CN109212743B - Rotating shaft reflection type pulse laser beam combiner and pulse beam combining laser system - Google Patents
Rotating shaft reflection type pulse laser beam combiner and pulse beam combining laser system Download PDFInfo
- Publication number
- CN109212743B CN109212743B CN201811084007.0A CN201811084007A CN109212743B CN 109212743 B CN109212743 B CN 109212743B CN 201811084007 A CN201811084007 A CN 201811084007A CN 109212743 B CN109212743 B CN 109212743B
- Authority
- CN
- China
- Prior art keywords
- rotating shaft
- laser
- mirror
- pulse
- beam combiner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 229910003460 diamond Inorganic materials 0.000 claims description 4
- 239000010432 diamond Substances 0.000 claims description 4
- 239000013585 weight reducing agent Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 12
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract 1
- 230000007812 deficiency Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0977—Reflective elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Lasers (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
技术领域technical field
本发明属于激光技术领域,具体涉及一种转轴反射式脉冲激光合束器及脉冲合束激光系统。The invention belongs to the technical field of lasers, and in particular relates to a rotating shaft reflection type pulsed laser beam combiner and a pulsed beam combined laser system.
背景技术Background technique
随着激光技术的不断发展和成熟,高功率激光具有越来越广泛的应用,深刻地影响了多个行业的发展。按工作方式划分,高功率激光主要分为高峰值功率激光(即高能脉冲激光)和高平均功率激光。With the continuous development and maturity of laser technology, high-power lasers have become more and more widely used, which has profoundly affected the development of many industries. According to the working mode, high-power lasers are mainly divided into high-peak power lasers (ie high-energy pulsed lasers) and high-average power lasers.
对于高能脉冲激光,在多种应用领域要求激光具有一定的重复频率,然而直接提高高能脉冲激光器运行的重复频率,将会产生严重的热效应,从而影响激光器的性能,甚至导致激光器输出脉冲能量下降或者不能工作。对于高平均功率激光,应用需求对激光输出功率不断提出更高要求,而单路激光功率提升有限,难以实现较高的平均输出功率。因此,无论是对于高能脉冲激光还是对于高平均功率激光,提高脉冲激光的重复频率都是亟需解决的问题。For high-energy pulsed lasers, lasers are required to have a certain repetition frequency in various application fields. However, directly increasing the repetition frequency of high-energy pulsed lasers will cause serious thermal effects, which will affect the performance of the laser, and even cause the laser output pulse energy to drop or can not work. For high average power lasers, application requirements continue to put forward higher requirements for laser output power, and the single-channel laser power is limited, making it difficult to achieve higher average output power. Therefore, whether for high-energy pulsed lasers or high-average power lasers, increasing the repetition frequency of pulsed lasers is an urgent problem to be solved.
单台激光实现高功率、高光束质量和高效率特性的输出,会由于功率升高,光束质量出现非线性下降,且非线性的关系非常复杂,因此,在特定基础条件下,单台输出的能力总是有限的,但人们对“三高”激光输出的需求是无止境的,要实现更大功率的输出,则最佳途径就是多光束合成技术。A single laser achieves the output of high power, high beam quality and high efficiency. Due to the increase of power, the beam quality will decrease nonlinearly, and the nonlinear relationship is very complicated. Therefore, under certain basic conditions, the output of a single laser will Capability is always limited, but people's demand for "three-high" laser output is endless. To achieve higher power output, the best way is multi-beam synthesis technology.
现有的光束合束方法包括相干合束、光谱合束和脉冲激光分时合束。2015年3月在《激光技术》上发表的“脉冲激光的非相干合成技术研究”公开了一种基于转盘旋转实现脉冲激光合束的方法,将不同时序的激光斜入射至不同厚度的晶体后发生偏移,经晶体折射后共轴线输出,实现脉冲激光的合束,达到提高激光输出重复频率和平均功率的目的。这种方案存在的问题是,强激光需要经过晶体透射,光学元件承受激光功率的能力有限,难以满足高功率高能量激光的入射要求。Existing beam combining methods include coherent combining, spectral combining and pulsed laser time-sharing. "Research on Incoherent Synthesis of Pulsed Lasers" published in "Laser Technology" in March 2015 disclosed a method for combining pulsed lasers based on the rotation of the turntable, and the lasers of different timings are obliquely incident on crystals of different thicknesses. When the offset occurs, the coaxial output is coaxial after being refracted by the crystal to realize the beam combination of the pulsed laser and achieve the purpose of increasing the repetition frequency and average power of the laser output. The problem with this solution is that the strong laser needs to be transmitted through the crystal, and the optical components have limited ability to withstand the laser power, making it difficult to meet the incident requirements of high-power and high-energy lasers.
中国发明专利申请“一种脉冲激光合束方法”(公开号:201210078189.7),提出了一种采用旋转反射镜的方式,将多束较低重复频率脉冲激光束合成为一束高重复频率脉冲激光束,该方法采用的反射型光学元件、光路结构简单,合成光束可以具有很高的功率。根据其技术效果描述,多棱镜系统的所有光学元件都可以是反射光学元件,该装置可以承受任意高功率激光器,只要输入的激光功率足够高,就可以输出任意高功率脉冲激光束。但是这种方案存在的问题是,在脉冲激光出光期间,由于反射镜的不断运动带来合成光束质量的下降,比如当脉冲持续时间为毫秒(ms)量级时,该系统由于反射镜不断运动带来的合成光束质量下降1/10量级,影响了其推广应用。The Chinese invention patent application "A method of combining pulsed laser beams" (Publication No.: 201210078189.7) proposes a method of using a rotating mirror to combine multiple pulsed laser beams with lower repetition rates into a single beam of high repetition rate pulsed lasers The reflective optical element and the optical path structure adopted by the method are simple, and the combined beam can have high power. According to the description of its technical effect, all optical elements of the polygon mirror system can be reflective optical elements, the device can withstand any high-power laser, and as long as the input laser power is high enough, it can output any high-power pulsed laser beam. However, the problem with this scheme is that the quality of the composite beam is degraded due to the continuous movement of the mirror during the pulsed laser light emission. The resulting composite beam quality is reduced by 1/10, which affects its popularization and application.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于为克服现有脉冲时序合束中存在的需要透射型元件难以适应高功率激光的不足或者其他合束方法对合束后的光束质量产生影响的缺陷,而提出一种转轴反射式脉冲激光合束器及脉冲合束激光系统,大大提高了单只激光的平均输出功率和重复频率,且基本保持原有激光的光束质量不变,并具备良好的功率和激光器数量可扩展性。The purpose of the present invention is to propose a rotating shaft reflection in order to overcome the shortcomings of the existing pulse timing beam combining that the transmission-type elements are difficult to adapt to high-power lasers or that other beam combining methods have an impact on the beam quality after the beam combination. The pulsed laser beam combiner and pulsed beam combining laser system greatly improve the average output power and repetition frequency of a single laser, basically keep the beam quality of the original laser unchanged, and have good power and laser quantity scalability. .
本发明的技术方案是:The technical scheme of the present invention is:
一种转轴反射式脉冲激光合束器,包括一只旋转的转轴和固定在转轴上的若干只反射镜,转轴的轴心线与合束后的输出光束平行设置,反射镜沿转轴的轴心线方向间隔排布,且沿转轴轴线为中心的外圆方向错位排布;按照设定时序发射的多束脉冲激光经对应的不少于一只的反射镜反射,并在空间合束后沿输出光路出射。A rotating shaft reflection type pulse laser beam combiner, comprising a rotating shaft and a plurality of mirrors fixed on the rotating shaft, the axis of the rotating shaft is arranged in parallel with the output beam after the beam combination, and the reflecting mirrors are along the axis of the rotating shaft. The line direction is spaced and arranged along the outer circle with the axis of the rotating shaft as the center. The output light path exits.
进一步地,上述转轴反射式脉冲激光合束器中,反射镜依靠支杆或空心转筒结构固定在转轴上。Further, in the above-mentioned rotating shaft reflection type pulsed laser beam combiner, the reflecting mirror is fixed on the rotating shaft by means of a support rod or a hollow rotating cylinder structure.
进一步地,上述转轴反射式脉冲激光合束器中,所述反射镜的镜面为部分圆锥面,所述的圆锥面以转轴的轴心线为回转轴线。Further, in the above-mentioned rotating shaft reflection type pulsed laser beam combiner, the mirror surface of the reflecting mirror is a partial conical surface, and the conical surface takes the axis of the rotating shaft as the axis of rotation.
进一步地,上述转轴反射式脉冲激光合束器中,圆锥面的锥角为30-60°。Further, in the above-mentioned rotating shaft reflection type pulsed laser beam combiner, the cone angle of the conical surface is 30-60°.
进一步地,上述转轴反射式脉冲激光合束器中,圆锥面的锥角为45°。Further, in the above-mentioned rotating shaft reflection type pulsed laser beam combiner, the cone angle of the conical surface is 45°.
进一步地,上述转轴反射式脉冲激光合束器中,反射镜与转筒一体化成型加工,镜面采用金刚石车床镜面抛光。Further, in the above-mentioned rotating shaft reflection type pulsed laser beam combiner, the reflecting mirror and the rotating drum are integrally formed and processed, and the mirror surface is mirror-polished by a diamond lathe.
进一步地,上述转轴反射式脉冲激光合束器中,转筒或转轴上设置有若干配重块或减重孔。Further, in the above-mentioned rotating shaft reflection type pulsed laser beam combiner, a plurality of counterweight blocks or weight reduction holes are arranged on the rotating drum or the rotating shaft.
一种脉冲合束激光系统,其特殊之处在于:包括n只脉冲激光器、和i×n只反射镜,脉冲激光器按照设定的时序出射激光,入射至反射镜形成合束激光出射,所述的折返镜为抛物面反射镜,其中n为大于1的正整数,i为正整数。A pulsed beam combining laser system, which is special in that it includes n pulsed lasers and i×n reflecting mirrors, the pulsed laser emits laser light according to a set time sequence, and is incident on the reflecting mirror to form a beam-combining laser output. The foldback mirror is a parabolic mirror, where n is a positive integer greater than 1, and i is a positive integer.
进一步地,还包括n只折返镜脉冲激光器经过折返镜折返后入射至反射镜。Further, it also includes that the pulsed laser with n fold-back mirrors is folded back by the fold-back mirror and then incident on the reflector.
本发明的有益效果:Beneficial effects of the present invention:
1、本发明通过在转轴上设置若干只沿转轴轴向和周向方向间隔错位排布的圆锥面反射镜,反射镜按照与脉冲激光发射时序相匹配时序进行移出和移入,实现了脉冲激光合束,在不改变原有激光器光束质量的前提下,大大提高了输出激光的功率和重复频率,并可进行数量的扩展,理论上这种合束的方式没有功率上限,在工业和其他领域具有重要的应用价值;1. In the present invention, a plurality of conical surface mirrors arranged at intervals along the axial and circumferential directions of the rotating shaft are arranged on the rotating shaft. On the premise of not changing the quality of the original laser beam, the power and repetition frequency of the output laser can be greatly improved, and the number of laser beams can be expanded. important application value;
2、本发明通过将反射镜及其他光路器件采用全反射方式,避免采用透射型光学元件时存在的器件耐受功率有限、且对光束质量产生影响的不足,热容易传至空心转筒导出或便于采用多种热管理措施,提高反射镜的耐受激光能力,特别适用于大功率、长时间出光的情况,且可以通过改变转轴的转速来实现高重频的脉冲激光合束;2. The present invention adopts the total reflection method of the reflector and other optical circuit devices, so as to avoid the shortage of limited power tolerance of the device and influence on the quality of the beam when the transmission optical element is used, and the heat is easily transferred to the hollow drum for export or It is convenient to adopt a variety of thermal management measures to improve the laser tolerance of the mirror, especially suitable for high-power, long-term light output, and can achieve high-repetition-frequency pulsed laser beam combining by changing the rotational speed of the rotating shaft;
3、本发明采用金属基底上直接机械倒角加工圆锥面的方式制造反射镜,可采用金刚石车床直接加工而成,具有加工简单、表面光洁度高、应用可靠,工程化实施容易等特点;3. The present invention adopts the method of directly mechanically chamfering the conical surface on the metal base to manufacture the reflector, which can be directly processed by a diamond lathe, and has the characteristics of simple processing, high surface finish, reliable application, and easy engineering implementation;
4、本发明采用专用的抛物镜作为折返镜实现入射激光与圆锥面反射镜之间的匹配耦合,匹配圆了锥面反射镜的光学特性,从而确保了入射激光束和合束后的激光束在横截面形状保持一致。4. The present invention uses a special parabolic mirror as a return mirror to realize the matching coupling between the incident laser and the conical mirror, which matches the optical characteristics of the circular conical mirror, thereby ensuring that the incident laser beam and the combined laser beam are The cross-sectional shape remains the same.
附图说明Description of drawings
图1是本发明脉冲合束器的工作原理及思路示意图;Fig. 1 is the working principle and idea schematic diagram of the pulse beam combiner of the present invention;
图2是本发明合束前n只脉冲激光的时序图;Fig. 2 is the timing chart of n pulse lasers before the present invention combines beam;
图3是图2脉冲合束后激光的输出功率示意图;Fig. 3 is a schematic diagram of the output power of the laser after the pulse combining of Fig. 2;
图4是本发明第一种实施例的反射镜移位原理示意图;FIG. 4 is a schematic diagram of the mirror shift principle according to the first embodiment of the present invention;
图5是本发明转轴反射式合束器的三维结构示意图;Fig. 5 is the three-dimensional structure schematic diagram of the rotating shaft reflection type beam combiner of the present invention;
图6是图5合束器的剖视图;Fig. 6 is the sectional view of the beam combiner of Fig. 5;
图7是涂5合束器的侧视图;Fig. 7 is the side view of
图8为本发明转轴式合束器的合束原理示意图;8 is a schematic diagram of the beam combining principle of the rotating shaft type beam combiner of the present invention;
图9为本发明反射镜重叠时的转筒侧视图;9 is a side view of the rotating drum when the mirrors of the present invention are overlapped;
图10为本发明多组反射镜的转轴反射式合束器结构示意图;10 is a schematic structural diagram of a rotating-axis reflection beam combiner of multiple groups of mirrors according to the present invention;
图11为本发明圆锥面反射镜及相匹配的折返镜在垂直于转轴方向结构示意图;11 is a schematic structural diagram of a conical surface mirror and a matching folding mirror of the present invention in a direction perpendicular to the rotation axis;
图12为本发明圆锥面反射镜及相匹配的折返镜在平行于转轴方向结构示意图;12 is a schematic structural diagram of a conical surface mirror and a matching folding mirror in the direction parallel to the rotation axis of the present invention;
图13为本发明脉冲合束激光系统组成示意图。FIG. 13 is a schematic diagram of the composition of the pulsed beam combining laser system of the present invention.
附图标记为:1—移位装置,2—反射镜,21—空心转筒,22—镜体,23—转轴,24—镜面,25—折返镜,3-移镜方向,30—激光器,31—入射激光束,32—出射激光束,33—聚焦光斑,4—输出光路,5—移位控制单元,6—电控位移台,7—激光时序控制单元,8—同步触发信号;。The reference numerals are: 1—shift device, 2—reflector, 21—hollow drum, 22—mirror body, 23—rotating shaft, 24—mirror surface, 25—folding mirror, 3—mirror shifting direction, 30—laser, 31—incident laser beam, 32—outgoing laser beam, 33—focusing spot, 4—output optical path, 5—shift control unit, 6—electrically controlled displacement stage, 7—laser timing control unit, 8—synchronized trigger signal;
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明作详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
如图1、图2和图3所示,本发明脉冲合束的原理思路是:在同一输出光路4上倾斜设置有n只反射镜2,每只反射镜2设置在移位装置1上,并可沿使得反射镜2沿图中的移镜方向3移出合束光路及再移回至合束光路上,合束光路即为输出光路4;移位装置1可以是一个整体机构或分体机构,可实现每只反射镜2的独立移进移出。As shown in FIG. 1, FIG. 2 and FIG. 3, the principle idea of the pulse beam combining of the present invention is: on the same output
每只反射镜2与入射激光束3相对应,其中激光为重频输出的脉冲激光,每只激光的出光时序如图2所示,可以采用背景技术中“脉冲激光的非相干合成技术研究”的方案,由可编程逻辑阵列产生脉宽、频率和时延均符合要求的电信号,再以此电信号驱动种子激光器并进行放大或驱动脉冲泵浦激光的方式,使得每只激光器输出的光脉冲保持不同的时延,以符合脉冲合束的要求。Each
图1中当n只激光器入射至对应反射镜2的同时,移位装置1按照入射时序将反射镜2按照设定的时序移走和移回原位,使得后方入射的激光反射输出时,前方的反射镜2不会阻挡后面的入射光束,从而可以实现多束脉冲激光的合束。例如2#激光的出光脉冲比1#有一定的延迟,当2#激光入射至2#反射镜时,只要前面的1#反射镜通过移位装置移走,使其不阻挡在光路上时,则此刻合束光路上有且只有一束激光即2#的脉冲激光;同理,3#激光的出光脉冲比2#又附件了一定的延迟,当3#激光入射至3#反射镜时,只要前面的1#反射镜和2#反射镜通过移位装置移走且不阻挡在光路上时,则此刻合束光路上输出的激光即为3#的脉冲激光,依次类推,当全部激光器依次入射完毕后,再从1#开始重新循环,于是就得到了如图3所示的高重频或准连续激光输出。In FIG. 1, when n lasers are incident on the
实际应用时,受到移位机构的动作延迟性,反射镜移位时前方反射镜难免会对后方有少部分阻挡作用,难以做到无缝的时序合成,故很难做到连续输出,但可以做到准连续输出或提高原来激光的重复频率。由于每只脉冲激光为一定的占空比输出,这样合束后的激光为n只激光的合成,激光平均功率为所有n只激光平均功率之和,从而大大提升了激光的输出平均功率,同时反射的光束处于共轴,且合束后的光束质量不会因反射镜移动而发生变化,这些都决定了合束后的激光可以高效率、高质量的远距离发射和传输。In practical application, due to the action delay of the displacement mechanism, the front mirror will inevitably block a small part of the rear when the mirror is displaced, and it is difficult to achieve seamless timing synthesis, so it is difficult to achieve continuous output, but it is possible to achieve continuous output. To achieve quasi-continuous output or increase the repetition frequency of the original laser. Since each pulsed laser is output with a certain duty cycle, the combined laser is the synthesis of n lasers, and the average laser power is the sum of the average powers of all n lasers, thus greatly improving the average output power of the laser. The reflected beams are coaxial, and the quality of the combined beam will not change due to the movement of the mirror, which determines that the combined laser can be emitted and transmitted over long distances with high efficiency and high quality.
这种脉冲合束的意义在于:无论是对固体激光、光纤激光还是半导体激光而言,受到非线性效应和热效应的影响,很难提高单只激光器的平均功率输出,尤其是对于连续输出的激光器。而采用脉冲合束的目的在于,将单只激光器做成具有一定重复频率输出,且占空比较小的脉冲激光,虽然受到非线性效应和热效应的影响,平均功率不可能太高,但是脉冲峰值功率可以很高。然后再通过脉冲合束的方案,调节每只激光器的脉冲时序特性,再通过本发明的合束器,将n束激光合束输出为高重频激光或准连续激光,由于将输出功率提高了n倍,且仍保持原有的光束质量,而且理论上这种合束的方式没有功率上限,在工业和其他领域具有重要的应用价值。The significance of this kind of pulse combining is that it is difficult to improve the average power output of a single laser, especially for continuous output lasers, due to the influence of nonlinear effects and thermal effects, whether for solid-state lasers, fiber lasers or semiconductor lasers. . The purpose of using pulsed beam combining is to make a single laser a pulsed laser with a certain repetition frequency output and a small duty cycle. Although it is affected by nonlinear effects and thermal effects, the average power cannot be too high, but the pulse peak value Power can be very high. Then, the pulse sequence characteristics of each laser are adjusted through the scheme of pulse beam combining, and then the beam combiner of the present invention is used to combine the n laser beams and output them as high repetition frequency laser or quasi-continuous laser. n times, and still maintain the original beam quality, and theoretically this beam combining method has no upper limit of power, which has important application value in industry and other fields.
如图4所示,本发明的第一种实施例中的移位装置1为若干只与移位控制单元5电联接的电控位移台6,电控位移台6采用丝杠传动或气缸、液压缸的工作方式,在移位控制单元5的控制下,依照时序依次驱动对应的反射镜2移出输出光路4,然后再移回至原始的位置,并确保每个时刻光路前面的反射镜2不会阻挡后面的光束,在同一时刻只能有一束激光沿输出光路4方向输出。同时为了与激光器的输出时序相匹配,移位控制单元5输出同步触发信号8至激光时序控制单元7,或者激光时序控制单元7输出同步触发信号8至移位控制单元5,实现反射镜2的位移与脉冲激光时序的匹配。反射镜2的镜面为平面,与输出光路4的夹角为30-60度,优选45度。As shown in FIG. 4 , the
如果反射镜的有效入射面积(即斜角投影后的面积)远大于激光束的光斑,则从激光脉冲起始的时刻至结束时刻,反射镜在电控位移台的作用下,一直处在往复移动状态中,并控制激光脉冲宽度与位移速度以确保入射光束不会泄露出反射镜面。如果反射镜的有效入射面积只是略大于激光束的光斑,则通过电控位移台的程控设置,使得在激光出光时刻,反射镜保持静止,出光结束后再快速移动离开出射光束的位置,避免对后面反射光的遮挡。这种电控位移台的移动方式,从原理上可满足上述脉冲合束的功率叠加、光束质量不变和光路上采用全反射器件要求,但是受到反射镜重量和尺寸的限制,在移动中由于器件和运动机构的惯性作用,无法快速地往复运动,故目前只能用于Hz级低重频脉冲激光的合束要求。If the effective incident area of the mirror (that is, the area after oblique projection) is much larger than the spot of the laser beam, the mirror will always reciprocate under the action of the electronically controlled displacement stage from the start time to the end time of the laser pulse. In the moving state, the laser pulse width and displacement speed are controlled to ensure that the incident beam does not leak out of the mirror surface. If the effective incident area of the reflector is only slightly larger than the spot of the laser beam, the program-controlled setting of the electronically controlled displacement stage makes the reflector remain stationary at the moment of laser emitting, and then quickly move away from the position of the output beam after the emitting light to avoid the Occlusion of reflected light behind. The moving method of this electronically controlled stage can in principle meet the requirements of the above-mentioned pulse combining power superposition, constant beam quality and total reflection device on the optical path, but it is limited by the weight and size of the mirror. Due to the inertial effect of the moving mechanism, it cannot reciprocate quickly, so it can only be used for the beam combining requirements of Hz-level low-repetition pulsed lasers at present.
为了满足高重频激光的合束要求,实现高平均功率的激光输出。本发明给出了第二种实施方式,即转轴式合束器。如图5-7所示,本发明的移位装置1为轴线方向与输出光路4平行的转轴23,反射镜2依靠支杆或空心转筒结构固定在转轴23上,多只反射镜2在沿转轴23的轴心线方向上间隔排布,且沿转轴轴线为中心的外圆方向错位排布。In order to meet the beam combining requirements of high repetition frequency laser, the laser output with high average power can be realized. The present invention provides a second embodiment, that is, a rotating shaft beam combiner. As shown in Figures 5-7, the
图5-7中只给出了反射镜2依靠空心转筒固定在转轴上的结构。图中反射镜2通过镜体22固定在转筒21外圈上,n只反射镜2沿转筒21的轴线方向间隔排布,同时沿转筒21的外圆方向错位排布,反射镜2的镜面24不再是实施例一中的平面,而是一段以转轴23轴心线为回转轴线的圆锥面的一部分。圆锥的锥角为30-60°,优选45°。这是因为通过理论分析表明,如果反射镜的反射面为平面,则在转动过程中会发生光束扩散,影响到合束后的光束质量。Figures 5-7 only show the structure in which the
如图8所示,当转筒21高速旋转时,每只反射镜2依次通过输出光路4,此时对应的激光器输出光脉冲,等该反射镜移动转出输出光路4时,光脉冲停止;此时另一只反射镜转动进入输出光路4,对应的激光器输出光脉冲,依次类推,最终实现n只激光的合束输出,并循环往复,实现下一组脉冲序列的输出。由于反射镜2错位排布在转筒21的外圆方向,因而并不会阻挡后面的脉冲激光的合束输出。图8中显示的是1#反射镜处在输出光路4的情形,同样转筒21转到另一个位置时1#反射镜移出输出光路4,2#反射镜则进入光路,依次类推……,只要激光脉冲时序匹配,即可完成激光的空间合束输出。反射镜2在错位排布时,相邻的反射镜2可以有少许重叠,如图9所示,此时只要控制脉冲激光的时序,仍可以达到脉冲激光合束效果。As shown in FIG. 8 , when the
在实际加工时,反射镜可采用机械加工倒角的方式,由金刚石车床在金属或非金属的镜体22上镜面抛光而成,根据需要在镜面上镀反射膜以延缓镜面的氧化,实现反射镜的长期工作。反射镜2可以和转筒21一体化加工而成,这样的目的在于可保证反射镜2的面型精度和安装精度,从而确保反射后的光束质量,而且利于散热,适用于高功率和长时间的激光出光。也可以加工后采用支杆将反射镜2固定在转轴23上的方式,此外转轴23或转筒21上设置有若干配重块或减重孔,使得转轴转动惯量平衡,减小高速转动时带来的振动。In actual processing, the mirror can be chamfered by machining, which is mirror-polished on the metal or
如图10所示,反射镜2可采用一组,也可以采用多组结构,图10与图5的区别在于,在同一只转筒上,图5布置了六只反射镜2,呈单螺旋线形状分布;而图10布置了十二只反射镜2,呈双螺旋线形状分布。也就是说,在转轴转动一周时,会有两只反射镜与同一只激光器相对应。这样的目的在于减小机构的转动速率,或满足高重频激光的合束要求,只要脉冲时序匹配得当,即可实现正常的脉冲激光合束。As shown in Fig. 10, the
如图11和图12所示,由于实施例二中的镜面24为圆锥面,当光束横截面为圆形的激光束入射至圆锥面的镜面24时,会造成垂直于转轴中心线方向的光斑发生扩散,而平行于转轴中心线方向的光斑不发生扩散,相当于锥角方向进行了镜面折返,比如45°镜面只是进行了方向变化,并不发生扩束或缩束。As shown in FIG. 11 and FIG. 12 , since the
为了克服这个问题,在激光器出口与反射镜2之间增加了折返镜25,每只激光器对应一只折返镜25,对入射至反射镜的激光光束参数进行校正,使得入射至折返镜25的光束截面参数与经合束器合束后的光束截面参数相一致,该折返镜25采用异形的抛物面结构,具体结构参数需要根据入射光束的光斑参数和反射镜2的参数经过光学设计后确定。In order to overcome this problem, a fold-
图13给出了脉冲合束激光系统的组成原理图,由于折返镜25固定在激光器30出口,并不随转轴转动,因此可以通过设置的多维光学调节架对折返镜25进行精确调节后,实现对合束光束的校正,同时系统便于在垂直于合束光束方向布局实施,使得整个系统结构紧凑,实现更多脉冲激光的合束。Figure 13 shows the composition principle diagram of the pulsed beam combining laser system. Since the
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811084007.0A CN109212743B (en) | 2018-09-17 | 2018-09-17 | Rotating shaft reflection type pulse laser beam combiner and pulse beam combining laser system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811084007.0A CN109212743B (en) | 2018-09-17 | 2018-09-17 | Rotating shaft reflection type pulse laser beam combiner and pulse beam combining laser system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109212743A CN109212743A (en) | 2019-01-15 |
CN109212743B true CN109212743B (en) | 2020-08-14 |
Family
ID=64984677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811084007.0A Active CN109212743B (en) | 2018-09-17 | 2018-09-17 | Rotating shaft reflection type pulse laser beam combiner and pulse beam combining laser system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109212743B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110867721B (en) * | 2019-12-02 | 2024-11-22 | 中国科学院合肥物质科学研究院 | A laser |
CN111541142A (en) * | 2020-05-08 | 2020-08-14 | 中国航空制造技术研究院 | Method and device for synthesizing pulse laser beam |
CN113131326B (en) * | 2021-04-14 | 2022-06-17 | 中国人民解放军国防科技大学 | Single-caliber coaxial output high-power coherent pulse laser source |
CN113608359B (en) * | 2021-08-19 | 2023-08-11 | 中国科学院光电技术研究所 | A mode-tunable intracavity vortex beam generation device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1502801A (en) * | 1974-01-30 | 1978-03-01 | Jersey Nuclear Avco Isotopes | Apparatus for sequentially combining pulsed beams of radiation |
IL48359A (en) * | 1974-11-01 | 1978-03-10 | Jersey Nuclear Avco Sotopes In | Laser amplifier system |
US4283116A (en) * | 1977-04-22 | 1981-08-11 | Jersey Nuclear-Avco Isotopes, Inc. | Beam combiner |
US4311360A (en) * | 1980-04-07 | 1982-01-19 | Rockwell International Corporation | Laser beam power multiplication |
JPS59119313A (en) * | 1982-12-25 | 1984-07-10 | Fujitsu Ltd | light distributor |
JPS62172778A (en) * | 1986-01-27 | 1987-07-29 | Toshiba Corp | Pulse laser |
JPH01321324A (en) * | 1988-06-24 | 1989-12-27 | Shimadzu Corp | Spectrophotometer capable of measuring two or more samples |
CN102621695A (en) * | 2012-03-22 | 2012-08-01 | 华中科技大学 | Pulse laser beam combining method |
CN107966767A (en) * | 2016-10-20 | 2018-04-27 | 发那科株式会社 | Beam splitter |
-
2018
- 2018-09-17 CN CN201811084007.0A patent/CN109212743B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1502801A (en) * | 1974-01-30 | 1978-03-01 | Jersey Nuclear Avco Isotopes | Apparatus for sequentially combining pulsed beams of radiation |
IL48359A (en) * | 1974-11-01 | 1978-03-10 | Jersey Nuclear Avco Sotopes In | Laser amplifier system |
US4283116A (en) * | 1977-04-22 | 1981-08-11 | Jersey Nuclear-Avco Isotopes, Inc. | Beam combiner |
US4311360A (en) * | 1980-04-07 | 1982-01-19 | Rockwell International Corporation | Laser beam power multiplication |
JPS59119313A (en) * | 1982-12-25 | 1984-07-10 | Fujitsu Ltd | light distributor |
JPS62172778A (en) * | 1986-01-27 | 1987-07-29 | Toshiba Corp | Pulse laser |
JPH01321324A (en) * | 1988-06-24 | 1989-12-27 | Shimadzu Corp | Spectrophotometer capable of measuring two or more samples |
CN102621695A (en) * | 2012-03-22 | 2012-08-01 | 华中科技大学 | Pulse laser beam combining method |
CN107966767A (en) * | 2016-10-20 | 2018-04-27 | 发那科株式会社 | Beam splitter |
Also Published As
Publication number | Publication date |
---|---|
CN109212743A (en) | 2019-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109212743B (en) | Rotating shaft reflection type pulse laser beam combiner and pulse beam combining laser system | |
CN102844143B (en) | For applying the device of laser emission | |
RU2517963C1 (en) | Disc-shaped solid laser | |
CN110681992B (en) | Adjustable broadband laser processing optical system and processing method | |
CN102420386B (en) | Disc solid laser based on off-axis paraboloids | |
CN110133842B (en) | Galvanometer scanning device and system | |
CN203204288U (en) | A semiconductor lighting source | |
CN114415149A (en) | A Wide Angle Transceiver Synchronous LiDAR Optical System | |
WO2022052162A1 (en) | Three-dimensional scanning system having double-paraboloidal mirror dynamic focusing module | |
CN113534474B (en) | Reflective beam shaping mirror and shaping system | |
CN109143572B (en) | Beam combiner for pulse laser, pulse beam combining laser system and method | |
CN110445013A (en) | A kind of semiconductor laser module and medical laser light source | |
CN104269725A (en) | Double-disc-serial-connecting pump light multi-pass transmission system and disc solid laser | |
CN203503967U (en) | A pump light multi-pass transmission system and disk solid-state laser | |
WO2014205946A1 (en) | Parallel beam combination method for achieving high-power output of all-solid-state lasers | |
CN110587118A (en) | Double-laser beam combining device and double-laser composite processing light beam system | |
CN103996965A (en) | A Laser Multi-pass Amplifier Based on Double-disk Serial Connection | |
CN104730717B (en) | Same-wavelength pulse laser beam power synthesis device | |
CN109494551B (en) | Disc laser | |
CN108173110B (en) | Hundred hertz and hundred nanoseconds high-energy laser | |
CN107516813B (en) | Pyramid type multi-stroke pumping disc laser | |
CN210703082U (en) | Dual-laser beam combining device and beam system for dual-laser composite processing | |
CN215575960U (en) | Laser beam flat-top light shaping device | |
CN110098559A (en) | A kind of interior device and method collimated of semiconductor laser shell | |
CN110867721B (en) | A laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |