[go: up one dir, main page]

CN108926813B - 基于人体平衡数据的训练方法 - Google Patents

基于人体平衡数据的训练方法 Download PDF

Info

Publication number
CN108926813B
CN108926813B CN201710362929.2A CN201710362929A CN108926813B CN 108926813 B CN108926813 B CN 108926813B CN 201710362929 A CN201710362929 A CN 201710362929A CN 108926813 B CN108926813 B CN 108926813B
Authority
CN
China
Prior art keywords
balance
human body
time
training
training method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710362929.2A
Other languages
English (en)
Other versions
CN108926813A (zh
Inventor
安健
黄一宁
张珏
方竞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201710362929.2A priority Critical patent/CN108926813B/zh
Publication of CN108926813A publication Critical patent/CN108926813A/zh
Application granted granted Critical
Publication of CN108926813B publication Critical patent/CN108926813B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B26/00Exercising apparatus not covered by groups A63B1/00 - A63B25/00
    • A63B26/003Exercising apparatus not covered by groups A63B1/00 - A63B25/00 for improving balance or equilibrium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0625Emitting sound, noise or music
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • A63B2220/34Angular speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/62Measuring physiological parameters of the user posture

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Geometry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了基于人体平衡数据的训练方法,属于康复训练方法领域。该训练方法首先是对个体在预设的八种交互式姿态平衡任务下进行实时数据采集,然后对采集的数据利用非线性动力学方法分析,得出个体的整体平衡功能以及个体的肢体协调能力的定量值,最后与数据库中的指标进行比对,得到人体的八种姿态保持平衡的最大角度和对应的最长时间,从而实现人体八种姿态平衡训练。本发明仅需要人体携带的智能手机就能完成平衡功能的评价以及相应的训练,且不受时间、空间限制,可以长期测试并训练人体的平衡功能。

Description

基于人体平衡数据的训练方法
技术领域
本发明涉及一种基于人体平衡数据的训练方法,属于康复训练方法领域。
背景技术
平衡是人体一项重要功能,在日常生活中平衡能力对于维持各种姿势、进行各种活动以及对外界干扰产生适宜的反应尤其重要。
目前对于平衡功能评价和训练的方法很多,其中,传统的主观观测法操作简单易行方便直观快捷,但过于粗略主观,缺乏客观量化标准,只能用于疑似有平衡功能障碍的患者的初步筛查。量表法易于量化,便于对照,但操作繁琐耗时,且受人为因素的影响,误差较高。压力平板测试操作简单快捷,但专业性强,费用较高,仅适宜研究运用。这些评估和测试导致平衡功能难以得到普通民众的足够关注,更无法科学有效地提高。所以一种便于大众随时快速有效地在常规环境下对自身平衡功能进行客观评价以及科学提高的方法亟待提出。
发明内容
为了解决目前缺乏人体平衡功能的训练方法,本发明提供了一种基于人体平衡数据的训练方法,可以随时随地为大众进行平衡功能评价,并给出训练实现方案。
本发明的技术方案如下:
一种基于人体平衡数据的训练方法,包括以下步骤:
1)人体在下身不动的情况下,上身向前、向后、向左、向右、向左前、向左后、向右前、向右后倾斜,利用加速度传感器和角速度传感器采集人体8组姿态的加速度和角速度信号的实时数据;
具体是采用手机内设的传感器采集人体在进行交互式姿态平衡任务下的加速度和角速度信号的实时数据。交互式姿态平衡任务共有8种,包括:在个体下身不动的情况下,上身向前、向后、向左、向右、向左前、向左后、向右前、向右后倾斜时;交互方式是通过手机语音和闪烁提示个体下一个需要完成的预设的姿态平衡任务,当前姿态平衡任务完成时手机发出提示音;采集时间为1分钟到15分钟,采样频率为100Hz到300Hz。
2)将人体8组姿态的实时数据通过延迟时间τ和嵌入维度E进行相空间重构,得到8组E维的时间序列Zi(i=1,2,...,E),进一步利用局部预测法将这8组时间序列两两进行相空间相互预测,预测的相似程度作为肢体协调能力的定量值;
3)对相空间重构得到的8组E维的时间序列Zi(i=1,2,...,E)进行多尺度熵分析,得到8个样本熵
Figure GDA0002257526350000021
其中
Figure GDA0002257526350000022
为原始加速度数据中相邻两个数据的最大差值;将归一化的样本熵加权就作为人体整体平衡功能定量值;
4)将上述肢体协调能力的定量值和人体整体平衡功能定量值分别与数据库的指标进行比对,得到人体的8种姿态保持平衡的最大角度和对应的最长时间;
5)满足人体每个姿态保持平衡的角度和对应的时间大于上述得到的最大角度和对应的最长时间,实现人体的8种姿态平衡训练。
其中,数据库中包含有十个等级的人群整体平衡能力和肢体协调能力数据集,每个等级中又从小到大分为1-4层;数据库中记录有个体在每个等级的每层的每个姿态任务下保持平衡的最大角度θijk(i=1,2,...8;j=1,2,...10;k=1,2,3,4)和对应的最长时间Tijk(i=1,2,...8;j=1,2,...10;k=1,2,3,4),其中i代表8个姿态任务、j代表十个等级、k代表四个层级。
通过人体在8种姿态任务下保持平衡的最大角度和对应的最长时间确定训练量,实现提高人体的平衡功能。其中,训练量为保持平衡的最大角度在θijk到θij(k+1)之间,对应的最长时间在Tijk到Tij(k+1)之间。
本发明具有以下优点:
本发明不受时间、空间限制,仅使用个体自身携带的智能手机,无需购买任何其他设备,就可以随时随地进行人体平衡功能的评估和训练,并提供长期的检测;本发明依据个体自身情况提供个性化的训练方案,能够科学有效地提高自身平衡功能。
附图说明
图1为本发明方法的流程示意图;
图2为本发明方法中个体的8种姿态任务示意图;
图3为本发明方法中平衡训练的流程图。
具体实施方式
以下通过具体实施例对本发明做进一步说明,以便更好地理解本发明,但本发明并不局限于此。
图1为本发明方法的流程示意图,主要分为采集数据、计算人体整体平衡功能定量值和肢体协调能力的定量值、数据库比对以及训练方案制定。整个系统可以利用贝叶斯估计构成闭环,不断提高个体平衡能力。
首先根据输入的姓名、性别、年龄、身高、体重以及病史等建立个体的基本档案。
在进行个体平衡功能评价时,利用智能手机内置的加速度和角速度传感器,对人体在预设的八种交互式姿态平衡任务下进行加速度和角速度信号的实时采集,采集时间为1分钟到15分钟,采样频率为100Hz到300Hz可调,并分为以下几个步骤:
(1)在手机应用程序界面上点击开始测试后,个体身体自然直立,双脚并拢,双臂于胸口处交叉,双手扶好手机将屏幕贴放在胸前;
(2)如图2所示,个体保持腰部以下身体不动,上身根据手机提示音,随机向前1、向后2、向左3、向右4、向左前5、向左后6、向右前7以及向右后8共八个方向倾斜,每一次倾斜后,听到手机发出提示音“哔”则恢复直立状态准备下一个动作;
(3)听到手机发出提示已完成测试后,从胸前拿下手机,点击保存数据。
将人体站立时预设的8个姿态平衡任务下采集得到的实时数据通过延迟时间τ和嵌入维度E进行相空间重构,得到8组E维的时间序列Zi(i=1,2,...,E),进一步利用局部预测法将这8组时间序列两两进行相空间相互预测,预测的相似程度作为肢体协调能力的定量值。对相空间重构得到的8组E维的时间序列Zi(i=1,2,...,E)进行多尺度熵分析,得到8个样本熵
Figure GDA0002257526350000031
其中
Figure GDA0002257526350000032
为原始加速度数据中相邻两个数据的最大差值;将归一化的样本熵加权就作为人体的整体平衡功能定量值,其中权重为各个姿态平衡任务下采集数据的8个最大李雅普诺夫指数
Figure GDA0002257526350000033
Figure GDA0002257526350000034
将计算得到的个体的整体平衡功能定量值和肢体协调能力定量值分别与数据库中的指标进行比对,得到人体在预设的八种姿态平衡任务下保持平衡的最大角度和对应的最长时间;其中,人体平衡功能和肢体协调能力数据库中包含有十个等级的整体平衡能力和肢体协调能力数据集,每个等级中又从小到大分为1-4层;人体平衡功能和肢体协调能力数据库中记录有每个等级的个体在每个姿态任务下保持平衡的最大角度θijk(i=1,2,...8;j=1,2,...10;k=1,2,3,4)和对应的最长时间Tijk(i=1,2,...8;j=1,2,...10;k=1,2,3,4),其中i、j、k分别代表八个姿态任务、十个等级、四个层级。
如图3所示,根据整体平衡功能进行的训练量选择,训练量参考上一次训练的最大角度θijk和保持平衡对应的最长时间Tijk,训练量每次增加一个层级,即两个等级差值的1/4。如上一次的训练量为(θijk,Tijk),则当次的训练量为[θijk+0.25(θi(j+1)kijk),Tijk+0.25(Ti(j+1)k-Tijk)],下一次的训练量为[θijk+0.50(θi(j+1)kijk),Tijk+0.50(Ti(j+1)k-Tijk)],直到训练量达到(θi(j+1)k,Ti(j+1)k),则重新进行个体的整体平衡功能和肢体协调能力评价,并更新训练方案。
根据个体的肢体协调功能不足的程度对姿态平衡的八种训练任务数量进行比例选择,设预设的八种交互式姿态平衡任务下的典型切斜角度θi之和为θsum
Figure GDA0002257526350000041
则每种交互式姿态平衡任务在下次训练中出现的比例为(θsumi)/θsum
虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (9)

1.一种基于人体平衡数据的训练方法,包括以下步骤:
1)人体在下身不动的情况下,上身向前、向后、向左、向右、向左前、向左后、向右前、向右后倾斜,利用加速度传感器和角速度传感器采集人体8组姿态的加速度和角速度信号的实时数据;
2)将人体8组姿态的实时数据通过延迟时间τ和嵌入维度E进行相空间重构,得到8组E维的时间序列Zi(i=1,2,...,E),进一步利用局部预测法将这8组时间序列两两进行相空间相互预测,预测的相似程度作为肢体协调能力的定量值;
3)对相空间重构得到的8组E维的时间序列Zi(i=1,2,...,E)进行多尺度熵分析,得到8个样本熵
Figure FDA0002257526340000011
其中
Figure FDA0002257526340000012
为原始加速度数据中相邻两个数据的最大差值;将归一化的样本熵加权就作为人体整体平衡功能定量值;
4)将上述肢体协调能力的定量值和人体整体平衡功能定量值分别与数据库的指标进行比对,得到人体的8种姿态保持平衡的最大角度和对应的最长时间;
5)满足人体每个姿态保持平衡的角度和对应的时间大于上述得到的最大角度和对应的最长时间,实现人体8种姿态平衡训练。
2.如权利要求1所述的训练方法,其特征在于,步骤1)包括:利用内设置加速度传感器和角速度传感器的手机采集实时数据。
3.如权利要求2所述的训练方法,其特征在于,采集步骤包括:
1)在手机应用程序界面上点击开始测试后,个体身体自然直立,双脚并拢,双臂于胸口处交叉,双手扶好手机将屏幕贴放在胸前;
2)个体保持腰部以下身体不动,上身根据手机提示音,随机向前1、向后2、向左3、向右4、向左前5、向左后6、向右前7以及向右后8共八个方向倾斜,每一次倾斜后,听到手机发出提示音“哔”则恢复直立状态准备下一个动作;
3)听到手机发出提示已完成测试后,从胸前拿下手机,点击保存数据。
4.如权利要求3所述的训练方法,其特征在于,每一次倾斜时间为1分钟到15分钟,采样频率为100Hz到300Hz。
5.如权利要求1所述的训练方法,其特征在于,步骤3)中权重为各个姿态平衡任务下采集数据的8个最大李雅普诺夫指数
Figure FDA0002257526340000013
6.如权利要求1所述的训练方法,其特征在于,步骤4)中数据库的指标包含有十个等级,每个等级中又从小到大分为1-4层。
7.如权利要求6所述的训练方法,其特征在于,每个等级的人体的每个姿态保持平衡的最大角度θijk(i=1,2,...8;j=1,2,...10;k=1,2,3,4)和对应的最长时间Tijk(i=1,2,...8;j=1,2,...10;k=1,2,3,4),其中i代表八个姿态任务、j代表十个等级、k代表四个层级。
8.如权利要求7所述的训练方法,其特征在于,人体在8种姿态任务下保持平衡的角度满足θijk到θij(k+1)之间,保持平衡的时间满足在Tijk到Tij(k+1)之间。
9.如权利要求7所述的训练方法,其特征在于,人体在姿态平衡任务下保持平衡的角度θi之和为θsum
Figure FDA0002257526340000021
每个姿态平衡任务在训练中出现的比例为(θsumi)/θsum
CN201710362929.2A 2017-05-22 2017-05-22 基于人体平衡数据的训练方法 Active CN108926813B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710362929.2A CN108926813B (zh) 2017-05-22 2017-05-22 基于人体平衡数据的训练方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710362929.2A CN108926813B (zh) 2017-05-22 2017-05-22 基于人体平衡数据的训练方法

Publications (2)

Publication Number Publication Date
CN108926813A CN108926813A (zh) 2018-12-04
CN108926813B true CN108926813B (zh) 2020-01-21

Family

ID=64450825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710362929.2A Active CN108926813B (zh) 2017-05-22 2017-05-22 基于人体平衡数据的训练方法

Country Status (1)

Country Link
CN (1) CN108926813B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114403858B (zh) * 2021-12-29 2023-10-03 杭州程天科技发展有限公司 一种人体运动功能评估方法、设备及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352207B2 (en) * 2012-01-19 2016-05-31 Nike, Inc. Action detection and activity classification
CN104524742A (zh) * 2015-01-05 2015-04-22 河海大学常州校区 一种基于Kinect传感器的脑瘫儿童康复训练方法
CN105031908B (zh) * 2015-07-16 2017-11-14 青岛大学 一种平衡矫正式训练装置
JP6384436B2 (ja) * 2015-09-11 2018-09-05 トヨタ自動車株式会社 バランス訓練装置及びその制御方法

Also Published As

Publication number Publication date
CN108926813A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
Muneer et al. Smart health monitoring system using IoT based smart fitness mirror
Jaques et al. Multimodal autoencoder: A deep learning approach to filling in missing sensor data and enabling better mood prediction
CN110516161A (zh) 一种推荐方法及装置
CN107767935A (zh) 基于人工智能的医学影像分类处理系统及方法
CN105808959A (zh) 一种运动检测系统、运动检测终端及云平台
CN115064246A (zh) 一种基于多模态信息融合的抑郁症评估系统及设备
Chen et al. Edge2Analysis: a novel AIoT platform for atrial fibrillation recognition and detection
CN111048209A (zh) 基于活体人脸识别的健康评估方法、装置及其存储介质
CN113171080A (zh) 一种基于可穿戴传感信息融合的能量代谢评估方法和系统
CN112768074A (zh) 一种基于人工智能的重疾风险预测方法及系统
CN109106384A (zh) 一种心理压力状况预测方法及系统
CN117854745A (zh) 一种智能健康管理系统、方法、设备及介质
CN116543455A (zh) 建立帕金森症步态受损评估模型、使用方法、设备及介质
CN110299207A (zh) 用于慢性病检测中的基于计算机预测模型数据处理方法
CN108926813B (zh) 基于人体平衡数据的训练方法
CN109363678B (zh) 基于经络能量平衡值的易发疾病预测系统
CN115554674A (zh) 一种运动能耗预测方法及装置
CN113506274B (zh) 基于视觉显著性差异图的用于人体认知状况的检测系统
KR102033063B1 (ko) 개인 히스토리 데이터 기반 맞춤형 건강 관리 시스템 및 방법
CN114974508A (zh) 一种运动处方的生成方法及装置、存储介质及电子设备
KR101274431B1 (ko) 설문 정보를 이용한 건강 상태 판단 장치 및 방법, 건강 분류 함수 생성 장치 및 그 방법
Mahmoud et al. ICF based automation system for spinal cord injuries rehabilitation
CN116013517A (zh) 基于iot评测数据量化老人身体健康分及康养的方法
CN110840459B (zh) 人体平衡能力获取方法及系统、计算机设备及介质
Doherty et al. Readiness, recovery, and strain: an evaluation of composite health scores in consumer wearables

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant