CN109309223A - 一种Co3O4/Pd纳米复合电极材料及其制备方法 - Google Patents
一种Co3O4/Pd纳米复合电极材料及其制备方法 Download PDFInfo
- Publication number
- CN109309223A CN109309223A CN201811202315.9A CN201811202315A CN109309223A CN 109309223 A CN109309223 A CN 109309223A CN 201811202315 A CN201811202315 A CN 201811202315A CN 109309223 A CN109309223 A CN 109309223A
- Authority
- CN
- China
- Prior art keywords
- electrode material
- solution
- particle
- time
- nanometer combined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 title claims description 26
- 239000002114 nanocomposite Substances 0.000 title abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 21
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000001354 calcination Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 238000001556 precipitation Methods 0.000 claims abstract description 4
- 239000002105 nanoparticle Substances 0.000 claims description 8
- 238000000354 decomposition reaction Methods 0.000 claims description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 238000007788 roughening Methods 0.000 claims description 6
- 238000002525 ultrasonication Methods 0.000 claims description 6
- 239000000084 colloidal system Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 5
- 239000007784 solid electrolyte Substances 0.000 claims description 5
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 239000013049 sediment Substances 0.000 claims description 3
- 238000007086 side reaction Methods 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 2
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- 239000007773 negative electrode material Substances 0.000 abstract description 4
- 229910020599 Co 3 O 4 Inorganic materials 0.000 abstract 4
- 239000002243 precursor Substances 0.000 abstract 1
- 229910021281 Co3O4In Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910002666 PdCl2 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011943 nanocatalyst Substances 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种Co3O4/Pd纳米复合电极材料及其制备方法,该方法为:将NH4HCO3溶液加入到Co(NO3)2溶液中进行沉淀反应制备前驱体,并将其在空气中煅烧制得Co3O4材料,其颗粒经粗化处理后,超声分散到胶体Pd液中,得到Co3O4/Pd纳米复合电极材料,其中Pd颗粒为高分散超细纳米颗粒,均匀修饰在Co3O4颗粒表面。该材料用于锂离子电池负极材料时,能有效提高材料的首次库仑效率。
Description
技术领域
本发明涉及锂离子电池电极材料,具体涉及一种Co3O4/Pd纳米复合电极材料及其制备方法。
背景技术
锂离子电池因其更加优良的性能自问世以来就得到了广泛的研究和应用,其发展十分迅速,产量逐年递增,目前已占据二次电池市场的主导地位,成为最主要的电能存储器件。然而,随着电子产品、电动汽车及储能电站等用电池设备的不断进步,对锂离子电池性能的要求也越来越高。现有的商业化锂离子电池所用的传统电极材料经过多年的发展与改进,其性能已接近极限,根本无法带来电池性能的革命性突破。
在负极材料方面,3d过渡金属氧化物材料是一类新型的替代材料,其容量远高于传统的石墨材料。Co3O4作为3d过渡金属氧化物的典型代表,具有容量高、循环性能好等优点,但其依然至今未获得商业化应用。其中很重要的一个原因是它首次库仑效率较低的问题尚未得到很好的解决。未经改性的常规Co3O4粉体材料用于负极材料时,其首次库仑效率一般低于75%,这必将导致一部分负极材料在首次放电之后便失去活性,同时也浪费了容量与之匹配的那部分正极材料,使电池的体积能量密度不能充分发挥。
在Co3O4材料的首次放电过程中,其放电容量来源于两个方面:Co3O4材料所发生的电化学反应以及颗粒表面形成固态电解质膜的副反应。可是,在随后进行的首次充电过程中,固态电解质膜在一定程度上能发生分解,但其速率极慢,以致到充电结束之时,其分解量很少,因其分解而贡献的充电容量十分有限,导致材料的首次库仑效率低下。因此,如果可以加快固态电解质膜在充电过程中的分解速率,就能增大其在充电结束前的分解量,从而增大充电容量,提高首次库仑效率。
本发明在Co3O4材料的颗粒表面引入Pd纳米催化剂,利用其高催化活性来促进固态电解质膜在充电过程中的分解,以提高其首次库仑效率。
发明内容
本发明的目的是要提供一种用于锂离子电池负极材料,具有高首次库仑效率的Co3O4/Pd纳米复合电极材料及其制备方法。
一种Co3O4/Pd纳米复合电极材料及其制备方法,其步骤如下:
(1) 将NH4HCO3溶液加入到Co(NO3)2溶液中进行沉淀反应,直至pH为7.0~8.5时为止,所得沉淀物经空气气氛煅烧制得Co3O4材料,所用NH4HCO3溶液的浓度为1.5~2.5 mol/L,Co(NO3)2溶液的浓度为0.5~2.0 mol/L,煅烧温度为600~800 oC,煅烧时间为1~3 h。
(2) 将步骤(1)所得Co3O4颗粒超声分散到粗化液中进行粗化处理,Co3O4的装载量为100 g/L,粗化液由10~30 mL/L浓HF和1~3 g/L NaF配制而成,超声作用时间为5~20 min。
(3) 将步骤(2)粗化后的Co3O4颗粒超声分散在胶体Pd液中,再经清洗、干燥,得到Co3O4/Pd纳米复合电极材料,Co3O4的装载量为100 g/L,胶体Pd液由0.4~0.6 g/L PdCl2、50~70 mL/L浓HCl、20~40 g/L SnCl2·2H2O和140~180 g/L NaCl配制而成,超声作用时间为5~20 min。
所述Co3O4/Pd纳米复合电极材料中,Co3O4颗粒的尺寸为50~200 nm,其质量分数为90%~98%;Pd纳米颗粒高分散均匀修饰在Co3O4颗粒表面,其尺寸为5~15 nm,质量分数为2%~10%。
所述Co3O4/Pd纳米复合电极材料中,所含高分散Pd纳米颗粒可充当高效催化剂和导电剂,能有效增强材料的电化学性能,具体表现在:
(1) 所述复合电极材料所含超细Pd纳米颗粒尺寸仅5~15 nm,且呈高分散状态,具有极高的催化活性。在材料的首次充电过程中,Pt纳米颗粒可以充当一种高效催化剂,它可加快固态电解质膜这一首次放电副反应产物的分解速率,促进其分解,从而增加材料的首次充电容量,提高其首次库仑效率。在100 mA/g的充放电电流密度下,所述复合电极材料的首次可逆容量为850~950 mAh/g,首次库仑效率为80%~85%。
(2) 所述复合电极材料所含Pd纳米颗粒具有良好的导电性,且化学性质稳定,在整个充放电过程中都能起到提高材料导电性的作用,因此可有效降低电极极化,提高材料的高倍率性能。
说明书附图
为了更清楚地说明本发明实施的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为实施例中(a) Co3O4材料和(b) Co3O4/Pd纳米复合材料的透射电镜照片。
图2为实施例中(a) Co3O4材料和(b) Co3O4/Pd纳米复合材料的首次充放电曲线。
具体实施方式
下面通过具体实施例对本发明做出进一步的具体说明,但本发明并不局限于下述实例。
实施例:
(1) 将2 mol/L NH4HCO3溶液在搅拌条件下缓慢加入到1 mol/L Co(NO3)2溶液中发生沉淀反应直到pH = 8.0时为止,离心分离所得沉淀物,经反复清洗、干燥后,置于电阻炉中,在空气中加热至700 oC并煅烧2 h制得Co3O4粉体材料。
(2) 将步骤(1)所得Co3O4颗粒按100 g/L的装载量,加入到由20 mL/L浓HF和2 g/LNaF配成的粗化液中,超声作用10 min,使Co3O4颗粒充分分散并对其表面进行粗化处理。
(3) 将步骤(2)粗化后的Co3O4颗粒按100 g/L的装载量,加入到由0.5 g/L PdCl2、60 mL/L浓HCl、30 g/L SnCl2·2H2O和160 g/L NaCl配成的胶体Pd液中,超声作用10 min后,将颗粒离心分离并反复清洗,在氩气保护气氛中经120 oC充分干燥后,得到Co3O4/Pd纳米复合电极材料。
所述Co3O4/Pd纳米复合电极材料中,Co3O4颗粒的尺寸为50~200 nm,其质量分数为94%;Pd纳米颗粒高分散均匀修饰在Co3O4颗粒表面,其尺寸为7 nm,质量分数为6%。
采用涂布工艺将Co3O4/Pd复合电极材料制备成工作电极,电极浆料由Co3O4/Pd活性材料、乙炔黑导电剂、聚偏二氟乙烯(PVDF)粘结剂按80:10:10的质量比混合后,添加N-甲基吡咯烷酮(NMP)并搅拌均匀制成。采用涂布机将电极浆料均匀涂布在电解铜箔集流体上,经真空干燥、辊压后,裁剪成直径为1.8 cm的圆形工作电极片。采用三电极模拟电池测试工作电极储锂的电化学性能,所用对电极和参比电极均为与工作电极同等大小的金属锂片,电解液为1 mol/L LiPF6的DEC + EC (V/V = 1/1)溶液,隔膜为Celgard 2400聚丙烯膜。模拟电池的装配在充满高纯氩的手套箱中进行,电池装好后,先静置12 h以保证工作电极被电解液充分湿润,再采用100 mA/g的电流密度,在0.02~3.0 V的电位区间内对电池进行恒流充放电测试,测得其首次充放电容量并得出其首次库仑效率。
该Co3O4/Pd纳米复合电极材料在100 mA/g电流密度下的首次可逆容量为910 mAh/g,首次库仑效率高达83%,与复合前的纯Co3O4材料相比,提升幅度达10%。
Claims (3)
1.一种Co3O4/Pd纳米复合电极材料,其特征在于,复合材料所含Co3O4颗粒尺寸为50~200nm,质量分数为90%~98%;所含Pd纳米颗粒高分散均匀修饰在Co3O4颗粒表面,其尺寸为5~15nm,质量分数为2%~10%。
2.根据权利要求1所述的Co3O4/Pd纳米复合电极材料,其特征在于,用于锂离子电池负极材料时,在首次充电过程中,材料表面固态电解质膜这一首次放电副反应产物可在高分散超细Pd纳米颗粒的催化作用下加速分解,复合电极材料因此具有高首次充电容量和首次库仑效率;所述复合电极材料在100 mA/g电流密度下的首次可逆容量为850~950 mAh/g,首次库仑效率为80%~85%。
3.根据权利要求1所述的Co3O4/Pd纳米复合电极材料的制备方法,其特征在于包括以下步骤:(1) 将NH4HCO3溶液加入到Co(NO3)2溶液中进行沉淀反应,直至pH为7.0~8.5时为止,所得沉淀物经空气气氛煅烧制得Co3O4材料,所用NH4HCO3溶液的浓度为1.5~2.5 mol/L,Co(NO3)2溶液的浓度为0.5~2.0 mol/L,煅烧温度为600~800 oC,煅烧时间为1~3 h;
(2) 将步骤(1)所得Co3O4颗粒超声分散到粗化液中进行粗化处理,Co3O4的装载量为100g/L,粗化液由10~30 mL/L浓HF和1~3 g/L NaF配制而成,超声作用时间为5~20 min;
(3) 将步骤(2)粗化后的Co3O4颗粒超声分散在胶体Pd液中,再经清洗、干燥,得到Co3O4/Pd纳米复合电极材料,Co3O4的装载量为100 g/L,胶体Pd液由0.4~0.6 g/L PdCl2、50~70mL/L浓HCl、20~40 g/L SnCl2·2H2O和140~180 g/L NaCl配制而成,超声作用时间为5~20min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811202315.9A CN109309223B (zh) | 2018-10-16 | 2018-10-16 | 一种Co3O4/Pd纳米复合电极材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811202315.9A CN109309223B (zh) | 2018-10-16 | 2018-10-16 | 一种Co3O4/Pd纳米复合电极材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109309223A true CN109309223A (zh) | 2019-02-05 |
CN109309223B CN109309223B (zh) | 2021-05-28 |
Family
ID=65224566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811202315.9A Expired - Fee Related CN109309223B (zh) | 2018-10-16 | 2018-10-16 | 一种Co3O4/Pd纳米复合电极材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109309223B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110265681A (zh) * | 2019-06-27 | 2019-09-20 | 重庆大学 | 一种用于催化甲酸钠氧化的复合电极及其制备方法和用途 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55157861A (en) * | 1979-05-25 | 1980-12-08 | Matsushita Electric Ind Co Ltd | Cell |
CN1812168A (zh) * | 2005-01-26 | 2006-08-02 | 中国科学院金属研究所 | 一种锂离子电池负极材料改性方法 |
CN103537281A (zh) * | 2013-10-14 | 2014-01-29 | 中国科学院生态环境研究中心 | 一种特殊结构氧化物负载贵金属催化剂的合成方法及其用途 |
CN103825003A (zh) * | 2014-02-27 | 2014-05-28 | 浙江大学 | 一种三维多孔的Co3O4/Pt/Ni复合电极及其制备方法和应用 |
CN105040041A (zh) * | 2015-05-29 | 2015-11-11 | 广西大学 | 一种Pd/Co3O4/泡沫镍电极材料的制备方法 |
CN105070923A (zh) * | 2015-07-17 | 2015-11-18 | 浙江大学 | 纳米结构的Co3O4/Ru复合电极及其制备方法和应用 |
CN106975487A (zh) * | 2017-05-19 | 2017-07-25 | 中南民族大学 | 一种特定形貌Co3O4负载铂催化剂及其在CO2加氢合成低碳醇反应中的应用 |
-
2018
- 2018-10-16 CN CN201811202315.9A patent/CN109309223B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55157861A (en) * | 1979-05-25 | 1980-12-08 | Matsushita Electric Ind Co Ltd | Cell |
CN1812168A (zh) * | 2005-01-26 | 2006-08-02 | 中国科学院金属研究所 | 一种锂离子电池负极材料改性方法 |
CN103537281A (zh) * | 2013-10-14 | 2014-01-29 | 中国科学院生态环境研究中心 | 一种特殊结构氧化物负载贵金属催化剂的合成方法及其用途 |
CN103825003A (zh) * | 2014-02-27 | 2014-05-28 | 浙江大学 | 一种三维多孔的Co3O4/Pt/Ni复合电极及其制备方法和应用 |
CN105040041A (zh) * | 2015-05-29 | 2015-11-11 | 广西大学 | 一种Pd/Co3O4/泡沫镍电极材料的制备方法 |
CN105070923A (zh) * | 2015-07-17 | 2015-11-18 | 浙江大学 | 纳米结构的Co3O4/Ru复合电极及其制备方法和应用 |
CN106975487A (zh) * | 2017-05-19 | 2017-07-25 | 中南民族大学 | 一种特定形貌Co3O4负载铂催化剂及其在CO2加氢合成低碳醇反应中的应用 |
Non-Patent Citations (2)
Title |
---|
MENGMENG ZHANG等: ""Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction"", 《JOURNAL OF POWER SOURCES》 * |
TATSUMI ISHIHARA等: ""Recharegeable Lithium-Air Battery Using Mesoporous Co3O4 Modified with Pd for Air Electrode"", 《ELECTROCHEMISTRY》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110265681A (zh) * | 2019-06-27 | 2019-09-20 | 重庆大学 | 一种用于催化甲酸钠氧化的复合电极及其制备方法和用途 |
Also Published As
Publication number | Publication date |
---|---|
CN109309223B (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107611406B (zh) | 一种硅/石墨烯/碳复合负极材料的制备方法 | |
US8968934B2 (en) | Electrode for secondary battery, fabrication method thereof, and secondary battery comprising same | |
CN102790217B (zh) | 碳包覆四氧化三铁锂离子电池负极材料及其制备方法 | |
CN108630920A (zh) | 一种纳米金属氧化物/MXene异质结构复合材料及其制备方法 | |
JP6241480B2 (ja) | 高分散性グラフェン組成物およびその製造方法、ならびに高分散性グラフェン組成物を含むリチウムイオン二次電池用電極 | |
CN107910498B (zh) | 改性钛酸锂负极材料、制备方法及钛酸锂电池 | |
CN107565112A (zh) | 一种石墨烯包覆锂离子二次电池正极材料的制备方法 | |
CN110112408A (zh) | 一种石墨烯-硅复合材料及其制备方法、电极材料及电池 | |
CN107331839A (zh) | 一种碳纳米管负载纳米二氧化钛的制备方法 | |
CN101593825B (zh) | 锂离子电池纳米锑/石墨纳米片复合材料负极及其制备方法 | |
CN105226244A (zh) | 三维多孔硅-纳米银复合材料及其制备和作为锂离子电池负极材料的应用 | |
CN115395018B (zh) | 复合补锂材料及其制备方法和应用 | |
CN110759379B (zh) | 一种0d/2d异质结构复合负极材料的制备方法及其应用 | |
CN113809304B (zh) | 一种基于等离子体的二氧化锡/碳纳米管复合材料的制备方法及其应用 | |
CN107154497A (zh) | 一种复合导电剂、正极片、锂离子电池及其制备方法 | |
KR101678410B1 (ko) | 리튬 이차전지용 전극 및 이의 제조방법 | |
CN114937772B (zh) | 负极材料、负极极片及锂离子电池 | |
JP2015176744A (ja) | 二次電池の製造方法 | |
JP2019021420A (ja) | 導電性カーボン混合物、この混合物を用いた電極、及びこの電極を備えた蓄電デバイス | |
CN109309223A (zh) | 一种Co3O4/Pd纳米复合电极材料及其制备方法 | |
CN102593425A (zh) | 基于空心碳纳米笼负极材料的高性能锂离子电池的组装方法 | |
CN115881960B (zh) | 正极添加剂及其制备方法、用途、二次电池和终端设备 | |
CN111261866B (zh) | 一种胶囊结构ZnO/C纳米复合微球材料的制备方法 | |
Tang et al. | Preparation and electrochemical study of three-dimensional ordered macroporous SnO2 material for lithium ion batteries | |
JP2015022913A (ja) | 負極活物質層形成用組成物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210528 |
|
CF01 | Termination of patent right due to non-payment of annual fee |