CN109148691B - Low-voltage multiplication type color organic photoelectric detector and preparation method thereof - Google Patents
Low-voltage multiplication type color organic photoelectric detector and preparation method thereof Download PDFInfo
- Publication number
- CN109148691B CN109148691B CN201811037852.2A CN201811037852A CN109148691B CN 109148691 B CN109148691 B CN 109148691B CN 201811037852 A CN201811037852 A CN 201811037852A CN 109148691 B CN109148691 B CN 109148691B
- Authority
- CN
- China
- Prior art keywords
- p3ht
- electrode layer
- layer
- low
- glass substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000011521 glass Substances 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 18
- 238000000576 coating method Methods 0.000 claims abstract description 18
- 238000000137 annealing Methods 0.000 claims abstract description 16
- 238000007747 plating Methods 0.000 claims abstract description 11
- 238000007738 vacuum evaporation Methods 0.000 claims abstract description 6
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 63
- 238000004528 spin coating Methods 0.000 claims description 19
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 14
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 11
- 238000004140 cleaning Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 8
- 239000010453 quartz Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 3
- 238000007664 blowing Methods 0.000 claims description 2
- 238000011895 specific detection Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 9
- 238000001816 cooling Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 19
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000005036 potential barrier Methods 0.000 description 6
- 239000003086 colorant Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
- H10K85/215—Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
技术领域technical field
本发明属于有机半导体技术领域,涉及一种低电压倍增型彩色有机光电探测器,本发明还涉及一种低电压倍增型彩色有机光电探测器的制备方法。The invention belongs to the technical field of organic semiconductors, relates to a low voltage multiplication type color organic photodetector, and also relates to a preparation method of a low voltage multiplication type color organic photoelectric detector.
背景技术Background technique
有机光电材料具有重量轻、制备工艺简单、易于加工成大面积、成本低以及响应光谱范围广、光吸收系数大等优点,可广泛应用于光电探测器。研发新的器件结构及其制造方法是提高光电探测器光响应度、量子效率、比探测率关键技术。Organic optoelectronic materials have the advantages of light weight, simple preparation process, easy processing into large areas, low cost, wide response spectrum range, and large light absorption coefficient, and can be widely used in photodetectors. The development of new device structures and their fabrication methods is the key technology to improve the photoresponsivity, quantum efficiency, and specific detectivity of photodetectors.
常规结构有机光电探测器虽具有较低的工作电压,然而,由于外量子效率低(一般小于100%),比探测率不高,限制着探测器在弱光条件下的应用因此,提高有机探测器探测能力至关重要。近几年人们利用电子陷阱辅助作用以及倒装器件结构,引入外电路电荷注入提高有机探测器的探测率。目前报道的几种探测器虽然在一些单色光下获得了高的光响应及比探测率,但是仍然存在着工作电压过高、三基色不全、结构复杂等问题。为了解决上述问题,本专利给出一种具有低工作电压,高光敏度(R)、高外量子效率(EQE)、高比探测率(D*),且工艺简单的倍增型彩色有机光电探测器。Although organic photodetectors with conventional structures have lower operating voltages, however, due to the low external quantum efficiency (generally less than 100%) and the low specific detection rate, the application of the detectors under weak light conditions is limited. Detection capability is critical. In recent years, people have taken advantage of the assisting effect of electron traps and the structure of flip-chip devices to introduce external circuit charge injection to improve the detection rate of organic detectors. Although several detectors reported so far have obtained high photoresponse and specific detection rate under some monochromatic light, there are still problems such as high operating voltage, incomplete three primary colors, and complex structure. In order to solve the above problems, this patent provides a multiplication type color organic photodetector with low operating voltage, high photosensitivity (R), high external quantum efficiency (EQE), high specific detection rate (D*), and simple process. device.
发明内容SUMMARY OF THE INVENTION
本发明的一个目的是提供一种低电压倍增型彩色有机光电探测器,工作电压低,外量子效率高,比探测率高。An object of the present invention is to provide a low-voltage multiplication type color organic photodetector with low operating voltage, high external quantum efficiency and high specific detection rate.
本发明的另一个目的是提供低电压倍增型彩色有机光电探测器的制备方法,制备方法简单,对设备要求低。Another object of the present invention is to provide a method for preparing a low-voltage multiplier type color organic photodetector, which is simple and requires low equipment requirements.
本发明采用的第一种技术方案是,一种低电压倍增型彩色有机光电探测器,包括ITO玻璃基片, ITO玻璃基片的一个表面上依次涂覆有阳极缓冲层、活性层及Al电极层。The first technical solution adopted in the present invention is a low-voltage multiplication type color organic photodetector, comprising an ITO glass substrate, and one surface of the ITO glass substrate is sequentially coated with an anode buffer layer, an active layer and an Al electrode Floor.
本发明第一种技术方案的特点在于:The characteristics of the first technical solution of the present invention are:
阳极缓冲层为PEDOT:PSS层,且阳极缓冲层的厚度为32nm~38nm。The anode buffer layer is a PEDOT:PSS layer, and the thickness of the anode buffer layer is 32 nm-38 nm.
活性层为由P3HT、PBDTTT-F、PC61BM与C60构成的复合层,所述活性层的厚度为190nm~210nm。The active layer is a composite layer composed of P3HT, PBDTTT-F, PC 61 BM and C 60 , and the thickness of the active layer is 190 nm-210 nm.
P3HT与PBDTTT-F的质量比为11.8-12.2:7.8-8.2,P3HT与PC61BM的质量比为11.8-12.2:2.8-3.2,P3HT与C60的质量比为11.8-12.2:0-0.5。The mass ratio of P3HT to PBDTTT-F was 11.8-12.2:7.8-8.2, the mass ratio of P3HT to PC61 BM was 11.8-12.2:2.8-3.2, and the mass ratio of P3HT to C60 was 11.8-12.2:0-0.5.
Al电极层的厚度为90 nm -110nm。The thickness of the Al electrode layer is 90 nm to 110 nm.
本发明采用的另一种技术方案是,一种低电压倍增型彩色有机光电探测器的制备方法,具体按照下述步骤进行:Another technical solution adopted by the present invention is a preparation method of a low-voltage multiplier type color organic photodetector, which is specifically carried out according to the following steps:
步骤1,在玻璃基片上镀ITO电极层,清洗,吹干;
步骤2,在吹干后的ITO电极层上涂覆阳极缓冲层;
步骤3,在阳极缓冲层上涂覆活性层;
步骤4,在活性层上真空蒸镀Al电极层,退火,温度降至室温,得到低电压倍增型彩色有机光电探测器。In step 4, an Al electrode layer is vacuum-evaporated on the active layer, annealed, and the temperature is lowered to room temperature to obtain a low-voltage multiplication type color organic photodetector.
本发明另一种技术方案的特点还在于:Another feature of the technical solution of the present invention is:
步骤1中在在玻璃基片上镀ITO电极层后,对ITO电极层进行掩膜、图形刻蚀,然后再进行冲洗,吹干。In
步骤2具体按照下述方法进行:
将PEDOT:PSS以3300rpm-3700 rpm的速度旋涂在吹干后的ITO电极层上,旋涂的时间为50s-70s,然后在95℃-105℃的数控加热板上退火10min~15min。The PEDOT:PSS was spin-coated on the dried ITO electrode layer at a speed of 3300rpm-3700rpm for 50s-70s, and then annealed on a CNC hot plate at 95℃-105℃ for 10min-15min.
步骤3具体按照下述方法进行:
步骤3.1,称取P3HT、PBDTTT-F、PC61BM和C60,其中P3HT与PBDTTT-F的质量比为11.8-12.2:7.8-8.2,P3HT与PC61BM的质量比为11.8-12.2:2.8-3.2,P3HT与C60的质量比为11.8-12.2:0-0.5;Step 3.1, weigh P3HT, PBDTTT-F, PC 61 BM and C 60 , wherein the mass ratio of P3HT to PBDTTT-F is 11.8-12.2:7.8-8.2, and the mass ratio of P3HT to PC 61 BM is 11.8-12.2:2.8 -3.2, the mass ratio of P3HT to C60 is 11.8-12.2:0-0.5;
步骤3.2,将称取的P3HT、PBDTTT-F、PC61BM和C60均溶于1ml氯苯,然后在室温下用恒温磁力搅拌器充分搅拌15h,得到活性层溶液;In step 3.2, the weighed P3HT, PBDTTT-F, PC 61 BM and C 60 were all dissolved in 1 ml of chlorobenzene, and then fully stirred with a constant temperature magnetic stirrer at room temperature for 15 h to obtain an active layer solution;
步骤3.3,将所述活性层溶液以570rpm-630 rpm的速度旋涂于阳极缓冲层上,旋涂时间为50s-70s;Step 3.3, spin-coating the active layer solution on the anode buffer layer at a speed of 570rpm-630rpm, and the spin-coating time is 50s-70s;
步骤3.4,在90℃~100℃的数控加热板上退火20min。Step 3.4, anneal on a CNC heating plate at 90℃~100℃ for 20min.
步骤4中的真空蒸镀由微型石英震荡仪监控,控制真空蒸镀的速率为0.3nm·s−1,同时控制蒸镀的Al电极层的厚度为90nm-110 nm;步骤4中的在真空中在105℃~115℃的温度下退火15min~20min。The vacuum evaporation in step 4 is monitored by a micro quartz oscillator, the rate of vacuum evaporation is controlled to be 0.3 nm·s −1 , and the thickness of the Al electrode layer of evaporation is controlled to be 90 nm-110 nm; Annealing at a temperature of 105℃~115℃ for 15min~20min.
本发明的有益效果是The beneficial effects of the present invention are
本发明一种低电压倍增型彩色有机光电探测器,工作电压低,外量子效率高,比探测率高;The invention is a low-voltage multiplication type color organic photoelectric detector with low operating voltage, high external quantum efficiency and high specific detection rate;
本发明一种低电压倍增型彩色有机光电探测器,性层采用在P3HT: PBDT-TT-F:PC61BM三相体异质结,利用光谱互补拓宽了活性层吸收光谱,实现三基色全吸收;The present invention is a low-voltage multiplication type color organic photodetector. The sex layer adopts the P3HT:PBDT-TT-F: PC61BM three-phase bulk heterojunction, and the absorption spectrum of the active layer is broadened by spectral complementarity, and the full three-primary color is realized. absorb;
本发明一种低电压倍增型彩色有机光电探测器,在活性层掺入小比例的C60作为电子能级陷阱,利用陷阱俘获的电子辅助作用,引起空穴注入,产生光电倍增,提高了探测器的光响应度、比探测率;The invention is a low-voltage multiplication type color organic photoelectric detector. A small proportion of C 60 is doped into the active layer as an electron energy level trap, and the electron assisting effect captured by the trap is used to cause hole injection, generate photomultiplier, and improve detection. The photoresponsivity and specific detection rate of the detector;
本发明一种低电压倍增型彩色有机光电探测器,活性层中存在满足光生激子解离的P3HT:PC61BM和PBDTTT-F:PC61BM两种体异质结,确保探测器在低偏压下工作;The present invention is a low-voltage multiplication type color organic photoelectric detector. There are two bulk heterojunctions, P3HT: PC 61 BM and PBDTTT-F: PC 61 BM, which satisfy the dissociation of photogenerated excitons, in the active layer, so as to ensure that the detector is in low work under bias;
本发明一种低电压倍增型彩色有机光电探测器,工艺简单,对于设备的要求低,适用于工业批量生产。The invention is a low-voltage multiplication type color organic photodetector, which has simple process, low requirements for equipment, and is suitable for industrial mass production.
附图说明Description of drawings
图1是本发明一种低电压倍增型彩色有机光电探测器的结构示意图;1 is a schematic structural diagram of a low-voltage multiplication type color organic photodetector of the present invention;
图2是本发明一种低电压倍增型彩色有机光电探测器的吸收光谱图;Fig. 2 is the absorption spectrum diagram of a kind of low voltage multiplication type color organic photodetector of the present invention;
图3是本发明一种低电压倍增型彩色有机光电探测器的能级图;Fig. 3 is the energy level diagram of a kind of low voltage multiplication color organic photodetector of the present invention;
图4是本发明一种低电压倍增型彩色有机光电探测器的光电倍增原理图;Fig. 4 is a photomultiplier principle diagram of a low-voltage multiplier type color organic photodetector of the present invention;
图5是本发明一种低电压倍增型彩色有机光电探测器的C60陷阱能级俘获后的示意图;5 is a schematic diagram of the C 60 trap energy level of a low-voltage multiplication type color organic photodetector of the present invention after trapping;
图6是本发明一种低电压倍增型彩色有机光电探测器在不同的光下的J-V曲线图;6 is a J-V curve diagram of a low-voltage multiplication color organic photodetector of the present invention under different light;
图7是本发明一种低电压倍增型彩色有机光电探测器在-4V偏压下红光的瞬态响应曲线;Fig. 7 is the transient response curve of red light under -4V bias of a low-voltage multiplier type color organic photodetector of the present invention;
图8是本发明一种低电压倍增型彩色有机光电探测器在-4V偏压下绿光的瞬态响应曲线;Fig. 8 is the transient response curve of green light under -4V bias of a low-voltage multiplication type color organic photodetector of the present invention;
图9是本发明一种低电压倍增型彩色有机光电探测器在-4V偏压下蓝光的瞬态响应曲线。FIG. 9 is a transient response curve of blue light under -4V bias of a low-voltage multiplier type color organic photodetector of the present invention.
图中,1. ITO玻璃基片,2. 阳极缓冲层,3. 活性层,4. Al电极层。In the figure, 1. ITO glass substrate, 2. anode buffer layer, 3. active layer, 4. Al electrode layer.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
一种低电压倍增型彩色有机光电探测器,如图1所示,包括ITO玻璃基片1,ITO玻璃基片1的一个表面上依次涂覆有32nm~38nm的PEDOT:PSS层、190nm~210nm的活性层3和90 nm-110nm的Al电极层4。A low-voltage multiplication color organic photodetector, as shown in FIG. 1, includes an
其中,活性层3为由P3HT、PBDTTT-F、PC61BM与C60构成的复合层,且活性层3中P3HT与PBDTTT-F的质量比为11.8-12.2:7.8-8.2,P3HT与PC61BM的质量比为11.8-12.2:2.8-3.2,P3HT与C60的质量比为11.8-12.2:0-0.5。Among them, the
本发明一种低电压倍增型彩色有机光电探测器中,阳极缓冲层2对主体活性层进行修饰,能够有效收集空穴,提高光生电流,同时减小暗电流;In a low-voltage multiplication type color organic photodetector of the present invention, the
如图2和图3所示,活性层3为P3HT、PBDTTT-F、PC61BM与C60混合薄膜,活性层3可吸收可见光光谱范围所有波长的可见光,能够为光生激子可进行有效解离提供P3HT:PC61BM和PBDTTT-F:PC61BM两种体异质结,从而确保探测器具有低的工作电压;通过小比例的C60电子能级陷阱辅助作用,引起空穴注入,产生光电倍增,提高探测器的探测能力。As shown in Figure 2 and Figure 3, the
如图3所示,当低电压倍增型彩色有机光电探测器施加正向电压时,阴极注入的电子在电场作用下克服有机材料与Al电极层阴极形成的三个势垒中最小的势垒0.4eV(PC61BM△E 0.4eV,PBDT-TT-F △E 0.76eV,P3HT△E 1.1eV)进入PC61BM的LOMO能级,并输运到阳极或与阳极注入的空穴复合形成电流。同理,阳极注入的空穴无需克服势垒-0.1eV(P3HT △E-0.1eV,PBDTTT-F △E -0.05eV,PC61BM△E0.9eV)大量的空穴注入到P3HT的HUMO能级,并与阴极注入的电子复合或被阴极收集形成很大电流,且随着电压的增加电流随之迅速增大,类似于正偏pn结特性。在施加反向电压时,阳极电子要克服较大势垒1.3eV进入到PC61BM的LOMO能级,空穴要克服势垒0.8eV进入P3HT的HUMO能级,由于电子和空穴均要克服高势垒形成电流,因此电流非常小,类似于反偏pn结特性。As shown in Figure 3, when a forward voltage is applied to the low-voltage multiplication color organic photodetector, the electrons injected by the cathode overcome the smallest potential barrier among the three potential barriers formed by the organic material and the cathode of the Al electrode layer under the action of the electric field, which is 0.4 eV (PC 61 BM△E 0.4 eV, PBDT-TT-F △E 0.76 eV, P3HT△E 1.1 eV) enters the LOMO level of PC 61 BM, and is transported to the anode or recombined with the holes injected by the anode to form a current . Similarly, the holes injected from the anode do not need to overcome the potential barrier -0.1eV (P3HT △E-0.1eV, PBDTTT-F △E -0.05eV, PC 61 BM△E0.9eV). A large number of holes are injected into the HUMO energy of P3HT. level, and recombine with the electrons injected by the cathode or be collected by the cathode to form a large current, and the current increases rapidly with the increase of voltage, similar to the characteristics of the forward-biased pn junction. When the reverse voltage is applied, the anode electrons have to overcome the larger potential barrier of 1.3eV to enter the LOMO energy level of PC 61 BM, and the holes have to overcome the potential barrier of 0.8eV to enter the HUMO energy level of P3HT. The barrier forms the current, so the current is very small, similar to reverse biased pn junction characteristics.
如图4和图5所示,在施加反向电压下进行光照时,PC61BM与P3HT和PBDTTT-F吸收各自相应波长的光子产生激子,并在异质结界面分离形成自由载流子电子和空穴。在电场的作用下,空穴和电子分别通过PBDT-TT-F或P3HT、PC61BM形成的互穿网络输运通道,被各自电极收集形成光生电流。与此同时,部分光生电子被图5的C60陷阱能级俘获后,在电子积累的同时会引起Al电极一侧空穴的积累,于是将在活性层3/ Al电极层界面形成空间电荷区,导致P3HT能带弯曲,Al功函数随之增大,势垒宽度将会随之减薄,这将引起外电路空穴通过隧穿注入到P3HT的HOMO能级中进而被阳极收集,此时光电流为光生电流和外电路空穴注入电流之和,器件产生光电倍增,从而使得探低电压倍增型彩色有机光电探测器的光电特性得以大大提高。As shown in Fig. 4 and Fig. 5, when irradiated under reverse voltage application, PC 61 BM, P3HT and PBDTTT-F absorb photons of their respective wavelengths to generate excitons, which are separated at the heterojunction interface to form free carriers electrons and holes. Under the action of the electric field, holes and electrons pass through the interpenetrating network transport channels formed by PBDT-TT-F or P3HT, PC 61 BM, respectively, and are collected by their respective electrodes to form a photogenerated current. At the same time, after part of the photogenerated electrons are captured by the C 60 trap level in Fig. 5, the accumulation of electrons will cause the accumulation of holes on the side of the Al electrode, so a space charge region will be formed at the interface of the
一种低电压倍增型彩色有机光电探测器的制备方法,具体按照下述步骤进行:A preparation method of a low-voltage multiplication type color organic photodetector is specifically carried out according to the following steps:
步骤1,在玻璃基片上镀ITO电极层,得到ITO玻璃基片1,对ITO电极层进行掩膜、图形刻蚀,然后使用大量的纯水清洗掩膜、图形刻蚀后的ITO电极层,然后将清洗,吹干;
然后再用去离子水对ITO玻璃基片1进行超声清洗15min,接着采用丙酮对ITO玻璃基片1进行超声清洗15min,继续采用无水乙醇超声清洗15min,最后用纯氮气吹干ITO玻璃基片1;Then use deionized water to ultrasonically clean the
步骤2,在吹干后的ITO电极层上涂覆阳极缓冲层2:将PEDOT:PSS以3300rpm-3700rpm的速度旋涂在吹干后的ITO电极层上,旋涂的时间为50s-70s,然后在95℃-105℃的数控加热板上退火10min~15min;
步骤3,在阳极缓冲层2上涂覆活性层3具体按照下述方法进行:
步骤3.1,称取P3HT、PBDTTT-F、PC61BM和C60,其中P3HT与PBDTTT-F的质量比为11.8-12.2:7.8-8.2,P3HT与PC61BM的质量比为11.8-12.2:2.8-3.2,P3HT与C60的质量比为11.8-12.2:0-0.5;Step 3.1, weigh P3HT, PBDTTT-F, PC 61 BM and C 60 , wherein the mass ratio of P3HT to PBDTTT-F is 11.8-12.2:7.8-8.2, and the mass ratio of P3HT to PC 61 BM is 11.8-12.2:2.8 -3.2, the mass ratio of P3HT to C60 is 11.8-12.2:0-0.5;
步骤3.2,将称取的P3HT、PBDTTT-F、PC61BM和C60均溶于1ml氯苯,然后在室温下用恒温磁力搅拌器充分搅拌15h,得到活性层溶液;In step 3.2, the weighed P3HT, PBDTTT-F, PC 61 BM and C 60 were all dissolved in 1 ml of chlorobenzene, and then fully stirred with a constant temperature magnetic stirrer at room temperature for 15 h to obtain an active layer solution;
步骤3.3,将活性层溶液以570rpm-630 rpm的速度旋涂于阳极缓冲层2上,旋涂时间为50s-70s;Step 3.3, spin-coating the active layer solution on the
步骤3.4,在90℃~100℃的数控加热板上退火18min-22min;Step 3.4, annealing for 18min-22min on a CNC heating plate at 90℃~100℃;
步骤4,在活性层3上在微型石英震荡仪监控下以0.3nm·s−1的速度真空蒸镀Al电极层4,至Al电极层4的厚度为90nm-110 nm后,在真空下进行105℃~115℃退火15min~20min,之后将温度降到室温,得到低电压倍增型彩色有机光电探测器。In step 4, the Al electrode layer 4 is vacuum-evaporated on the
实施例1Example 1
一种低电压倍增型彩色有机光电探测器的制备方法,具体按照下述步骤进行:A preparation method of a low-voltage multiplication type color organic photodetector is specifically carried out according to the following steps:
步骤1,在玻璃基片上镀ITO电极层,得到ITO玻璃基片1,对ITO电极层进行掩膜、图形刻蚀,然后使用大量的纯水清洗掩膜、图形刻蚀后的ITO电极层,然后将清洗,吹干;
然后再用去离子水对ITO玻璃基片1进行超声清洗15min,接着采用丙酮对ITO玻璃基片1进行超声清洗15min,继续采用无水乙醇超声清洗15min,最后用纯氮气吹干ITO玻璃基片1;Then use deionized water to ultrasonically clean the
步骤2,在吹干后的ITO电极层上涂覆阳极缓冲层2:将PEDOT:PSS以3300rpm的速度旋涂在吹干后的ITO电极层上,旋涂的时间为50s,然后在95℃的数控加热板上退火10min;
步骤3,在阳极缓冲层2上涂覆活性层3具体按照下述方法进行:
步骤3.1,称取P3HT、PBDTTT-F和PC61BM,其中P3HT与PBDTTT-F的质量比为11.8:7.8,P3HT与PC61BM的质量比为11.8:2.8;Step 3.1, weigh P3HT, PBDTTT-F and PC 61 BM, wherein the mass ratio of P3HT to PBDTTT-F is 11.8:7.8, and the mass ratio of P3HT to PC 61 BM is 11.8:2.8;
步骤3.2,将称取的P3HT、PBDTTT-F、PC61BM和C60均溶于1ml氯苯,然后在室温下用恒温磁力搅拌器充分搅拌15h,得到活性层溶液;In step 3.2, the weighed P3HT, PBDTTT-F, PC 61 BM and C 60 were all dissolved in 1 ml of chlorobenzene, and then fully stirred with a constant temperature magnetic stirrer at room temperature for 15 h to obtain an active layer solution;
步骤3.3,将活性层溶液以570rpm的速度旋涂于阳极缓冲层2上,旋涂时间为50s;Step 3.3, spin-coating the active layer solution on the
步骤3.4,在90℃的数控加热板上退火18min-22min;Step 3.4, annealing on a CNC heating plate at 90°C for 18min-22min;
步骤4,在活性层3上在微型石英震荡仪监控下以0.3nm·s−1的速度真空蒸镀Al电极层4,至Al电极层4的厚度为90nm后,在真空下进行105℃℃退火15min,之后将温度降到室温,得到低电压倍增型彩色有机光电探测器。In step 4, the Al electrode layer 4 is vacuum-evaporated on the
实施例2Example 2
一种低电压倍增型彩色有机光电探测器的制备方法,具体按照下述步骤进行:A preparation method of a low-voltage multiplication type color organic photodetector is specifically carried out according to the following steps:
步骤1,在玻璃基片上镀ITO电极层,得到ITO玻璃基片1,对ITO电极层进行掩膜、图形刻蚀,然后使用大量的纯水清洗掩膜、图形刻蚀后的ITO电极层,然后将清洗,吹干;
然后再用去离子水对ITO玻璃基片1进行超声清洗15min,接着采用丙酮对ITO玻璃基片1进行超声清洗15min,继续采用无水乙醇超声清洗15min,最后用纯氮气吹干ITO玻璃基片1;Then use deionized water to ultrasonically clean the
步骤2,在吹干后的ITO电极层上涂覆阳极缓冲层2:将PEDOT:PSS以3700 rpm的速度旋涂在吹干后的ITO电极层上,旋涂的时间为70s,然后在105℃的数控加热板上退火15min;
步骤3,在阳极缓冲层2上涂覆活性层3具体按照下述方法进行:
步骤3.1,称取P3HT、PBDTTT-F、PC61BM和C60,其中P3HT与PBDTTT-F的质量比为12.2: 8.2,P3HT与PC61BM的质量比为12.2: 3.2,P3HT与C60的质量比为12.2: 0.5;Step 3.1, weigh P3HT, PBDTTT-F, PC 61 BM and C 60 , wherein the mass ratio of P3HT to PBDTTT-F is 12.2: 8.2, the mass ratio of P3HT to PC 61 BM is 12.2: 3.2, and the mass ratio of P3HT to C 60 is 12.2: 3.2. The mass ratio is 12.2: 0.5;
步骤3.2,将称取的P3HT、PBDTTT-F、PC61BM和C60均溶于1ml氯苯,然后在室温下用恒温磁力搅拌器充分搅拌15h,得到活性层溶液;In step 3.2, the weighed P3HT, PBDTTT-F, PC 61 BM and C 60 were all dissolved in 1 ml of chlorobenzene, and then fully stirred with a constant temperature magnetic stirrer at room temperature for 15 h to obtain an active layer solution;
步骤3.3,将活性层溶液以630 rpm的速度旋涂于阳极缓冲层2上,旋涂时间为70s;Step 3.3, spin-coating the active layer solution on the
步骤3.4,在100℃的数控加热板上退火22min;Step 3.4, annealing on a CNC heating plate at 100°C for 22min;
步骤4,在活性层3上在微型石英震荡仪监控下以0.3nm·s−1的速度真空蒸镀Al电极层4,至Al电极层4的厚度为110 nm后,在真空下进行115℃退火20min,之后将温度降到室温,得到低电压倍增型彩色有机光电探测器。In step 4, the Al electrode layer 4 is vacuum-evaporated on the
实施例3Example 3
一种低电压倍增型彩色有机光电探测器的制备方法,具体按照下述步骤进行:A preparation method of a low-voltage multiplication type color organic photodetector is specifically carried out according to the following steps:
步骤1,在玻璃基片上镀ITO电极层,得到ITO玻璃基片1,对ITO电极层进行掩膜、图形刻蚀,然后使用大量的纯水清洗掩膜、图形刻蚀后的ITO电极层,然后将清洗,吹干;
然后再用去离子水对ITO玻璃基片1进行超声清洗15min,接着采用丙酮对ITO玻璃基片1进行超声清洗15min,继续采用无水乙醇超声清洗15min,最后用纯氮气吹干ITO玻璃基片1;Then use deionized water to ultrasonically clean the
步骤2,在吹干后的ITO电极层上涂覆阳极缓冲层2:将PEDOT:PSS以3500rpm的速度旋涂在吹干后的ITO电极层上,旋涂的时间为60s,然后在100℃的数控加热板上退火12min;
步骤3,在阳极缓冲层2上涂覆活性层3具体按照下述方法进行:
步骤3.1,称取P3HT、PBDTTT-F、PC61BM和C60,其中P3HT与PBDTTT-F的质量比为12:8,P3HT与PC61BM的质量比为12:3,P3HT与C60的质量比为12:0.2;Step 3.1, weigh P3HT, PBDTTT-F, PC 61 BM and C 60 , wherein the mass ratio of P3HT to PBDTTT-F is 12:8, the mass ratio of P3HT to PC 61 BM is 12:3, and the mass ratio of P3HT to C 60 is 12:8. The mass ratio is 12:0.2;
步骤3.2,将称取的P3HT、PBDTTT-F、PC61BM和C60均溶于1ml氯苯,然后在室温下用恒温磁力搅拌器充分搅拌15h,得到活性层溶液;In step 3.2, the weighed P3HT, PBDTTT-F, PC 61 BM and C 60 were all dissolved in 1 ml of chlorobenzene, and then fully stirred with a constant temperature magnetic stirrer at room temperature for 15 h to obtain an active layer solution;
步骤3.3,将活性层溶液以600 rpm的速度旋涂于阳极缓冲层2上,旋涂时间为60s;Step 3.3, spin-coating the active layer solution on the
步骤3.4,在95℃的数控加热板上退火20min;Step 3.4, annealing on a CNC heating plate at 95°C for 20min;
步骤4,在活性层3上在微型石英震荡仪监控下以0.3nm·s−1的速度真空蒸镀Al电极层4,至Al电极层4的厚度为100 nm后,在真空下进行110℃退火15min~20min,之后将温度降到室温,得到低电压倍增型彩色有机光电探测器。In step 4, the Al electrode layer 4 is vacuum-evaporated on the
实施例4Example 4
一种低电压倍增型彩色有机光电探测器的制备方法,具体按照下述步骤进行:A preparation method of a low-voltage multiplication type color organic photodetector is specifically carried out according to the following steps:
步骤1,在玻璃基片上镀ITO电极层,得到ITO玻璃基片1,对ITO电极层进行掩膜、图形刻蚀,然后使用大量的纯水清洗掩膜、图形刻蚀后的ITO电极层,然后将清洗,吹干;
然后再用去离子水对ITO玻璃基片1进行超声清洗15min,接着采用丙酮对ITO玻璃基片1进行超声清洗15min,继续采用无水乙醇超声清洗15min,最后用纯氮气吹干ITO玻璃基片1;Then use deionized water to ultrasonically clean the
步骤2,在吹干后的ITO电极层上涂覆阳极缓冲层2:将PEDOT:PSS以3400rpm的速度旋涂在吹干后的ITO电极层上,旋涂的时间为55s,然后在98℃的数控加热板上退火12min;Step 2: Coating the anode buffer layer on the dried ITO electrode layer 2: Spin-coat PEDOT:PSS on the dried ITO electrode layer at a speed of 3400 rpm for 55 s, and then at 98 °C Annealed on the CNC heating plate for 12min;
步骤3,在阳极缓冲层2上涂覆活性层3具体按照下述方法进行:
步骤3.1,称取P3HT、PBDTTT-F、PC61BM和C60,其中P3HT与PBDTTT-F的质量比为11.8: 8.2,P3HT与PC61BM的质量比为11.8: 3.2,P3HT与C60的质量比为11.8: 0.5;Step 3.1, weigh P3HT, PBDTTT-F, PC 61 BM and C 60 , wherein the mass ratio of P3HT to PBDTTT-F is 11.8: 8.2, the mass ratio of P3HT to PC 61 BM is 11.8: 3.2, and the mass ratio of P3HT to C 60 is 11.8: 3.2. The mass ratio is 11.8: 0.5;
步骤3.2,将称取的P3HT、PBDTTT-F、PC61BM和C60均溶于1ml氯苯,然后在室温下用恒温磁力搅拌器充分搅拌15h,得到活性层溶液;In step 3.2, the weighed P3HT, PBDTTT-F, PC 61 BM and C 60 were all dissolved in 1 ml of chlorobenzene, and then fully stirred with a constant temperature magnetic stirrer at room temperature for 15 h to obtain an active layer solution;
步骤3.3,将活性层溶液以580 rpm的速度旋涂于阳极缓冲层2上,旋涂时间为55s;Step 3.3, spin-coating the active layer solution on the
步骤3.4,在93℃的数控加热板上退火19min;Step 3.4, annealing on a CNC heating plate at 93°C for 19min;
步骤4,在活性层3上在微型石英震荡仪监控下以0.3nm·s−1的速度真空蒸镀Al电极层4,至Al电极层4的厚度为92 nm后,在真空下进行108℃退火16min,之后将温度降到室温,得到低电压倍增型彩色有机光电探测器。In step 4, the Al electrode layer 4 is vacuum-evaporated on the
实施例5Example 5
一种低电压倍增型彩色有机光电探测器的制备方法,具体按照下述步骤进行:A preparation method of a low-voltage multiplication type color organic photodetector is specifically carried out according to the following steps:
步骤1,在玻璃基片上镀ITO电极层,得到ITO玻璃基片1,对ITO电极层进行掩膜、图形刻蚀,然后使用大量的纯水清洗掩膜、图形刻蚀后的ITO电极层,然后将清洗,吹干;
然后再用去离子水对ITO玻璃基片1进行超声清洗15min,接着采用丙酮对ITO玻璃基片1进行超声清洗15min,继续采用无水乙醇超声清洗15min,最后用纯氮气吹干ITO玻璃基片1;Then use deionized water to ultrasonically clean the
步骤2,在吹干后的ITO电极层上涂覆阳极缓冲层2:将PEDOT:PSS以3600 rpm的速度旋涂在吹干后的ITO电极层上,旋涂的时间为55s,然后在102℃的数控加热板上退火14min;
步骤3,在阳极缓冲层2上涂覆活性层3具体按照下述方法进行:
步骤3.1,称取P3HT、PBDTTT-F、PC61BM和C60,其中P3HT与PBDTTT-F的质量比为12.2:7.8,P3HT与PC61BM的质量比为12.2:2.8,P3HT与C60的质量比为12.2:0.1;Step 3.1, weigh P3HT, PBDTTT-F, PC 61 BM and C 60 , wherein the mass ratio of P3HT to PBDTTT-F is 12.2:7.8, the mass ratio of P3HT to PC 61 BM is 12.2:2.8, and the mass ratio of P3HT to C 60 is 12.2:2.8. The mass ratio is 12.2:0.1;
步骤3.2,将称取的P3HT、PBDTTT-F、PC61BM和C60均溶于1ml氯苯,然后在室温下用恒温磁力搅拌器充分搅拌15h,得到活性层溶液;In step 3.2, the weighed P3HT, PBDTTT-F, PC 61 BM and C 60 were all dissolved in 1 ml of chlorobenzene, and then fully stirred with a constant temperature magnetic stirrer at room temperature for 15 h to obtain an active layer solution;
步骤3.3,将活性层溶液以620rpm的速度旋涂于阳极缓冲层2上,旋涂时间为65s;Step 3.3, spin-coating the active layer solution on the
步骤3.4,在98℃的数控加热板上退火21min;Step 3.4, annealing on a CNC heating plate at 98°C for 21min;
步骤4,在活性层3上在微型石英震荡仪监控下以0.3nm·s−1的速度真空蒸镀Al电极层4,至Al电极层4的厚度为115 nm后,在真空下进行112℃退火19min,之后将温度降到室温,得到低电压倍增型彩色有机光电探测器。In step 4, the Al electrode layer 4 is vacuum-evaporated on the
将本发明一种低电压倍增型彩色有机光电探测器的制备方法得到的低电压倍增型彩色有机光电探测器进行测试,测试的光源为:红光LED灯,波长为630nm,光功率为0.27mW/cm2;绿光LED灯,波长为530nm,光功率为0.19mW/cm2;蓝光LED灯,波长为460nm,光功率为0.21mW/cm2,得到如图5所示的电流密度与电压J-V特性曲线,从图5中能够得到本发明的低电压倍增型彩色有机光电探测器对不同的光源均有良好的探测效果。The low voltage multiplication type color organic photodetector obtained by the preparation method of the low voltage multiplication type color organic photodetector of the present invention is tested. /cm 2 ; green LED light, wavelength is 530nm, optical power is 0.19mW/cm 2 ; blue LED light, wavelength is 460nm, light power is 0.21mW/cm 2 , the current density and voltage as shown in Figure 5 are obtained From the JV characteristic curve, it can be obtained from FIG. 5 that the low-voltage multiplication type color organic photodetector of the present invention has a good detection effect for different light sources.
在−4V偏压下,对探测器三基色的瞬态光响应上升时间和下降时间进行测试。如图7所示,在对红光进行测试时,从Vrp的10%−90%,上升的时间为120μs,从Vrp的90%−10%下降的时间为817μs;The transient photoresponse rise and fall times of the detector's three primary colors were tested under −4 V bias. As shown in Figure 7, when the red light is tested, the rising time from 10%−90% of Vrp is 120 μs, and the time of falling from 90%−10% of Vrp is 817 μs;
如图8所示,在对绿光进行测试时,从Vrp的10%−90%,上升的时间为138μs,从Vrp的90%−10%下降的时间为833μs;As shown in Figure 8, when the green light is tested, the time to rise from 10%−90% of Vrp is 138 μs, and the time to fall from 90%−10% of Vrp is 833 μs;
如图9所示,在对蓝光进行测试时,从Vrp的10%−90%,上升的时间为175μs,从Vrp的90%−10%下降的时间为175μs;As shown in Figure 9, when the blue light is tested, the rising time from 10%−90% of Vrp is 175 μs, and the falling time from 90%−10% of Vrp is 175 μs;
因此,本发明一种低电压倍增型彩色有机光电探测器的制备方法得到的低电压倍增型彩色有机光电探测器在对不同的光源进行探测的时候均有着较快的探测速度。Therefore, the low voltage multiplication type color organic photodetector obtained by the preparation method of the low voltage multiplication type color organic photodetector of the present invention has a faster detection speed when detecting different light sources.
偏置电压为-4V时,对本发明实施例1-实施例5得到的低电压倍增型彩色有机光电探测器三基色的响应度R、外量子效率(EQE)、比探测率(D*)如表1所示,实施例1-实施例5的低电压倍增型彩色有机光电探测器的暗电流均为为10-5A/cm2,对波长为630nm的红光、波长为460nm的蓝光以及波长为530nm的绿光,比探测率均达到7×1011Jones以上,且在7×1011-1012Jones之间,本方法得到的低电压倍增型彩色有机光电探测器的稳定性良好。When the bias voltage is -4V, the responsivity R, external quantum efficiency (EQE) and specific detection rate (D*) of the three primary colors of the low-voltage multiplier color organic photodetector obtained in Examples 1-5 of the present invention are as follows: As shown in Table 1, the dark currents of the low-voltage multiplier color organic photodetectors of Examples 1 to 5 are all 10 -5 A/cm 2 , and the dark currents for red light with a wavelength of 630 nm, blue light with a wavelength of 460 nm, and For green light with a wavelength of 530 nm, the specific detection rates are all above 7×10 11 Jones and between 7×10 11 -10 12 Jones, and the low voltage multiplication color organic photodetector obtained by this method has good stability.
表1 探测器三基色的响应度、外量子效率、比探测率Table 1 Responsivity, external quantum efficiency and specific detection rate of the three primary colors of the detector
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811037852.2A CN109148691B (en) | 2018-09-06 | 2018-09-06 | Low-voltage multiplication type color organic photoelectric detector and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811037852.2A CN109148691B (en) | 2018-09-06 | 2018-09-06 | Low-voltage multiplication type color organic photoelectric detector and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109148691A CN109148691A (en) | 2019-01-04 |
CN109148691B true CN109148691B (en) | 2022-09-23 |
Family
ID=64827401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811037852.2A Expired - Fee Related CN109148691B (en) | 2018-09-06 | 2018-09-06 | Low-voltage multiplication type color organic photoelectric detector and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109148691B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111883664B (en) * | 2020-06-30 | 2022-09-23 | 西安理工大学 | A kind of double-injection multiplication organic photodetector and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8372945B2 (en) * | 2009-07-24 | 2013-02-12 | Solarmer Energy, Inc. | Conjugated polymers with carbonyl substituted thieno[3,4-B]thiophene units for polymer solar cell active layer materials |
CN102983276A (en) * | 2011-09-07 | 2013-03-20 | 海洋王照明科技股份有限公司 | Polymer solar cell and production method thereof |
US10651409B2 (en) * | 2012-07-20 | 2020-05-12 | Nutech Ventures | Narrowband nanocomposite photodetector |
CN103311439B (en) * | 2013-05-17 | 2015-07-15 | 中国科学院化学研究所 | Thin film photoconductive detector and manufacturing method and application thereof |
CN103296209A (en) * | 2013-05-29 | 2013-09-11 | 中国科学院半导体研究所 | Solar cell combining heterostructure plasmons and bulk heterojunctions |
CN104993055A (en) * | 2015-05-25 | 2015-10-21 | 中国科学院半导体研究所 | Organic solar cell structure based on surface plasmon effects and preparation method |
CN106025070B (en) * | 2016-05-24 | 2018-11-27 | 北京交通大学 | Photomultiplier transit type organic photodetector with spectral selection and preparation method thereof |
CN106898698A (en) * | 2017-03-09 | 2017-06-27 | 南京邮电大学 | It is a kind of using aluminium and sodium chloride as inverse organic solar cell of cathode buffer layer and preparation method thereof |
CN107634145A (en) * | 2017-08-24 | 2018-01-26 | 西安理工大学 | A kind of organic photodetector for imaging sensor and preparation method thereof |
CN107591484B (en) * | 2017-09-01 | 2019-09-24 | 北京交通大学 | A kind of multiplication type organic photodetector having both narrowband and broadband light detectivity |
-
2018
- 2018-09-06 CN CN201811037852.2A patent/CN109148691B/en not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
High external quantum efficiency from orgnaic bulk heterojunction photodetectors;Y.KIM 等;《CLEO》;20070531;第1-2页 * |
photoelectrical properties of fullerene doped P3HT blends for photosensing application;P.Aruna等;《MATERIALSTORDAY:PROCEDDINGS》;20151231;第2卷;第1309-1315页 * |
trap assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500%;Linglinag Li等;《APPLIED MATERIALS & INTERFACES》;20150126;第7卷;第5890-5897页 * |
具有混合结构的三基色有机光电探测器的光电特性;安涛等;《光子学报》;20180710;第47卷;第0804001-1-8页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109148691A (en) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mandadapu et al. | Simulation and analysis of lead based perovskite solar cell using SCAPS-1D | |
CN102110736B (en) | Colloid quantum dot-based infrared photoelectric detector and manufacturing method thereof | |
Guo et al. | Structure design and performance of photomultiplication-type organic photodetectors based on an aggregation-induced emission material | |
US9196661B2 (en) | Photodetector and up-conversion device with gain | |
US20170025622A1 (en) | Ultrasensitive solution-processed perovskite hybrid photodetectors | |
Chaudhary et al. | Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach | |
CN101345291A (en) | Organic polymer film ultraviolet photodetector and preparation method thereof | |
Guo et al. | Role of interfaces in controlling charge accumulation and injection in the photodetection performance of photomultiplication-type organic photodetectors | |
CN107195787A (en) | Self-driven photodetector based on Graphene electrodes and perovskite light-absorption layer and preparation method thereof | |
Casaluci et al. | Fabrication and characterization of mesoscopic perovskite photodiodes | |
CN111883664B (en) | A kind of double-injection multiplication organic photodetector and preparation method thereof | |
Fu et al. | High performance photomultiplication perovskite photodetectors with PC60BM and NPB as the interlayers | |
US9040318B2 (en) | Lamination as a modular approach for building organic photosensitive devices | |
CN109148691B (en) | Low-voltage multiplication type color organic photoelectric detector and preparation method thereof | |
Li et al. | High-performance UV–Vis–NIR photodetectors based on perovskite/PDPP3T polymer composites | |
CN108336231A (en) | A kind of organic photodetector of wide spectrum response | |
CN108807683B (en) | Wide-spectral-response multiplication type organic photoelectric detector | |
CN110828670A (en) | Multiplication type organic photoelectric detector based on AIE material and preparation method | |
Heo et al. | Highly durable organic photodetector for complementary metal oxide semiconductor image sensors | |
Jumabekov | Chemical passivation of the perovskite layer and its real-time effect on the device performance in back-contact perovskite solar cells | |
Liu et al. | Broadband photomultiplication organic photodetectors | |
Jain et al. | Photovoltaic effect in single-layer organic solar cell devices fabricated with two new imidazolin-5-one molecules | |
CN111740018A (en) | A broadband, low-noise, ultra-fast response organic photodetector with cascade structure and preparation method thereof | |
CN110323337A (en) | A kind of slicker solder binary perovskite photodetector and preparation method thereof | |
CN113644197A (en) | Organic multiplying photodetector based on doping of modified layer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220923 |