CN108873239A - Optical system - Google Patents
Optical system Download PDFInfo
- Publication number
- CN108873239A CN108873239A CN201810428101.7A CN201810428101A CN108873239A CN 108873239 A CN108873239 A CN 108873239A CN 201810428101 A CN201810428101 A CN 201810428101A CN 108873239 A CN108873239 A CN 108873239A
- Authority
- CN
- China
- Prior art keywords
- optical system
- component
- axis
- driving
- reflected light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 82
- 238000010586 diagram Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 7
- 101710114762 50S ribosomal protein L11, chloroplastic Proteins 0.000 description 5
- 101710115003 50S ribosomal protein L31, chloroplastic Proteins 0.000 description 5
- 101710082414 50S ribosomal protein L12, chloroplastic Proteins 0.000 description 4
- 101710164994 50S ribosomal protein L13, chloroplastic Proteins 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 241000353097 Molva molva Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/09—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
- G02B7/1821—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B13/00—Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
- G03B13/32—Means for focusing
- G03B13/34—Power focusing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B13/00—Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
- G03B13/32—Means for focusing
- G03B13/34—Power focusing
- G03B13/36—Autofocus systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B5/02—Lateral adjustment of lens
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B5/04—Vertical adjustment of lens; Rising fronts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
- H02K33/18—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Adjustment Of Camera Lenses (AREA)
- Studio Devices (AREA)
- Lens Barrels (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种光学系统,尤其涉及一种具有光学防手震功能的光学系统。The invention relates to an optical system, in particular to an optical system with an optical anti-shake function.
背景技术Background technique
随着科技的发展,现今许多电子装置(例如平板计算机或智能型手机)皆具有照相或录像的功能。通过长焦距镜头系统的设置,用户可以拍出不同效果的照片,使得具有长焦距的镜头系统的电子装置也逐渐受到大众的喜爱。With the development of technology, many electronic devices (such as tablet computers or smart phones) now have the function of taking photos or recording videos. By setting the lens system with a long focal length, users can take photos with different effects, so that electronic devices with a lens system with a long focal length are gradually popular among the public.
然而,当需要将焦距较长的镜头设置于前述电子装置中时,会造成电子装置厚度的增加,不利于电子装置的轻薄化。因此一般是在镜头系统中设置反射组件,通过反射方式将入射光导向镜头系统中的感测组件上。通过这样的配置,可以减少电子装置的厚度。然而,当电子装置受到晃动时,入射光抵达感测组件上的位置可能会偏移到一预定位置外,导致镜头系统所产生的成像不清楚。However, when a lens with a longer focal length needs to be disposed in the aforementioned electronic device, the thickness of the electronic device will increase, which is not conducive to the thinning of the electronic device. Therefore, a reflective component is generally provided in the lens system to guide the incident light to the sensing component in the lens system through reflection. With such a configuration, the thickness of the electronic device can be reduced. However, when the electronic device is shaken, the position where the incident light reaches the sensing component may deviate from a predetermined position, resulting in unclear imaging produced by the lens system.
因此,如何通过镜头系统内的结构设计来避免镜头系统受到晃动时产生模糊图像的问题,便是现今值得探讨与解决的课题。Therefore, how to avoid the problem of blurred images when the lens system is shaken through the structural design of the lens system is a topic worth exploring and solving.
发明内容Contents of the invention
有鉴于此,本发明提出一种具有多个驱动组件的光学系统,以解决上述的问题。In view of this, the present invention proposes an optical system with multiple driving components to solve the above problems.
本发明的实施例公开了一种光学系统,包括一感光组件、至少一光学镜片、一反射单元以及一第一驱动组件。反射单元具有一反射面,配置以接收一入射光幷反射出一反射光,反射光经由光学镜片射入感光组件。第一驱动组件是配置以控制反射单元沿着一第一轴向移动,借以调整反射光于感光组件上的一聚焦位置。The embodiment of the invention discloses an optical system, which includes a photosensitive component, at least one optical lens, a reflection unit and a first driving component. The reflective unit has a reflective surface configured to receive an incident light and reflect a reflected light, and the reflected light enters the photosensitive component through the optical lens. The first driving component is configured to control the reflection unit to move along a first axis, so as to adjust a focus position of reflected light on the photosensitive component.
根据本发明一些实施例,反射单元以及光学镜片沿着一第一方向排列,入射光沿着一第二方向射入反射单元,幷且一第三方向垂直于第一方向与第二方向,其中第一轴向不平行于第三方向。根据本发明一些实施例,第一方向实质上垂直于感光组件的一感光面。According to some embodiments of the present invention, the reflection unit and the optical lens are arranged along a first direction, the incident light enters the reflection unit along a second direction, and a third direction is perpendicular to the first direction and the second direction, wherein The first axis is not parallel to the third direction. According to some embodiments of the present invention, the first direction is substantially perpendicular to a photosensitive surface of the photosensitive element.
根据本发明一些实施例,反射面具有一圆弧结构。根据本发明一些实施例,圆弧结构的中心对应入射光的中心。根据本发明一些实施例,反射面具有一半径,半径大致为100至1000mm之间。根据本发明一些实施例,反射面还具有一平面,且圆弧结构围绕平面。根据本发明一些实施例,圆弧结构为一凸面结构或一凹面结构。According to some embodiments of the present invention, the reflective surface has an arc structure. According to some embodiments of the present invention, the center of the arc structure corresponds to the center of the incident light. According to some embodiments of the present invention, the reflective surface has a radius, and the radius is approximately between 100 mm and 1000 mm. According to some embodiments of the present invention, the reflective surface further has a plane, and the arc structure surrounds the plane. According to some embodiments of the present invention, the arc structure is a convex structure or a concave structure.
根据本发明一些实施例,光学系统还包含一第二驱动组件,配置以驱动反射单元绕一第二轴向转动。根据本发明一些实施例,光学系统还包含一第三驱动组件,配置以驱动反射单元绕一第三轴向转动。According to some embodiments of the present invention, the optical system further includes a second driving component configured to drive the reflection unit to rotate around a second axis. According to some embodiments of the present invention, the optical system further includes a third driving component configured to drive the reflection unit to rotate around a third axis.
本发明提供一种具有长焦距的光学系统,安装于电子装置中用以提取图像。光学系统可具有一镜片模块、一反射模块、一感光组件以及多个驱动组件。其中,反射模块包含一反射单元,反射单元可以将外部光线反射至镜片模块,接着再传送至感光组件以产生数字图像。值得注意的是,当光学系统受到晃动时,多个驱动组件可以控制反射单元沿着一第一轴向移动、绕第二轴向及/或绕第三轴向旋转,以调整反射光在感光组件上的聚焦位置,借以达到光学防手震的目的,幷且能提高感光组件的图像质量。The present invention provides an optical system with a long focal length installed in an electronic device for capturing images. The optical system can have a lens module, a reflection module, a photosensitive component and a plurality of driving components. Wherein, the reflection module includes a reflection unit, which can reflect the external light to the lens module, and then transmit it to the photosensitive component to generate a digital image. It is worth noting that when the optical system is shaken, multiple driving components can control the reflective unit to move along a first axis, rotate around a second axis and/or rotate around a third axis, so as to adjust the reflected light in the photosensitive The focus position on the component can achieve the purpose of optical anti-shake, and can improve the image quality of the photosensitive component.
在某些实施例中,反射单元的一反射面为平面,幷且多个所述驱动组件可仅控制反射单元沿着第一轴向移动,便可达到补偿聚焦位置的目的。另外,在某些实施例中,反射单元的反射面可进一步包含一圆弧结构。基于圆弧结构的设计,可以进一步使反射面的周围所反射到感光组件上的光的聚焦位置更精确。In some embodiments, a reflective surface of the reflective unit is a plane, and the plurality of driving components can only control the reflective unit to move along the first axis, so as to achieve the purpose of compensating the focus position. In addition, in some embodiments, the reflective surface of the reflective unit may further include an arc structure. Based on the design of the arc structure, the focus position of the light reflected on the photosensitive component around the reflective surface can be further made more precise.
本发明中额外的功能及优点将会在后面说明中公开,且部分可由后述说明书中清楚了解,或是可由所公开的原则经由练习而学得。本发明的功能及优点可由后述权利要求中所特别指出的仪器或装置的组合而实现及获得。本发明的这些及其他特点会由后述的说明书及权利要求而变得更清楚或是可由本发明所公开的原则经由练习而学得。Additional functions and advantages of the present invention will be disclosed in the following description, and part of them can be clearly understood from the following description, or can be learned through practice from the disclosed principles. The functions and advantages of the invention may be realized and obtained by combinations of instruments or devices particularly pointed out in the appended claims. These and other features of the present invention will become more apparent from the following description and claims, or can be learned through practice from the principles disclosed in the present invention.
附图说明Description of drawings
图1为本发明一实施例的安装于一可携式电子装置上的一光学系统的示意图。FIG. 1 is a schematic diagram of an optical system installed on a portable electronic device according to an embodiment of the present invention.
图2为根据本发明图1的实施例的光学系统的立体示意图。FIG. 2 is a schematic perspective view of an optical system according to the embodiment of FIG. 1 of the present invention.
图3为本发明一实施例的反射模块的爆炸图。FIG. 3 is an exploded view of a reflection module according to an embodiment of the present invention.
图4为根据本发明一实施例的反射模块的部分结构示意图。FIG. 4 is a partial structural schematic diagram of a reflective module according to an embodiment of the present invention.
图5为根据本发明一实施例的反射模块于另一视角的立体示意图。FIG. 5 is a three-dimensional schematic diagram of a reflective module from another viewing angle according to an embodiment of the present invention.
图6为根据本发明一实施例的反射模块于另一视角的部分结构示意图。FIG. 6 is a partial structural diagram of a reflective module at another viewing angle according to an embodiment of the present invention.
图7A至图7C为本发明一实施例的光学系统于不同状态时的示意图。7A to 7C are schematic diagrams of an optical system in different states according to an embodiment of the present invention.
图8为根据本发明另一实施例的一反射单元的示意图。FIG. 8 is a schematic diagram of a reflection unit according to another embodiment of the present invention.
图9A至图9C为本发明另一实施例的一光学系统于不同状态时的示意图。9A to 9C are schematic diagrams of an optical system in different states according to another embodiment of the present invention.
图10为本发明另一实施例的反射单元的侧面示意图。FIG. 10 is a schematic side view of a reflection unit according to another embodiment of the present invention.
附图标记如下:The reference signs are as follows:
50 可携式电子装置50 portable electronic devices
52 开口52 openings
100、100A 光学系统100, 100A optical system
200 镜片模块200 lens modules
202 光学镜片202 optical lens
300 反射模块300 Reflection Module
302、302’ 反射单元302, 302' reflective unit
3021 反射面3021 reflective surface
3022 反射面3022 reflective surface
3023 反射面3023 reflective surface
302A 反射单元302A Reflective Unit
302B 反射单元302B reflective unit
304 外框架304 outer frame
3041 凸出部3041 Protrusion
306 第一弹性组件306 The first elastic component
3061 中央部分3061 central part
3062 侧边部分3062 side part
3063 侧边部分3063 side part
308 光学组件承载件308 Optical Assembly Carrier
310 承载座310 bearing seat
3101 第一壳体3101 First shell
3103 第二壳体3103 second housing
3105 中央凹槽3105 Central Groove
3107 侧壁3107 side wall
312 底座312 base
3121 延伸部3121 Extension
314 第二弹性组件314 Second elastic component
400 感光组件400 photosensitive components
402 感光面402 photosensitive surface
Ax 第二轴向Ax Second axis
Ay 第三轴向Ay third axis
C 中心位置C center position
C1 中心位置C1 center position
C2 侧边位置C2 side position
CL11 第一驱动线圈CL11 first drive coil
CL12 第一驱动线圈CL12 First drive coil
CL13 第一驱动线圈CL13 first drive coil
CL2 第二驱动线圈CL2 Second drive coil
CL31 第三驱动线圈CL31 third driving coil
CL32 第三驱动线圈CL32 third driving coil
CS 圆弧结构CS arc structure
DA1 第一驱动组件DA1 first drive assembly
DA2 第二驱动组件DA2 Second drive assembly
DA3 第三驱动组件DA3 third drive assembly
Fv 电磁驱动力Fv electromagnetic driving force
Fy 电磁驱动力Fy electromagnetic driving force
Fz 电磁驱动力Fz electromagnetic driving force
IL 入射光IL incident light
IL1 入射光IL1 incident light
IL2 入射光IL2 incident light
MG11 第一磁性组件MG11 first magnetic assembly
MG12 第一磁性组件MG12 first magnetic assembly
MG13 第一磁性组件MG13 first magnetic assembly
MG2 第二磁性组件MG2 second magnetic assembly
MG31 第三磁性组件MG31 third magnetic assembly
MG32 第三磁性组件MG32 third magnetic assembly
P1 第一位置P1 first position
P2 第二位置P2 second position
P3 第三位置P3 third position
PS 平面PS plane
RL 反射光RL reflected light
RL1 反射光RL1 reflected light
RL2 反射光RL2 reflected light
具体实施方式Detailed ways
为了让本公开实施例的目的、特征及优点能更明显易懂,下文特举实施例,幷配合所附图示做详细说明。其中,实施例中的各组件的配置为说明之用,幷非用以限制本公开实施例。且实施例中附图标号的部分重复,为了简化说明,幷非意指不同实施例之间的关联性。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附加附图的方向。因此,使用的方向用语是用来说明幷非用来限制本公开实施例。In order to make the purposes, features, and advantages of the embodiments of the present disclosure more comprehensible, the following specific embodiments are described in detail with accompanying drawings. Wherein, the configuration of each component in the embodiment is for illustration, and is not intended to limit the embodiment of the present disclosure. Moreover, some of the reference numerals in the embodiments are repeated, for the sake of simplicity of description, and do not imply the correlation between different embodiments. The directional terms mentioned in the following embodiments, such as: up, down, left, right, front or back, etc., are only directions referring to the attached drawings. Therefore, the directional terms are used to illustrate and not to limit the embodiments of the present disclosure.
此外,实施例中可能使用相对性的用语,例如“较低”或“底部”及“较高”或“顶部”,以描述图标的一个组件对于另一组件的相对关系。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“较低”侧的组件将会成为在“较高”侧的组件。In addition, relative terms such as "lower" or "bottom" and "higher" or "top" may be used in the embodiments to describe the relative relationship of one component of an icon to another component. It will be appreciated that if the illustrated device is turned over so that it is upside down, components described as being on the "lower" side would become components on the "higher" side.
在此,“约”、“大约”的用语通常表示在一给定值或范围的20%之内,较佳是10%之内,且更佳是5%之内。在此给定的数量为大约的数量,意即在没有特定说明的情况下,仍可隐含“约”、“大约”的含义。Here, the terms "about" and "approximately" usually mean within 20%, preferably within 10%, and more preferably within 5% of a given value or range. The quantities given here are approximate quantities, which means that the meanings of "about" and "approximately" can still be implied without specific instructions.
请参考图1,图1为本发明一实施例的安装于一可携式电子装置50上的一光学系统100的示意图。可携式电子装置50可为任何便携设备或手持装置,例如是数字个人助理(PDA)、智能型手机(smartphone)、平板计算机(tablet)、移动电话、行动上网装置(MobileInternet Device,MID)、笔记本电脑、车用计算机、数字相机、数字媒体播放器、游戏设备或任何类型的移动计算设备,然而,本领域技术人员应可理解本发明幷不限于此。于此实施例中,光学系统100可为一具有长焦距的镜头系统,可以提供给用户更好的拍摄效果,其中光线可经由开口52进入光学系统100内,以产生一或多个数字图像。Please refer to FIG. 1 , which is a schematic diagram of an optical system 100 installed on a portable electronic device 50 according to an embodiment of the present invention. The portable electronic device 50 can be any portable device or handheld device, such as a digital personal assistant (PDA), a smart phone (smartphone), a tablet computer (tablet), a mobile phone, a mobile Internet device (Mobile Internet Device, MID), Notebook computer, car computer, digital camera, digital media player, game device or any type of mobile computing device, however, those skilled in the art should understand that the present invention is not limited thereto. In this embodiment, the optical system 100 can be a lens system with a long focal length, which can provide users with better shooting effects, wherein light can enter the optical system 100 through the opening 52 to generate one or more digital images.
请参考图2,图2为根据本发明图1的实施例的光学系统100的立体示意图。如图2所示,光学系统100可包含一镜片模块200、一反射模块300以及一感光组件400。另外,光学系统100可还包含一壳体(图中未表示),设置于图1所示的可携式电子装置50中,幷且镜片模块200、反射模块300以及感光组件400是设置于所述壳体内。具体而言,镜片模块200、反射模块300与感光组件400是沿着一第一方向排列。举例来说,是沿着图2中的Y轴方向排列。再者,如图2所示,镜片模块200具有至少一光学镜片(例如一光学镜片202),幷且反射模块300具有一反射单元302(例如为一反射镜)。因此,反射单元302与光学镜片202同样是沿着第一方向排列(例如沿着Y轴方向)。Please refer to FIG. 2 . FIG. 2 is a schematic perspective view of the optical system 100 according to the embodiment of FIG. 1 of the present invention. As shown in FIG. 2 , the optical system 100 may include a lens module 200 , a reflection module 300 and a photosensitive component 400 . In addition, the optical system 100 may further include a casing (not shown in the figure), which is arranged in the portable electronic device 50 shown in FIG. inside the casing. Specifically, the lens module 200 , the reflection module 300 and the photosensitive element 400 are arranged along a first direction. For example, they are arranged along the Y-axis in FIG. 2 . Moreover, as shown in FIG. 2 , the lens module 200 has at least one optical lens (such as an optical lens 202 ), and the reflection module 300 has a reflection unit 302 (such as a reflector). Therefore, the reflective unit 302 is also arranged along the first direction (for example, along the Y-axis direction) as the optical lens 202 .
如图1与图2所示,一外部的入射光IL是可沿着一第二方向(例如沿着Z轴方向)穿过可携式电子装置50的开口52而进入壳体内幷射入反射单元302。其中,一第三方向(如X轴方向)是垂直于第一方向(Y轴方向)与第二方向(Z轴方向)。于此实施例中,反射单元302可具有一反射面3021,配置以接收沿第二方向(Z轴方向)入射的入射光IL,幷反射出一反射光RL,接着反射光RL沿第一方向(Y轴方向)射入至镜片模块200。于此实施例中,图2中的镜片模块200仅表示一光学镜片202,但不限于此实施例,例如镜片模块200可包含多个光学镜片于其内。当反射光RL射入镜片模块200时,镜片模块200的光学镜片202是配置以将反射光RL导向感光组件400,幷且感光组件400在接收反射光RL后会产生电子信号,以传输给可携式电子装置50的一处理器(图中未表示),进而可产生一数字图像。As shown in FIG. 1 and FIG. 2, an external incident light IL can pass through the opening 52 of the portable electronic device 50 along a second direction (for example, along the Z-axis direction) and enter the casing and enter the reflection. Unit 302. Wherein, a third direction (such as the X-axis direction) is perpendicular to the first direction (Y-axis direction) and the second direction (Z-axis direction). In this embodiment, the reflective unit 302 may have a reflective surface 3021 configured to receive the incident light IL incident along the second direction (Z-axis direction), and reflect a reflected light RL, and then the reflected light RL moves along the first direction (Y-axis direction) enters the lens module 200 . In this embodiment, the lens module 200 in FIG. 2 only represents an optical lens 202 , but it is not limited to this embodiment. For example, the lens module 200 may include a plurality of optical lenses therein. When the reflected light RL enters the lens module 200, the optical lens 202 of the lens module 200 is configured to guide the reflected light RL to the photosensitive component 400, and the photosensitive component 400 will generate an electronic signal after receiving the reflected light RL to be transmitted to the A processor (not shown) of the portable electronic device 50 can further generate a digital image.
另外,值得注意的是,如图2所示,感光组件400具有一感光面402,幷且前述第一方向是实质地垂直于感光面402。也就是说,反射光RL也实质地垂直于感光面402。In addition, it should be noted that, as shown in FIG. 2 , the photosensitive element 400 has a photosensitive surface 402 , and the aforementioned first direction is substantially perpendicular to the photosensitive surface 402 . That is to say, the reflected light RL is also substantially perpendicular to the photosensitive surface 402 .
请参考图3,图3为本发明一实施例的反射模块300的爆炸图。如图所示,反射模块300包含一反射单元302、一外框架304、一第一弹性组件306、一光学组件承载件308、一承载座310、一底座312、多个第二弹性组件314、一第一驱动组件DA1、一第二驱动组件DA2以及一第三驱动组件DA3。其中,当可携式电子装置50受到晃动时,第一驱动组件DA1、第二驱动组件DA2以及一第三驱动组件DA3可配置以驱使反射单元302移动或旋转,以使图2中的反射光RL可以稳定地反射到镜片模块200与感光组件400,以达到光学防手震(Optical ImageStabilization)的目的。再者,于此实施例中,第一弹性组件306可为一簧片,具有一中央部分3061、一侧边部分3062以及一侧边部分3063。中央部分3061是连接于侧边部分3062与侧边部分3063,幷且中央部分3061可相对于侧边部分3062与侧边部分3063旋转。Please refer to FIG. 3 , which is an exploded view of a reflection module 300 according to an embodiment of the present invention. As shown in the figure, the reflection module 300 includes a reflection unit 302, an outer frame 304, a first elastic component 306, an optical component carrier 308, a bearing seat 310, a base 312, a plurality of second elastic components 314, A first driving component DA1, a second driving component DA2 and a third driving component DA3. Wherein, when the portable electronic device 50 is shaken, the first driving unit DA1, the second driving unit DA2 and a third driving unit DA3 can be configured to drive the reflection unit 302 to move or rotate, so that the reflected light in FIG. The RL can be stably reflected to the lens module 200 and the photosensitive component 400 to achieve the purpose of optical image stabilization. Furthermore, in this embodiment, the first elastic component 306 can be a leaf spring, which has a central portion 3061 , a side portion 3062 and a side portion 3063 . The central part 3061 is connected to the side part 3062 and the side part 3063 , and the central part 3061 can rotate relative to the side part 3062 and the side part 3063 .
于此实施例中,承载座310包含一第一壳体3101以及一第二壳体3103,第一壳体3101是固定地连接于第二壳体3103,例如利用粘胶材料彼此固定。再者,第三驱动组件DA3可包含两个第三驱动线圈CL31以及CL32,设置于第一壳体3101与第二壳体3103之间。另外,如图3所示,第一壳体3101具有一中央凹槽3105以及两个侧壁3107,中央凹槽3105是形成于两个侧壁3107之间,幷且中央凹槽3105是配置以容置光学组件承载件308以及第二驱动组件DA2。In this embodiment, the bearing seat 310 includes a first shell 3101 and a second shell 3103 , the first shell 3101 is fixedly connected to the second shell 3103 , such as using adhesive material to fix each other. Furthermore, the third driving assembly DA3 may include two third driving coils CL31 and CL32 , which are disposed between the first casing 3101 and the second casing 3103 . In addition, as shown in FIG. 3, the first housing 3101 has a central groove 3105 and two side walls 3107, the central groove 3105 is formed between the two side walls 3107, and the central groove 3105 is configured to The optical assembly carrier 308 and the second driving assembly DA2 are accommodated.
请参考图3与图4,图4为根据本发明一实施例的反射模块300的部分结构示意图。于此实施例中,反射单元302为一光学反射镜,通过第一弹性组件306的中央部分3061固定地连接于光学组件承载件308上,幷且第一弹性组件306的侧边部分3062与侧边部分3063是分别固定地连接于第一壳体3101的两个侧壁3107上。因此,反射单元302与光学组件承载件308是通过第一弹性组件306悬吊于第一壳体3101的中央凹槽3105内。如图3所示,第三驱动组件DA3还包含一对第三磁性组件MG31与一对第三磁性组件MG32。两对第三磁性组件MG31与MG32是分别固定地设置于光学组件承载件308的相反两侧上。另外,第二驱动组件DA2可包含一第二驱动线圈CL2以及第二磁性组件MG2,第二驱动线圈CL2是设置于中央凹槽3105的一内壁面上,而第二磁性组件MG2是设置于光学组件承载件308上对应于第二驱动线圈CL2的位置。Please refer to FIG. 3 and FIG. 4 . FIG. 4 is a partial structural diagram of a reflection module 300 according to an embodiment of the present invention. In this embodiment, the reflecting unit 302 is an optical mirror, fixedly connected to the optical component carrier 308 through the central part 3061 of the first elastic component 306, and the side part 3062 of the first elastic component 306 is connected to the side The side portions 3063 are respectively fixedly connected to the two side walls 3107 of the first casing 3101 . Therefore, the reflection unit 302 and the optical component carrier 308 are suspended in the central groove 3105 of the first casing 3101 through the first elastic component 306 . As shown in FIG. 3 , the third driving assembly DA3 further includes a pair of third magnetic assemblies MG31 and a pair of third magnetic assemblies MG32 . Two pairs of third magnetic components MG31 and MG32 are respectively fixedly disposed on opposite sides of the optical component carrier 308 . In addition, the second driving component DA2 may include a second driving coil CL2 and a second magnetic component MG2, the second driving coil CL2 is disposed on an inner wall of the central groove 3105, and the second magnetic component MG2 is disposed on the optical The location on the component carrier 308 corresponds to the second driving coil CL2.
接着,于此实施例中,外框架304是套设于承载座310的第一壳体3101上,幷且外框架304可具有四个凸出部3041,沿着X轴方向凸出。于是,底座312可通过四个第二弹性组件314连接于外框架304的四个凸出部3041(如图2所示)。再者,如图3所示,第一驱动组件DA1可包含一第一磁性组件MG11、一第一磁性组件MG12、一第一磁性组件MG13、一第一驱动线圈CL11、一第一驱动线圈CL12以及一第一驱动线圈CL13。于此实施例中,如图3所示,第一磁性组件MG11是固定地设置于承载座310的第一壳体3101上幷面向底座312,幷且对应于第一磁性组件MG11的第一驱动线圈CL11是设置于底座312上。再者,第一磁性组件MG12与第一磁性组件MG13是固定地设置于第二壳体3103的两侧,幷且第一驱动线圈CL12与第一驱动线圈CL13是分别设置于底座312的两个延伸部3121上,面向相对应的第一磁性组件MG12与第一磁性组件MG13。Next, in this embodiment, the outer frame 304 is sleeved on the first housing 3101 of the bearing base 310 , and the outer frame 304 may have four protrusions 3041 protruding along the X-axis direction. Therefore, the base 312 can be connected to the four protrusions 3041 of the outer frame 304 through the four second elastic components 314 (as shown in FIG. 2 ). Moreover, as shown in FIG. 3, the first drive assembly DA1 may include a first magnetic assembly MG11, a first magnetic assembly MG12, a first magnetic assembly MG13, a first drive coil CL11, a first drive coil CL12 and a first driving coil CL13. In this embodiment, as shown in FIG. 3 , the first magnetic component MG11 is fixedly arranged on the first housing 3101 of the bearing seat 310 and faces the base 312, and corresponds to the first drive of the first magnetic component MG11. The coil CL11 is disposed on the base 312 . Moreover, the first magnetic assembly MG12 and the first magnetic assembly MG13 are fixedly disposed on both sides of the second housing 3103 , and the first driving coil CL12 and the first driving coil CL13 are respectively disposed on two sides of the base 312 . The extension part 3121 faces the corresponding first magnetic component MG12 and the first magnetic component MG13 .
如图2与图3所示,基于上述的结构配置,第一驱动组件DA1便可控制承载座310带动反射单元302沿着一第一轴向移动,以调整反射光RL在感光组件400上的聚焦位置。举例来说,第一驱动组件DA1可控制承载座310沿着第一轴向移动,例如沿着Y轴方向移动或沿着Z轴方向移动。但要注意的是,第一轴向不平行于前述第三方向(X轴方向)。另外,需要说明的是,第一驱动组件DA1、第二驱动组件DA2与第三驱动组件DA3中的磁性组件与驱动线圈的位置不限于此实施例。举例来说,磁性组件与驱动线圈的位置可以互换。再者,第一驱动组件DA1驱动承载座310移动的方式不限于此实施例,例如第一驱动组件DA1也可利用步进马达或压电驱动等方式实现。As shown in FIG. 2 and FIG. 3 , based on the above-mentioned structural configuration, the first driving assembly DA1 can control the carrying seat 310 to drive the reflection unit 302 to move along a first axis to adjust the intensity of the reflected light RL on the photosensitive assembly 400. focus position. For example, the first driving assembly DA1 can control the bearing base 310 to move along the first axis, such as to move along the Y-axis or along the Z-axis. However, it should be noted that the first axis is not parallel to the aforementioned third direction (X-axis direction). In addition, it should be noted that the positions of the magnetic components and the driving coils in the first driving component DA1 , the second driving component DA2 and the third driving component DA3 are not limited to this embodiment. For example, the positions of the magnetic assembly and the drive coil can be interchanged. Furthermore, the manner in which the first driving component DA1 drives the bearing seat 310 to move is not limited to this embodiment, for example, the first driving component DA1 can also be realized by means of a stepping motor or piezoelectric driving.
请参考图5,图5为根据本发明一实施例的反射模块300于另一视角的立体示意图。为了清楚表示第一驱动组件DA1,底座312是以虚线表示。于此实施例中,第一磁性组件MG11的磁极方向是沿着Y轴方向,举例来说,第一磁性组件MG11的N极的方向是朝向Y轴方向,而S极的方向是朝向-Y轴方向。当第一驱动线圈CL11通电时,第一驱动线圈CL11与第一磁性组件MG11之间会根据冷次定律产生一电磁驱动力Fy,借以驱使反射单元302随着外框架304相对于底座312沿着Y轴方向移动。再者,于此实施例中,第二弹性组件314具有螺旋状结构,幷且于外框架304相对于底座312沿着Y轴方向移动时,第二弹性组件314会被拉伸或压缩。Please refer to FIG. 5 . FIG. 5 is a perspective view of a reflection module 300 according to an embodiment of the present invention from another viewing angle. In order to clearly show the first driving assembly DA1, the base 312 is indicated by a dotted line. In this embodiment, the magnetic pole direction of the first magnetic component MG11 is along the Y-axis direction, for example, the direction of the N pole of the first magnetic component MG11 is towards the Y-axis direction, and the direction of the S pole is towards -Y axis direction. When the first driving coil CL11 is energized, an electromagnetic driving force Fy will be generated between the first driving coil CL11 and the first magnetic component MG11 according to Leng's law, so as to drive the reflection unit 302 along with the outer frame 304 relative to the base 312. Move in the Y axis direction. Furthermore, in this embodiment, the second elastic component 314 has a helical structure, and when the outer frame 304 moves along the Y-axis direction relative to the base 312 , the second elastic component 314 will be stretched or compressed.
于此实施例中,第一磁性组件MG12与第一磁性组件MG13的磁极方向是沿着Z轴方向。当第一驱动线圈CL12与第一驱动线圈CL13通电时,会分别与第一磁性组件MG12与第一磁性组件MG13产生两个电磁驱动力Fz,驱使承载座310带动反射单元302相对于底座312沿着Z轴方向移动。因此,根据第一驱动组件DA1的配置,反射单元302可被驱动沿着Y轴方向或Z轴方向相对于底座312移动。In this embodiment, the magnetic pole directions of the first magnetic component MG12 and the first magnetic component MG13 are along the Z-axis direction. When the first driving coil CL12 and the first driving coil CL13 are energized, they will generate two electromagnetic driving forces Fz with the first magnetic assembly MG12 and the first magnetic assembly MG13 respectively, and drive the carrying base 310 to drive the reflective unit 302 relative to the base 312 along the Move in the direction of the Z axis. Therefore, according to the configuration of the first driving assembly DA1 , the reflecting unit 302 can be driven to move relative to the base 312 along the Y-axis direction or the Z-axis direction.
请参考图4与图6,图6为根据本发明一实施例的反射模块300于另一视角的部分结构示意图。如图6所示,当第二驱动组件DA2中的第二驱动线圈CL2通电时,第二驱动线圈CL2会与第二磁性组件MG2产生沿着Z轴方向的一电磁驱动力Fz,借以驱使光学组件承载件308、反射单元302与第一弹性组件306的中央部分3061绕一第二轴向Ax相对于侧边部分3062与侧边部分3063旋转。意即,电磁驱动力Fz可使反射单元302绕第二轴向Ax相对于承载座310(图4)旋转。Please refer to FIG. 4 and FIG. 6 . FIG. 6 is a partial structural diagram of a reflection module 300 according to an embodiment of the present invention at another viewing angle. As shown in Figure 6, when the second drive coil CL2 in the second drive assembly DA2 is energized, the second drive coil CL2 and the second magnetic assembly MG2 will generate an electromagnetic driving force Fz along the Z-axis direction, thereby driving the optical The component carrier 308 , the reflection unit 302 and the central portion 3061 of the first elastic component 306 rotate around a second axis Ax relative to the side portion 3062 and the side portion 3063 . That is, the electromagnetic driving force Fz can make the reflection unit 302 rotate around the second axis Ax relative to the supporting base 310 ( FIG. 4 ).
相似地,如图6所示,当第三驱动组件DA3中的第三驱动线圈CL31以及CL32通电时(其中第三驱动线圈CL31以及CL32所接收的电流大小相同但相位相反),第三驱动线圈CL31以及CL32会分别与第三磁性组件MG31以及第三磁性组件MG32产生两个相反方向的电磁驱动力Fv,借以驱使光学组件承载件308、反射单元302与第一弹性组件306的中央部分3061绕一第三轴向Ay相对于侧边部分3062与侧边部分3063旋转。意即,电磁驱动力Fv可使反射单元302绕第三轴向Ay相对于承载座310(图4)旋转。值得注意的是,电磁驱动力Fv的方向是垂直于反射单元302的反射面3021,也就是说电磁驱动力Fv的方向是平行于反射面3021的法向量。再者,第二轴向Ax及第三轴向Ay是不平行于电磁驱动力Fv的方向。举例来说,第二轴向Ax与第三轴向Ay是实质地垂直于电磁驱动力Fv的方向。Similarly, as shown in FIG. 6, when the third driving coils CL31 and CL32 in the third driving assembly DA3 are energized (where the currents received by the third driving coils CL31 and CL32 have the same magnitude but opposite phases), the third driving coils CL31 and CL32 will respectively generate electromagnetic driving forces Fv in two opposite directions with the third magnetic component MG31 and the third magnetic component MG32, so as to drive the optical component carrier 308, the reflection unit 302 and the central part 3061 of the first elastic component 306 to rotate around A third axis Ay rotates relative to the side portion 3062 and the side portion 3063 . That is, the electromagnetic driving force Fv can make the reflection unit 302 rotate around the third axis Ay relative to the supporting base 310 ( FIG. 4 ). It should be noted that the direction of the electromagnetic driving force Fv is perpendicular to the reflecting surface 3021 of the reflecting unit 302 , that is, the direction of the electromagnetic driving force Fv is parallel to the normal vector of the reflecting surface 3021 . Furthermore, the second axis Ax and the third axis Ay are not parallel to the direction of the electromagnetic driving force Fv. For example, the second axis Ax and the third axis Ay are substantially perpendicular to the direction of the electromagnetic driving force Fv.
请参考图7A至图7C,图7A至图7C为本发明一实施例的光学系统100于不同状态时的示意图。在图7A中,光学系统100是与一参考平面平行(例如与水平面平行),幷且反射光RL是反射至感光组件400的一中心位置C(聚焦位置)。接着,如图7B所示,图7B表示光学系统100相对于水平面顺时针旋转一角度后的示意图。如图7B所示,由于光学系统100相对于水平面旋转一角度(例如旋转了5度),因此反射光RL反射至感光组件400上的位置会产生偏移。如图7B所示,反射光RL会反射至感光组件400的一第一位置P1。Please refer to FIG. 7A to FIG. 7C . FIG. 7A to FIG. 7C are schematic diagrams of the optical system 100 in different states according to an embodiment of the present invention. In FIG. 7A , the optical system 100 is parallel to a reference plane (for example, parallel to a horizontal plane), and the reflected light RL is reflected to a center position C (focus position) of the photosensitive element 400 . Next, as shown in FIG. 7B , FIG. 7B shows a schematic view of the optical system 100 after rotating clockwise by an angle relative to the horizontal plane. As shown in FIG. 7B , since the optical system 100 is rotated by an angle (for example, 5 degrees) relative to the horizontal plane, the position where the reflected light RL is reflected on the photosensitive element 400 will be shifted. As shown in FIG. 7B , the reflected light RL is reflected to a first position P1 of the photosensitive element 400 .
为了补偿反射光RL于感光组件400上的偏移距离(也就是中心位置C与第一位置P1之间的距离),第一驱动组件DA1(图5)可驱使反射单元302沿着图7B中所示的箭头方向(-Y轴方向)移动,于是反射单元302可由图7B的位置移动到图7C的位置。于是,如图7C所示,反射光RL反射至感光组件400的位置会由第一位置P1回到中心位置C,因此便可达到光学防手震的目的。In order to compensate the offset distance of the reflected light RL on the photosensitive element 400 (that is, the distance between the center position C and the first position P1), the first driving component DA1 ( FIG. 5 ) can drive the reflective unit 302 along the direction shown in FIG. 7B . The direction of the arrow shown (-Y axis direction) moves, so the reflective unit 302 can move from the position shown in FIG. 7B to the position shown in FIG. 7C. Then, as shown in FIG. 7C , the position where the reflected light RL is reflected to the photosensitive element 400 will return from the first position P1 to the central position C, so that the purpose of optical anti-shake can be achieved.
值得注意的是,于此实施例中,反射单元302的反射面3021为一平面,幷且不需要旋转反射单元302而仅需沿着-Y轴方向移动反射单元302便可达到补偿的目的。再者,通过本实施例的结构配置,反射到感光组件400上的反射光RL的光线仍可具有良好的质量,以使得感光组件400可以产生清晰的图像。It should be noted that in this embodiment, the reflective surface 3021 of the reflective unit 302 is a plane, and the compensation can be achieved by moving the reflective unit 302 along the -Y axis without rotating the reflective unit 302 . Furthermore, through the structural configuration of this embodiment, the reflected light RL reflected on the photosensitive element 400 can still have good quality, so that the photosensitive element 400 can produce a clear image.
于此实施例中,当光学系统100相对于水平面顺时针旋转时,第一驱动组件DA1可驱使反射单元302朝-Y轴方向移动,便可以补偿反射光RL在感光组件400的偏移距离。相似地,当光学系统100相对于水平面逆时针旋转时,第一驱动组件DA1可驱使反射单元302朝Y轴方向移动,便可以补偿反射光RL在感光组件400的偏移距离。于此实施例中,第一驱动组件DA1驱使反射单元302进行补偿的距离是可对应于光学系统100相对于水平面之间的角度。举例来说,当光学系统100相对于水平面顺时针旋转1度时,第一驱动组件DA1驱动反射单元302朝-Y轴方向移动125μm后便可达到补偿偏移距离的目的。In this embodiment, when the optical system 100 rotates clockwise relative to the horizontal plane, the first driving component DA1 can drive the reflective unit 302 to move toward the -Y axis direction, so as to compensate the offset distance of the reflected light RL on the photosensitive component 400 . Similarly, when the optical system 100 rotates counterclockwise relative to the horizontal plane, the first driving component DA1 can drive the reflective unit 302 to move toward the Y-axis direction, so as to compensate the offset distance of the reflected light RL on the photosensitive component 400 . In this embodiment, the distance that the first driving component DA1 drives the reflective unit 302 to perform compensation may correspond to the angle between the optical system 100 and the horizontal plane. For example, when the optical system 100 rotates 1 degree clockwise relative to the horizontal plane, the first driving component DA1 drives the reflective unit 302 to move 125 μm in the direction of the -Y axis to achieve the purpose of compensating for the offset distance.
请参考图8,图8为根据本发明另一实施例的一反射单元302'的示意图。于此实施例中,反射单元302'具有一反射面3022,幷且反射面3022具有圆弧结构。如图8所示,相较于前述实施例的反射单元302,此实施例的反射面3022的结构可以增加反射光RL与入射光IL之间的角度,例如当两个平行光束入射至反射面3022后会产生不同反射角度的反射光,因此可进一步改善补偿的效果。Please refer to FIG. 8 , which is a schematic diagram of a reflection unit 302 ′ according to another embodiment of the present invention. In this embodiment, the reflective unit 302' has a reflective surface 3022, and the reflective surface 3022 has a circular arc structure. As shown in FIG. 8, compared with the reflective unit 302 of the previous embodiment, the structure of the reflective surface 3022 of this embodiment can increase the angle between the reflected light RL and the incident light IL, for example, when two parallel light beams are incident on the reflective surface After 3022, reflected light with different reflection angles will be generated, so the compensation effect can be further improved.
请参考图9A至图9C,图9A至图9C为本发明另一实施例的一光学系统100A于不同状态时的示意图。于此实施例中,光学系统100A包含一反射单元302A,反射单元302A的一反射面3023具有一圆弧结构,幷且圆弧结构的中心是对应一入射光IL1的中心。另外,于此实施例中,反射面3023的圆弧结构是一凸面结构,朝向远离镜片模块200的方向弯曲,但不限于此。举例来说,于其他实施例中,反射面3023的圆弧结构也可是一凹面结构,朝向镜片模块200的方向弯曲。再者,于此实施例中,圆弧结构可以具有一半径,此半径约为100至1000mm之间。Please refer to FIG. 9A to FIG. 9C . FIG. 9A to FIG. 9C are schematic diagrams of an optical system 100A in different states according to another embodiment of the present invention. In this embodiment, the optical system 100A includes a reflective unit 302A, a reflective surface 3023 of the reflective unit 302A has an arc structure, and the center of the arc structure corresponds to the center of an incident light IL1. In addition, in this embodiment, the arc structure of the reflective surface 3023 is a convex structure, which is curved toward the direction away from the lens module 200 , but it is not limited thereto. For example, in other embodiments, the arc structure of the reflective surface 3023 can also be a concave structure, which is curved toward the direction of the lens module 200 . Furthermore, in this embodiment, the arc structure may have a radius, and the radius is about 100 to 1000 mm.
在图9A中,光学系统100A幷未受到晃动且与水平面平行,幷且一入射光IL1与入射光IL2是沿着Z轴方向射至反射单元302A。接着,反射光RL1与反射光RL2是分别反射至感光组件400的一中心位置C1与侧边位置C2。接着,如图9B所示,图9B表示光学系统100A相对于水平面逆时针旋转一角度后的示意图。如图9B所示,由于光学系统100A相对于水平面旋转一角度(例如旋转5度),因此反射光RL1与反射光RL2反射至感光组件400上的位置会产生偏移。如图9B所示,反射光RL1与反射光RL2会分别反射至感光组件400的一第二位置P2与一第三位置P3。In FIG. 9A , the optical system 100A is not shaken and is parallel to the horizontal plane, and an incident light IL1 and an incident light IL2 are incident on the reflection unit 302A along the Z-axis direction. Then, the reflected light RL1 and the reflected light RL2 are respectively reflected to a center position C1 and a side position C2 of the photosensitive element 400 . Next, as shown in FIG. 9B , FIG. 9B shows a schematic diagram of the optical system 100A after being rotated counterclockwise by an angle relative to the horizontal plane. As shown in FIG. 9B , since the optical system 100A is rotated by an angle (for example, 5 degrees) relative to the horizontal plane, the positions of the reflected light RL1 and the reflected light RL2 reflected on the photosensitive element 400 will be shifted. As shown in FIG. 9B , the reflected light RL1 and the reflected light RL2 are respectively reflected to a second position P2 and a third position P3 of the photosensitive element 400 .
为了补偿反射光RL1与反射光RL2于感光组件400上的偏移距离,第一驱动组件DA1(图5)可驱使反射单元302A沿着图中所示的箭头方向(-Y轴方向)移动,因此反射单元302A可由图9B的位置移动到图9C的位置。于是,如图9C所示,反射光RL1反射至感光组件400的位置会由第二位置P2回到中心位置C1,幷且反射光RL2反射至感光组件400的位置会由第三位置P3回到侧边位置C2,因此便可达到光学防手震的目的。In order to compensate the offset distance between the reflected light RL1 and the reflected light RL2 on the photosensitive element 400, the first driving assembly DA1 (FIG. 5) can drive the reflecting unit 302A to move along the arrow direction (-Y axis direction) shown in the figure, Therefore, the reflecting unit 302A can be moved from the position shown in FIG. 9B to the position shown in FIG. 9C. Thus, as shown in FIG. 9C, the position where the reflected light RL1 is reflected on the photosensitive element 400 will return to the central position C1 from the second position P2, and the position where the reflected light RL2 is reflected on the photosensitive element 400 will return from the third position P3. The side position is C2, so the purpose of optical anti-shake can be achieved.
相似地,于此实施例中,当光学系统100A相对于水平面顺时针旋转时,第一驱动组件DA1可驱使反射单元302A朝Y轴方向移动,便可以补偿反射光RL1与反射光RL2在感光组件400的偏移距离。Similarly, in this embodiment, when the optical system 100A rotates clockwise relative to the horizontal plane, the first driving component DA1 can drive the reflective unit 302A to move in the Y-axis direction, so as to compensate the reflected light RL1 and reflected light RL2 in the photosensitive component. 400 offset distance.
请参考图10,图10为本发明另一实施例的反射单元302B的侧面示意图。如图10所示,反射单元302B的一反射面3025具有一平面PS以及一圆弧结构CS,幷且圆弧结构CS是环绕平面PS。于此实施例中,圆弧结构CS具有一半径,幷且此半径约为100至1000mm之间。此实施例的反射单元302B是相似于反射单元302A。Please refer to FIG. 10 , which is a schematic side view of a reflection unit 302B according to another embodiment of the present invention. As shown in FIG. 10 , a reflective surface 3025 of the reflective unit 302B has a plane PS and an arc structure CS, and the arc structure CS surrounds the plane PS. In this embodiment, the arc structure CS has a radius, and the radius is about 100 to 1000 mm. The reflection unit 302B of this embodiment is similar to the reflection unit 302A.
在图9A与图10的实施例中,基于反射面具有圆弧结构的设计,可以进一步使反射面的外围所反射到感光组件400上的光的聚焦位置更精确。举例来说,可以使得图9C中的反射光RL2的补偿效果更精确。In the embodiment of FIG. 9A and FIG. 10 , based on the design of the reflective surface having a circular arc structure, the focus position of the light reflected from the periphery of the reflective surface onto the photosensitive element 400 can be further made more precise. For example, the compensation effect of the reflected light RL2 in FIG. 9C can be made more accurate.
再者,于本公开其他实施例中,为了进一步改善补偿的结果,前述多个驱动组件可进一步控制反射单元同时进行移动以及旋转。举例来说,在某些实施例中,第一驱动组件DA1与第二驱动组件DA2可控制反射单元沿着Y轴方向移动且绕第二轴向Ax旋转,进而达成两轴补偿的目的。在某些实施例中,第一驱动组件DA1可控制反射单元同时沿着Y轴方向以及Z轴方向移动,以达成两轴补偿的目的。Furthermore, in other embodiments of the present disclosure, in order to further improve the compensation result, the above-mentioned multiple driving components can further control the reflection unit to move and rotate simultaneously. For example, in some embodiments, the first driving assembly DA1 and the second driving assembly DA2 can control the reflection unit to move along the Y-axis direction and rotate around the second axis Ax, so as to achieve the purpose of two-axis compensation. In some embodiments, the first driving component DA1 can control the reflection unit to move along the Y-axis direction and the Z-axis direction simultaneously, so as to achieve the purpose of two-axis compensation.
另外,在某些实施例中,第一驱动组件DA1与第二驱动组件DA2可控制反射单元一起沿着Y轴方向移动,沿着Z轴方向移动,幷且绕第二轴向Ax旋转,进而达成三轴补偿的目的。再者,在某些实施例中,第一驱动组件DA1、第二驱动组件DA2与第三驱动组件DA3可控制反射单元沿着Y轴方向移动、沿着Z轴方向移动,绕第二轴向Ax旋转幷且绕第三轴向Ay旋转,进而达成四轴补偿的目的。In addition, in some embodiments, the first driving assembly DA1 and the second driving assembly DA2 can control the reflection unit to move along the Y-axis direction, move along the Z-axis direction, and rotate around the second axis Ax, and then To achieve the purpose of three-axis compensation. Moreover, in some embodiments, the first driving assembly DA1, the second driving assembly DA2, and the third driving assembly DA3 can control the reflection unit to move along the Y-axis direction, along the Z-axis direction, and move around the second axis. Ax rotates and rotates around the third axis Ay, so as to achieve the purpose of four-axis compensation.
综上所述,本发明提供一种具有长焦距的光学系统,安装于电子装置中用以提取图像。光学系统可具有一镜片模块200、一反射模块300、一感光组件400以及多个驱动组件。其中,反射模块300包含一反射单元,反射单元可以将外部光线反射至镜片模块200,接着再传送至感光组件400以产生数字图像。值得注意的是,当光学系统受到晃动时,多个驱动组件可以控制反射单元沿着一第一轴向移动、绕第二轴向及/或绕第三轴向旋转,以调整反射光在感光组件400上的聚焦位置,借以达到光学防手震的目的,幷且能提高感光组件400的图像质量。To sum up, the present invention provides an optical system with a long focal length, which is installed in an electronic device for capturing images. The optical system may have a lens module 200 , a reflection module 300 , a photosensitive component 400 and a plurality of driving components. Wherein, the reflection module 300 includes a reflection unit, which can reflect external light to the lens module 200, and then transmit it to the photosensitive element 400 to generate a digital image. It is worth noting that when the optical system is shaken, multiple driving components can control the reflective unit to move along a first axis, rotate around a second axis and/or rotate around a third axis, so as to adjust the reflected light in the photosensitive The focusing position on the component 400 is used to achieve the purpose of optical anti-shake and improve the image quality of the photosensitive component 400 .
在某些实施例中,反射单元的一反射面为平面,幷且多个所述驱动组件可仅控制反射单元沿着第一轴向移动,便可达到补偿聚焦位置的目的。另外,在某些实施例中,反射单元的反射面可进一步包含一圆弧结构。基于圆弧结构的设计,可以进一步使反射面的周围所反射到感光组件400上的光的聚焦位置更精确。In some embodiments, a reflective surface of the reflective unit is a plane, and the plurality of driving components can only control the reflective unit to move along the first axis, so as to achieve the purpose of compensating the focus position. In addition, in some embodiments, the reflective surface of the reflective unit may further include an arc structure. Based on the design of the arc structure, the focus position of the light reflected on the photosensitive component 400 around the reflective surface can be further made more precise.
虽然本公开的实施例及其优点已公开如上,但应该了解的是,本领域技术人员在不脱离本公开实施例的精神和范围内,当可作更动、替代与润饰。此外,本公开实施例的保护范围幷未局限于说明书内所述特定实施例中的工艺、机器、制造、物质组成、装置、方法及步骤,本领域技术人员可从本公开内容中理解现行或未来所发展出的工艺、机器、制造、物质组成、装置、方法及步骤,只要可以在此处所述实施例中实施大抵相同功能或获得大抵相同结果皆可根据本公开使用。因此,本公开实施例的保护范围包括上述工艺、机器、制造、物质组成、装置、方法及步骤。另外,每一权利要求构成个别的实施例,且本公开实施例的保护范围也包括各个权利要求及实施例的组合。Although the embodiments of the present disclosure and their advantages have been disclosed above, it should be understood that those skilled in the art may make changes, substitutions and modifications without departing from the spirit and scope of the embodiments of the present disclosure. In addition, the protection scope of the embodiments of the present disclosure is not limited to the process, machine, manufacture, material composition, device, method and steps in the specific embodiments described in the specification. Those skilled in the art can understand the existing or Processes, machines, manufactures, compositions of matter, devices, methods and steps developed in the future can be used in accordance with the present disclosure as long as they can perform substantially the same functions or obtain substantially the same results in the embodiments described herein. Therefore, the protection scope of the embodiments of the present disclosure includes the above-mentioned process, machine, manufacture, composition of matter, device, method and steps. In addition, each claim constitutes an individual embodiment, and the protection scope of the embodiments of the present disclosure also includes combinations of the individual claims and the embodiments.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/977,176 US10712633B2 (en) | 2017-05-12 | 2018-05-11 | Optical system |
US16/895,179 US11698571B2 (en) | 2017-05-12 | 2020-06-08 | Optical system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762505420P | 2017-05-12 | 2017-05-12 | |
US62/505,420 | 2017-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108873239A true CN108873239A (en) | 2018-11-23 |
Family
ID=63559259
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201820373122.9U Active CN207908778U (en) | 2017-05-12 | 2018-03-19 | Lens driving mechanism |
CN201810225323.9A Pending CN108873234A (en) | 2017-05-12 | 2018-03-19 | Lens driving mechanism |
CN201810428101.7A Pending CN108873239A (en) | 2017-05-12 | 2018-05-07 | Optical system |
CN201810425973.8A Active CN108873236B (en) | 2017-05-12 | 2018-05-07 | Optical system |
CN201820675229.9U Active CN208766376U (en) | 2017-05-12 | 2018-05-07 | Optical system |
CN201820680964.9U Active CN208766374U (en) | 2017-05-12 | 2018-05-08 | Optical component drive mechanism and camera device |
CN201810431696.1A Active CN108873228B (en) | 2017-05-12 | 2018-05-08 | Optical component driving mechanism |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201820373122.9U Active CN207908778U (en) | 2017-05-12 | 2018-03-19 | Lens driving mechanism |
CN201810225323.9A Pending CN108873234A (en) | 2017-05-12 | 2018-03-19 | Lens driving mechanism |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810425973.8A Active CN108873236B (en) | 2017-05-12 | 2018-05-07 | Optical system |
CN201820675229.9U Active CN208766376U (en) | 2017-05-12 | 2018-05-07 | Optical system |
CN201820680964.9U Active CN208766374U (en) | 2017-05-12 | 2018-05-08 | Optical component drive mechanism and camera device |
CN201810431696.1A Active CN108873228B (en) | 2017-05-12 | 2018-05-08 | Optical component driving mechanism |
Country Status (1)
Country | Link |
---|---|
CN (7) | CN207908778U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110646913A (en) * | 2019-09-03 | 2020-01-03 | 炎坤微电机股份有限公司 | Voice coil motor, periscopic lens driving device and electronic equipment with camera |
CN111381344A (en) * | 2018-12-28 | 2020-07-07 | 华为技术有限公司 | Actuating device, periscopic camera module and mobile terminal |
CN111948881A (en) * | 2019-05-16 | 2020-11-17 | 三星电机株式会社 | Folding optical reflection module |
US20220066287A1 (en) * | 2020-08-27 | 2022-03-03 | Apple Inc. | Folded Optics with Tilt Actuator and Spring Suspension |
CN115552880A (en) * | 2020-04-10 | 2022-12-30 | Lg 伊诺特有限公司 | Camera actuator and camera module including the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207908778U (en) * | 2017-05-12 | 2018-09-25 | 台湾东电化股份有限公司 | Lens driving mechanism |
CN109633854B (en) * | 2019-01-08 | 2020-09-29 | 瑞声通讯科技(常州)有限公司 | Image collector and mobile electronic equipment |
CN112083543B (en) | 2019-06-14 | 2024-02-02 | 台湾东电化股份有限公司 | Driving assembly and driving system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4733065A (en) * | 1984-06-27 | 1988-03-22 | Canon Kabushiki Kaisha | Optical head device with diffraction grating for separating a light beam incident on an optical recording medium from a light beam reflected therefrom |
CN1731135A (en) * | 2005-08-15 | 2006-02-08 | 清华大学 | Film tensile loading device and film deformation measurement method under scanning microscope environment |
CN1786808A (en) * | 2004-12-11 | 2006-06-14 | 鸿富锦精密工业(深圳)有限公司 | Optical auto-focusing apparatus |
CN101586762A (en) * | 2009-04-22 | 2009-11-25 | 涂萧恺 | Automobile headlamp capable of adjusting irradiation distance freely by an electromagnet |
CN101889237A (en) * | 2009-03-25 | 2010-11-17 | 香港应用科技研究院有限公司 | Anti-shake optical element for optical imaging system |
CN204945591U (en) * | 2015-07-31 | 2016-01-06 | 瑞声精密制造科技(常州)有限公司 | Lens driving apparatus |
US20160306168A1 (en) * | 2015-04-17 | 2016-10-20 | The Lightco Inc. | Camera device methods, apparatus and components |
CN106405991A (en) * | 2016-11-29 | 2017-02-15 | 深圳市世尊科技有限公司 | Periscopic camera shooting module and reflector apparatus used for the periscopic camera shooting module |
CN107357026A (en) * | 2016-05-10 | 2017-11-17 | 台湾东电化股份有限公司 | Lens system |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4133990B2 (en) * | 2004-10-01 | 2008-08-13 | 株式会社タムロン | Actuator and lens unit and camera provided with the same |
JP2008151822A (en) * | 2006-12-14 | 2008-07-03 | Pentax Corp | Image blur correction device |
CN101819312B (en) * | 2009-02-27 | 2013-04-10 | 鸿富锦精密工业(深圳)有限公司 | Camera module |
US8351771B2 (en) * | 2009-08-18 | 2013-01-08 | Panasonic Corporation | Optical element driving device and imaging device |
JP2013025035A (en) * | 2011-07-20 | 2013-02-04 | Micro Uintekku Kk | Lens drive device |
JP5613187B2 (en) * | 2012-01-27 | 2014-10-22 | オリンパスイメージング株式会社 | IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND SUSTAINABLE COMPUTER-READABLE MEDIUM CONTAINING CODE FOR CAUSING COMPUTER TO CONTROL IMAGING DEVICE |
US9151665B1 (en) * | 2013-03-29 | 2015-10-06 | Google Inc. | Devices and methods for providing optical element focus functionality with a movable imager die |
CN103809263B (en) * | 2013-04-19 | 2017-01-18 | 香港应用科技研究院有限公司 | Novel lens moving device |
TWI457693B (en) * | 2013-05-10 | 2014-10-21 | Tdk Taiwan Corp | Optical image stabilizer |
CN103607535A (en) * | 2013-08-09 | 2014-02-26 | 南昌欧菲光电技术有限公司 | Camera module for mobile terminal and mobile terminal |
JP6199398B2 (en) * | 2013-09-27 | 2017-09-20 | シャープ株式会社 | The camera module |
JP6215348B2 (en) * | 2013-11-20 | 2017-10-18 | シャープ株式会社 | Manufacturing method of imaging module |
WO2015124966A1 (en) * | 2014-02-19 | 2015-08-27 | Corephotonics Ltd. | Magnetic shielding between voice coil motors in a dual-aperture camera |
JP6414396B2 (en) * | 2014-06-16 | 2018-10-31 | ミツミ電機株式会社 | Lens holder driving device and camera-equipped mobile terminal |
US9392188B2 (en) * | 2014-08-10 | 2016-07-12 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
CN114584705A (en) * | 2014-12-24 | 2022-06-03 | 佳能株式会社 | Zoom control device, control method of zoom control device, and recording medium |
CN106707659A (en) * | 2015-07-17 | 2017-05-24 | 三鸣科技(香港)有限公司 | Micro lens driving device and electronic image capturing equipment |
CN105022204B (en) * | 2015-08-07 | 2017-10-31 | 深圳市世尊科技有限公司 | A kind of mobile terminal camera module and mobile terminal |
KR102184564B1 (en) * | 2015-08-12 | 2020-12-01 | 삼성전기주식회사 | Camera module |
US9995904B2 (en) * | 2015-08-14 | 2018-06-12 | Samsung Electro-Mechanics Co., Ltd. | Actuator driving device and camera module including the same |
KR101751132B1 (en) * | 2015-11-03 | 2017-06-26 | 삼성전기주식회사 | Camera module |
CN207908778U (en) * | 2017-05-12 | 2018-09-25 | 台湾东电化股份有限公司 | Lens driving mechanism |
-
2018
- 2018-03-19 CN CN201820373122.9U patent/CN207908778U/en active Active
- 2018-03-19 CN CN201810225323.9A patent/CN108873234A/en active Pending
- 2018-05-07 CN CN201810428101.7A patent/CN108873239A/en active Pending
- 2018-05-07 CN CN201810425973.8A patent/CN108873236B/en active Active
- 2018-05-07 CN CN201820675229.9U patent/CN208766376U/en active Active
- 2018-05-08 CN CN201820680964.9U patent/CN208766374U/en active Active
- 2018-05-08 CN CN201810431696.1A patent/CN108873228B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4733065A (en) * | 1984-06-27 | 1988-03-22 | Canon Kabushiki Kaisha | Optical head device with diffraction grating for separating a light beam incident on an optical recording medium from a light beam reflected therefrom |
CN1786808A (en) * | 2004-12-11 | 2006-06-14 | 鸿富锦精密工业(深圳)有限公司 | Optical auto-focusing apparatus |
CN1731135A (en) * | 2005-08-15 | 2006-02-08 | 清华大学 | Film tensile loading device and film deformation measurement method under scanning microscope environment |
CN101889237A (en) * | 2009-03-25 | 2010-11-17 | 香港应用科技研究院有限公司 | Anti-shake optical element for optical imaging system |
CN101586762A (en) * | 2009-04-22 | 2009-11-25 | 涂萧恺 | Automobile headlamp capable of adjusting irradiation distance freely by an electromagnet |
US20160306168A1 (en) * | 2015-04-17 | 2016-10-20 | The Lightco Inc. | Camera device methods, apparatus and components |
CN204945591U (en) * | 2015-07-31 | 2016-01-06 | 瑞声精密制造科技(常州)有限公司 | Lens driving apparatus |
CN107357026A (en) * | 2016-05-10 | 2017-11-17 | 台湾东电化股份有限公司 | Lens system |
CN106405991A (en) * | 2016-11-29 | 2017-02-15 | 深圳市世尊科技有限公司 | Periscopic camera shooting module and reflector apparatus used for the periscopic camera shooting module |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111381344A (en) * | 2018-12-28 | 2020-07-07 | 华为技术有限公司 | Actuating device, periscopic camera module and mobile terminal |
CN111381344B (en) * | 2018-12-28 | 2022-07-12 | 华为技术有限公司 | Actuating device, periscopic camera module and mobile terminal |
CN111948881A (en) * | 2019-05-16 | 2020-11-17 | 三星电机株式会社 | Folding optical reflection module |
CN111948881B (en) * | 2019-05-16 | 2022-11-29 | 三星电机株式会社 | Folding optical reflection module |
US11609436B2 (en) | 2019-05-16 | 2023-03-21 | Samsung Electro-Mechanics Co., Ltd. | Folded optics reflecting module |
CN110646913A (en) * | 2019-09-03 | 2020-01-03 | 炎坤微电机股份有限公司 | Voice coil motor, periscopic lens driving device and electronic equipment with camera |
CN110646913B (en) * | 2019-09-03 | 2023-02-14 | 炎坤微机电股份有限公司 | Voice coil motor, periscopic lens driving device and electronic equipment with camera |
CN115552880A (en) * | 2020-04-10 | 2022-12-30 | Lg 伊诺特有限公司 | Camera actuator and camera module including the same |
US20220066287A1 (en) * | 2020-08-27 | 2022-03-03 | Apple Inc. | Folded Optics with Tilt Actuator and Spring Suspension |
CN114200736A (en) * | 2020-08-27 | 2022-03-18 | 苹果公司 | Folded optic with tilt actuator and spring suspension |
US12111452B2 (en) * | 2020-08-27 | 2024-10-08 | Apple, Inc. | Folded optics with tilt actuator and spring suspension |
CN114200736B (en) * | 2020-08-27 | 2025-03-07 | 苹果公司 | Folded optics with tilt actuator and spring suspension |
Also Published As
Publication number | Publication date |
---|---|
CN108873234A (en) | 2018-11-23 |
CN207908778U (en) | 2018-09-25 |
CN208766374U (en) | 2019-04-19 |
CN108873236A (en) | 2018-11-23 |
CN108873236B (en) | 2022-06-24 |
CN208766376U (en) | 2019-04-19 |
CN108873228B (en) | 2023-08-01 |
CN108873228A (en) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11698571B2 (en) | Optical system | |
CN108873239A (en) | Optical system | |
US11513364B2 (en) | Lens driver for camera | |
WO2020125204A1 (en) | Control method, control device, electronic device and medium | |
WO2020093819A1 (en) | Imaging module, camera assembly and electronic apparatus | |
CN117289438A (en) | Periscope type optical module and optical system | |
TW201802561A (en) | Camera module and control method thereof | |
CN212009106U (en) | Optical system | |
CN109379528A (en) | Imaging method, imaging apparatus, electronic apparatus, and medium | |
US20210124145A1 (en) | Camera Module, Camera Assembly, and Electronic Device | |
CN109379522A (en) | Imaging method, imaging apparatus, electronic apparatus, and medium | |
US9063346B2 (en) | Imaging apparatus | |
US20230072601A1 (en) | Prism actuator | |
US20150110482A1 (en) | Imaging apparatus | |
CN109286707A (en) | Camera assembly and electronics | |
CN115004682B (en) | Portable communication device | |
CN109218590A (en) | Imaging modules, CCD camera assembly and electronic device | |
CN109194860A (en) | Imaging modules, CCD camera assembly and electronic device | |
CN109218589A (en) | Imaging modules, CCD camera assembly and electronic device | |
EP4220298A1 (en) | Camera module and electronic device comprising same | |
CN118732210A (en) | Lens module, camera module and terminal | |
US20240019775A1 (en) | Camera module and electronic device | |
JP2023516292A (en) | Optical imaging system, method for performing optical image stabilization | |
KR20210132914A (en) | Camera module and electronic device including the same | |
TWI797006B (en) | Periscope camera module and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |