CN102649643B - Niobium lutetium lead plumbate-lead lanthanum zirconate titanate (PLZT) electrooptical ceramics material - Google Patents
Niobium lutetium lead plumbate-lead lanthanum zirconate titanate (PLZT) electrooptical ceramics material Download PDFInfo
- Publication number
- CN102649643B CN102649643B CN201210125316.4A CN201210125316A CN102649643B CN 102649643 B CN102649643 B CN 102649643B CN 201210125316 A CN201210125316 A CN 201210125316A CN 102649643 B CN102649643 B CN 102649643B
- Authority
- CN
- China
- Prior art keywords
- piezoelectric
- piezoelectric ceramic
- ceramic material
- lead
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title abstract description 21
- 239000000919 ceramic Substances 0.000 title description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title 1
- SSYBETHNRHYQGU-UHFFFAOYSA-N [Pb].[Lu].[Nb] Chemical compound [Pb].[Lu].[Nb] SSYBETHNRHYQGU-UHFFFAOYSA-N 0.000 title 1
- 229910052746 lanthanum Inorganic materials 0.000 title 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 title 1
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 13
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 239000002002 slurry Substances 0.000 claims description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims 2
- 241001124569 Lycaenidae Species 0.000 claims 1
- 239000003990 capacitor Substances 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000003989 dielectric material Substances 0.000 claims 1
- 229910003443 lutetium oxide Inorganic materials 0.000 claims 1
- 239000011812 mixed powder Substances 0.000 claims 1
- 230000010287 polarization Effects 0.000 abstract description 3
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract 1
- 238000004626 scanning electron microscopy Methods 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001757 thermogravimetry curve Methods 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000011363 dried mixture Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及铌镥酸铅-锆钛酸铅压电陶瓷材料。通过粉末衍射,扫描电镜,介电,压电和铁电测量对其性能进行表征,确定了该三元体系的准同型相界区域。并得到了位于准同型相界区的最佳性能的组分43Pb(Lu1/2Nb1/2)O3-10PbZrO3-47PbTiO3。其压电系数到d33=367pC/N,Tc=360℃,机电耦合性能kp=68%,矫顽场Ec=17kv/cm,剩余极化Pr=34.45μC/cm2。不仅可以满足高功率传感器及高应变驱动器等高技术应用对压电材料性能的要求,而且可以满足高功率传感器及高应变驱动器等高技术应用对压电材料的使用温度要求。
The invention relates to a lead niobate lutetate-lead zirconate titanate piezoelectric ceramic material. Its properties were characterized by powder diffraction, scanning electron microscopy, dielectric, piezoelectric and ferroelectric measurements, and the quasi-isomorphic phase boundary region of the ternary system was determined. And the composition 43Pb(Lu 1/2 Nb 1/2 )O 3 -10PbZrO 3 -47PbTiO 3 with the best properties located in the quasi-isomorphic phase boundary region was obtained. Its piezoelectric coefficient is up to d 33 =367pC/N, T c =360°C, electromechanical coupling performance k p =68%, coercive field E c =17kv/cm, remanent polarization P r =34.45μC/cm 2 . It can not only meet the performance requirements of high-tech applications such as high-power sensors and high-strain drivers for piezoelectric materials, but also meet the temperature requirements of high-tech applications such as high-power sensors and high-strain drivers for piezoelectric materials.
Description
技术领域 technical field
本发明涉及一种新型压电陶瓷组合物及压电陶瓷组合物的制备方法。该种压电陶瓷组合物的化学式为(1-x-y)Pb(Lu1/2Nb1/2)O3-xPbZrO3-yPbTiO3,简记为PLuN-PZ-PT。该种材料是具有准同型相界结构且居里温度可以与PZT陶瓷相媲美的压电组合物材料。属于功能陶瓷领域。该种压电陶瓷组合物适合用作压电陶瓷滤波器,压电陶瓷振荡器,压电陶瓷振子等压电陶瓷元器件。The invention relates to a novel piezoelectric ceramic composition and a preparation method of the piezoelectric ceramic composition. The chemical formula of the piezoelectric ceramic composition is (1-xy)Pb(Lu 1/2 Nb 1/2 )O 3 -xPbZrO 3 -yPbTiO 3 , which is abbreviated as PLuN-PZ-PT. The material is a piezoelectric composite material with a quasi-isomorphic phase boundary structure and a Curie temperature comparable to that of PZT ceramics. It belongs to the field of functional ceramics. The piezoelectric ceramic composition is suitable for piezoelectric ceramic components such as piezoelectric ceramic filters, piezoelectric ceramic oscillators, piezoelectric ceramic oscillators and the like.
背景技术 Background technique
铁电/压电材料由于具备优良的机电转换性能、响应速度快等优点,广泛应用于各种功能器件,如传感器、换能器、声纳、驱动器、滤波器、微扬声器等,在国民经济与国防安全中发挥着不可替代的重要作用。第二次世界大战期间,美国,日本,和前苏联科学家几乎同时发现BaTiO3压电材料,50年代B.Jaffe发现了Pb(Zr1-xTix)O3,简称PZT。PZT陶瓷材料是一种广泛用于换能器(transducer)和执行器(actuator)的传统压电材料,一直在压电应用领域中占据主导地位。该材料存在准同型相界。PZT在准同型相界处表现压电性能,PZT压电陶瓷的压电系数d33~700pC/N,机电耦合系数k33~70%。Ferroelectric/piezoelectric materials are widely used in various functional devices, such as sensors, transducers, sonar, drivers, filters, micro-speakers, etc., due to their excellent electromechanical conversion performance and fast response speed. It plays an irreplaceable and important role in national defense and security. During World War II, scientists in the United States, Japan, and the former Soviet Union discovered BaTiO 3 piezoelectric materials almost simultaneously. In the 1950s, B.Jaffe discovered Pb(Zr 1-x Ti x )O 3 , referred to as PZT. PZT ceramic material is a traditional piezoelectric material widely used in transducers and actuators, and has always occupied a dominant position in piezoelectric applications. The material exhibits a quasi-isomorphic phase boundary. PZT exhibits piezoelectric performance at the quasi-isomorphic phase boundary, and the piezoelectric coefficient of PZT piezoelectric ceramics is d 33 ~ 700pC/N, and the electromechanical coupling coefficient k 33 ~ 70%.
但是PZT陶瓷烧结问题高(Ts>1250℃),PbO熔点较低,这导致了高温烧结PZT陶瓷,其容易偏离理想组分。另外,PZT单晶生长特别的困难,到目前为止,准同型相界区的PZT单晶的生长仍然是个无法克服的难题。还有,PZT陶瓷矫顽场相对较小,不适合大功率的传感器的使用。But PZT ceramics have a high sintering problem (T s >1250°C), and PbO has a low melting point, which leads to high temperature sintering of PZT ceramics, which easily deviates from the ideal composition. In addition, the growth of PZT single crystal is particularly difficult. So far, the growth of PZT single crystal in the quasi-isotropic phase boundary region is still an insurmountable problem. In addition, the coercive field of PZT ceramics is relatively small, which is not suitable for the use of high-power sensors.
鉴于以上的考虑,为了寻找一种能用于大功率且具有高居里温度的压电材料,我们开展了对(1-x-y)Pb(Lu1/2Nb1/2)O3-xPbZrO3-yPbTiO3(PLuN-PZ-PT)固溶体系的研究。研究了三元体系PLuN-PZ-PT在准同型相界区域及附近组分的制备方法、结构和电学性能,为压电领域提供一种新型且能用于大功率器件的高居里温度的压电材料。In view of the above considerations, in order to find a piezoelectric material that can be used for high power and has a high Curie temperature, we carried out a study on (1-xy)Pb(Lu 1/2 Nb 1/2 )O 3 -xPbZrO 3 - Study on yPbTiO 3 (PLuN-PZ-PT) solid solution system. The preparation method, structure and electrical properties of the ternary system PLuN-PZ-PT in the quasi-isotropic phase boundary region and nearby components are studied, and a new type of high Curie temperature piezoelectric material that can be used for high-power devices is provided for the piezoelectric field. electrical material.
发明内容 Contents of the invention
本发明的目的在于针对上述提出的问题寻找一种新型的铁电材料并研究其制备工艺,以解决现有高居里温度铁电单晶难生长和没有较好的适用于大功率器件的压电材料,为压电材料增加一种新产品。该材料可广泛用于压电器件领域。The purpose of the present invention is to find a new type of ferroelectric material and study its preparation process for the above-mentioned problems, so as to solve the problem that the existing high Curie temperature ferroelectric single crystal is difficult to grow and there is no piezoelectric material suitable for high-power devices. Materials, adds a new product for Piezoelectric Materials. The material can be widely used in the field of piezoelectric devices.
本发明提供的一种新型的压电陶瓷组合物材料,其特征在于:化学组成为:(1-x-y)Pb(Lu1/2Nb1/2)O3-xPbZrO3-yPbTiO3,简写为:PLuN-PZ-PT,属于典型的钙钛矿结构。其中,x=0.1~0.6,y=0.4~0.5。该固溶体存在准同型相界区。本发明的内容之一就是寻找出该压电陶瓷组合物的准同型相界区域的位置以及研究准同型相界区域的压电陶瓷的相关电学性能。A novel piezoelectric ceramic composition material provided by the present invention is characterized in that the chemical composition is: (1-xy)Pb(Lu 1/2 Nb 1/2 )O 3 -xPbZrO 3 -yPbTiO 3 , abbreviated as : PLuN-PZ-PT, which belongs to the typical perovskite structure. Wherein, x=0.1-0.6, y=0.4-0.5. The solid solution has a quasi-isomorphic phase boundary region. One of the contents of the present invention is to find out the position of the quasi-isotype phase boundary region of the piezoelectric ceramic composition and to study the relevant electrical properties of the piezoelectric ceramics in the quasi-isotype phase boundary region.
本发明所述的压电组合物材料的制备方法,其制备方法包括如下具体步骤:The preparation method of the piezoelectric composite material of the present invention, its preparation method comprises the following specific steps:
a)首先制备前驱体铌铁矿LuNbO4,制备方法:Lu2O3和Nb2O5按照计量比称量,然后加入酒精球磨24小时,然后在1150℃煅烧1.5小时,得到铌铁矿LuNbO4。a) First prepare the precursor niobite LuNbO 4 , preparation method: Lu 2 O 3 and Nb 2 O 5 are weighed according to the metering ratio, then add alcohol and ball mill for 24 hours, and then calcined at 1150°C for 1.5 hours to obtain niobite LuNbO 4 .
b)按所需组分的化学计量比称量LuNbO4,TiO2,ZrO2,PbO,其中PbO过量3%补偿其挥发。然后在酒精和氧化锆介质中球磨24小时。b) Weighing LuNbO 4 , TiO 2 , ZrO 2 , and PbO according to the stoichiometric ratio of the required components, wherein an excess of 3% of PbO compensates for its volatilization. It was then ball milled in alcohol and zirconia media for 24 hours.
c)上述的料浆经过干燥(120℃),在800℃煅烧6小时,得到前驱体粉末。c) The above slurry is dried (120° C.) and calcined at 800° C. for 6 hours to obtain a precursor powder.
d)上述煅烧粉末在研钵中研磨1.5小时,加入5%的PVA造粒,压片,然后以1.5℃/min升温到500℃,保温2小时,排胶。d) The above-mentioned calcined powder was ground in a mortar for 1.5 hours, added 5% PVA to granulate, pressed into tablets, and then heated to 500°C at 1.5°C/min, kept for 2 hours, and debinding.
e)排胶之后的片放在Al2O3坩埚中,加入PbTiO3气氛料中,以6~10℃/min速率升温到1170℃,保温2.5小时,得到所需的样品材料。e) The sheet after debinding was placed in an Al 2 O 3 crucible, added into a PbTiO 3 atmosphere material, heated up to 1170°C at a rate of 6-10°C/min, and held for 2.5 hours to obtain the desired sample material.
附图说明 Description of drawings
图1为实施例1制备的(1-x-y)PLuN-xPZ-yPT压电陶瓷材料在室温下的X射线粉末衍射图.粉末衍射仪型号:日本理学MiniFlex∏。Figure 1 is the X-ray powder diffraction pattern of the (1-x-y)PLuN-xPZ-yPT piezoelectric ceramic material prepared in Example 1 at room temperature. The powder diffractometer model: Rigaku MiniFlex∏.
图2为实施例1制备的压电陶瓷固溶体的透射电镜照片。透射电镜型号:JSM6700。FIG. 2 is a transmission electron micrograph of the piezoelectric ceramic solid solution prepared in Example 1. FIG. Transmission electron microscope model: JSM6700.
图3为实施例1制备的(1-x-y)PLuN-xPZ-yPT压电材料极化后的介电温谱图。介电分析仪型号:德国NovolcontrolAlpha-A。3 is a dielectric thermogram after polarization of the (1-x-y)PLuN-xPZ-yPT piezoelectric material prepared in Example 1. Dielectric analyzer model: Germany NovolcontrolAlpha-A.
图4为实施例1制备的(1-x-y)PLuN-xPZ-yPT压电材料在不同电场下的电滞回线。铁电分析仪的型号:aix-ACCTTF2000。FIG. 4 is the hysteresis loops of the (1-x-y)PLuN-xPZ-yPT piezoelectric material prepared in Example 1 under different electric fields. The model of the ferroelectric analyzer: aix-ACCTTF2000.
图5(1-x-y)Pb(Lu1/2Nb1/2)O3-xPbZrO3-yPbTiO3三元相图及准同型相界。Fig. 5 (1-xy)Pb(Lu 1/2 Nb 1/2 )O 3 -xPbZrO 3 -yPbTiO 3 ternary phase diagram and quasi-isomorphic phase boundary.
具体实施方式 detailed description
下面结合实施例对本发明作进一步详细,完整的说明。Below in conjunction with embodiment the present invention is described in further detail and complete.
实施例1Example 1
1.按照化学计量比称量Lu2O3,Nb2O5,加入无水乙醇作为介质,行星球磨12小时,120℃干燥,在1150℃煅烧1.5小时,得到前驱体LuNbO4。1. Weigh Lu 2 O 3 and Nb 2 O 5 according to the stoichiometric ratio, add absolute ethanol as the medium, planetary ball mill for 12 hours, dry at 120°C, and calcinate at 1150°C for 1.5 hours to obtain the precursor LuNbO 4 .
2.按通式(1-x-y)Pb(Lu1/2Nb1/2)O3-xPbZrO3-yPbTiO3,其中,x=0.40,y分别取值为0.40,0.44,0.45,0.46,0.47,0.48,0.50。分别按照化学计量比称取LuNbO4,ZrO2,TiO2。让称取超过化学计量比3%的PbO以补偿其烧结过程中的挥发;加入无水乙醇作为介质,行星球磨24个小时。2. According to the general formula (1-xy)Pb(Lu 1/2 Nb 1/2 )O 3 -xPbZrO 3 -yPbTiO 3 , where x=0.40 and y are respectively 0.40, 0.44, 0.45, 0.46, 0.47 , 0.48, 0.50. Weigh LuNbO 4 , ZrO 2 , and TiO 2 according to the stoichiometric ratio, respectively. Let weigh more than 3% of the stoichiometric PbO to compensate for its volatilization during the sintering process; add absolute ethanol as a medium, and grind the planetary ball for 24 hours.
3.出料干燥,将干燥后的混合物压片装入Al2O3坩埚中,在800℃合成6小时。3. The material is dried, and the dried mixture is pressed into an Al 2 O 3 crucible, and synthesized at 800° C. for 6 hours.
4.粉碎合成料,用无水乙醇作为介质,再次行星球磨12小时使其混合均匀。4. Crush the synthetic material, use absolute ethanol as the medium, and planetary ball mill again for 12 hours to make it evenly mixed.
5.出料干燥,加入粘结剂PVA(5w%),造粒,在20MP的压力下压制成直径10mm的片,6小时升温到500℃,保温2小时,排塑。5. Discharge and dry, add binder PVA (5w%), granulate, press into a sheet with a diameter of 10mm under a pressure of 20MP, heat up to 500°C in 6 hours, keep warm for 2 hours, and discharge the plastic.
6.进行最后的烧结。烧结过程在氧气气氛中1170℃无压烧结2.5小时,然后随炉温冷却到室温。6. Perform final sintering. The sintering process is pressureless sintering at 1170°C for 2.5 hours in an oxygen atmosphere, and then cooled to room temperature with the furnace temperature.
7.将烧结后获得的PLuN-PZ-PT陶瓷材料用Mini-FlexII衍射仪进行物相分析,得到的XRD图谱如图1所示。由图1可见所获得陶瓷材料均为纯钙钛矿结构。7. The PLuN-PZ-PT ceramic material obtained after sintering was analyzed by Mini-FlexII diffractometer, and the obtained XRD pattern is shown in Figure 1. It can be seen from Figure 1 that the obtained ceramic materials are all pure perovskite structures.
8.图2为所制备的陶瓷材料的扫描电镜的照片,由图2可见,所制备的陶瓷均呈现致密的微结构。并且随着PLuN含量的增多,致密度和结晶性均有所提高。8. Figure 2 is a scanning electron microscope photo of the prepared ceramic material. It can be seen from Figure 2 that the prepared ceramics all present a dense microstructure. And with the increase of PLuN content, the density and crystallinity are improved.
9.图3为制备的陶瓷材料在1Hz~1MHz测试频率下的介电温谱图。从介电谱上可以看出,随着PLuN含量的增加,居里点有所降低,并且呈现出三方-四方相变的肩峰,另外,介电峰值宽化,介电曲线出现频率色散效应。这是表明,随着PLuN含量的增加,体系弛豫性能增强。介电特征表明该陶瓷是介于正常铁电体和弛豫铁电体之间的一种铁电材料。9. Figure 3 is the dielectric thermogram of the prepared ceramic material at a test frequency of 1 Hz to 1 MHz. It can be seen from the dielectric spectrum that with the increase of PLuN content, the Curie point decreases, and it presents a shoulder peak of the trigonal-tetragonal phase transition. In addition, the dielectric peak is broadened, and the dielectric curve appears frequency dispersion effect . This indicates that the relaxation properties of the system are enhanced with the increase of PLuN content. The dielectric characteristics indicate that the ceramic is a ferroelectric material between normal ferroelectrics and relaxor ferroelectrics.
10.图4为制备的本实施例的铁电电滞回线。由图4可见,所制备的陶瓷材料相比于PZT陶瓷材料,其在矫顽场Ec和剩余极化Pr方面均有所提高。适用于高功率的压电器件上。10. Figure 4 is the ferroelectric hysteresis loop prepared in this embodiment. It can be seen from Figure 4 that compared with the PZT ceramic material, the prepared ceramic material has improved coercive field Ec and remanent polarization Pr. Suitable for high power piezoelectric devices.
实施例2Example 2
1.按照化学计量比称量Lu2O3,Nb2O5,加入无水乙醇作为介质,行星球磨12小时,120℃干燥,在1150℃煅烧1.5小时,得到前驱体LuNbO4。1. Weigh Lu 2 O 3 and Nb 2 O 5 according to the stoichiometric ratio, add absolute ethanol as the medium, planetary ball mill for 12 hours, dry at 120°C, and calcinate at 1150°C for 1.5 hours to obtain the precursor LuNbO 4 .
2.按通式(1-x-y)Pb(Lu1/2Nb1/2)O3-xPbZrO3-yPbTiO3,其中,x=0.25,y分别取值为0.41,0.42,0.43,0.45,0.46,0.47,0.48。分别按照化学计量比称取LuNbO4,ZrO2,TiO2。让称取超过化学计量比3%的PbO以补偿其烧结过程中的挥发;加入无水乙醇作为介质,行星球磨24个小时。2. According to the general formula (1-xy)Pb(Lu 1/2 Nb 1/2 )O 3 -xPbZrO 3 -yPbTiO 3 , where x=0.25 and y are respectively 0.41, 0.42, 0.43, 0.45, 0.46 , 0.47, 0.48. Weigh LuNbO 4 , ZrO 2 , and TiO 2 according to the stoichiometric ratio, respectively. Let weigh more than 3% of the stoichiometric PbO to compensate for its volatilization during the sintering process; add absolute ethanol as a medium, and grind the planetary ball for 24 hours.
3.烧结温度设定为1100℃保温2.5小时。3. The sintering temperature is set at 1100°C for 2.5 hours.
3.其余同实施例1。3. All the other are with embodiment 1.
实施例3Example 3
1.按照化学计量比称量Lu2O3,Nb2O5,加入无水乙醇作为介质,行星球磨12小时,120℃干燥,在1150℃煅烧1.5小时,得到前驱体LuNbO4。1. Weigh Lu 2 O 3 and Nb 2 O 5 according to the stoichiometric ratio, add absolute ethanol as the medium, planetary ball mill for 12 hours, dry at 120°C, and calcinate at 1150°C for 1.5 hours to obtain the precursor LuNbO 4 .
2.按通式(1-x-y)Pb(Lu1/2Nb1/2)O3-xPbZrO3-yPbTiO3,其中,x=0.10,y分别取值为0.40,0.43,0.44,0.45,0.46,0.47,0.48,0.50。分别按照化学计量比称取LuNbO4,ZrO2,TiO2。让称取超过化学计量比3%的PbO;加入无水乙醇作为介质,行星球磨24个小时。2. According to the general formula (1-xy)Pb(Lu 1/2 Nb 1/2 )O 3 -xPbZrO 3 -yPbTiO 3 , where x=0.10 and y are respectively 0.40, 0.43, 0.44, 0.45, 0.46 , 0.47, 0.48, 0.50. Weigh LuNbO 4 , ZrO 2 , and TiO 2 according to the stoichiometric ratio, respectively. Let weigh PbO exceeding 3% of the stoichiometric ratio; add absolute ethanol as a medium, and planetary ball mill for 24 hours.
3.烧结温度设定为1020℃保温2.5小时。3. The sintering temperature is set at 1020° C. for 2.5 hours.
3.其余同实施例1。3. All the other are with embodiment 1.
有必要指出的是:以上的实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。It must be pointed out that the above examples are only used to further illustrate the present invention, and should not be interpreted as limiting the scope of protection of the present invention. Some non-essential improvements and adjustments made by those skilled in the art based on the above contents of the present invention are all Belong to the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210125316.4A CN102649643B (en) | 2012-04-25 | 2012-04-25 | Niobium lutetium lead plumbate-lead lanthanum zirconate titanate (PLZT) electrooptical ceramics material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210125316.4A CN102649643B (en) | 2012-04-25 | 2012-04-25 | Niobium lutetium lead plumbate-lead lanthanum zirconate titanate (PLZT) electrooptical ceramics material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102649643A CN102649643A (en) | 2012-08-29 |
CN102649643B true CN102649643B (en) | 2016-03-02 |
Family
ID=46691773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210125316.4A Active CN102649643B (en) | 2012-04-25 | 2012-04-25 | Niobium lutetium lead plumbate-lead lanthanum zirconate titanate (PLZT) electrooptical ceramics material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102649643B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102817080A (en) * | 2012-09-04 | 2012-12-12 | 中国科学院上海硅酸盐研究所 | Lead lutetioniobate-lead magnesioniobate-lead titanate ternary-system relaxation ferroelectric monocrystal and preparation method thereof |
CN103011815B (en) * | 2012-12-06 | 2017-10-24 | 中国科学院福建物质结构研究所 | Ternary ferroelectric sosoloid niobium lutetium lead plumbate lead magnesio-niobate lead titanates |
CN103011816A (en) * | 2012-12-06 | 2013-04-03 | 中国科学院福建物质结构研究所 | Preparation method for binary ferroelectric lead lutecium niobate-lead titanate solid solution |
CN103014863B (en) * | 2012-12-06 | 2018-03-09 | 中国科学院福建物质结构研究所 | Antiferroelectric monocrystalline niobium lutetium lead plumbate and its production and use |
CN103011812A (en) * | 2012-12-12 | 2013-04-03 | 中国科学院福建物质结构研究所 | Method for preparing PZN based multi-element composite perovskite type piezoelectric ceramics |
CN103172373A (en) * | 2012-12-12 | 2013-06-26 | 中国科学院福建物质结构研究所 | Ternary ferroelectric solid solution lead niobate ytterbate-lead zinc niobate-lead titanate |
CN103641478A (en) * | 2013-11-28 | 2014-03-19 | 中国科学院福建物质结构研究所 | Ferroelectric piezoelectric ceramic material of large-power energy transducer and preparation method thereof |
CN103710756A (en) * | 2013-12-16 | 2014-04-09 | 中国科学院福建物质结构研究所 | Antiferroelectric crystal lead lutecium niobate-lead titanate and preparation method thereof |
CN109650888B (en) * | 2018-12-27 | 2019-12-31 | 哈尔滨工业大学 | A low-temperature textured high electrical performance ternary lead titanate based relaxor ferroelectric oriented ceramic |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1511802A (en) * | 2002-12-27 | 2004-07-14 | ���Ĵ���ѧ | Multi-component niobate-based lead-free piezoelectric ceramics |
CN101098828A (en) * | 2004-12-13 | 2008-01-02 | 多诺克斯颜料股份有限公司 | Particulate lead zirconate titanate, zirconium titanium hydrate and zirconium titanate and preparation method thereof |
-
2012
- 2012-04-25 CN CN201210125316.4A patent/CN102649643B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1511802A (en) * | 2002-12-27 | 2004-07-14 | ���Ĵ���ѧ | Multi-component niobate-based lead-free piezoelectric ceramics |
CN101098828A (en) * | 2004-12-13 | 2008-01-02 | 多诺克斯颜料股份有限公司 | Particulate lead zirconate titanate, zirconium titanium hydrate and zirconium titanate and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
Dielectric properties of the Pb(In1/2Nb1/2)O3-PbTiO3 single crystal;Yasuda N,Ohwa H,Ito K等;《Ferroelectrics》;19991231;第230卷(第1期);全文 * |
High-temperature solution growth and characterization of the piezo-/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3[PMNT] single crystals);Dong M,Ye Z G;《Journal of Crystal Growth》;20001231;第209卷(第1期);81-90 * |
Morphotropic phase boundary of heteovalent perovskite solid solutions:experiental and theoretical investigation of PbSc1/2Nb1/2O3-PbTiO3;Haumont R,Barakaty A A,Dkhil B;《Physical Review B》;20051231;104-106 * |
Also Published As
Publication number | Publication date |
---|---|
CN102649643A (en) | 2012-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102649643B (en) | Niobium lutetium lead plumbate-lead lanthanum zirconate titanate (PLZT) electrooptical ceramics material | |
US6620752B2 (en) | Method for fabrication of lead-based perovskite materials | |
CN108238795B (en) | A novel ternary ferroelectric ceramic system with high Curie temperature and its preparation method and application | |
CN101200369A (en) | Titanium niobium zincate bismuth sodium lead-free piezoelectric ceramics and preparation method thereof | |
Wang et al. | Pb (In1/2Nb1/2) O3-PbZrO3-PbTiO3 ternary ceramics with temperature-insensitive and superior piezoelectric property | |
CN102311266A (en) | Preparation method of (K05Na05) NbO3 (KNN) lead-free piezoelectric ceramic material | |
CN102180665A (en) | Bismuth scandate-lead titanate high-temperature piezoelectric ceramic material and preparation method thereof | |
CN102757220A (en) | A Bi0.5Na0.5TiO3-based ternary system lead-free piezoelectric ceramic and its preparation | |
CN103172373A (en) | Ternary ferroelectric solid solution lead niobate ytterbate-lead zinc niobate-lead titanate | |
CN106220169A (en) | Modified lead nickle niobate lead titanate piezoelectric ceramics and preparation method thereof | |
CN103073289B (en) | Piezoceramic material, sintering body, piezoceramic device and preparation method of piezoceramic material | |
Pang et al. | A lead-reduced ferrolectric solid solution with high curie temperature: BiScO3–Pb (Zn1/3Nb2/3) O3–PbTiO3 | |
Chang et al. | The effects of sintering temperature on the properties of lead-free (Na0. 5K0. 5) NbO3–SrTiO3 ceramics | |
CN107512910B (en) | A kind of ternary relaxor ferroelectric piezoelectric material niobium lutetium lead plumbate-lead nickle niobate-lead titanates and its preparation method and application | |
CN109208066A (en) | The method for preparing single crystal of ferroelectric ceramics class compound | |
Li et al. | Microstructure and electrical properties of Pb (Zr0. 5Ti0. 5) O3-Pb (Zn1/3Nb2/3) O3-Pb (Ni1/3Nb2/3) O3+ xS3Ti2O7 ceramics | |
CN106518058A (en) | Lead-free compound ferroelectric ceramic composed of potassium-bismuth titanate and zinc oxide and preparation thereof | |
Dumitru et al. | Investigations on the doping effects on the properties of piezoelectric ceramics | |
CN114621009B (en) | Lead magnesium niobate-lead titanate-based piezoelectric ceramic material and preparation method thereof | |
CN105218090A (en) | Obvious anisotropic high-performance lead zirconates based piezoelectric ceramic materials of a kind of electromechanical coupling factor and preparation method thereof | |
CN105218092B (en) | It is a kind of to be provided simultaneously with big displacement and low delayed lead zirconate titanate based piezoelectric ceramic materials and preparation method thereof | |
CN101618964A (en) | Novel ferroelectric ceramic barium niobate scandate -lead titanate, preparation method and application thereof | |
CN103524129A (en) | Piezoceramic material for ultrasonic emission-type transducers and preparation method | |
Li et al. | A new Pb (Lu1/2Nb1/2) O3–PbZrO3–PbTiO3 ternary solid solution with morphotropic region and high Curie temperature | |
Qiao et al. | Preparation, structure, and electric properties of the Pb (Lu1/2Nb1/2) O3–Pb (Ni1/3Nb2/3) O3–PbTiO3 ternary ferroelectric system ceramics near the morphotropic phase boundary |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |