氮化物外延层及其制备方法 Download PDF

Info

Publication number
CN109346513B
CN109346513B CN201811145381.7A CN201811145381A CN109346513B CN 109346513 B CN109346513 B CN 109346513B CN 201811145381 A CN201811145381 A CN 201811145381A CN 109346513 B CN109346513 B CN 109346513B
Authority
CN
China
Prior art keywords
buffer layer
layer
aln
epitaxial layer
aln buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811145381.7A
Other languages
English (en)
Other versions
CN109346513A (zh
Inventor
程万希
梁辉南
姜仁波
李强
王荣华
高珺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Runxin Microelectronics Dalian Co ltd
Original Assignee
Dalian Xinguan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Xinguan Technology Co ltd filed Critical Dalian Xinguan Technology Co ltd
Priority to CN201811145381.7A priority Critical patent/CN109346513B/zh
Publication of CN109346513A publication Critical patent/CN109346513A/zh
Application granted granted Critical
Publication of CN109346513B publication Critical patent/CN109346513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/854Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs further characterised by the dopants
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/117Shapes of semiconductor bodies
    • H10D62/118Nanostructure semiconductor bodies
    • H10D62/119Nanowire, nanosheet or nanotube semiconductor bodies
    • H10D62/122Nanowire, nanosheet or nanotube semiconductor bodies oriented at angles to substrates, e.g. perpendicular to substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开一种可提高晶体质量和耐压性能的氮化物外延层,有衬底、AlN缓冲层、AlxGa1‑xN缓冲层及GaN层,AlN缓冲层上表面有孔洞,所述孔洞内插接有MgxN纳米柱。制备方法依次按照如下步骤进行:在衬底上生长AlN缓冲层;控制反应室的压力为50~150mbar,以150~500 sccm的流量向反应室内通入金属镁元素5~30 s;依次生长AlxGa1‑xN缓冲层及GaN层。

Description

可提高晶体质量和耐压性能的氮化物外延层及其制备方法
技术领域
本发明涉及一种氮化物外延层及其制备方法,尤其是一种可提高晶体质量和耐压性能的氮化物外延层及其制备方法。
背景技术
作为继第一代半导体硅(Si)和第二代半导体砷化镓(GaAs)之后的第三代半导体材料代表—氮化镓(GaN)具有独特的材料特性,如宽禁带、耐高温、高电子浓度、高电子迁移率及高导热性等。因此,GaN基高电子迁移率晶体管(HEMT)在微波通讯和电力电子转换领域拥有卓越的性能。
制备GaN基高电子迁移率晶体管(HEMT)等需要制备外延层,即在衬底(硅或者蓝宝石)上依次生长AlN缓冲层、AlxGa1-xN缓冲层及GaN层(掺C的GaN层和本征GaN层)。由于硅衬底和AlN层之间的材料特性,当AlN层厚度超过400nm后,材料内部应力会使衬底产生划移线等,从而使材料的器件特性变差,故400nm是硅衬底上AlN层的极限厚度,通常厚度为300nm。即使是300nm厚度的AlN层长成后也会出现韧性位错,通过原子力显微镜发现其表面有很多V型孔洞(如图1所示),这些孔洞会导致后续的外延层晶体质量变差,同时所产生的孔洞也会成为漏电通道使外延层耐压性能降低。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种可提高晶体质量和耐压性能的氮化物外延层及其制备方法。
本发明的技术解决方案是:一种可提高晶体质量和耐压性能的氮化物外延层,有衬底、AlN缓冲层、AlxGa1-xN缓冲层及GaN层,AlN缓冲层上表面有孔洞,所述孔洞内插接有MgxN纳米柱。
如上所述可提高晶体质量和耐压性能的氮化物外延层的制备方法,依次按照如下步骤进行:
a. 在衬底上生长AlN缓冲层;
b. 控制反应室的压力为50~150mbar,以150~500 sccm的流速向反应室内通入金属镁元素5~30 s;
c. 依次生长AlxGa1-xN缓冲层及GaN层。
本发明是在AlN缓冲层长成后,控制反应室压力并以一定的流量向反应室通入金属镁元素,金属镁元素则在AlN层表面迁移并进入AlN层中的V形孔洞中形成MgxN纳米柱,从而减少孔洞的密度,提高后续外延层的晶体质量;同时由于金属镁元素在GaN和AlN材料中是一种P型掺杂剂,使得所在界面层形成耗尽电场,从而进一步提高外延层的整体耐压性能。
附图说明
图1是现有技术AlN层表面原子力显微镜下图。
图2是本发明实施例的结构示意图。
具体实施方式
实施例1:
本发明的可提高晶体质量和耐压性能的氮化物外延层的制备方法,依次按照如下步骤进行:
a. 按照现有技术的方法,在衬底1上生长300nm厚的AlN缓冲层2;
b. 反应室其它条件不变,只是控制反应室的压力为50mbar,以150sccm的流量向反应室内通入金属二茂镁(Cp2Mg)10s;
c. 再按照现有技术的方法,依次生长AlxGa1-xN缓冲层3及GaN层。
所制备的外延层结构如图2所示:有衬底1、AlN缓冲层2、AlxGa1-xN缓冲层3及GaN层4,AlN缓冲层2上表面有孔洞5,孔洞5内插接有MgxN纳米柱6,总厚度为5.2μm。
实施例2:
本发明的可提高晶体质量和耐压性能的氮化物外延层的制备方法,依次按照如下步骤进行:
a. 按照现有技术的方法,在衬底1上生长300nm厚的AlN缓冲层2;
b. 反应室其它条件不变,只是控制反应室的压力为50mbar,以150sccm的流量向反应室内通入金属二茂镁(Cp2Mg)30s;
c. 再按照现有技术的方法,依次生长AlxGa1-xN缓冲层3及GaN层4。
所制备的外延层结构同实施例1,总厚度为5.2μm。
实施例3:
本发明的可提高晶体质量和耐压性能的氮化物外延层的制备方法,依次按照如下步骤进行:
a. 按照现有技术的方法,在衬底1上生长300nm厚的AlN缓冲层2;
b. 反应室其它条件不变,只是控制反应室的压力为150mbar,以500sccm的流量向反应室内通入金属二茂镁(Cp2Mg)30s;
c. 再按照现有技术的方法,依次生长AlxGa1-xN缓冲层3及GaN层4。
所制备的外延层结构同实施例1,总厚度为5.2μm。
对比例:按照现有技术的方法制备外延层,具有有衬底、300nm厚AlN缓冲层、AlxGa1-xN缓冲层及GaN层,总厚度为5.2μm。
将本发明实施例1、2、3与对比例同时进行XRD 002/102及垂直耐击穿电压试验,结果如下表:
试验项目 对比例 实施例1 实施例2 实施例3
XRD 002/102 (arcsec) 500/1200 400/900 450/1080 470/1120
击穿电压(V) 700 840 790 750
结果表明:本发明实施例1、2、3的晶体质量和耐压性能相对现有技术均有所提高。

Claims (2)

1.一种可提高晶体质量和耐压性能的氮化物外延层的制备方法,依次按照如下步骤进行:
a. 在衬底(1)上生长300nm厚的AlN缓冲层(2),所述AlN缓冲层(2)中形成有V形孔洞;
b. 控制反应室的压力为50~150mbar,以150~500 sccm的流量向反应室内通入金属镁元素5~30s,所述金属镁元素为金属二茂镁;所述金属镁元素在所述AlN缓冲层(2)表面迁移并进入所述AlN缓冲层(2)的V形孔洞中形成MgxN纳米柱,从而减少所述V形孔洞的密度,提高后续外延层的晶体质量;同时所述金属镁元素在GaN和AlN材料中是一种P型掺杂剂,使得所在界面层形成耗尽电场,从而进一步提高外延层的整体耐压性能;
c. 依次生长AlxGa1-xN缓冲层(3)及GaN层(4);所述衬底(1)、AlN缓冲层(2)、AlxGa1-xN缓冲层(3)及GaN层(4)总厚度为5.2μm。
2.一种如权利要求1所述可提高晶体质量和耐压性能的氮化物外延层的制备方法制备的外延层,有衬底(1)、AlN缓冲层(2)、AlxGa1-xN缓冲层(3)及GaN层(4),AlN缓冲层(2)上表面有孔洞(5),其特征在于:所述孔洞(5)内插接有MgxN纳米柱(6)。
CN201811145381.7A 2018-09-29 2018-09-29 可提高晶体质量和耐压性能的氮化物外延层及其制备方法 Active CN109346513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811145381.7A CN109346513B (zh) 2018-09-29 2018-09-29 可提高晶体质量和耐压性能的氮化物外延层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811145381.7A CN109346513B (zh) 2018-09-29 2018-09-29 可提高晶体质量和耐压性能的氮化物外延层及其制备方法

Publications (2)

Publication Number Publication Date
CN109346513A CN109346513A (zh) 2019-02-15
CN109346513B true CN109346513B (zh) 2021-09-24

Family

ID=65307691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811145381.7A Active CN109346513B (zh) 2018-09-29 2018-09-29 可提高晶体质量和耐压性能的氮化物外延层及其制备方法

Country Status (1)

Country Link
CN (1) CN109346513B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7519106B2 (ja) * 2019-03-13 2024-07-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 隙間部分を使用した素子の除去のための基板
CN110246890A (zh) * 2019-06-14 2019-09-17 大连芯冠科技有限公司 Hemt器件的外延结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702418A (zh) * 2009-10-23 2010-05-05 山东华光光电子有限公司 降低位错缺陷的GaN基LED芯片外延生长方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809464B2 (ja) * 1999-12-14 2006-08-16 独立行政法人理化学研究所 半導体層の形成方法
TW200743141A (en) * 2006-05-05 2007-11-16 Super Nova Optoelectronics Corp Epitaxial layer structure of gallium nitride-based compound semiconductor and fabricating method thereof
TWI401729B (zh) * 2008-10-16 2013-07-11 Advanced Optoelectronic Tech 阻斷半導體差排缺陷之方法
CN104733510A (zh) * 2013-12-20 2015-06-24 晶能光电(江西)有限公司 一种半绝缘GaN外延结构
CN204792796U (zh) * 2015-06-25 2015-11-18 苏州纳维科技有限公司 Ⅲ族氮化物/异质衬底复合模板

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702418A (zh) * 2009-10-23 2010-05-05 山东华光光电子有限公司 降低位错缺陷的GaN基LED芯片外延生长方法

Also Published As

Publication number Publication date
CN109346513A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
CN102460664B (zh) 电子器件用外延衬底及其制造方法
CN108140563B (zh) 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法
CN100555660C (zh) 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
CN100590886C (zh) 半导体电子器件
CN108400159B (zh) 具有多量子阱高阻缓冲层的hemt外延结构及制备方法
JP2009049121A (ja) ヘテロ接合型電界効果トランジスタ及びその製造方法
CN101140947A (zh) 氮化镓基异质结场效应晶体管结构及制作方法
CN108899365B (zh) 高阻GaN基缓冲层外延结构及其制备方法
WO2019106843A1 (ja) 半導体装置の製造方法、半導体装置
US8994032B2 (en) III-N material grown on ErAIN buffer on Si substrate
CN107068750B (zh) 一种基于Si衬底的GaN基高压HEMT器件外延结构及其制造方法
CN109346513B (zh) 可提高晶体质量和耐压性能的氮化物外延层及其制备方法
WO2017117315A1 (en) Non-etch gas cooled epitaxial stack for group iiia-n devices
CN108231556B (zh) Iii-v族氮化物半导体外延片的制造方法
JP2013145782A (ja) ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
US9331192B2 (en) Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same
US8633514B2 (en) Group III nitride semiconductor wafer and group III nitride semiconductor device
CN101005034A (zh) 碳化硅衬底氮化镓高电子迁移率晶体管及制作方法
CN112510087A (zh) p型栅增强型GaN基HEMT器件及其制备方法
CN111863945A (zh) 一种高阻氮化镓及其异质结构的制备方法
CN113284947B (zh) 半导体晶体管外延结构、其制备方法及半导体晶体管
CN110429128B (zh) 一种低势垒多量子阱高阻缓冲层外延结构及其制备方法
CN109830535B (zh) 具有纳米台阶递变层的高阻氮化镓基缓冲层及制备方法
CN110047924B (zh) 利用GaN基窄阱多量子阱结构的高阻缓冲层及制备方法
CN110246890A (zh) Hemt器件的外延结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 116000 building 7, industrial design Industrial Park, No. 57 Xinda street, Qixianling, high tech Industrial Park, Dalian, Liaoning

Patentee after: Runxin Microelectronics (Dalian) Co.,Ltd.

Address before: 116023 Building 7, Industrial Design Industrial Park, 57 Xinda Street, Qixianling, Dalian High-tech Industrial Park, Liaoning Province

Patentee before: DALIAN XINGUAN TECHNOLOGY CO.,LTD.