[go: up one dir, main page]

CN108987543A - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
CN108987543A
CN108987543A CN201710403960.6A CN201710403960A CN108987543A CN 108987543 A CN108987543 A CN 108987543A CN 201710403960 A CN201710403960 A CN 201710403960A CN 108987543 A CN108987543 A CN 108987543A
Authority
CN
China
Prior art keywords
semiconductor layer
light
layer
sub
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710403960.6A
Other languages
Chinese (zh)
Other versions
CN108987543B (en
Inventor
吴俊德
王信介
赖彦霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PlayNitride Inc
Original Assignee
British Cayman Islands Shangnachuang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Cayman Islands Shangnachuang Technology Co ltd filed Critical British Cayman Islands Shangnachuang Technology Co ltd
Priority to CN201710403960.6A priority Critical patent/CN108987543B/en
Publication of CN108987543A publication Critical patent/CN108987543A/en
Application granted granted Critical
Publication of CN108987543B publication Critical patent/CN108987543B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/815Bodies having stress relaxation structures, e.g. buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures

Landscapes

  • Led Devices (AREA)

Abstract

本发明公开了一种发光元件,包含一磊晶结构,磊晶结构包含一第一型半导体层、一第二型半导体层与一发光层。第一型半导体层包含一第一子半导体层,发光层设置于第一型半导体层与第二型半导体层之间,第一子半导体层具有掺杂第一型掺杂物的一高掺杂部与一低掺杂部,高掺杂部的掺杂浓度大于1017原子数/立方厘米且小于等于1018原子数/立方厘米,低掺杂部的掺杂浓度的小于等于1017原子数/立方厘米。

The present invention discloses a light-emitting element, comprising an epitaxial structure, wherein the epitaxial structure comprises a first-type semiconductor layer, a second-type semiconductor layer and a light-emitting layer. The first-type semiconductor layer comprises a first sub-semiconductor layer, the light-emitting layer is arranged between the first-type semiconductor layer and the second-type semiconductor layer, the first sub-semiconductor layer comprises a high-doping portion and a low-doping portion doped with a first-type dopant, the doping concentration of the high-doping portion is greater than 10 17 atoms/cubic centimeter and less than or equal to 10 18 atoms/cubic centimeter, and the doping concentration of the low-doping portion is less than or equal to 10 17 atoms/cubic centimeter.

Description

发光元件Light emitting element

技术领域technical field

本发明关于一种发光元件,特别关于一种具有高掺杂浓度部与低掺杂浓度部的发光二极管。The present invention relates to a light-emitting element, in particular to a light-emitting diode with a high doping concentration portion and a low doping concentration portion.

背景技术Background technique

发光二极管(light emitting diode,LED)作为高效率的发光元件,被广泛的使用在各种领域。目前现有技术的发光二极管制造方法是通过磊晶的方式,在基板上依序形成N型半导体层、发光层与P型半导体层,借此得到发光二极管的磊晶结构。Light emitting diodes (light emitting diodes, LEDs), as high-efficiency light emitting elements, are widely used in various fields. The current manufacturing method of LEDs in the prior art is to sequentially form an N-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer on a substrate by means of epitaxy, thereby obtaining an epitaxial structure of the LED.

在发光二极管的磊晶结构中,由于基板、N型半导体层、发光层与P型半导体层的组成材料各不相同,各个材料之间的晶格不匹配(lattice mismatch)使得各个接面累积了大量的应力(stress)。再者,当半导体层被掺杂了大量的掺杂物时,掺杂物也会压迫与干扰半导体层的晶格的正常排列,导致应力累积在晶格中。当接面或是晶格中累积的应力过高时,磊晶结构的接面上或是晶格中将形成缺陷(defect)以释放累积的应力。然而,这些缺陷的存在将使发光二极管出现漏电流提高或是崩溃电压下降等问题,导致发光二极管的可靠度下降。In the epitaxial structure of light-emitting diodes, since the composition materials of the substrate, N-type semiconductor layer, light-emitting layer, and P-type semiconductor layer are different, the lattice mismatch between each material makes each junction accumulate Lots of stress. Furthermore, when the semiconductor layer is doped with a large amount of dopants, the dopants will also press and interfere with the normal arrangement of the crystal lattice of the semiconductor layer, resulting in stress accumulation in the crystal lattice. When the stress accumulated in the junction or in the lattice is too high, defects will be formed on the junction or in the lattice of the epitaxial structure to release the accumulated stress. However, the existence of these defects will cause problems such as increased leakage current or decreased breakdown voltage of the LED, resulting in a decrease in the reliability of the LED.

发明内容Contents of the invention

本发明旨在提供一种发光元件,特别是一种具有应力调节结构的发光元件,用以减少应力累积产生的缺陷,进而解决缺陷所导致的发光二极管可靠度下降的问题。The present invention aims to provide a light-emitting element, especially a light-emitting element with a stress-regulating structure, which is used to reduce defects caused by stress accumulation, and further solve the problem of reduced reliability of light-emitting diodes caused by defects.

依据本发明一实施例的发光元件,包含磊晶结构。磊晶结构包含第一型半导体层、第二型半导体层与发光层,第一型半导体层包含第一子半导体层,发光层设置于第一型半导体层与第二型半导体层之间,第一子半导体层具有掺杂第一型掺杂物的高掺杂部与低掺杂部,高掺杂部的第一型掺杂物的掺杂浓度大于1017原子数/立方厘米且小于等于1018原子数/立方厘米,低掺杂部的第一型掺杂物的掺杂浓度小于等于1017原子数/立方厘米。A light emitting device according to an embodiment of the present invention includes an epitaxial structure. The epitaxial structure includes a first-type semiconductor layer, a second-type semiconductor layer, and a light-emitting layer. The first-type semiconductor layer includes a first sub-semiconductor layer. The light-emitting layer is disposed between the first-type semiconductor layer and the second-type semiconductor layer. A sub-semiconductor layer has a high-doped portion and a low-doped portion doped with a first-type dopant, and the doping concentration of the first-type dopant in the high-doped portion is greater than 10 17 atoms/cm3 and less than or equal to 10 18 atoms/cubic centimeter, the doping concentration of the first-type dopant in the low-doped portion is less than or equal to 10 17 atoms/cubic centimeter.

综上所述,本发明一实施例的发光元件通过具有掺杂浓度差异大的高掺杂部与低掺杂部,降低磊晶结构中的应力累积,进而降低磊晶结构中的缺陷数量。如此一来,缺陷所导致发光元件可靠度下降的问题得到了解决。To sum up, the light-emitting device according to one embodiment of the present invention reduces the stress accumulation in the epitaxial structure by having the highly doped portion and the low doped portion with a large difference in doping concentration, thereby reducing the number of defects in the epitaxial structure. In this way, the problem that the reliability of the light-emitting element is reduced due to defects is solved.

以上关于本发明内容的说明及以下实施方式的说明用以示范与解释本发明的精神与原理,并且提供本发明的权利要求书更进一步的解释。The above descriptions about the content of the present invention and the following descriptions of the embodiments are used to demonstrate and explain the spirit and principle of the present invention, and provide further explanations of the claims of the present invention.

附图说明Description of drawings

图1为本发明第一实施例的发光元件的剖面示意图。FIG. 1 is a schematic cross-sectional view of a light emitting device according to a first embodiment of the present invention.

图2为本发明第一实施例的掺杂浓度分布的示意图。FIG. 2 is a schematic diagram of the doping concentration distribution of the first embodiment of the present invention.

图3为本发明第二实施例的发光元件的剖面示意图。FIG. 3 is a schematic cross-sectional view of a light emitting device according to a second embodiment of the present invention.

图4为本发明第二实施例的掺杂浓度分布的示意图。FIG. 4 is a schematic diagram of the doping concentration distribution of the second embodiment of the present invention.

图5为本发明第二实施例中的磊晶结构与基板的剖面示意图。5 is a schematic cross-sectional view of an epitaxial structure and a substrate in a second embodiment of the present invention.

图6为本发明第三实施例的发光元件的剖面示意图。FIG. 6 is a schematic cross-sectional view of a light emitting element according to a third embodiment of the present invention.

图7为本发明第四实施例的发光元件的剖面示意图。FIG. 7 is a schematic cross-sectional view of a light emitting element according to a fourth embodiment of the present invention.

图8为本发明第五实施例的发光元件的剖面示意图。FIG. 8 is a schematic cross-sectional view of a light emitting element according to a fifth embodiment of the present invention.

图9为本发明第六实施例的发光元件的剖面示意图。FIG. 9 is a schematic cross-sectional view of a light emitting element according to a sixth embodiment of the present invention.

图10为本发明第七实施例的发光元件的剖面示意图。FIG. 10 is a schematic cross-sectional view of a light emitting element according to a seventh embodiment of the present invention.

其中,附图标记Among them, reference signs

1、2、3、4、5、6、7 发光元件1, 2, 3, 4, 5, 6, 7 light emitting elements

100 第一电极100 first electrode

200 第二电极200 Second electrode

300 发光层300 luminous layers

400 第一型半导体层400 first type semiconductor layer

410 第一子半导体层410 First sub-semiconductor layer

411 高掺杂部411 Highly doped part

412 低掺杂部412 Low doping part

420 第二子半导体层420 second sub-semiconductor layer

430 载子提供层430 carrier supply layer

440 电流扩散层440 current spreading layer

500 第二型半导体层500 Type II semiconductor layer

600 基板600 substrates

700 缓冲层700 buffer layers

A 贯孔A through hole

B 绝缘层B insulating layer

T 厚度T Thickness

具体实施方式Detailed ways

以下在实施方式中详细叙述本发明的详细特征以及优点,其内容足以使本领域的技术人员了解本发明的技术内容并据以实施,且根据本说明书所公开的内容、申请专利范围及图式,本领域的技术人员可轻易地理解本发明相关目的及优点。以下实施例用于进一步详细说明本发明的观点,但非以任何观点限制本发明的范畴。The detailed features and advantages of the present invention are described in detail in the following embodiments, which are sufficient to enable those skilled in the art to understand the technical content of the present invention and implement it accordingly, and according to the disclosed content, patent scope and drawings of this specification , those skilled in the art can easily understand the related objects and advantages of the present invention. The following examples are used to further describe the viewpoints of the present invention in detail, but not to limit the scope of the present invention in any viewpoint.

首先说明本发明第一实施例的发光元件1,请参照图1与图2。图1为本发明第一实施例的发光元件的剖面示意图。图2为本发明第一实施例的掺杂浓度分布的示意图。本发明第一实施例的发光元件1包括磊晶结构。磊晶结构包括第一型半导体层400、第二型半导体层500、以及设置于第一型半导体层400与第二型半导体层500之间的发光层300。磊晶结构的厚度T以不超过6微米为佳,且磊晶结构的厚度通常大于1微米,太厚或太薄都将影响后续工艺的良率。发光元件1的最大宽度尺寸介于1到100微米之间,较佳是介于3到30微米之间,亦即第一实施例中的发光元件1为一微米级的微型发光元件(Micro LED)。Firstly, the light emitting element 1 of the first embodiment of the present invention will be described, please refer to FIG. 1 and FIG. 2 . FIG. 1 is a schematic cross-sectional view of a light emitting device according to a first embodiment of the present invention. FIG. 2 is a schematic diagram of the doping concentration distribution of the first embodiment of the present invention. The light emitting element 1 of the first embodiment of the present invention includes an epitaxial structure. The epitaxial structure includes a first-type semiconductor layer 400 , a second-type semiconductor layer 500 , and a light-emitting layer 300 disposed between the first-type semiconductor layer 400 and the second-type semiconductor layer 500 . The thickness T of the epitaxial structure is preferably no more than 6 microns, and the thickness of the epitaxial structure is usually greater than 1 micron. Too thick or too thin will affect the yield of subsequent processes. The maximum width of the light-emitting element 1 is between 1 and 100 microns, preferably between 3 and 30 microns, that is, the light-emitting element 1 in the first embodiment is a micron-scale micro light-emitting element (Micro LED ).

第一型半导体层400与第二型半导体层500的掺杂类型不同。举例来说,第一型半导体层400中主要掺杂的是第一型掺杂物,第一型掺杂物包括IVA族元素,例如是硅(Si)、碳(C)或锗(Ge),因此第一型半导体层400为N型掺杂的半导体层。第二型半导体层500中主要掺杂的是第二型掺杂物,第二型掺杂物包括掺杂IIA族元素,例如是镁(Mg),因此第二型半导体层为P型掺杂的半导体层。以下将以第一型半导体层400为N型掺杂的半导体层,第二型半导体层500为P型掺杂的半导体层,说明本发明第一实施例的发光元件1。The doping types of the first-type semiconductor layer 400 and the second-type semiconductor layer 500 are different. For example, the first-type semiconductor layer 400 is mainly doped with first-type dopants, and the first-type dopants include group IVA elements, such as silicon (Si), carbon (C) or germanium (Ge). , so the first-type semiconductor layer 400 is an N-type doped semiconductor layer. The second-type semiconductor layer 500 is mainly doped with second-type dopants, and the second-type dopant includes doping group IIA elements, such as magnesium (Mg), so the second-type semiconductor layer is P-type doped the semiconductor layer. The light-emitting element 1 according to the first embodiment of the present invention will be described below with the first-type semiconductor layer 400 being an N-type doped semiconductor layer and the second-type semiconductor layer 500 being a P-type doped semiconductor layer.

发光层300例如为多重量子井(multiple quantum well,MQW)结构。发光层300的材料例如为InyGa1-yN,0≦y<1。在本发明第一实施例中,发光层300包括多层氮化铟镓(InGaN)以及多层氮化镓(GaN)构成的多重量子井结构,但不以此为限。发光层300的厚度介于0.1微米至1微米之间,但不以此为限。The light emitting layer 300 is, for example, a multiple quantum well (MQW) structure. The material of the light emitting layer 300 is, for example, In y Ga 1-y N, where 0≦y<1. In the first embodiment of the present invention, the light emitting layer 300 includes a multi-quantum well structure composed of multiple layers of InGaN and GaN, but not limited thereto. The thickness of the light emitting layer 300 is between 0.1 micron and 1 micron, but not limited thereto.

第一型半导体层400包括第一子半导体层410。第一子半导体层410的材料为三元半导体材料,例如是InxGa1-xN,0<X<1,但不以此为限。第一子半导体层410的厚度例如为50纳米(nm)至250纳米,过厚将影响发光元件的磊晶质量,但不以此为限。在本发明第一实施例中,第一子半导体层410的材料为氮化铟镓(InGaN),相较于其他材料可具有较佳的应力释放效果。第一子半导体层410的厚度为200纳米。在本发明其他实施例中,第一子半导体层的厚度可为75纳米、100纳米、150纳米、或225纳米。特别说明的是,在本发明第一实例中,第一子半导体层410为一单层半导体层。详细来说,在电子显微镜或二次离子质谱仪(SIMS)的影像中,第一子半导体层410中的各个区域具有一致的明暗度。The first type semiconductor layer 400 includes a first sub-semiconductor layer 410 . The material of the first sub-semiconductor layer 410 is a ternary semiconductor material, such as In x Ga 1-x N, 0<X<1, but not limited thereto. The thickness of the first sub-semiconductor layer 410 is, for example, 50 nanometers (nm) to 250 nanometers. If it is too thick, the epitaxial quality of the light emitting element will be affected, but not limited thereto. In the first embodiment of the present invention, the material of the first sub-semiconductor layer 410 is indium gallium nitride (InGaN), which has a better stress release effect than other materials. The thickness of the first sub-semiconductor layer 410 is 200 nm. In other embodiments of the present invention, the thickness of the first sub-semiconductor layer may be 75 nm, 100 nm, 150 nm, or 225 nm. In particular, in the first example of the present invention, the first sub-semiconductor layer 410 is a single-layer semiconductor layer. In detail, in the images of the electron microscope or the secondary ion mass spectrometer (SIMS), each region in the first sub-semiconductor layer 410 has consistent brightness and darkness.

本发明第一实施例的第一子半导体层410的第一型掺杂物的掺杂浓度分布请参照图2,第一子半导体层410具有掺杂第一型掺杂物的至少一高掺杂部411与至少一低掺杂部412。第一型掺杂物为第一子半导体层410中的主要掺杂物。其中,低掺杂部412的掺杂浓度小于等于1017原子数/立方厘米(atoms/cm3),较佳是低掺杂部412的掺杂浓度小于等于5×1016原子数/立方厘米,更佳是低掺杂部412的掺杂浓度小于等于1016原子数/立方厘米。特别说明的是,低掺杂部412的掺杂浓度可趋近于未掺杂,在此并不为限。高掺杂部411的掺杂浓度为大于1017原子数/立方厘米且小于等于1018原子数/立方厘米,较佳是高掺杂部411的掺杂浓度为大于5×1017原子数/立方厘米且小于等于1018原子数/立方厘米,更佳是高掺杂部411的掺杂浓度为大于8×1017原子数/立方厘米且小于等于1018原子数/立方厘米。此处,高掺杂部411的掺杂浓度与低掺杂部412的掺杂浓度的比值大于10。较佳的是,高掺杂部411的掺杂浓度与低掺杂部412的掺杂浓度的比值大于等于102。通过具有掺杂浓度差异大的高掺杂部411与低掺杂部412,磊晶时产生的应力被降低。特别说明的是,高掺杂部411的掺杂浓度与低掺杂部412的掺杂浓度的比值例如是以高掺杂部411中的掺杂浓度最高的浓度与低掺杂部412中的掺杂浓度最低的浓度做比较。本发明第一实施例的发光元件中,第一型半导体层410为N型半导体层,第一子半导体层410的高掺杂部411与低掺杂部412的掺杂浓度均为第一型掺杂物的掺杂浓度,第一型掺杂物为硅,但不以此为限。Please refer to FIG. 2 for the doping concentration distribution of the first type dopant in the first sub-semiconductor layer 410 of the first embodiment of the present invention. The first sub-semiconductor layer 410 has at least one highly doped dopant of the first type dopant The impurity portion 411 and at least one low-doped portion 412 . The first type dopant is the main dopant in the first sub-semiconductor layer 410 . Wherein, the doping concentration of the low-doped portion 412 is less than or equal to 10 17 atoms/cm 3 , preferably, the doping concentration of the low-doping portion 412 is less than or equal to 5×10 16 atoms/cm 3 , more preferably, the doping concentration of the low-doped portion 412 is less than or equal to 10 16 atoms/cubic centimeter. In particular, the doping concentration of the low-doped portion 412 may be close to undoped, but it is not limited thereto. The doping concentration of the highly doped portion 411 is greater than 10 17 atoms/cm3 and less than or equal to 10 18 atoms/cm3, preferably the doping concentration of the highly doped portion 411 is greater than 5×10 17 atoms/cm3 cubic centimeter and less than or equal to 10 18 atoms/cubic centimeter, more preferably the doping concentration of the highly doped portion 411 is greater than 8×10 17 atoms/cubic centimeter and less than or equal to 10 18 atoms/cubic centimeter. Here, the ratio of the doping concentration of the high doping portion 411 to the doping concentration of the low doping portion 412 is greater than 10. Preferably, the ratio of the doping concentration of the high doping portion 411 to the doping concentration of the low doping portion 412 is greater than or equal to 10 2 . By having the highly doped portion 411 and the low doped portion 412 with a large difference in doping concentration, the stress generated during epitaxy is reduced. In particular, the ratio of the doping concentration of the highly doped part 411 to the doping concentration of the low doped part 412 is, for example, the highest doping concentration in the highly doped part 411 and the doping concentration in the low doped part 412. The concentration with the lowest doping concentration was compared. In the light-emitting element of the first embodiment of the present invention, the first-type semiconductor layer 410 is an N-type semiconductor layer, and the doping concentrations of the highly doped part 411 and the low-doped part 412 of the first sub-semiconductor layer 410 are both of the first type. The doping concentration of the dopant, the first type dopant is silicon, but not limited thereto.

在本发明第一实施例中,低掺杂部412设置于高掺杂部411与发光层300之间,但不以此为限。在本发明其他实施例中,高掺杂部可设置于低掺杂部与发光层之间。In the first embodiment of the present invention, the low-doped portion 412 is disposed between the high-doped portion 411 and the light-emitting layer 300 , but not limited thereto. In other embodiments of the present invention, the highly doped portion may be disposed between the low doped portion and the light emitting layer.

在本发明第一实施例中,高掺杂部与低掺杂部的数量均为一。此处在一垂直发光元件1的方向中,低掺杂部412覆盖高掺杂部411,亦即低掺杂部412与高掺杂部411是在磊晶成长第一子半导体层410时的不同阶段形成,但不以此为限。在本发明第一实施例中,以第一型半导体层400接触发光层300的表面往远离发光层300的方向为基准,厚度D1至D4的部分对应的是第一型半导体层400,厚度D2至D3的部分对应的是低掺杂部412,厚度D3至D4的部分对应的是高掺杂部411。低掺杂部412设置于高掺杂部411与发光层300之间,但不以此为限。在本发明其他实施例中,高掺杂部411可设置于低掺杂部412与发光层300之间。In the first embodiment of the present invention, the numbers of the highly doped portion and the low doped portion are both one. Here, in a direction perpendicular to the light-emitting element 1, the low-doped portion 412 covers the high-doped portion 411, that is, the low-doped portion 412 and the high-doped portion 411 are formed when the first sub-semiconductor layer 410 is epitaxially grown. Formed in different stages, but not limited thereto. In the first embodiment of the present invention, based on the direction from the surface of the first-type semiconductor layer 400 in contact with the light-emitting layer 300 to the direction away from the light-emitting layer 300, the parts with thicknesses D1 to D4 correspond to the first-type semiconductor layer 400, and the thickness D2 The portion from D3 to D3 corresponds to the low-doped portion 412 , and the portion from D3 to D4 corresponds to the highly-doped portion 411 . The low-doped portion 412 is disposed between the high-doped portion 411 and the light-emitting layer 300 , but not limited thereto. In other embodiments of the present invention, the highly doped portion 411 may be disposed between the low doped portion 412 and the light emitting layer 300 .

在本发明第一实施例中,低掺杂部412的厚度(D2-D3)占第一子半导体层410的厚度(D1-D4)的10%至95%。较佳的是,低掺杂部412的厚度占第一子半导体层410的厚度的60%至95%。更佳的是,低掺杂部412的厚度占第一子半导体层410的厚度的80%至95%。低掺杂部412的厚度占第一子半导体层410的厚度的比例越高,可使本发明的发光元件1具有更佳的电性。在本发明其他实施例中,第一子半导体层可具有多个高掺杂部与多个低掺杂部,且多个高掺杂部与多个低掺杂部彼此交错排列,低掺杂部的总厚度占第一子半导体层的厚度的10%至95%,较佳的是低掺杂部的总厚度占第一子半导体层的厚度的60%至95%,更佳的是低掺杂部的总厚度占第一子半导体层的厚度的80%至95%。In the first embodiment of the present invention, the thickness ( D2 - D3 ) of the low-doped portion 412 accounts for 10% to 95% of the thickness ( D1 - D4 ) of the first sub-semiconductor layer 410 . Preferably, the thickness of the low-doped portion 412 accounts for 60% to 95% of the thickness of the first sub-semiconductor layer 410 . More preferably, the thickness of the low-doped portion 412 accounts for 80% to 95% of the thickness of the first sub-semiconductor layer 410 . The higher the ratio of the thickness of the low-doped portion 412 to the thickness of the first sub-semiconductor layer 410 is, the better the electrical properties of the light-emitting element 1 of the present invention can be. In other embodiments of the present invention, the first sub-semiconductor layer may have multiple highly doped parts and multiple low doped parts, and the multiple highly doped parts and the multiple low doped parts are arranged alternately with each other, and the low doped parts The total thickness of the part accounts for 10% to 95% of the thickness of the first sub-semiconductor layer, preferably the total thickness of the low-doped part accounts for 60% to 95% of the thickness of the first sub-semiconductor layer, more preferably low The total thickness of the doped part accounts for 80% to 95% of the thickness of the first sub-semiconductor layer.

第二型半导体层500设置于发光层300远离第一型半导体层400的一侧。第二型半导体层500的材料可包括Ⅲ-Ⅴ族氮化物材料,例如氮化镓(GaN)、氮化铝(AlN)、氮化铟(InN)、氮化铟镓(InGaN)、氮化铝镓(AlGaN)或氮化铝铟镓(AlInGaN)。第二型半导体层500的材料较佳为氮化镓层(GaN)或氮化铝镓(AlGaN)。第二型掺杂物为第二型半导体层500中的主要掺杂物。在本发明第一实施例中,第二型半导体层500为P型半导体层,第二型掺杂物为镁,但不以此为限。The second type semiconductor layer 500 is disposed on a side of the light emitting layer 300 away from the first type semiconductor layer 400 . The material of the second-type semiconductor layer 500 may include III-V group nitride materials, such as gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), indium gallium nitride (InGaN), nitride Aluminum Gallium (AlGaN) or Aluminum Indium Gallium Nitride (AlInGaN). The material of the second-type semiconductor layer 500 is preferably gallium nitride (GaN) or aluminum gallium nitride (AlGaN). The second-type dopant is the main dopant in the second-type semiconductor layer 500 . In the first embodiment of the present invention, the second-type semiconductor layer 500 is a P-type semiconductor layer, and the second-type dopant is magnesium, but not limited thereto.

由于在单一层的第一子半导体层410中,同时具有高掺杂部411与低掺杂部412,且高掺杂部411的掺杂浓度与低掺杂部412的掺杂浓度的具有较大的差异,低掺杂部412的晶格排列受掺杂物干扰的程度低于高掺杂部412的晶格排列受掺杂物干扰的程度。如此一来,低掺杂部412的晶格中累积的应力小于高掺杂部411的晶格中累积的应力,磊晶结构中累积的应力在第一子半导体层410的低掺杂部412中得到缓冲与释放,避免大量的应力继续累积到发光层300中。低掺杂部412的厚度占第一子半导体层410的厚度的比例越高,低掺杂部412对应力的缓冲与释放效果越佳。通过设置于第一子半导体层410中的低掺杂部412,发光层300因应力累积而产生的缺陷减少,使得发光层300中的缺陷密度例如是介于104/cm2至108/cm2之间。借此,发光元件1的发光均匀性、发光强度与崩溃电压得到提高,漏电流情况得到改善,使得发光元件整体的电性表现与可靠度都得到提升。Since the first sub-semiconductor layer 410 of a single layer has a highly doped portion 411 and a low doped portion 412 at the same time, and the doping concentration of the highly doped portion 411 is relatively different from that of the low doped portion 412. If the difference is large, the degree to which the lattice arrangement of the low-doped portion 412 is disturbed by the dopant is lower than the degree to which the lattice arrangement of the high-doped portion 412 is disturbed by the dopant. In this way, the stress accumulated in the lattice of the low-doped portion 412 is smaller than the stress accumulated in the lattice of the highly-doped portion 411 , and the stress accumulated in the epitaxial structure is in the low-doped portion 412 of the first sub-semiconductor layer 410 buffer and release in order to prevent a large amount of stress from continuously accumulating in the light-emitting layer 300 . The higher the ratio of the thickness of the low-doped portion 412 to the thickness of the first sub-semiconductor layer 410 is, the better the effect of the low-doped portion 412 on buffering and releasing stress is. Through the low-doped portion 412 disposed in the first sub-semiconductor layer 410, the defects generated in the light-emitting layer 300 due to stress accumulation are reduced, so that the defect density in the light-emitting layer 300 is, for example, between 10 4 /cm 2 and 10 8 /cm 2 cm2 between. Thereby, the luminous uniformity, luminous intensity and breakdown voltage of the light-emitting element 1 are improved, and the leakage current is improved, so that the overall electrical performance and reliability of the light-emitting element are improved.

接下来说明本发明第二实施例的发光元件,请参照图3至图5。图3为本发明第二实施例的发光元件的剖面示意图。图4为本发明第二实施例的掺杂浓度分布的示意图。图5为本发明第二实施例中的磊晶结构与基板的剖面示意图。发光元件包含第一电极100、第二电极200、以及设置于第一电极100与第二电极200之间的磊晶结构。第一电极100与第二电极200例如为高功函数金属如铂、镍、钛、金、铬、银、上述合金及上述材料的组合、金属氧化物如氧化铟锡及氧化锌、或是导电的非金属材料如导电高分子、石墨、石墨烯及黑磷。高功函数金属例如为功函数不小于4.5电子伏特的金属材料。本发明第二实施例的发光元件2为垂直式发光元件,磊晶结构设置于第一电极100与第二电极200之间,但不以此为限。在本发明其他实施例中,发光元件亦可为水平式发光元件或是其他类型的发光元件。发光元件2的最大宽度尺寸介于1到100微米之间,较佳的是介于3到30微米之间,亦即第二实施例中的发光元件2为一微米级的微型发光元件(Micro LED)。再者,本发明第二实施例的发光元件2的一外部量子效率曲线的一最大峰值电流密度,较佳地,介于0.01A/cm2至2A/cm2之间。意即,本发明的发光元件适于在低电流密度的情况下操作。Next, the light emitting element of the second embodiment of the present invention will be described, please refer to FIG. 3 to FIG. 5 . FIG. 3 is a schematic cross-sectional view of a light emitting device according to a second embodiment of the present invention. FIG. 4 is a schematic diagram of the doping concentration distribution of the second embodiment of the present invention. 5 is a schematic cross-sectional view of an epitaxial structure and a substrate in a second embodiment of the present invention. The light emitting element includes a first electrode 100 , a second electrode 200 , and an epitaxial structure disposed between the first electrode 100 and the second electrode 200 . The first electrode 100 and the second electrode 200 are, for example, high work function metals such as platinum, nickel, titanium, gold, chromium, silver, the above alloys and combinations of the above materials, metal oxides such as indium tin oxide and zinc oxide, or conductive Non-metallic materials such as conductive polymers, graphite, graphene and black phosphorus. The high work function metal is, for example, a metal material with a work function not less than 4.5 eV. The light emitting device 2 of the second embodiment of the present invention is a vertical light emitting device, and the epitaxial structure is disposed between the first electrode 100 and the second electrode 200 , but not limited thereto. In other embodiments of the present invention, the light emitting element can also be a horizontal light emitting element or other types of light emitting elements. The maximum width of the light-emitting element 2 is between 1 and 100 microns, preferably between 3 and 30 microns, that is, the light-emitting element 2 in the second embodiment is a micron-scale micro light-emitting element (Micro light-emitting element). LED). Furthermore, a maximum peak current density of an external quantum efficiency curve of the light-emitting device 2 according to the second embodiment of the present invention is preferably between 0.01A/cm 2 and 2A/cm 2 . That is, the light-emitting element of the present invention is suitable for operation at a low current density.

请参照图3,磊晶结构包含发光层300、设置于发光层300与第一电极100之间的第一型半导体层400、以及设置于发光层300与第二电极200之间的第二型半导体层500。磊晶结构的厚度T以不超过6微米为佳,且磊晶结构的厚度T通常大于1微米,太厚或太薄都将影响后续工艺的良率。以下将以第一电极为100为N型电极,第二电极为200为P型电极,第一型半导体层400为N型掺杂的半导体层,第二型半导体500为P型掺杂的半导体层,说明本发明第二实施例的发光元件2。Please refer to FIG. 3 , the epitaxial structure includes a light-emitting layer 300 , a first-type semiconductor layer 400 disposed between the light-emitting layer 300 and the first electrode 100 , and a second-type semiconductor layer disposed between the light-emitting layer 300 and the second electrode 200 . Semiconductor layer 500. The thickness T of the epitaxial structure is preferably no more than 6 microns, and the thickness T of the epitaxial structure is usually greater than 1 micron. Too thick or too thin will affect the yield of subsequent processes. In the following, the first electrode is 100 as an N-type electrode, the second electrode as 200 is a P-type electrode, the first-type semiconductor layer 400 is an N-type doped semiconductor layer, and the second-type semiconductor 500 is a P-type doped semiconductor Layer, the light-emitting element 2 of the second embodiment of the present invention is described.

本发明第二实施例的发光层300相似于本发明第一实施例的发光层300,有关发光层300的说明在此便不再赘述。The light emitting layer 300 of the second embodiment of the present invention is similar to the light emitting layer 300 of the first embodiment of the present invention, and the description of the light emitting layer 300 will not be repeated here.

第一型半导体层400除了包含第一子半导体层410外,进一步包含设置于第一电极100与第一子半导体层410之间的第二子半导体层420、设置于发光层300与第一子半导体层410之间的载子提供层430、以及设置于第二子半导体层420远离第一子半导体层410的一侧的电流扩散层440。In addition to the first sub-semiconductor layer 410, the first-type semiconductor layer 400 further includes a second sub-semiconductor layer 420 disposed between the first electrode 100 and the first sub-semiconductor layer 410, and a second sub-semiconductor layer 420 disposed between the light-emitting layer 300 and the first sub-semiconductor layer. The carrier supply layer 430 between the semiconductor layers 410 and the current diffusion layer 440 disposed on the side of the second sub-semiconductor layer 420 away from the first sub-semiconductor layer 410 .

第一子半导体层410的材料相似于本发明第一实施例的第一子半导体层410的材料,在此便不再赘述。本发明第二实施例的发光元件2的第一型掺杂物的掺杂浓度分布请参照图4,第一子半导体层410具有至少一高掺杂部分411与至少一低掺杂部分412。在本发明第二实施例中,以第二型半导体层500远离发光层300的表面往第一型半导体层400的方向为基准,厚度D1至D4的部分对应的是第一型半导体层400,厚度D2至D3的部分对应的是低掺杂部分412,厚度D3至D4的部分对应的是高掺杂部分411。厚度D5至D6的部分对应的是发光层300。厚度D6至D1的部分对应的是载子提供层430。厚度D4至D7的部分对应的是第二子半导体层420。厚度D7往远离厚度D4方向的部分是电流扩散层440。The material of the first sub-semiconductor layer 410 is similar to the material of the first sub-semiconductor layer 410 in the first embodiment of the present invention, and will not be repeated here. Please refer to FIG. 4 for the doping concentration distribution of the first type dopant of the light-emitting device 2 according to the second embodiment of the present invention. The first sub-semiconductor layer 410 has at least one highly doped portion 411 and at least one lowly doped portion 412 . In the second embodiment of the present invention, taking the direction of the second-type semiconductor layer 500 away from the surface of the light-emitting layer 300 toward the first-type semiconductor layer 400 as a reference, the part with a thickness of D1 to D4 corresponds to the first-type semiconductor layer 400, The portion with thickness D2 to D3 corresponds to the low doped portion 412 , and the portion with thickness D3 to D4 corresponds to the highly doped portion 411 . The part with thickness D5 to D6 corresponds to the light emitting layer 300 . The portion of thickness D6 to D1 corresponds to the carrier supply layer 430 . The part with thickness D4 to D7 corresponds to the second sub-semiconductor layer 420 . The portion of the thickness D7 away from the thickness D4 is the current spreading layer 440 .

在本发明第二实施例中,高掺杂分411设置于低掺杂部412与第二半导体层420之间,但不以此为限。在本发明其他实施例中,低掺杂部可设置于高掺杂部与第二型半导体层之间。本发明第二实施例的高掺杂部411与低掺杂部412的掺杂浓度关系以及厚度关系相似于本发明第一实施例的高掺杂部411与低掺杂部412的掺杂浓度关系与厚度关系,在此便不再加以赘述。In the second embodiment of the present invention, the highly doped part 411 is disposed between the low doped part 412 and the second semiconductor layer 420 , but not limited thereto. In other embodiments of the present invention, the low-doped portion may be disposed between the high-doped portion and the second-type semiconductor layer. The doping concentration relationship and thickness relationship between the highly doped portion 411 and the low doping portion 412 in the second embodiment of the present invention is similar to the doping concentration of the high doping portion 411 and the low doping portion 412 in the first embodiment of the present invention The relationship and the thickness relationship will not be repeated here.

第二子半导体层420设置于第一电极100与第一子半导体层410之间。第二子半导体层420的材料例如为AlrInsGa1-r-sN,r≧0,s≧0且1≧r+s≧0,但不以此为限。第二子半导体层420的厚度例如为50纳米(nm)至100纳米,但不以此为限。在本发明第二实施例中,第二子半导体层420的材料为氮化镓(GaN),第二子半导体层420的厚度为80纳米。在本发明其他实施例中,第二子半导体层的材料为InGaN、AlGaN或AlInGaN。特别说明的是,第二子半导体层420可以为一单层半导体层。The second sub-semiconductor layer 420 is disposed between the first electrode 100 and the first sub-semiconductor layer 410 . The material of the second sub-semiconductor layer 420 is, for example, Al r Ins Ga 1-rs N , r≧0, s≧0 and 1≧r+s≧0, but not limited thereto. The thickness of the second sub-semiconductor layer 420 is, for example, 50 nanometers (nm) to 100 nanometers, but not limited thereto. In the second embodiment of the present invention, the material of the second sub-semiconductor layer 420 is gallium nitride (GaN), and the thickness of the second sub-semiconductor layer 420 is 80 nanometers. In other embodiments of the present invention, the material of the second sub-semiconductor layer is InGaN, AlGaN or AlInGaN. In particular, the second sub-semiconductor layer 420 may be a single-layer semiconductor layer.

第二子半导体层420中包含有第一型掺杂物。在本发明第二实施例中,第二子半导体层420为N型半导体层,第一型掺杂物为硅,但不以此为限。第二子半导体层420中的第一型掺杂物的掺杂浓度高于高掺杂部411中的第一型掺杂物的掺杂浓度。更进一步于第二子半导体层420中,第一型掺杂物的掺杂浓度大于1018原子数/立方厘米且小于等于1020原子数/立方厘米,较佳的,第一型掺杂物的掺杂浓度大于1018原子数/立方厘米且小于等于1019原子数/立方厘米。在本发明第二实施例中,第二子半导体层420的位置对应图4中厚度D4至D7的部分。由于第二子半导体层420的掺杂浓度高于第一子半导体层410中的高掺杂部411的掺杂浓度,第二子半导体层420可进一步增加第一型半导体层400中的载子数量,借此进一步提升发光层300的发光强度。The second sub-semiconductor layer 420 contains the first type dopant. In the second embodiment of the present invention, the second sub-semiconductor layer 420 is an N-type semiconductor layer, and the first-type dopant is silicon, but not limited thereto. The doping concentration of the first type dopant in the second sub-semiconductor layer 420 is higher than the doping concentration of the first type dopant in the highly doped portion 411 . Furthermore, in the second sub-semiconductor layer 420, the doping concentration of the first-type dopant is greater than 10 18 atoms/cm3 and less than or equal to 10 20 atoms/cm3, preferably, the first-type dopant The doping concentration is greater than 10 18 atoms/cubic centimeter and less than or equal to 10 19 atoms/cubic centimeter. In the second embodiment of the present invention, the position of the second sub-semiconductor layer 420 corresponds to the part with thicknesses D4 to D7 in FIG. 4 . Since the doping concentration of the second sub-semiconductor layer 420 is higher than that of the highly doped portion 411 in the first sub-semiconductor layer 410, the second sub-semiconductor layer 420 can further increase the number of carriers in the first-type semiconductor layer 400 quantity, so as to further increase the luminous intensity of the luminescent layer 300 .

载子提供层430设置于发光层300与第一子半导体层410之间。载子提供层430的材料例如为AlrInsGa1-r-sN,r≧0,s≧0且1≧r+s≧0,但不以此为限。载子提供层430的厚度例如为10纳米(nm)至30纳米,过厚会使后续磊晶成长的半导体层产生缺陷。在本发明第二实施例中,载子提供层430的材料为氮化镓(GaN),载子提供层430的厚度为20纳米。在本发明其他实施例中,载子提供层的材料为InGaN、AlGaN或AlInGaN。特别说明的是,载子提供层430可以为一单层半导体层。The carrier supply layer 430 is disposed between the light emitting layer 300 and the first sub-semiconductor layer 410 . The material of the carrier supply layer 430 is, for example, Al r In s Ga 1-rs N, r≧0, s≧0 and 1≧r+s≧0, but not limited thereto. The thickness of the carrier supply layer 430 is, for example, 10 nanometers (nm) to 30 nanometers. If it is too thick, defects will be generated in the subsequent epitaxially grown semiconductor layer. In the second embodiment of the present invention, the material of the carrier providing layer 430 is gallium nitride (GaN), and the thickness of the carrier providing layer 430 is 20 nanometers. In other embodiments of the present invention, the material of the carrier supply layer is InGaN, AlGaN or AlInGaN. In particular, the carrier supply layer 430 may be a single-layer semiconductor layer.

载子提供层430中包含有第一型掺杂物与第二型掺杂物,且第一型掺杂物的掺杂浓度大于第二型掺杂物的掺杂浓度。在本发明第二实施例中,载子提供层430为N型半导体层,第一型掺杂物为硅,第二型掺杂物为镁,但不以此为限。载子提供层430中第一型掺杂物的掺杂浓度高于高掺杂部411中第一型掺杂物的掺杂浓度。更进一步于载子提供层430中,第一型掺杂物的掺杂浓度大于1018原子数/立方厘米且小于等于1020原子数/立方厘米,较佳的,第一型掺杂物的掺杂浓度大于1018原子数/立方厘米且小于等于1019原子数/立方厘米。载子提供层430中的第二型掺杂物的掺杂浓度小于1018原子数/立方厘米。在本发明其他实施例中,载子提供层中可仅有第一型掺杂物。由于载子提供层430中第一型掺杂物的掺杂浓度高于高掺杂部411中第一型掺杂物的掺杂浓度,载子提供层430可进一步增加第一型半导体层400中的载子数量,借此进一步提升发光层300的发光强度。The carrier supply layer 430 includes a first-type dopant and a second-type dopant, and the doping concentration of the first-type dopant is greater than that of the second-type dopant. In the second embodiment of the present invention, the carrier supply layer 430 is an N-type semiconductor layer, the first-type dopant is silicon, and the second-type dopant is magnesium, but not limited thereto. The doping concentration of the first type dopant in the carrier supply layer 430 is higher than the doping concentration of the first type dopant in the highly doped portion 411 . Furthermore, in the carrier supply layer 430, the doping concentration of the first-type dopant is greater than 10 18 atoms/cubic centimeter and less than or equal to 10 20 atoms/cubic centimeter, preferably, the first-type dopant The doping concentration is greater than 10 18 atoms/cubic centimeter and less than or equal to 10 19 atoms/cubic centimeter. The doping concentration of the second type dopant in the carrier providing layer 430 is less than 10 18 atoms/cm 3 . In other embodiments of the present invention, there may be only the first type dopant in the carrier supply layer. Since the doping concentration of the first type dopant in the carrier supply layer 430 is higher than the doping concentration of the first type dopant in the highly doped portion 411, the carrier supply layer 430 can further increase the density of the first type semiconductor layer 400. The number of carriers in the light-emitting layer 300 can further increase the light-emitting intensity.

电流扩散层440设置于第二子半导体层420远离第一子半导体层的一侧。电流扩散层440的材料为AlrInsGa1-r-sN,r≧0,s≧0且1≧r+s≧0。电流扩散层440的厚度例如为1微米(μm)至3微米,但不以此为限。电流扩散层440中第一型掺杂物的掺杂浓度相异于第二子半导体层420中第一型掺杂物的掺杂浓度。电流扩散层440中大部分的区域,第一型掺杂物的掺杂浓度较佳为大于第二子半导体层420中第一型掺杂物的掺杂浓度。在本发明第二实施例中,电流扩散层440的材料为GaN,且电流扩散层440为厚度2微米的N型掺杂半导体层,第二型掺杂物为硅,第二型掺杂物的掺杂浓度大于1019原子数/立方厘米,但不以此为限。The current spreading layer 440 is disposed on a side of the second sub-semiconductor layer 420 away from the first sub-semiconductor layer. The material of the current spreading layer 440 is Al r In s Ga 1-rs N, r≧0, s≧0 and 1≧r+s≧0. The thickness of the current spreading layer 440 is, for example, 1 micron (μm) to 3 microns, but not limited thereto. The doping concentration of the first type dopant in the current spreading layer 440 is different from the doping concentration of the first type dopant in the second sub-semiconductor layer 420 . In most regions of the current diffusion layer 440 , the doping concentration of the first-type dopant is preferably higher than that of the first-type dopant in the second sub-semiconductor layer 420 . In the second embodiment of the present invention, the material of the current diffusion layer 440 is GaN, and the current diffusion layer 440 is an N-type doped semiconductor layer with a thickness of 2 micrometers, the second-type dopant is silicon, and the second-type dopant The doping concentration is greater than 10 19 atoms/cubic centimeter, but not limited thereto.

在本发明第二实施例中,电流扩散层440设置于第一电极100与第二子半导体层420之间,但不以此为限。在本发明其他实施例中,第一电极与第二子半导体层亦可设置于电流扩散层的同一侧。在电流扩散层440的帮助下,由第一电极100进入电流扩散层440的电流可被更均匀的散布至第一型半导体层400中,进而使发光层300的发光强度分布更为均匀。In the second embodiment of the present invention, the current diffusion layer 440 is disposed between the first electrode 100 and the second sub-semiconductor layer 420 , but not limited thereto. In other embodiments of the present invention, the first electrode and the second sub-semiconductor layer may also be disposed on the same side of the current diffusion layer. With the help of the current diffusion layer 440 , the current entering the current diffusion layer 440 from the first electrode 100 can be more evenly distributed into the first-type semiconductor layer 400 , thereby making the luminous intensity distribution of the light emitting layer 300 more uniform.

在本发明第二实施例中,第一子半导体层410、第二子半导体层420、载子提供层430与电流扩散层440中掺杂的第一型掺杂物均为硅,但不以此为限。在本发明其他实施例中,第一子半导体层、第二子半导体层、载子提供层与电流扩散层中掺杂的第一型掺杂物可为相异的第一型掺杂物,而第一型掺杂物可为硅或碳。In the second embodiment of the present invention, the first type dopant doped in the first sub-semiconductor layer 410, the second sub-semiconductor layer 420, the carrier supply layer 430 and the current diffusion layer 440 are all silicon, but not This is the limit. In other embodiments of the present invention, the first type dopant doped in the first sub-semiconductor layer, the second sub-semiconductor layer, the carrier supply layer and the current diffusion layer may be different first type dopants, The first type dopant can be silicon or carbon.

第二子半导体层420与电流扩散层440中掺杂了大量的掺杂物,使得第二子半导体层420与电流扩散层440的晶格排列受到掺杂物干扰,导致应力累积在第二子半导体层420与电流扩散层440的晶格中。由于第一子半导体层410中,高掺杂部411的掺杂浓度与低掺杂部412的掺杂浓度的差异大,低掺杂部412的晶格排列受掺杂物干扰的程度低于高掺杂部411的晶格排列受掺杂物干扰的程度。如此一来,低掺杂部412的晶格中累积的应力小于高掺杂部411的晶格中累积的应力。The second sub-semiconductor layer 420 and the current diffusion layer 440 are doped with a large amount of dopants, so that the lattice arrangement of the second sub-semiconductor layer 420 and the current diffusion layer 440 is disturbed by the dopant, resulting in stress accumulation in the second sub-semiconductor layer 420 and the current diffusion layer 440. In the crystal lattice of the semiconductor layer 420 and the current spreading layer 440 . In the first sub-semiconductor layer 410, the difference between the doping concentration of the highly doped part 411 and the doping concentration of the low doped part 412 is large, and the lattice arrangement of the low doped part 412 is less disturbed by dopants than The degree to which the lattice arrangement of the highly doped portion 411 is disturbed by the dopant. In this way, the stress accumulated in the lattice of the low-doped portion 412 is smaller than the stress accumulated in the lattice of the highly-doped portion 411 .

第二子半导体层420与电流扩散层440中累积的应力在第一子半导体层410的低掺杂部412中得到缓冲与释放,避免大量的应力继续累积到载子提供层430与发光层300中。低掺杂部412的厚度占第一子半导体层410的厚度的比例越高,低掺杂部412对应力的缓冲与释放效果越佳。通过设置于第一子半导体层410中的低掺杂部412,发光层300因应力累积而产生的缺陷减少,发光元件2的发光均匀性、发光强度与崩溃电压得到提高,漏电流情况得到改善,使得发光元件整体的电性表现得到提升。The stress accumulated in the second sub-semiconductor layer 420 and the current diffusion layer 440 is buffered and released in the low-doped portion 412 of the first sub-semiconductor layer 410, preventing a large amount of stress from continuing to accumulate in the carrier supply layer 430 and the light-emitting layer 300 middle. The higher the ratio of the thickness of the low-doped portion 412 to the thickness of the first sub-semiconductor layer 410 is, the better the effect of the low-doped portion 412 on buffering and releasing stress is. Through the low-doped portion 412 disposed in the first sub-semiconductor layer 410, the defects caused by the accumulation of stress in the light-emitting layer 300 are reduced, the light-emitting uniformity, light-emitting intensity and breakdown voltage of the light-emitting element 2 are improved, and the leakage current situation is improved. , so that the overall electrical performance of the light-emitting element is improved.

第二型半导体层500设置于发光层300远离第一型半导体层400的一侧。第二型半导体层500的材料可包括Ⅲ-Ⅴ族氮化物材料如氮化镓(GaN)、氮化铝(AlN)、氮化铟(InN)、氮化铟镓(InGaN)、氮化铝镓(AlGaN)或氮化铝铟镓(AlInGaN)。第二型半导体层500的材料较佳为氮化镓层(GaN)或氮化铝镓(AlGaN)。在本发明第二实施例中,第二型半导体层500为P型半导体层,第二型掺杂物为镁,第二型掺杂物的掺杂浓度介于1019原子数/立方厘米至1020原子数/立方厘米,但不以此为限。在本发明第二实施例中,第二电极200设置于第二型半导体层500远离发光层300的一侧,但不以此为限。The second type semiconductor layer 500 is disposed on a side of the light emitting layer 300 away from the first type semiconductor layer 400 . The material of the second-type semiconductor layer 500 may include III-V group nitride materials such as gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), indium gallium nitride (InGaN), aluminum nitride gallium (AlGaN) or aluminum indium gallium nitride (AlInGaN). The material of the second-type semiconductor layer 500 is preferably gallium nitride (GaN) or aluminum gallium nitride (AlGaN). In the second embodiment of the present invention, the second-type semiconductor layer 500 is a P-type semiconductor layer, the second-type dopant is magnesium, and the doping concentration of the second-type dopant is between 10 19 atoms/cubic centimeter to 10 20 atoms/cubic centimeter, but not limited thereto. In the second embodiment of the present invention, the second electrode 200 is disposed on a side of the second-type semiconductor layer 500 away from the light-emitting layer 300 , but not limited thereto.

磊晶结构是通过半导体制程设置于基板600的缓冲层700。基板600、缓冲层700与磊晶结构的堆栈顺序示意图请参照图5。详细来说,第二子半导体层420、第一子半导体层410、载子提供层430、发光层300与第二型半导体层500依序一层一层的被设置于缓冲层700远离基板600的一侧以得到本发明第二实施例中的磊晶结构。The epitaxial structure is disposed on the buffer layer 700 of the substrate 600 through a semiconductor process. Please refer to FIG. 5 for a schematic diagram of the stacking sequence of the substrate 600 , the buffer layer 700 and the epitaxial structure. In detail, the second sub-semiconductor layer 420 , the first sub-semiconductor layer 410 , the carrier supply layer 430 , the light emitting layer 300 and the second-type semiconductor layer 500 are arranged layer by layer on the buffer layer 700 away from the substrate 600 side to obtain the epitaxial structure in the second embodiment of the present invention.

基板600的材料例如为蓝宝石、硅、碳化硅、玻璃、陶瓷、其他晶格结构与缓冲层700的晶格结构相匹配的材料,但不以此为限。在本发明其他实施例中,当基板材料的晶格结构与电流扩散层的晶格结构相匹配时,电流扩散层可直接形成于基板上。The material of the substrate 600 is, for example, sapphire, silicon, silicon carbide, glass, ceramics, and other materials whose lattice structure matches that of the buffer layer 700 , but is not limited thereto. In other embodiments of the present invention, when the lattice structure of the substrate material matches the lattice structure of the current spreading layer, the current spreading layer can be directly formed on the substrate.

缓冲层700设置于基板600表面。缓冲层700的材料例如为未刻意掺杂的氮化镓(GaN),但不以此为限。缓冲层700的晶格结构与基板600的晶格结构之间的晶格匹配度,以及缓冲层700的晶格结构与电流扩散层440的晶格结构之间的晶格匹配度,两者均高于基板600的晶格结构与电流扩散层440的晶格结构之间的晶格匹配度。借此,使电流扩散层440的晶格排列较为整齐,电流扩散层440中的缺陷数量因此下降,使得电流扩散层300中的电流分布较为均匀。在未绘示出的一实施例中,缓冲层700与基板600间可进一步包括一与基板600的晶格结构相匹配的成核层,例如是未刻意掺杂的氮化铝(AlN),可使后续磊晶结构的晶格排列更为整齐。The buffer layer 700 is disposed on the surface of the substrate 600 . The material of the buffer layer 700 is, for example, unintentionally doped gallium nitride (GaN), but not limited thereto. The degree of lattice matching between the lattice structure of the buffer layer 700 and the lattice structure of the substrate 600, and the degree of lattice matching between the lattice structure of the buffer layer 700 and the lattice structure of the current spreading layer 440, both Higher than the lattice matching degree between the lattice structure of the substrate 600 and the lattice structure of the current spreading layer 440 . Thereby, the lattice arrangement of the current spreading layer 440 is relatively orderly, and the number of defects in the current spreading layer 440 is reduced accordingly, so that the current distribution in the current spreading layer 300 is relatively uniform. In an embodiment not shown, between the buffer layer 700 and the substrate 600 may further include a nucleation layer matching the lattice structure of the substrate 600, such as unintentionally doped aluminum nitride (AlN), The lattice arrangement of the subsequent epitaxial structure can be made more orderly.

在本发明第二实施例的发光元件2中,第一型半导体层400为N型掺杂的半导体层,第一型半导体层400中掺杂物的浓度为N型掺杂物的浓度,第二型半导体500为P型掺杂的半导体层,第一电极100为N型电极,第二电极200为P型电极,但不以此为限。在本发明其他实施例的发光元件中,第一型半导体层为P型掺杂的半导体层,第一型半导体层中掺杂物的浓度为P型掺杂物的浓度,第二型半导体层为N型掺杂的半导体层,第一电极为P型电极,第二电极为N型电极。In the light-emitting element 2 of the second embodiment of the present invention, the first-type semiconductor layer 400 is an N-type doped semiconductor layer, and the concentration of the dopant in the first-type semiconductor layer 400 is the concentration of the N-type dopant. The second-type semiconductor 500 is a P-type doped semiconductor layer, the first electrode 100 is an N-type electrode, and the second electrode 200 is a P-type electrode, but not limited thereto. In the light-emitting element of other embodiments of the present invention, the first-type semiconductor layer is a P-type doped semiconductor layer, the concentration of the dopant in the first-type semiconductor layer is the concentration of the P-type dopant, and the second-type semiconductor layer is It is an N-type doped semiconductor layer, the first electrode is a P-type electrode, and the second electrode is an N-type electrode.

接下来说明本发明第三实施例的发光元件3,请参照图6。图6为本发明第三实施例的发光元件的剖面示意图。本发明第三实施例的发光元件3相似于本发明第二实施例的发光元件2,但本发明第三实施例的发光元件3未设置第二子半导体层与载子提供层。Next, the light emitting element 3 of the third embodiment of the present invention will be described, please refer to FIG. 6 . FIG. 6 is a schematic cross-sectional view of a light emitting element according to a third embodiment of the present invention. The light-emitting element 3 of the third embodiment of the present invention is similar to the light-emitting element 2 of the second embodiment of the present invention, but the light-emitting element 3 of the third embodiment of the present invention is not provided with the second sub-semiconductor layer and the carrier supply layer.

详细来说,本发明第三实施例的发光元件3为垂直式发光元件,包括第一电极100、第二电极200、设置于第一电极100与第二电极200之间的发光层300、设置于第一电极100与发光层300之间的第一子半导体层410、设置于第一电极100与第一子半导体层410之间的电流扩散层440、以及设置于第二电极200与发光层300之间的第二型半导体层500。In detail, the light-emitting element 3 of the third embodiment of the present invention is a vertical light-emitting element, including a first electrode 100, a second electrode 200, a light-emitting layer 300 disposed between the first electrode 100 and the second electrode 200, a set The first sub-semiconductor layer 410 between the first electrode 100 and the light-emitting layer 300, the current diffusion layer 440 disposed between the first electrode 100 and the first sub-semiconductor layer 410, and the second electrode 200 and the light-emitting layer 300 between the second type semiconductor layer 500 .

接下来说明本发明第四实施例的发光元件4,请参照图7。图7为本发明第四实施例的发光元件的剖面示意图。本发明第四实施例的发光元件4相似于本发明第二实施例的发光元件2,但本发明第四实施例的发光元件4未设置载子提供层。Next, the light emitting element 4 of the fourth embodiment of the present invention will be described, please refer to FIG. 7 . FIG. 7 is a schematic cross-sectional view of a light emitting element according to a fourth embodiment of the present invention. The light emitting element 4 of the fourth embodiment of the present invention is similar to the light emitting element 2 of the second embodiment of the present invention, but the light emitting element 4 of the fourth embodiment of the present invention is not provided with a carrier supply layer.

详细来说,本发明第四实施例的发光元件4为垂直式发光元件,包括第一电极100、第二电极200、设置于第一电极100与第二电极200之间的发光层300、设置于第一电极100与发光层300之间的第一子半导体层410、设置于第一电极100与第一子半导体层410之间的第二子半导体层420、设置于第一电极100与第二子半导体层420之间的电流扩散层440、以及设置于第二电极200与发光层300之间的第二型半导体层500。In detail, the light-emitting element 4 of the fourth embodiment of the present invention is a vertical light-emitting element, including a first electrode 100, a second electrode 200, a light-emitting layer 300 disposed between the first electrode 100 and the second electrode 200, and a The first sub-semiconductor layer 410 between the first electrode 100 and the light emitting layer 300, the second sub-semiconductor layer 420 disposed between the first electrode 100 and the first sub-semiconductor layer 410, the second sub-semiconductor layer 420 disposed between the first electrode 100 and the second The current diffusion layer 440 between the two sub-semiconductor layers 420 , and the second-type semiconductor layer 500 disposed between the second electrode 200 and the light emitting layer 300 .

接下来说明本发明第五实施例的发光元件5,请参照图8。图8为本发明第五实施例的发光元件的剖面示意图。本发明第五实施例的发光元件5相似于本发明第二实施例的发光元件2,但本发明第四实施例的发光元件4未设置第二子半导体层。Next, the light emitting element 5 of the fifth embodiment of the present invention will be described, please refer to FIG. 8 . FIG. 8 is a schematic cross-sectional view of a light emitting element according to a fifth embodiment of the present invention. The light emitting element 5 of the fifth embodiment of the present invention is similar to the light emitting element 2 of the second embodiment of the present invention, but the light emitting element 4 of the fourth embodiment of the present invention does not have a second sub-semiconductor layer.

详细来说,本发明第五实施例的发光元件5为垂直式发光元件,包括第一电极100、第二电极200、设置于第一电极100与第二电极200之间的发光层300、设置于第一电极100与发光层300之间的第一子半导体层410、设置于发光层300与第一子半导体层410之间的载子提供层430、设置于第一电极100与第一子半导体层410之间的电流扩散层440、以及设置于第二电极200与发光层300之间的第二型半导体层500。In detail, the light-emitting element 5 of the fifth embodiment of the present invention is a vertical light-emitting element, including a first electrode 100, a second electrode 200, a light-emitting layer 300 disposed between the first electrode 100 and the second electrode 200, a set The first sub-semiconductor layer 410 between the first electrode 100 and the light-emitting layer 300, the carrier supply layer 430 disposed between the light-emitting layer 300 and the first sub-semiconductor layer 410, the carrier supply layer 430 disposed between the first electrode 100 and the first sub-semiconductor layer The current diffusion layer 440 between the semiconductor layers 410 , and the second-type semiconductor layer 500 disposed between the second electrode 200 and the light emitting layer 300 .

接下来说明本发明第六实施例的发光元件6,请参照图9。图9为本发明第六实施例的发光元件的剖面示意图。本发明第六实施例的发光元件6相似于本发明第二实施例的发光元件2。Next, the light emitting element 6 of the sixth embodiment of the present invention will be described, please refer to FIG. 9 . FIG. 9 is a schematic cross-sectional view of a light emitting element according to a sixth embodiment of the present invention. The light emitting element 6 of the sixth embodiment of the present invention is similar to the light emitting element 2 of the second embodiment of the present invention.

详细来说,本发明第六实施例的发光元件6为水平式发光元件,包括电流扩散层440、第二型半导体层500、设置于电流扩散层440与第二型半导体层500之间的发光层300、设置于电流扩散层440与发光层300之间的第一子半导体层410、设置于电流扩散层440与第一子半导体层之间的第二子半导体层420、设置于发光层300与第一子半导体层410之间的载子提供层430、连接电流扩散层440的第一电极100、以及连接第二型半导体层500的第二电极200。第一电极100与第二子半导体层420设置于电流扩散层440的同一侧。进一步来说,第二子半导体层420设置并覆盖于电流扩散层440朝向发光层300的一部分表面,第一电极100设置并覆盖于电流扩散层440朝向发光层300的另一部分表面。In detail, the light-emitting element 6 of the sixth embodiment of the present invention is a horizontal light-emitting element, including a current spreading layer 440 , a second-type semiconductor layer 500 , and a light-emitting diode disposed between the current spreading layer 440 and the second-type semiconductor layer 500 . Layer 300, the first sub-semiconductor layer 410 disposed between the current diffusion layer 440 and the light-emitting layer 300, the second sub-semiconductor layer 420 disposed between the current diffusion layer 440 and the first sub-semiconductor layer, and the light-emitting layer 300 The carrier supply layer 430 between the first sub-semiconductor layer 410 , the first electrode 100 connected to the current diffusion layer 440 , and the second electrode 200 connected to the second-type semiconductor layer 500 . The first electrode 100 and the second sub-semiconductor layer 420 are disposed on the same side of the current diffusion layer 440 . Further, the second sub-semiconductor layer 420 is disposed on and covers a part of the surface of the current diffusion layer 440 facing the light-emitting layer 300 , and the first electrode 100 is disposed on and covers another part of the surface of the current diffusion layer 440 facing the light-emitting layer 300 .

接下来说明本发明第七实施例的发光元件7,请参照图10。图10为本发明第七实施例的发光元件的剖面示意图。本发明第七实施例的发光元件7相似于本发明第二实施例的发光元件2。Next, the light-emitting element 7 of the seventh embodiment of the present invention will be described, please refer to FIG. 10 . FIG. 10 is a schematic cross-sectional view of a light emitting element according to a seventh embodiment of the present invention. The light emitting element 7 of the seventh embodiment of the present invention is similar to the light emitting element 2 of the second embodiment of the present invention.

发光元件包括电流扩散层440、第二型半导体层500、设置于电流扩散层440与第二型半导体层500之间的发光层300、设置于电流扩散层440与发光层300之间的第一子半导体层410、设置于电流扩散层440与第一子半导体层之间的第二子半导体层420、设置于发光层300与第一子半导体层410之间的载子提供层430、连接电流扩散层440的第一电极100、以及连接第二型半导体层500的第二电极200。第一电极100与第二子半导体层420设置于电流扩散层440的同一侧。The light emitting element includes a current spreading layer 440 , a second type semiconductor layer 500 , a light emitting layer 300 disposed between the current spreading layer 440 and the second type semiconductor layer 500 , a first light emitting layer disposed between the current spreading layer 440 and the light emitting layer 300 The sub-semiconductor layer 410, the second sub-semiconductor layer 420 disposed between the current diffusion layer 440 and the first sub-semiconductor layer, the carrier supply layer 430 disposed between the light-emitting layer 300 and the first sub-semiconductor layer 410, the connection current The first electrode 100 of the diffusion layer 440 and the second electrode 200 connected to the second-type semiconductor layer 500 . The first electrode 100 and the second sub-semiconductor layer 420 are disposed on the same side of the current diffusion layer 440 .

详细来说,磊晶结构具有贯穿第二子半导体层420、第一子半导体层410、载子提供层430、发光层300与第二型半导体层500的一贯孔A,且电流扩散层440暴露于贯孔A中。一绝缘层B设置于贯孔A的侧壁面。绝缘层B的材料例如为介电质薄膜或高分子材料。举例来说,绝缘层B的材料例如为氧化铝(Al2O3)、氧化硅(SiO2)或氮化硅(Si3N4)及上述材料的组合。特别说明的是,绝缘层B的材料的杨氏系数小于磊晶结构、第一电极100及第二电极200上述任一的杨氏系数,因此在后续接合发光元件7到一应用装置(未绘示,例如是显示背板)时可通过形变度较大的绝缘材料做为接合时的缓冲。第一电极100设置并电性连接于暴露在贯孔A中的电流扩散层440,且第一电极100贯穿第二子半导体层420、第一子半导体层410、载子提供层430、发光层300与第二型半导体层500。第一电极100通过绝缘层B电性绝缘于第二子半导体层420、第一子半导体层410、载子提供层430、发光层300与第二型半导体层500。In detail, the epitaxial structure has a through hole A penetrating through the second sub-semiconductor layer 420, the first sub-semiconductor layer 410, the carrier supply layer 430, the light-emitting layer 300 and the second-type semiconductor layer 500, and the current diffusion layer 440 is exposed in the through hole A. An insulating layer B is disposed on the side wall of the through hole A. The material of the insulating layer B is, for example, a dielectric film or a polymer material. For example, the material of the insulating layer B is aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), or silicon nitride (Si 3 N 4 ), and combinations thereof. In particular, the Young's modulus of the material of the insulating layer B is smaller than any of the above-mentioned Young's modulus of the epitaxial structure, the first electrode 100, and the second electrode 200, so the subsequent bonding of the light-emitting element 7 to an application device (not shown For example, when it is a display backplane), an insulating material with a large degree of deformation can be used as a buffer during bonding. The first electrode 100 is disposed and electrically connected to the current diffusion layer 440 exposed in the through hole A, and the first electrode 100 penetrates the second sub-semiconductor layer 420, the first sub-semiconductor layer 410, the carrier supply layer 430, and the light emitting layer. 300 and the second type semiconductor layer 500. The first electrode 100 is electrically insulated from the second sub-semiconductor layer 420 , the first sub-semiconductor layer 410 , the carrier supply layer 430 , the light emitting layer 300 and the second-type semiconductor layer 500 through the insulating layer B.

综上所述,本发明的发光元件通过高掺杂部的掺杂浓度与低掺杂部的掺杂浓度差异大,使得低掺杂部累积的应力小于高掺杂部,进而使第一型半导体层中累积的应力在低掺杂部得到缓冲与释放,避免大量的应力继续累积到发光层中。如此一来,发光层因应力累积而产生的缺陷减少,发光层的发光均匀性、发光强度与崩溃电压得到提高,漏电流情况改善,使得发光元件整体的电性表现与可靠度均得到提升。In summary, the light-emitting element of the present invention has a large difference between the doping concentration of the high-doped part and the doping concentration of the low-doped part, so that the accumulated stress of the low-doped part is smaller than that of the high-doped part, and thus the first type The stress accumulated in the semiconductor layer is buffered and released in the low-doped portion, preventing a large amount of stress from continuing to accumulate in the light-emitting layer. In this way, defects in the luminescent layer due to stress accumulation are reduced, luminous uniformity, luminous intensity, and breakdown voltage of the luminescent layer are improved, leakage current is improved, and the overall electrical performance and reliability of the luminescent element are improved.

当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Of course, the present invention can also have other various embodiments, and those skilled in the art can make various corresponding changes and deformations according to the present invention without departing from the spirit and essence of the present invention, but these corresponding Changes and deformations should belong to the scope of protection of the appended claims of the present invention.

Claims (22)

1.一种发光元件,包含:1. A light-emitting element, comprising: 一磊晶结构,包含:An epitaxial structure, comprising: 一第一型半导体层,包含一第一子半导体层;A first-type semiconductor layer, including a first sub-semiconductor layer; 一第二型半导体层;以及a second type semiconductor layer; and 一发光层,设置于该第一型半导体层与该第二型半导体层之间;a light-emitting layer disposed between the first-type semiconductor layer and the second-type semiconductor layer; 其中,该第一子半导体层具有掺杂一第一型掺杂物的一高掺杂部与一低掺杂部,该高掺杂部的该第一型掺杂物的掺杂浓度大于1017原子数/立方厘米且小于等于1018原子数/立方厘米,该低掺杂部的该第一型掺杂物的掺杂浓度小于等于1017原子数/立方厘米。Wherein, the first sub-semiconductor layer has a high-doped portion and a low-doped portion doped with a first-type dopant, and the doping concentration of the first-type dopant in the high-doped portion is greater than 10 17 atoms/cubic centimeter and less than or equal to 10 18 atoms/cubic centimeter, the doping concentration of the first-type dopant in the low-doped portion is less than or equal to 10 17 atoms/cubic centimeter. 2.根据权利要求1所述的发光元件,其特征在于,该高掺杂部的该第一型掺杂物的掺杂浓度与该低掺杂部的该第一型掺杂物的掺杂浓度的比值大于10。2. The light-emitting element according to claim 1, wherein the doping concentration of the first type dopant in the highly doped portion is the same as the doping concentration of the first type dopant in the low doped portion The ratio of concentrations is greater than 10. 3.根据权利要求1所述的发光元件,其特征在于,该第一子半导体层为一单层半导体层。3. The light-emitting device according to claim 1, wherein the first sub-semiconductor layer is a single-layer semiconductor layer. 4.根据权利要求1所述的发光元件,其特征在于,该第一子半导体层的厚度为50纳米至250纳米。4. The light emitting element according to claim 1, wherein the thickness of the first sub-semiconductor layer is 50 nm to 250 nm. 5.根据权利要求4所述的发光元件,其特征在于,该低掺杂部的厚度占该第一子半导体层的厚度的10%至95%。5 . The light-emitting device according to claim 4 , wherein the thickness of the low-doped portion accounts for 10% to 95% of the thickness of the first sub-semiconductor layer. 6.根据权利要求5所述的发光元件,其特征在于,该低掺杂部的厚度占该第一子半导体层的厚度的60%至95%。6 . The light-emitting device according to claim 5 , wherein the thickness of the low-doped portion accounts for 60% to 95% of the thickness of the first sub-semiconductor layer. 7.根据权利要求1所述的发光元件,其特征在于,该第一子半导体层的材料为三元半导体材料。7. The light emitting element according to claim 1, wherein the material of the first sub-semiconductor layer is a ternary semiconductor material. 8.根据权利要求7所述的发光元件,其特征在于,该三元半导体材料为氮化铟镓InGaN。8. The light emitting element according to claim 7, wherein the ternary semiconductor material is InGaN. 9.根据权利要求1所述的发光元件,其特征在于,该第一型半导体层进一步包含一第二子半导体层,该第一子半导体层设置于该发光层与该第二子半导体层之间,该第二子半导体层中的一第一型掺杂物的掺杂浓度大于该高掺杂部的该第一型掺杂物的掺杂浓度。9. The light-emitting element according to claim 1, wherein the first-type semiconductor layer further comprises a second sub-semiconductor layer, and the first sub-semiconductor layer is disposed between the light-emitting layer and the second sub-semiconductor layer During this period, the doping concentration of a first-type dopant in the second sub-semiconductor layer is greater than the doping concentration of the first-type dopant in the highly doped portion. 10.根据权利要求9所述的发光元件,其特征在于,该第二子半导体层的该第一型掺杂物的掺杂浓度大于1018原子数/立方厘米且小于等于1020原子数/立方厘米。10. The light-emitting element according to claim 9, wherein the doping concentration of the first-type dopant in the second sub-semiconductor layer is greater than 10 18 atoms/cm3 and less than or equal to 10 20 atoms/cm cubic centimeters. 11.根据权利要求9所述的发光元件,其特征在于,该第二子半导体层的厚度为50纳米至100纳米。11. The light emitting element according to claim 9, wherein the second sub-semiconductor layer has a thickness of 50 nm to 100 nm. 12.根据权利要求9所述的发光元件,其特征在于,该第二子半导体层的材料为AlrInsGa1-r-sN,r≧0,s≧0且1≧r+s≧0。12. The light-emitting element according to claim 9, wherein the material of the second sub-semiconductor layer is Al r Ins Ga 1-rs N , r≧0, s≧0 and 1≧r+s≧0 . 13.根据权利要求12所述的发光元件,其特征在于,该第二子半导体层的材料为氮化镓GaN。13. The light-emitting element according to claim 12, wherein the material of the second sub-semiconductor layer is gallium nitride (GaN). 14.根据权利要求1所述的发光元件,其特征在于,该第一型半导体层进一步包含一载子提供层,设置于该第一子半导体层与该发光层之间,该载子提供层中的一第一型掺杂物的掺杂浓度大于该高掺杂部的该第一型掺杂物的掺杂浓度。14. The light-emitting element according to claim 1, wherein the first-type semiconductor layer further comprises a carrier supply layer disposed between the first sub-semiconductor layer and the light-emitting layer, the carrier supply layer A doping concentration of a first-type dopant in the highly doped portion is greater than a doping concentration of the first-type dopant in the highly doped portion. 15.根据权利要求14所述的发光元件,其特征在于,该载子提供层的该第一型掺杂物的掺杂浓度大于1018原子数/立方厘米且小于等于1020原子数/立方厘米。15. The light-emitting element according to claim 14, wherein the doping concentration of the first-type dopant in the carrier supply layer is greater than 10 18 atoms/cm3 and less than or equal to 10 20 atoms/cubic centimeter. 16.根据权利要求14所述的发光元件,其特征在于,该载子提供层的厚度为10纳米至30纳米。16. The light emitting element according to claim 14, wherein the thickness of the carrier supply layer is 10 nm to 30 nm. 17.根据权利要求14所述的发光元件,其特征在于,该载子提供层的材料为AlrInsGa1-r- sN,r≧0,s≧0且1≧r+s≧0。17. The light-emitting element according to claim 14, characterized in that, the material of the carrier supply layer is Al r In s Ga 1-r- s N, r≧0, s≧0 and 1≧r+s≧ 0. 18.根据权利要求17所述的发光元件,其特征在于,该载子提供层的材料为氮化镓GaN。18. The light-emitting element according to claim 17, wherein the carrier supply layer is made of gallium nitride (GaN). 19.根据权利要求14所述的发光元件,其特征在于,该载子提供层中进一步包含一第二型掺杂物,其中该第一型掺杂物为N型掺杂物,且该第二型掺杂物为P型掺杂物,且该第一型掺杂物的掺杂浓度大于该第二型掺杂物的掺杂浓度。19. The light-emitting element according to claim 14, wherein the carrier supply layer further comprises a second-type dopant, wherein the first-type dopant is an N-type dopant, and the second-type dopant The second-type dopant is a P-type dopant, and the doping concentration of the first-type dopant is greater than that of the second-type dopant. 20.根据权利要求1所述的发光元件,其特征在于,进一步包含:20. The light-emitting element according to claim 1, further comprising: 一第一电极;以及a first electrode; and 一第二电极;a second electrode; 其中该磊晶结构设置于该第一电极与该第二电极之间,该第一型半导体层设置于该发光层与该第一电极之间,该第一型半导体层进一步包含一电流扩散层,该电流扩散层设置于该第一子半导体层与该第一电极之间。Wherein the epitaxial structure is disposed between the first electrode and the second electrode, the first type semiconductor layer is disposed between the light emitting layer and the first electrode, and the first type semiconductor layer further includes a current diffusion layer , the current spreading layer is disposed between the first sub-semiconductor layer and the first electrode. 21.根据权利要求1~20中任一权利要求所述的发光元件,其特征在于,该第一型掺杂物均为N型掺杂物。21. The light-emitting device according to any one of claims 1-20, wherein the first-type dopants are all N-type dopants. 22.根据权利要求1~20中任一权利要求所述的发光元件,其特征在于,该磊晶结构的厚度小于等于6微米。22. The light-emitting element according to any one of claims 1-20, wherein the thickness of the epitaxial structure is less than or equal to 6 micrometers.
CN201710403960.6A 2017-06-01 2017-06-01 Light emitting element Active CN108987543B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710403960.6A CN108987543B (en) 2017-06-01 2017-06-01 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710403960.6A CN108987543B (en) 2017-06-01 2017-06-01 Light emitting element

Publications (2)

Publication Number Publication Date
CN108987543A true CN108987543A (en) 2018-12-11
CN108987543B CN108987543B (en) 2019-12-17

Family

ID=64501070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710403960.6A Active CN108987543B (en) 2017-06-01 2017-06-01 Light emitting element

Country Status (1)

Country Link
CN (1) CN108987543B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950375A (en) * 2019-01-31 2019-06-28 华灿光电(浙江)有限公司 LED epitaxial slice and its growing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185062A (en) * 2011-04-08 2011-09-14 中山大学 III-group nitride light-emitting diode (LED) and manufacturing method thereof
CN105470358A (en) * 2016-01-29 2016-04-06 安徽三安光电有限公司 Light emitting diode element and production method thereof
CN106409998A (en) * 2016-11-04 2017-02-15 东莞市联洲知识产权运营管理有限公司 A kind of LED epitaxial wafer with high antistatic ability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185062A (en) * 2011-04-08 2011-09-14 中山大学 III-group nitride light-emitting diode (LED) and manufacturing method thereof
CN105470358A (en) * 2016-01-29 2016-04-06 安徽三安光电有限公司 Light emitting diode element and production method thereof
CN106409998A (en) * 2016-11-04 2017-02-15 东莞市联洲知识产权运营管理有限公司 A kind of LED epitaxial wafer with high antistatic ability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950375A (en) * 2019-01-31 2019-06-28 华灿光电(浙江)有限公司 LED epitaxial slice and its growing method

Also Published As

Publication number Publication date
CN108987543B (en) 2019-12-17

Similar Documents

Publication Publication Date Title
KR101007087B1 (en) Light emitting device and fabrication method thereof
JP4014557B2 (en) Light emitting diode with dual dopant contact layer
US8823047B2 (en) Semiconductor light emitting device including first conductive type clad layer
CN101916804A (en) Nitride-based semiconductor light-emitting diodes
US20120007048A1 (en) III-Nitride Based Semiconductor Structure with Multiple Conductive Tunneling Layer
US11817528B2 (en) Nitride-based light-emitting diode device
CN114447167A (en) Semiconductor device with a plurality of semiconductor chips
CN112635626B (en) A semiconductor epitaxial structure and its manufacturing method, and LED chip
CN106415860B (en) Nitride semiconductor light emitting device
JP2025501297A (en) Light emitting diode epitaxial structure and light emitting diode
US20220328722A1 (en) Nitride-based light emitting diode
CN104993028B (en) A kind of LED epitaxial slice
KR100770440B1 (en) Nitride Semiconductor Light Emitting Device
TWI626766B (en) Light-emitting element
CN108987543B (en) Light emitting element
CN105742442B (en) The manufacturing method of nitride-based semiconductor ultraviolet ray emitting element
CN101859839A (en) LED chip
KR100647018B1 (en) Nitride semiconductor light emitting device
TWI803785B (en) Light emitting element and manufacturing method thereof
CN115692557A (en) Semiconductor device with a plurality of semiconductor chips
KR102000271B1 (en) PREPARING METHOD OF GaN TYPE LIGHT EMITTING DIODE AND GaN TYPE LIGHT EMITTING DIODE PREPARED THEREFROM
CN101859841A (en) Light emitting diode
CN217239489U (en) Light emitting diode chip
US20240178326A1 (en) Semiconductor structure and manufacturing method thereof
CN1956230B (en) LED chip

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240515

Address after: 8th Floor, No.13 Kezhong Road, Zhunan Town, Miaoli County, Hsinchu Science Park, Taiwan, China, China

Patentee after: PlayNitride Inc.

Country or region after: TaiWan, China

Address before: 7th Floor, No. 615, Section 2, Datong Road, East District, Tainan City, Taiwan, China, China

Patentee before: BRITISH CAYMAN ISLANDS SHANGNACHUANG TECHNOLOGY Co.,Ltd.

Country or region before: Cayman Islands