CN108869213B - Photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device and method - Google Patents
Photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device and method Download PDFInfo
- Publication number
- CN108869213B CN108869213B CN201810767070.8A CN201810767070A CN108869213B CN 108869213 B CN108869213 B CN 108869213B CN 201810767070 A CN201810767070 A CN 201810767070A CN 108869213 B CN108869213 B CN 108869213B
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- photon
- thermionic emission
- heat exchanger
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 154
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 77
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 77
- 238000010248 power generation Methods 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 15
- 239000002918 waste heat Substances 0.000 claims abstract description 7
- 238000012546 transfer Methods 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000005192 partition Methods 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K17/00—Using steam or condensate extracted or exhausted from steam engine plant
- F01K17/02—Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
- F01K25/103—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明提供了一种光子增强热离子发射与二氧化碳循环联合发电装置,包括太阳光的聚光器、接收器,接收器与光子增强热离子发射模块组连接,光子增强热离子发射模块组连接冷却回路,经中间换热器与超临界二氧化碳循环连接,超临界二氧化碳循环包括:压缩机、低温回热器、高温回热器、透平、发电机、预冷器。本发明还提供了一种光子增强热离子发射与二氧化碳循环联合发电方法,太阳能先经过光子增强热离子发射模块,将一部分能量转换为电能,其余的能量以阳极余热的形式传递给超临界二氧化碳循环,构成联合循环系统。本发明减少了向环境释放热量损失,联合循环系统的整体发电效率高,结构紧凑,应用范围广泛。
The invention provides a photon-enhanced thermion emission and carbon dioxide cycle combined power generation device, which includes a solar concentrator and a receiver, the receiver is connected with a photon-enhanced thermion emission module group, and the photon-enhanced thermion emission module group is connected for cooling The circuit is connected with the supercritical carbon dioxide cycle through the intermediate heat exchanger, and the supercritical carbon dioxide cycle includes: a compressor, a low-temperature regenerator, a high-temperature regenerator, a turbine, a generator, and a precooler. The invention also provides a combined power generation method of photon-enhanced thermionic emission and carbon dioxide cycle. The solar energy first passes through the photon-enhanced thermionic emission module to convert part of the energy into electrical energy, and the remaining energy is transferred to the supercritical carbon dioxide cycle in the form of anode waste heat. , forming a combined circulation system. The invention reduces the loss of heat released to the environment, and the overall power generation efficiency of the combined cycle system is high, the structure is compact, and the application range is wide.
Description
技术领域technical field
本发明涉及一种光子增强热离子发射与超临界二氧化碳循环联合发电装置,属于太阳能发电技术领域。The invention relates to a photon-enhanced thermal ion emission and supercritical carbon dioxide cycle combined power generation device, which belongs to the technical field of solar power generation.
背景技术Background technique
太阳能是取之不尽、用之不竭的绿色能源,太阳能热发电是太阳能利用的主要方式之一。近年来,这项技术发展十分迅速,较为成熟的技术包括槽式、塔式、菲涅尔式、碟式等太阳能聚光集热发电技术。太阳能热通过中间介质和换热器将热量传递给动力循环系统,例如:蒸汽轮机发电机组、斯特林发动机,将热能转变为电能。Solar energy is inexhaustible and inexhaustible green energy, and solar thermal power generation is one of the main ways to utilize solar energy. In recent years, this technology has developed very rapidly, and more mature technologies include trough, tower, Fresnel, dish and other solar concentrating thermal power generation technologies. Solar heat transfers heat to power cycle systems through intermediate media and heat exchangers, such as: steam turbine generator sets, Stirling engines, and converts heat energy into electrical energy.
由于目前动力循环系统的运行温度等级不高,能量转换效率相对较低,太阳能热发电相对于光伏发电的竞争力优势不明显。一方面,需要开发更高效率的动力循环系统,目前主流研发方向为超临界二氧化碳循环,同时努力提高循环的温度参数;另一方面,引入新型的能量转换方式,不断探索新的突破点,特别是新型的热电转换器,如:热离子发射装置,阴极在高温下运行,阳极产生的较高温度的余热可继续为底循环提供热量。Since the current operating temperature level of the power cycle system is not high and the energy conversion efficiency is relatively low, the competitive advantage of solar thermal power generation over photovoltaic power generation is not obvious. On the one hand, it is necessary to develop a more efficient power cycle system. The current mainstream research and development direction is the supercritical carbon dioxide cycle, and at the same time strive to improve the temperature parameters of the cycle; on the other hand, introduce new energy conversion methods and constantly explore new breakthrough points, especially It is a new type of thermoelectric converter, such as: thermionic emission device, the cathode operates at high temperature, and the higher temperature waste heat generated by the anode can continue to provide heat for the bottom cycle.
近年来,国内外正在广泛开发基于光子增强热离子发射效应的太阳能发电技术,并结合阳极余热发电,构成太阳能联合发电装置,可大幅提高太阳能发电的效率。然而,基于光子增强热离子发射效应的太阳能发电技术如何与先进动力循环匹配构成联合发电系统是目前亟需解决的问题。In recent years, solar power generation technology based on photon-enhanced thermionic emission effect is being widely developed at home and abroad, combined with anode waste heat power generation to form a solar combined power generation device, which can greatly improve the efficiency of solar power generation. However, how to match the solar power generation technology based on the photon-enhanced thermionic emission effect with the advanced power cycle to form a combined power generation system is an urgent problem to be solved.
发明内容Contents of the invention
本发明要解决的技术问题是基于光子增强热离子发射效应的太阳能发电技术如何与先进动力循环匹配构成联合发电系统,以提高联合发电系统的整体发电效率。The technical problem to be solved by the present invention is how to match the solar power generation technology based on the photon-enhanced thermionic emission effect with the advanced power cycle to form a combined power generation system, so as to improve the overall power generation efficiency of the combined power generation system.
为了解决上述技术问题,本发明的技术方案是提供一种光子增强热离子发射与二氧化碳循环联合发电装置,其特征在于:包括太阳光的聚光器和接收器,聚光器与接收器相对设置,接收器与光子增强热离子发射模块组连接;In order to solve the above technical problems, the technical solution of the present invention is to provide a photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device, which is characterized in that: it includes a solar concentrator and a receiver, and the concentrator and the receiver are arranged opposite , the receiver is connected with the photon-enhanced thermionic emission module group;
所述光子增强热离子发射模块组分为第一光子增强热离子发射模块组和第二光子增强热离子发射模块组两类,第一光子增强热离子发射模块组对应的阳极温度低于第二光子增强热离子发射模块组对应的阳极温度;The photon-enhanced thermion emission module group is divided into two types: the first photon-enhanced thermion emission module group and the second photon-enhanced thermion emission module group, and the anode temperature corresponding to the first photon-enhanced thermion emission module group is lower than that of the second photon-enhanced thermion emission module group The anode temperature corresponding to the photon-enhanced thermionic emission module group;
第一光子增强热离子发射模块组、第二光子增强热离子发射模块组的阳极分别连接第一冷却器和第二冷却器;第一冷却器出口连接第一中间换热器传热介质侧进口,第一中间换热器传热介质侧出口连接第一介质泵进口,第一介质泵出口连接第一冷却器进口,构成第一冷却回路;第二冷却器出口连接第二中间换热器传热介质侧进口,第二中间换热器传热介质侧出口连接第二介质泵进口,第二介质泵出口连接第二冷却器进口,构成第二冷却回路;The anodes of the first photon-enhanced thermion emission module group and the second photon-enhanced thermion emission module group are respectively connected to the first cooler and the second cooler; the outlet of the first cooler is connected to the heat transfer medium side inlet of the first intermediate heat exchanger , the outlet of the heat transfer medium side of the first intermediate heat exchanger is connected to the inlet of the first medium pump, and the outlet of the first medium pump is connected to the inlet of the first cooler to form a first cooling circuit; the outlet of the second cooler is connected to the second intermediate heat exchanger The inlet on the heat medium side, the outlet on the heat transfer medium side of the second intermediate heat exchanger is connected to the inlet of the second medium pump, and the outlet of the second medium pump is connected to the inlet of the second cooler to form a second cooling circuit;
第一中间换热器二氧化碳侧、第二中间换热器二氧化碳侧与超临界二氧化碳循环系统连接,将第一、二冷却回路中传热介质的热量释放给超临界二氧化碳循环系统的二氧化碳工质。The carbon dioxide side of the first intermediate heat exchanger and the carbon dioxide side of the second intermediate heat exchanger are connected to the supercritical carbon dioxide circulation system, and release the heat of the heat transfer medium in the first and second cooling circuits to the carbon dioxide working medium of the supercritical carbon dioxide circulation system.
优选地,所述超临界二氧化碳循环系统包括压缩机,压缩机出口分为两路:一路连接低温回热器低温侧进口,另一路与第一中间换热器二氧化碳侧进口连接;低温回热器低温侧出口和第一中间换热器二氧化碳侧出口两路合并后连接高温回热器低温侧进口,高温回热器低温侧出口连接第二中间换热器二氧化碳侧进口,第二中间换热器二氧化碳侧出口连接透平进口,透平出口连接高温回热器高温侧进口,高温回热器高温侧出口连接低温回热器高温侧进口,低温回热器高温侧出口连接预冷器进口,预冷器出口连接压缩机进口;压缩机、透平、发电机同轴连接。Preferably, the supercritical carbon dioxide circulation system includes a compressor, and the outlet of the compressor is divided into two paths: one path is connected to the low-temperature side inlet of the low-temperature regenerator, and the other path is connected to the carbon dioxide side inlet of the first intermediate heat exchanger; the low-temperature regenerator The outlet on the low temperature side and the outlet on the carbon dioxide side of the first intermediate heat exchanger are combined and then connected to the inlet on the low temperature side of the high temperature regenerator, the outlet on the low temperature side of the high temperature regenerator is connected to the inlet on the carbon dioxide side of the second intermediate heat exchanger, and the second intermediate heat exchanger The outlet on the carbon dioxide side is connected to the inlet of the turbine, the outlet of the turbine is connected to the inlet on the high-temperature side of the high-temperature regenerator, the outlet on the high-temperature side of the high-temperature regenerator is connected to the inlet on the high-temperature side of the low-temperature regenerator, and the outlet on the high-temperature side of the low-temperature regenerator is connected to the inlet of the pre-cooler. The outlet of the cooler is connected to the inlet of the compressor; the compressor, turbine and generator are connected coaxially.
优选地,所述聚光器为碟式聚光器、塔式聚光器或菲涅尔透镜聚光器。Preferably, the concentrator is a dish concentrator, a tower concentrator or a Fresnel lens concentrator.
优选地,所述接收器为空腔体结构的直接照射式接收器。Preferably, the receiver is a direct-irradiation receiver with a cavity structure.
优选地,所述第一光子增强热离子发射模块组的阳极温度为150~300℃;所述第二光子增强热离子发射模块组的阳极温度为500~700℃。Preferably, the anode temperature of the first photon-enhanced thermion emission module group is 150-300°C; the anode temperature of the second photon-enhanced thermion emission module group is 500-700°C.
优选地,所述第一冷却回路的传热介质为导热油;所述第二冷却回路的传热介质为低熔点金属液(如碱金属液)或熔盐。Preferably, the heat transfer medium of the first cooling circuit is heat transfer oil; the heat transfer medium of the second cooling circuit is a low melting point metal liquid (such as alkali metal liquid) or molten salt.
优选地,所述第一冷却器和第二冷却器设有扩展散热面,例如:肋片(条)。Preferably, the first cooler and the second cooler are provided with extended heat dissipation surfaces, such as fins (bars).
优选地,所述第一中间换热器和第二中间换热器为间壁换热器,并且所述第一中间换热器、第二中间换热器二氧化碳侧的换热壁面设有扩展换热面,例如采用外翅片换热管,管外为二氧化碳。Preferably, the first intermediate heat exchanger and the second intermediate heat exchanger are partition wall heat exchangers, and the heat exchange walls on the carbon dioxide side of the first intermediate heat exchanger and the second intermediate heat exchanger are provided with extended heat exchangers. The hot surface, for example, adopts an externally finned heat exchange tube, and the outside of the tube is carbon dioxide.
优选地,所述低温回热器和高温回热器为紧凑式换热器。Preferably, the low-temperature regenerator and the high-temperature regenerator are compact heat exchangers.
本发明还提供了一种光子增强热离子发射与二氧化碳循环联合发电方法,其特征在于:采用上述的光子增强热离子发射与二氧化碳循环联合发电装置,步骤为:太阳光经聚光器聚焦至接收器,接收器加热第一光子增强热离子发射模块组和第二光子增强热离子发射模块组的阴极,阴极发射的电子经两极间隙到达阳极同时从两极输出电能,第一冷却器和第二冷却器将阳极冷却并将余热传递给传热介质;The present invention also provides a photon-enhanced thermionic emission and carbon dioxide cycle combined power generation method, which is characterized in that: using the above-mentioned photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device, the steps are: the sunlight is focused by the concentrator to receive The receiver heats the cathodes of the first photon-enhanced thermionic emission module group and the second photon-enhanced thermionic emission module group, the electrons emitted by the cathode reach the anode through the gap between the two poles and output electric energy from the two poles at the same time, the first cooler and the second cooling The device cools the anode and transfers the waste heat to the heat transfer medium;
第一介质泵和第二介质泵不断地将传热介质从第一冷却器和第二冷却器循环输送至第一中间换热器和第二中间换热器,传热介质将热量释放给超临界二氧化碳循环系统的二氧化碳工质;The first medium pump and the second medium pump continuously circulate the heat transfer medium from the first cooler and the second cooler to the first intermediate heat exchanger and the second intermediate heat exchanger, and the heat transfer medium releases heat to the super Carbon dioxide working medium of critical carbon dioxide cycle system;
超临界二氧化碳循环系统中,压缩机将二氧化碳工质压缩,压缩机出口的二氧化碳工质分为两路:一路进入低温回热器,另一路进入第一中间换热器;出来的两路二氧化碳工质一并进入高温回热器,再进入第二中间换热器进一步加热,再进入透平膨胀做功,推动发电机产生电能;透平排气依次进入高温回热器和低温回热器,将部分热量传递给二氧化碳工质后,再经预冷器冷却,最后返回到压缩机。In the supercritical carbon dioxide circulation system, the compressor compresses the carbon dioxide working medium, and the carbon dioxide working medium at the outlet of the compressor is divided into two paths: one path enters the low-temperature regenerator, and the other path enters the first intermediate heat exchanger; The mass enters the high-temperature regenerator together, then enters the second intermediate heat exchanger for further heating, and then enters the turbine to expand and do work, driving the generator to generate electric energy; the exhaust gas of the turbine enters the high-temperature regenerator and the low-temperature regenerator in turn, and the Part of the heat is transferred to the carbon dioxide working medium, then cooled by the pre-cooler, and finally returned to the compressor.
相比现有技术,本发明提供的光子增强热离子发射与超临界二氧化碳循环联合发电装置具有如下有益效果:Compared with the prior art, the photon-enhanced thermionic emission and supercritical carbon dioxide cycle combined power generation device provided by the present invention has the following beneficial effects:
1、光子增强热离子发射模块的阳极余热传递给超临界二氧化碳循环,减少了向环境释放热量损失,联合循环系统的整体发电效率高。1. The anode waste heat of the photon-enhanced thermionic emission module is transferred to the supercritical carbon dioxide cycle, which reduces the loss of heat released to the environment, and the overall power generation efficiency of the combined cycle system is high.
2、光子增强热离子发射模块为面积型发电装置且功率密度大,发电效率较高,是一种高效紧凑的太阳能发电装置,并且可以根据底循环的特点设计不同的阳极温度。2. The photon-enhanced thermionic emission module is an area-type power generation device with high power density and high power generation efficiency. It is an efficient and compact solar power generation device, and different anode temperatures can be designed according to the characteristics of the bottom cycle.
3、超临界二氧化碳循环结构紧凑,在较大的发电功率跨度(百kW级至百MW级)均保持高效率,与光子增强热离子发射模块既可组成小型紧凑的发电装置,也可组成中、大型的发电装置,满足不同的应用需求。3. The supercritical carbon dioxide cycle has a compact structure and maintains high efficiency in a large power generation span (hundreds of kW to hundreds of MW). It can be combined with a photon-enhanced thermionic emission module to form a small and compact power generation device or a medium-sized , Large-scale power generation devices to meet different application requirements.
附图说明Description of drawings
图1为本实施例提供的光子增强热离子发射与二氧化碳循环联合发电装置示意图;1 is a schematic diagram of a photon-enhanced thermionic emission combined with carbon dioxide cycle power generation device provided in this embodiment;
附图标记说明:Explanation of reference signs:
1-聚光器,2-接收器,3-第一光子增强热离子发射模块组,4-第一冷却器,5-第一中间换热器,6-第一介质泵,7-第二光子增强热离子发射模块组,8-第二冷却器,9-第二中间换热器,10-第二介质泵,11-压缩机,12-低温回热器,13-高温回热器,14-透平,15-发电机,16-预冷器。1-Concentrator, 2-Receiver, 3-First photon-enhanced thermionic emission module group, 4-First cooler, 5-First intermediate heat exchanger, 6-First medium pump, 7-Second Photon-enhanced thermionic emission module group, 8-second cooler, 9-second intermediate heat exchanger, 10-second medium pump, 11-compressor, 12-low temperature regenerator, 13-high temperature regenerator, 14-turbine, 15-generator, 16-precooler.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明。Below in conjunction with specific embodiment, further illustrate the present invention.
图1为本实施例提供的光子增强热离子发射与二氧化碳循环联合发电装置示意图,所述的光子增强热离子发射与二氧化碳循环联合发电装置包括太阳光的聚光器1、接收器2,聚光器1与接收器2相对设置,接收器2与包含多个模块的光子增强热离子发射模块组连接。本实施例中,光子增强热离子发射模块组分为第一光子增强热离子发射模块组3和第二光子增强热离子发射模块组7两类,其对应的阳极有低温和高温两种(此处的低温和高温为相对概念,本实施例中,第一光子增强热离子发射模块组3对应的阳极温度低于第二光子增强热离子发射模块组7对应的阳极温度)。Fig. 1 is the schematic diagram of the photon-enhanced thermion emission and carbon dioxide cycle combined power generation device provided in this embodiment, and the described photon-enhanced thermion emission and carbon dioxide cycle combined power generation device includes a solar concentrator 1, a receiver 2, and a concentrator The device 1 is arranged opposite to the receiver 2, and the receiver 2 is connected with a photon-enhanced thermion emission module group comprising a plurality of modules. In this embodiment, the photon-enhanced thermion emission module group is divided into two types: the first photon-enhanced thermion
低温和高温阳极分别连接第一冷却器4和第二冷却器8。第一冷却器4出口连接第一中间换热器5传热介质侧进口,第一中间换热器5传热介质侧出口连接第一介质泵6进口,第一介质泵6出口连接第一冷却器4进口,构成第一冷却回路。第二冷却器8出口连接第二中间换热器9传热介质侧进口,第二中间换热器9传热介质侧出口连接第二介质泵10进口,第二介质泵10出口连接第二冷却器8进口,构成第二冷却回路。The low-temperature and high-temperature anodes are respectively connected to the
第一中间换热器5、第二中间换热器9与超临界二氧化碳循环系统连接。超临界二氧化碳循环系统包括:压缩机11,压缩机11出口分为两路,一路连接低温回热器12低温侧进口,另一路与第一中间换热器5二氧化碳侧进口连接;低温回热器12低温侧出口和第一中间换热器5二氧化碳侧出口两路合并后连接高温回热器13低温侧进口,高温回热器13低温侧出口连接第二中间换热器9二氧化碳侧进口,第二中间换热器9二氧化碳侧出口连接透平14进口,透平14出口连接高温回热器13高温侧进口,高温回热器13高温侧出口连接低温回热器12高温侧进口,低温回热器12高温侧出口连接预冷器16进口,预冷器16出口连接压缩机11进口;压缩机11、透平14、发电机15同轴连接。The first intermediate heat exchanger 5 and the second
本实施例提供的集成碱金属热电转换器与二氧化碳循环的发电装置的各个设备之间通过管道连接,根据系统控制需要,管道上还可布置阀门、仪表等设备。系统中还可包括辅助设施、电气系统、控制系统等。The integrated alkali metal thermoelectric converter provided in this embodiment is connected to each device of the carbon dioxide cycle power generation device through pipelines, and valves, instruments and other equipment can also be arranged on the pipelines according to system control requirements. The system can also include auxiliary facilities, electrical systems, control systems, etc.
本实施例提供的光子增强热离子发射与超临界二氧化碳循环联合发电装置的具体实施步骤如下:The specific implementation steps of the photon-enhanced thermionic emission combined with supercritical carbon dioxide cycle power generation device provided in this embodiment are as follows:
太阳光经聚光器1聚焦至接收器2,接收器2加热第一光子增强热离子发射模块组3和第二光子增强热离子发射模块组7的阴极,阴极发射的电子经两极间隙到达阳极同时从两极输出电能,第一冷却器4和第二冷却器8将阳极冷却并将余热传递给传热介质。第一冷却器4的传热介质为导热油,其温度约200℃。第二冷却器8的传热介质为钠金属液,其温度约600℃。第一介质泵6和第二介质泵10不断地将传热介质从第一冷却器4和第二冷却器8循环输送至第一中间换热器5和第二中间换热器9,传热介质将热量释放给超临界二氧化碳循环系统的工质。The sunlight is focused by the concentrator 1 to the receiver 2, and the receiver 2 heats the cathodes of the first photon-enhanced thermionic
压缩机11将二氧化碳工质压缩至25MPa,压缩机11出口的二氧化碳工质分为两路,一路进入低温回热器12,另一路进入第一中间换热器5,出来的两路二氧化碳工质温度达到约180℃,然后一并进入高温回热器13,再进入第二中间换热器9进一步加热至约580℃,再进入透平14膨胀做功,推动发电机15产生电能。透平14排气进入高温回热器13和低温回热器12,将部分热量传递给二氧化碳工质后,再经预冷器16冷却到常温附近,最后返回到压缩机11。The
由上述参数可估算得到,光子增强热离子发射与超临界二氧化碳循环联合发电装置的太阳能发电峰值效率可达45%以上。上述系统还可以设置储热设施,在没有太阳光或太阳光较弱时可以持续为超临界二氧化碳循环提供热量输入。It can be estimated from the above parameters that the peak solar power generation efficiency of the photon-enhanced thermionic emission combined with supercritical carbon dioxide cycle power generation device can reach more than 45%. The above system can also be provided with heat storage facilities, which can continuously provide heat input for the supercritical carbon dioxide cycle when there is no sunlight or the sunlight is weak.
应当理解的是,虽然在这里可能使用量术语“第一”、“第二”等等来描述各个单元,但是这些单元不应当受这些术语限制。使用这些术语仅仅是为了将一个单元与另一个单元进行区分。举例来说,在不背离示例性实施例的范围的情况下,第一单元可以被称为第二单元,并且类似地第二单元可以被称为第一单元。It will be understood that, although the terms "first", "second", etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。The above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention in any form and in essence. Several improvements and supplements can be made, and these improvements and supplements should also be regarded as the protection scope of the present invention. Those who are familiar with this profession, without departing from the spirit and scope of the present invention, when they can use the technical content disclosed above to make some changes, modifications and equivalent changes of evolution, are all included in the present invention. Equivalent embodiments; at the same time, all changes, modifications and evolutions of any equivalent changes made to the above-mentioned embodiments according to the substantive technology of the present invention still belong to the scope of the technical solution of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810767070.8A CN108869213B (en) | 2018-07-12 | 2018-07-12 | Photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810767070.8A CN108869213B (en) | 2018-07-12 | 2018-07-12 | Photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108869213A CN108869213A (en) | 2018-11-23 |
CN108869213B true CN108869213B (en) | 2023-06-09 |
Family
ID=64301420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810767070.8A Active CN108869213B (en) | 2018-07-12 | 2018-07-12 | Photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108869213B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110390863B (en) * | 2019-07-22 | 2021-08-20 | 中国原子能科学研究院 | Experimental device for thermionic power generation using integral welding process of electrode assemblies |
CN110995060B (en) * | 2019-12-14 | 2021-01-26 | 杭州电子科技大学 | Method and device for multiplexing thermal power generation and thermal energy storage based on electron emission |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102187425B (en) * | 2008-10-16 | 2013-11-06 | 小利兰·斯坦福大学托管委员会 | Photon enhanced thermionic emission |
CN104884874A (en) * | 2012-10-16 | 2015-09-02 | 阿文戈亚太阳能有限责任公司 | Coupled chemical-thermal solar power system and method |
US20140306575A1 (en) * | 2013-04-11 | 2014-10-16 | Vanderbilt University | Enhanced thermionic energy converter and applications of same |
US10679834B2 (en) * | 2016-06-09 | 2020-06-09 | Ge Aviation Systems Llc | Hybrid solar generator |
CN106089337B (en) * | 2016-08-10 | 2017-07-07 | 西安热工研究院有限公司 | For the supercritical CO of waste heat recovery2With organic Rankine association circulating power generation system |
CN107630726B (en) * | 2017-09-26 | 2023-08-29 | 上海发电设备成套设计研究院有限责任公司 | A multi-energy hybrid power generation system and method based on supercritical carbon dioxide cycle |
CN208534696U (en) * | 2018-07-12 | 2019-02-22 | 上海发电设备成套设计研究院有限责任公司 | Photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device |
-
2018
- 2018-07-12 CN CN201810767070.8A patent/CN108869213B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108869213A (en) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101826823B (en) | Thermoelectric conversion type solar thermal power generation system | |
CN102307030B (en) | Spatial day-and-night temperature difference generating device and method | |
CN102176648B (en) | Disc type solar heat-electricity direct converting system | |
CN206539381U (en) | A kind of supercritical carbon dioxide cycle generating system based on combustion gas and solar heat | |
CN106321382A (en) | Solar photothermal combined power generation system | |
CN205779517U (en) | A kind of Novel wire focused solar energy combined generating system | |
CN107061201A (en) | A kind of photovoltaic and photothermal coupling co-generation unit and method | |
CN101334012A (en) | A distributed solar energy utilization system | |
CN109268224A (en) | A kind of geothermal energy and solar energy coupling power-generating apparatus and method | |
CN202696508U (en) | High-power concentrated solar power photo-thermal synthetic power generation system | |
CN108869213B (en) | Photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device and method | |
CN115468317A (en) | A Carnot battery energy storage device based on cascade utilization of solar photovoltaic light and heat | |
CN108800605A (en) | A kind of solar energy heat collection pipe and thermo-electric generation system | |
CN109915219B (en) | Energy supply system and method integrating fuel cell and supercritical carbon dioxide solar thermal power generation | |
CN209179830U (en) | Power generation device integrating alkali metal thermoelectric converter and carbon dioxide cycle | |
CN201869133U (en) | Thermoelectric conversion type solar thermal power generation system | |
CN217270640U (en) | Photo-thermal enhanced organic Rankine cycle geothermal power generation system | |
CN113864142B (en) | Geothermal energy and waste heat and photo-thermal coupling power generation system | |
CN209145782U (en) | A geothermal and solar coupled power generation device | |
CN211851944U (en) | A power generation system for waste heat recovery of electrolyzers | |
CN212837985U (en) | A waste heat recovery system for the side wall of an electrolytic aluminum tank | |
CN115425911A (en) | Solar carbon dioxide heat pump thermoelectric power generation system and method | |
CN115370428A (en) | Multi-energy coupling compressed air energy storage power generation system and operation method | |
CN208534696U (en) | Photon-enhanced thermionic emission and carbon dioxide cycle combined power generation device | |
WO2023070813A1 (en) | Mobile waste heat recovery power generation apparatus and gas turbine power generation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |