The method for preparing single crystal of ferroelectric ceramics class compound
Technical field
The invention belongs to single crystal preparation technical fields, and in particular to the single crystal preparation side of a kind of ferroelectric ceramics class compound
Method.
Background technique
Ferroelectric ceramics (ferroelectric ceramics) material, refers to a kind of material with ferroelectric effect.Ferroelectricity
The key property of ceramics are as follows:
(1) characteristic of ferroelectric material is also known as " ferroelectricity " or " ferroelectric effect ": referring to the crystal structure of material
Just there is spontaneous polarization phenomenon when external electric field is not added, the direction of spontaneous polarization can be inverted by extra electric field or determine again
To.
(2) for ferroelectric material when undergoing phase transition, dielectric constant will appear peak value, and there is Curie temperature (Tc);Work as temperature
Higher than TcWhen, spontaneous polarization disappears, and ferroelectric phase transition is paraelectric phase, and dielectric properties obey Curie-Weiss law.
(3) ferroelectric material has except ferroelectricity, has piezoelectricity, dielectricity, pyroelectric, photoelectric effect, acousto-optic effect
It answers, numerous performances such as photorefractive effect and nonlinear optical effect.
The characteristic of ferroelectric ceramics determines its purposes.Using its high dielectric constant, can make large capacity capacitor,
High frequency button capacitor, high-voltage capacitor, stacked capacitor and semiconductor ceramic capacitor etc., using its polarization direction with outer
The ferroelectric hysteresis loop that the variation of electric field is formed can prepare the ferroelectric memory of high reserves;Using its dielectric constant with external electric field in non-
The electrooptic effect of linear change can make dielectric amplifier, waveguide and phase-shifter;It can be prepared using its photoelectric effect
Optical memory, light valve, optical modulator etc.;Using its pyroelectric, infrared detector etc. can be made.It can using its piezoelectricity
Make various piezoelectric devices, actuator and sensor etc..Currently, ferroelectric material is in novel energy research, mainly high storage
The exploitation of energy density and electric card effect.The electric card effect of ferroelectric material is current preparation solid-state refrigerator of new generation, instead of to ring
Border has the liquid refrigerator freon of destruction most to have to strive one of most promising material of power unexpectedly.
Currently, the annual value of production of global ferroelectric cell oneself reach tens billion of dollars.Ferroelectric material is a huger family,
The most preferably ceramics series of current application, is widely used to military and industrial circle.
Relatively common ferroelectric ceramics has Pb (Zr, Ti) O3(PZT) system, PbTiO3(PT) system, PbZrO3(PZ) system, (Pb,
Ba)(Zr,Ti)O3System, Pb (Zr, Sn, Ti) O3(PZST) system, Pb (Mg, Nb) O3(PMN) system, (Ba, Sr) TiO3(BST) system,
BaTiO3(BT) system, (Ba, Zr) TiO3(BZT)、KNbO3(KN) and K (Nb, Na) O3(KNN) ABO such as system3Perovskite structure.
Ceramics can be divided into polycrystalline and monocrystalline two major classes.Single-crystal ceramic is not because by grain size, crystal grain orientation, crystal boundary and gas
The influence of porosity etc. such as has more excellent dielectric, ferroelectricity and optics to possess more excellent performance than polycrystalline ceramics
Performance etc..
The main method for the monocrystal for preparing ferroelectric ceramics class compound at present has: floating zone method, flux method, lifting
Method, laser heating, Bridgman method etc..The purity requirement of the raw material of the above method is high, equipment is expensive, and process is complicated, work
Skill is not easy to control, crystallization temperature requirement is also higher, and the monocrystalline with fixed component of high quality hardly results in.
Summary of the invention
The present invention provides the method for preparing single crystal of a kind of ferroelectric ceramics class compound, tired to solve current single crystal preparation
Difficult problem.
In order to solve the above-mentioned technical problem, the technical scheme is that the monocrystalline system of the ferroelectric ceramics class compound
Preparation Method comprising following steps:
1) the ferroelectric ceramics block of solid phase reaction preparation setting component, further ball milling is at more than 200~2000 mesh micro-
Rice flour end;
2) ferroelectric ceramics precursor colloidal sol is prepared using sol-gel method, further obtains unbodied setting after drying
The ferroelectric ceramics dry gel powder of component;
3) by dry gel powder described in micro-powder described in step 1) and step 2), wet-milling is described at slurry in a solvent
It is pressed into biscuit sample after slurry drying, is then sintered the biscuit sample in sintering furnace, furnace cooling after the completion of sintering
The ferroelectric ceramic single crystal product of setting component is obtained to room temperature.
Optionally, the ferroelectric ceramics is ABO3Perovskite structure class, preferably PZT and BST system ferroelectric ceramics.
The ABO3Perovskite structure class ferroelectric ceramics it is relatively common have Pb (Zr, Ti) O3(PZT) system, PbTiO3(PT)
System, PbZrO3(PZ) system, (Pb, Ba) (Zr, Ti) O3System, Pb (Zr, Sn, Ti) O3(PZST) system, Pb (Mg, Nb) O3(PMN) system,
(Ba,Sr)TiO3(BST) system, BaTiO3(BT) system, (Ba, Zr) TiO3(BZT)、KNbO3(KN) or K (Nb, Na) O3(KNN) system
Compound.
Optionally, solid phase reaction process described in step 1) is to calcine in Muffle furnace after ball milling mixing, and calcination temperature is
Ferroelectric ceramic compound sintering temperature subtracts 100~300 DEG C, keeps the temperature 2~7 hours.
Optionally, in step 1), the process of the block micron powder in mortar specifically, first pound block
It is broken, 40~200 meshes are crossed, then using alcohols solvent as medium ball milling 24 hours, 200~2000 meshes are crossed in drying.
Optionally, complexing agent is high molecular material in the sol-gel method, it is preferable that polyvinylpyrrolidone (PVP)
Or citric acid.
Optionally, the solubility of step 2) the ferroelectric ceramics precursor colloidal sol is 0.1~1.0mol/L.
Optionally, in the sol-gel method, with deionized water, isopropanol, acetic acid, dehydrated alcohol or/and ethylene glycol
Methyl ether is
Optionally, in step 3), the mass ratio of the micro-powder and the dry gel powder is (3~20): 100.
Optionally, in step 3), the preparation process of slurry is specially the micro-powder and the dry gel powder with alcohols
Solvent is that medium wet-milling forms slurry, and slurry is dried in drying box after taking out, and drying temperature is 100~300 DEG C;The slurry of drying
Feed powder is pressed into biscuit sample under the pressure of 1~10MPa, and biscuit sample is placed in sintering furnace and is sintered, and keeps the temperature 2~10 hours
Complete sintering.
Optionally, the alcohols solvent is methanol, ethyl alcohol or isopropanol.
Optionally, in step 3), sintering temperature is at 1350 DEG C or less in the sintering furnace.
Compared with prior art, technical solution provided by the invention has the advantage that
1) high quality high-purity monocrystal: proposed by the invention prepares micron seed crystal using conventional solid reaction process,
Induction is prepared with sol-gel and sees the monocrystal that crystal grain is brilliant source preparation high quality with being situated between for component, in crystal growing process,
Aneroid mutually participates in.The ferroelectric ceramics of all fixed components of the molar ratio of high quality high-purity between 0~100 can be prepared
Monocrystal.
2) sintering temperature is low: being grown up as seed crystal, unbodied dry gel powder as seed crystal using the powder and micron of calcining
Brilliant source just looks like that " clone " seed crystal is the same, be may be implemented under the sintering temperature not higher than 1350 DEG C, different required for preparing
The monocrystalline of crystal orientation.
3) method and process provided by the invention is simple, at low cost, and technique is repeatable, without complicated preparation process and
Harsh crystal growth condition;Without expensive and high-energy equipment, the easily preparation of the ferro-electricity single crystal of realization high quality high-purity.
Detailed description of the invention
Fig. 1 is the Ba prepared in embodiment 10.60Sr0.40TiO3The XRD spectrum of sintered body ceramics;
Fig. 2 a, Fig. 2 b are the Ba prepared in embodiment 10.60Sr0.40TiO3Sintered body ceramics natural surface amplifies 100 times
SEM photograph;
Fig. 3 a is the Ba prepared in embodiment 10.60Sr0.40TiO3The TEM-SAED figure of sintered body ceramics big crystal grain slice,
Wherein upper right corner illustration is the 3D figure of big crystal grain slice in Fig. 2 b;
Fig. 3 b is the Ba prepared in embodiment 10.60Sr0.40TiO3The HRTEM figure of sintered body ceramics big crystal grain slice.
Specific embodiment
In order to make it easy to understand, illustrating the method for preparing single crystal of ferroelectric ceramics class compound below with reference to embodiment, it should be appreciated that
These examples are only for illustrating the present invention and are not intended to limit the scope of the present invention.
Agents useful for same is such as non-specifically indicated with raw material in the present embodiment, is commercially available general goods, wherein PVP uses K
It is worth the PVP-K30 of range 30 or so.
Embodiment 1: barium strontium ratio is the BST of 60:40 (mol%)
1) solid phase reaction: with BaTiO3、SrTiO3For raw material, according to chemical formula: Ba0.60Sr0.40TiO3Ingredient is carried out, with nothing
Water-ethanol is medium wet-milling 2 hours, and bulk Φ 15*15mm is pressed after drying2, it is put into Muffle furnace and is forged within 7 hours in 1175 DEG C of heat preservations
It burns;The block of calcining crushed 40 meshes ball milling 24 hours again, and 200 meshes are crossed after drying, prepared micron-sized 1175 DEG C of calcinings
Ba0.60Sr0.40TiO3Powder;
2) sol-gel process: being dissolved completely in PVP in isopropanol in room temperature, and it is different to PVP- that butyl titanate is added dropwise
In the solution of propyl alcohol, with magnetic stirrer stirring at normal temperature 2 hours, the solution of butyl titanate-PVP- isopropanol is prepared;It will rub
You are added in glacial acetic acid than the barium acetate and strontium acetate for being 60:40, are heated with stirring to 110 DEG C with magnetic stirrer and are kept for 10 points
Clock to barium acetate and strontium acetate is completely dissolved, and is cooled to 80 DEG C, is slowly added dropwise into above-mentioned tetra-n-butyl titanate-PVP- isopropanol
It is stirred in solution, after completion of dropwise addition 15~30 minutes, obtains barium strontium titanate precursor colloidal sol, concentration 0.4mol/L;Will before
Body colloidal sol, which is put into drying box, dries, drying box temperature be 120 DEG C, dry prepare within 24 hours it is unbodied
(Ba0.60Sr0.40TiO3) dry gel powder;
3) crystal growth: micron order Ba in step 1)0.60Sr0.40TiO3Powder is as doped raw material, that is, seed crystal, in step 2)
Unbodied Ba0.60Sr0.40TiO3Raw material is as brilliant source, the micro-powder and the dry gel powder based on dry gel powder
Mass ratio be 10:100;Using isopropanol as ball-milling medium, after mixed powder is carried out wet-milling 2 hours, drying is taken out, without
It is granulated, compression moulding is Φ 10*10mm under the pressure of 2MPa2Biscuit sample;Biscuit sample is placed horizontally at Muffle furnace
In, directly heating keeps the temperature 7 hours acquisition sintered body ceramics at 1350 DEG C.
As shown in Figs. 1-2, microstructure analysis shows that ceramics have big crystal grain of the apparent size at 100 to 300 μm,
Complete crystal form, it is clear in structure.As shown in figure 3, being dot chart rather than concentric loop figure, may indicate that acquisition is single barium strontium ratio
Barium strontium titanate monocrystal, in figure it is identified go out lattice constant, which is cubic system, space group Pm-3m
(221), cell parameter are as follows: α=β=γ=90 °,Unit cell volume are as follows:
Embodiment 2: barium strontium ratio is the BST of 75:25 (mol%)
Referring to embodiment 1, difference is preparation method, according to chemical formula in step 1: Ba0.75Sr0.25TiO3Ingredient is carried out,
The molar ratio of barium acetate and strontium acetate is 75:25 in step 2).
Embodiment 3: zirconium titanium ratio is the PZT of 53:47mol%
1) solid phase reaction: with Pb3O4、ZrO2And TiO2For raw material, according to chemical formula: Pb (Zr0.53Ti0.47)O3Matched
Material presses bulk Φ 15*15mm using dehydrated alcohol as medium wet-milling 2 hours after drying2, it is put into Muffle furnace and keeps the temperature 7 at 1000 DEG C
Hour calcining;The block of calcining crushed 40 meshes ball milling 24 hours again, and 200 meshes are crossed after drying, prepare micron-sized 1000
DEG C calcining Pb (Zr0.53Ti0.47)O3Powder;
2) sol-gel process: being dissolved completely in PVP in isopropanol in room temperature, and it is different to PVP- that butyl titanate is added dropwise
In the solution of propyl alcohol, it is then added tetrabutyl zirconate, the molar ratio of tetrabutyl zirconate and butyl titanate is 53:47, uses magnetic force
Blender stirring at normal temperature 2 hours, prepare butyl titanate-tetrabutyl zirconate-PVP- isopropanol solution;Lead acetate is added
Into ethylene glycol monomethyl ether, 120 DEG C are heated with stirring to magnetic stirrer and keeps being completely dissolved to lead acetate for 30 minutes, is cooled to 80
DEG C, butyl titanate-tetrabutyl zirconate-PVP- isopropanol solution is slowly added dropwise into lead acetate-ethylene glycol monomethyl ether solution
In, it is stirred for after completion of dropwise addition 15~30 minutes, obtains lead zirconate titanate precursor colloidal sol, concentration 0.4mol/L;By precursor
Colloidal sol is put into drying box and dries, and drying box temperature is 120 DEG C, dries and prepares within 24 hours unbodied (Pb (Zr0.53Ti0.47)O3)
Dry gel powder;
3) crystal growth: micron order Pb (Zr in step 1)0.53Ti0.47)O3Powder is as doped raw material, that is, seed crystal, step 2)
In unbodied Pb (Zr0.53Ti0.47)O3Raw material is as brilliant source, the quality and xerogel of micro-powder based on dry gel powder
The mass ratio of powder is 10:100;Using isopropanol as ball-milling medium, after mixed powder is carried out wet-milling 2 hours, drying is taken out, without
Granulation is crossed, compression moulding is Φ 10*10mm under the pressure of 2MPa2Biscuit sample;Biscuit sample is placed horizontally at Muffle furnace
In, directly heating keeps the temperature 7 hours acquisition sintered body ceramics at 1200 DEG C.It is apparent to show that ceramics have through microstructure analysis
For size in the big crystal grain monocrystalline of 1mm or more, complete crystal form is clear in structure.
4 zirconium titanium ratio of embodiment is 10:90mol%
Referring to embodiment 1, difference is preparation method, according to chemical formula in step 1): Pb (Zr0.10Ti0.90)O3Matched
Expect, the molar ratio of tetrabutyl zirconate and butyl titanate is 10:90 in step 2).
Embodiment 5
Difference with embodiment 3 is, first, micron powder crosses 1000 meshes in step 1);Second, in step 2), institute
The solubility for stating lead zirconate titanate precursor colloidal sol is 0.1mol/L;Third, sintering temperature is 650 DEG C, monocrystalline after sintering in step 3)
Partial size is 0.5-1 μm.
Finally, it should be noted that the above embodiments are merely illustrative of the technical solutions of the present invention, rather than its limitations.Although
Present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that: it still may be used
To modify to technical solution documented by previous embodiment, or some or all of the technical features are equal
Replacement, and these modifications or substitutions, the model for technical solution of various embodiments of the present invention that it does not separate the essence of the corresponding technical solution
It encloses.