CN108832850A - 一种四电机伺服系统的最优分散鲁棒控制方法 - Google Patents
一种四电机伺服系统的最优分散鲁棒控制方法 Download PDFInfo
- Publication number
- CN108832850A CN108832850A CN201810884740.4A CN201810884740A CN108832850A CN 108832850 A CN108832850 A CN 108832850A CN 201810884740 A CN201810884740 A CN 201810884740A CN 108832850 A CN108832850 A CN 108832850A
- Authority
- CN
- China
- Prior art keywords
- motor
- servo system
- motor servo
- optimal
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
- H02P5/46—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
本发明公开了一种四电机伺服系统的基于最优分散鲁棒控制方法,具体方案为:针对四电机伺服系统,采用齿隙的死区模型,建立系统的状态空间方程;依据四电机互联系统状态方程,取其标称互联系统;针对每个电机设计最优分散鲁棒控制器,使得每个电机的输出跟踪参考信号,并且使得性能指标最小;对于标称互联系统,建立不含互联项的孤立单电机系统;针对孤立单电机系统,建立最优反馈控制器。本发明将不确定性系统的保性能控制器的设计问题转化为标称互联系统的最优分散鲁棒控制器的设计问题;针对标称互联系统的最优分散鲁棒控制器的设计问题,先从孤立系统出发,设计了最优跟踪控制器,进而构建了互联系统的最优分散鲁棒控制器。
Description
技术领域
本发明涉及机电控制技术领域,具体涉及一种四电机伺服系统的最优分散鲁棒控制方法。
背景技术
随着工业中大惯量、大功率装备的出现,采用多个电机同时驱动的方法已经代替传统的单电机驱动成为现今伺服系统控制领域的研究热点及难点,并且已经成功应用于工业轧钢系统、雷达伺服系统、舰炮控制系统中。相较于单电机驱动系统,四电机驱动系统能够很大程度上增强系统的过载能力和整体的驱动能力,极大降低对每个驱动电机功率等性能的要求,消除制造成本和技术限制。同时,联动控制可以提高复杂系统的控制精度并加快系统的响应速度。
在四电机驱动伺服系统中,导致系统控制性能下降的主要因素有两个:一个是参数不确定性,一个是电机之间的耦合影响。由于系统长时间的运行必然导致其机械结构参数发生变化,会影响系统的动静态特性。为了解决参数不确定性的影响,郭庆鼎利用一个参数调节器和一个前馈补偿减小了参数不确定性对系统跟踪性能的影响;蓝益鹏对于参数摄动问题,利用线性矩阵不等式的方法设计H无穷鲁棒控制器。由于四电机伺服系统的结构是多个电机通过齿轮与主轴连接驱动负载,必然会导致电机间的耦合问题,使得多个电机很难实现快速同步。而分散控制作为处理大型互联系统的有效方法正是解决四电机耦合问题的有效工具。关于互联系统的分散控制问题,李锦研究了两种方法:一是将子系统的互联信息作为扰动设计分散控制器,使得闭环稳定;二是将子系统的互联信息作为子系统的状态处理设计鲁棒控制器,对扰动有抑制作用。因此,本专利主要采用将保性能鲁棒控制与最优分散控制相结合的方法解决系统的参数不确定性和耦合因素,实现电机的快速跟踪与同步。
传统的系统设计方法是顺序设计,即先设计结构部分,然后根据设计结果设计控制部分,降低生产效率。传统的系统设计时忽略了系统的结构与控制两部分之间存在紧密联系,从而不易达到整个系统的最优性能。在实际系统中,结构参数和控制参数相互耦合,对结构子系统和控制子系统进行共同设计的一体化设计思路具有较为明显的优势。国内外已经对结构/控制一体化进行了一定的探索研究,但是相当一部分采用的方法是循环迭代的方式,并且对于四电机伺服系统的研究相对较少,而四电机伺服系统在日常生活中日益重要的地位使得研究其结构与控制一体化设计有现实意义。
可见,目前对于含参数不确定性的大型互联系统,大部分研究还停留在理论阶段,而对于含参数不确定性和互联项的四电机系统,还没有提出有效的控制方法使得系统的性能达到最优。而且传统的优化控制方法只是对控制参数进行优化,并未考虑机械结构参数对系统性能的影响。因此设计一种最优分散鲁棒控制方法在消除参数不确定性和互联项对系统影响下,实现电机的跟踪和同步是非常具有实际工程价值的。
发明内容
有鉴于此,本发明提供了一种四电机伺服系统的最优分散鲁棒控制方法,能够消除参数不确定性和互联项对系统的影响,实现电机的快速跟踪和同步。
为达到上述目的,本发明的技术方案为:
一种四电机伺服系统的基于最优分散鲁棒控制方法,四电机伺服系统包含第1~第4电机,为含参数不确定性的四电机伺服系统,该方法包括如下步骤:
步骤一、针对四电机伺服系统,采用齿隙的死区模型,建立系统的状态空间方程。
其中x1~x4分别为四电机伺服系统的第一~第四状态变量;
x1=θm,θm为四电机伺服系统负载端的转角;为*的一阶导数;bm为四电机伺服系统负载端的粘性摩擦系数;Jm为四电机伺服系统负载端的转动惯量;k为四电机伺服系统的刚度系数;c为四电机伺服系统的阻尼系数;符号函数χi为第i电机的驱动负载的标志因子,四电机伺服系统中齿隙的大小为2α;zi=θi-θm是四电机伺服系统中第i电机和负载端的位置差;θi为四电机伺服系统中第i电机的转角,当|zi|≥α时,χi=1;当|zi|<α时,χi=0;i=1,2,3,4。
x3i=zi-sgn(zi)α为四电机伺服系统中第i电机的齿隙内部状态;
为四电机伺服系统中第i电机的齿隙内部状态的一阶导数;ui为四电机伺服系统的输入转矩;
y为四电机伺服系统的输出;
针对系统的状态空间方程,θm=rθi,其中r>0为传动比,是常数值;
令第五状态变量为Xi=[x3i x4i]T,建立四电机互联系统状态方程为
其中设置第一~第四参数分别为Ai、Bi、Ci、Zj:
ΔAi为Ai的参数不确定性;ΔBi为Bi的参数不确定性。
Zj满足如下条件
||Zj||≤γijTjXj
其中γij为正常数,Tj为正定对称矩阵。
步骤二、依据四电机互联系统状态方程,取其标称互联系统为:
针对第i电机设计最优分散鲁棒控制器,使得第i电机的输出yi跟踪参考信号yd,并且使得性能指标最小。
Γi(Xi,ui)为关于参数不确定性的有界函数;对于Ai和Bi的参数不确定性ΔAi和ΔBi,存在函数Γ(Xi,ui):
使得式成立。
其中Fi和Gi均为正定矩阵,λi为拉格朗日乘子向量。
步骤三,对于标称互联系统,在性能指标下建立最优分散控制器为:
指第i电机的最优控制值。
对于标称互联系统,建立不含互联项的孤立单电机系统为:
针对孤立单电机系统,建立最优反馈控制器为:
指第i电机的最优反馈控制器输出值;πi为0~1之间的常数;则对于标称互联系统,存在一个正常数选取则最优反馈控制器为标称互联系统的最优分散鲁棒控制器。
进一步地,步骤一,针对四电机伺服系统,采用齿隙的死区模型,建立系统的状态空间方程,具体为:
S101、针对四电机伺服系统建立含参数不确定性的四电机伺服系统的动态方程为:
其中Ji为四电机伺服系统中第i电机的转动惯量;wi为偏置力矩;τi为四电机伺服系统中第i电机和负载端之间的传输力矩;bi四电机伺服系统中第i电机的粘性摩擦系数;θi为四电机伺服系统中第i电机的转角;
S102、建立齿隙的死区模型,四电机伺服系统中第i电机和负载端之间的传输力矩τi为死区函数,具体为:
τi不同时为零,即
S103、根据含参数不确定性的四电机伺服系统的动态方程,以及死区函数,获得四电机驱动系统的状态空间方程,即:
进一步地,拉格朗日乘子向量λi具体为:
λi=PiXi-Ni,Pi和Ni为对称正定阵,可由如下黎卡提方程得出:
进一步地,在步骤三之后,还包括:
步骤四,采用粒子群算法对四电机伺服系统的参数bi,Ji,k,c,以及控制参数πi,Ri,Gi,Qi,Fi进行寻优;
寻优过程中的性能指标函数E为:
其中t时间,em(t)为四电机伺服系统负载端的跟踪误差,ρ为正常数;em(t)=y-ryd;
E的约束条件为:
有益效果:
本发明公开的一种四电机伺服系统的最优分散鲁棒控制方法,通过电机负载间的传动比,将负载的跟踪问题转化为电机的跟踪问题并且建立了含参数不确定性和互联项的四电机伺服系统的状态方程;通过找到一个上界函数可以将不确定性系统的保性能控制器的设计问题转化为标称互联系统的最优分散鲁棒控制器的设计问题;针对标称互联系统的最优分散鲁棒控制器的设计问题,先从孤立系统出发,设计了最优跟踪控制器,然后通过放缩最优反馈,提出了互联系统的最优分散鲁棒控制器并且证明了闭环系统的稳定性。
附图说明
图1为本发明所提供的一种四电机伺服系统的最优分散鲁棒控制方法流程图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明提供了一种四电机伺服系统的最优分散鲁棒控制方法,根据负载电机间的传动比,将负载的跟踪问题转化为电机的跟踪问题并建立带有参数不确定性和互联项的状态空间方程。在参数不确定性有界的条件下,将保性能控制器的设计问题转化为标称互联系统下的最优分散鲁棒控制器的设计问题。根据对孤立系统的分析,可通过放缩局部最优反馈得到互联系统的最优分散鲁棒控制器并证明了稳定性。最后,可选地,利用粒子群算法对系统的机械结构参数和控制参数进行一体化设计,使系统的整体性能达到最优。
本发明的具体技术方案为:
一种四电机伺服系统的最优分散鲁棒控制方法,其中四电机伺服系统包含第1~第4电机,为含参数不确定性的四电机伺服系统,该方法的流程如图1所示,包括如下步骤:
步骤一、针对四电机伺服系统,采用齿隙的死区模型,建立系统的状态空间方程;
其中x1~x4分别为四电机伺服系统的第一~第四状态变量;
x1=θm,θm为四电机伺服系统负载端的转角;为*的一阶导数;bm为四电机伺服系统负载端的粘性摩擦系数;Jm为四电机伺服系统负载端的转动惯量;k为四电机伺服系统的刚度系数;c为四电机伺服系统的阻尼系数;符号函数χi为第i电机的驱动负载的标志因子,四电机伺服系统中齿隙的大小为2α;zi=θi-θm是四电机伺服系统中第i电机和负载端的位置差;θi为四电机伺服系统中第i电机的转角,当|zi|≥α时,χi=1;当|zi|<α时,χi=0;i=1,2,3,4;
x3i=zi-sgn(zi)α为四电机伺服系统中第i电机的齿隙内部状态;
为四电机伺服系统中第i电机的齿隙内部状态的一阶导数;ui为四电机伺服系统的输入转矩;
y为四电机伺服系统的输出。
该系统的状态空间方程采用如下S101~S103步骤获得:
S101、针对四电机伺服系统建立含参数不确定性的四电机伺服系统的动态方程为:
其中Ji为四电机伺服系统中第i电机的转动惯量;ΔJi为四电机伺服系统中第i电机的转动惯量的不确定性;wi为偏置力矩;τi为四电机伺服系统中第i电机和负载端之间的传输力矩;bi四电机伺服系统中第i电机的粘性摩擦系数。
S102、建立齿隙的死区模型,四电机伺服系统中第i电机和负载端之间的传输力矩τi为死区函数,具体为:
τi不同时为零,即
S103、根据含参数不确定性的四电机伺服系统的动态方程,以及死区函数,获得四电机驱动系统的状态空间方程,即:
针对系统的状态空间方程,由于齿隙非线性对系统的影响已经被所施加的偏置力矩所抵消,因此传输力矩τi可近似线性化;且负载端的转角θm与第i电机的转角之间满足θm=rθi,其中r>0为传动比,是常数值;根据传动比的关系,则负载的跟踪问题可转化为电机的跟踪问题,即负载跟踪参考信号ryd,则电机跟踪参考信号yd。
令第五状态变量为Xi=[x3i x4i]T,建立四电机互联系统状态方程为
其中设置第一~第四参数分别为Ai、Bi、Ci、Zj:
ΔAi为Ai的参数不确定性;ΔBi为Bi的参数不确定性。
其中参数不确定性满足如下条件:
||ΔAi||≤Am&||ΔBi||≤Bm
其中Am和Bm为正常数。
因此
其中Fi和Gi为正定矩阵。λi为拉格朗日乘子向量。
第四参数Zj为互联项,满足如下条件
||Zj||≤γijTjXj
其中γij为正常数,Tj为正定对称矩阵。
步骤二、本发明的控制目标是设计每一个电机的最优分散鲁棒控制器,使得第i电机输出yi跟踪参考信号yd,并且使得性能指标Li最小:
其中ei为跟踪误差,ei=yi-yd;Qi和Ri为正定对角矩阵(Qi和Ri可以现有的设定方法进行设置,Ri一般取单位阵。
在参数不确定性有界的条件下,将保性能控制器的设计问题转化为标称互联系统下的最优分散鲁棒控制器的设计问题。
依据四电机互联系统状态方程,取其标称互联系统为:
针对第i电机设计最优分散鲁棒控制器,使得第i电机的输出yi跟踪参考信号yd,并且使得性能指标最小;
Γi(Xi,ui)为关于参数不确定性的有界函数;对于Ai和Bi的参数不确定性ΔAi和ΔBi,存在函数Γ(Xi,ui):
使得式成立;
其中Fi和Gi均为正定矩阵,λi为拉格朗日乘子向量。
本发明实施例中,拉格朗日乘子向量λi具体为:
λi=PiXi-Ni,Pi和Ni为对称正定阵,可由如下黎卡提方程得出:
步骤三,对于标称互联系统,在性能指标下建立最优分散控制器为:
指第i电机的最优控制值;
对于标称互联系统,由于存在互联项Zj,使得最优分散鲁棒控制设计较为困难。因此本发明中考虑孤立系统的最优分散鲁棒控制器的设计问题。
建立不含互联项的孤立单电机系统为:
针对孤立单电机系统,建立最优反馈控制器为:
指第i电机的最优反馈控制器输出值;πi为0~1之间的常数;则对于标称互联系统,存在一个正常数选取则最优反馈控制器为标称互联系统的最优分散鲁棒控制器。
本发明实施例中,针对电机参数会限制系统性能的问题,采用机械结构参数与控制参数一体化的设计方法,对电机参数以及最优分散鲁棒控制器参数进行寻优。
即还包括:
步骤四,采用粒子群算法对四电机伺服系统的参数bi,Ji,k,c,以及控制参数πi,Ri,Gi,Qi,Fi进行寻优;
寻优过程中的性能指标函数E为:
其中t时间,em(t)为四电机伺服系统负载端的跟踪误差,ρ为正常数;em(t)=y-ryd,em(t)为时间t的函数。
E的约束条件为:
性能指标的第一项越小表示系统的稳态误差越小;第二项越小表明系统的能耗越小。约束条件是保证跟踪精度在10%以内,以及系统能耗最小。将跟踪精度与能耗整合成一个目标函数E,优化的最终目标是在满足约束条件的情况下求得目标函数E的最小值。
具体地都可以采用如下粒子群算法
第4.1步:初始化粒子群的各个参数值,并计算每个粒子的适应度函数。通过加权的形式计算出每组参数的性能指标(目标函数适应值)大小。
如果新粒子的适应值比前一个的更小,则用新粒子更新适应值;否则,适应值保持不变。
其中,pbest(t)是在t时刻的最佳适应值,f(·)通常为性能指标的目标函数,即多个重要指标的加权,X(t)是每个粒子的位置。
第4.2步:当pbest中最小的适应值小于全局的适应值时,用相应的最小适应值的位置更新全局的适应值。否则,全局适应值保持不变。
gbest(t+1)=argmin{f(pbest1(t)),f(pbest2(t)),...,f(pbestn(t))} (36)
其中:gbest(t)为t时刻全局的最佳适应值,n为粒子的总个数。
第4.3步:对控制参数值按照下面的公式进行更新
Xi'j(t+1)=Xi'j(t)+Vi'j(t+1)
其中:Vi'j(t)是第j维粒子第i'个群体迭代粒子的速度;Xi'j(t)是第j维粒子第i'个群体迭代粒子的位置,取i'=20;ω为惯性权重,取ω=0.7;c1和c2为学习率,取c1=c2=2。
第4.4步:粒子的当前位置超出所设置的最大值和最小值,对超出范围的粒子重新赋值,即
Xi'j(t+1)=Xmin(j)+(Xmax(j)-Xmin(j))×r3Xi'j(t+1)<Xmin(j)
Xi'j(t+1)=Xmin(j)+(Xmax(j)-Xmin(j))×r4Xi'j(t+1)>Xmax(j) (38)
同理可知,对于粒子的当前的速度而言,当超出粒子的最大速度时,粒子的速度重新赋值为
Vi'j(t+1)=Vmin(j)+(Vmax(j)-Vmin(j))×r5Vi'j(t+1)>Xmax(j)
Vi'j(t+1)=Vmin(j)+(Vmax(j)-Vmin(j))×r6Vi'j(t+1)<Vmin(j) (39)
其中Xmin(j)和Xmax(j)分别为第j维的最小位置和最大位置;Vmin(j)和Vmax(j)分别为第j维的最小速度和最大速度。
第4.5步:当迭代次数小于最大的设置次数时,转向第三步;否则,终止程序。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (4)
1.一种四电机伺服系统的基于最优分散鲁棒控制方法,其特征在于,所述四电机伺服系统包含第1~第4电机,为含参数不确定性的四电机伺服系统,该方法包括如下步骤:
步骤一、针对所述四电机伺服系统,采用齿隙的死区模型,建立系统的状态空间方程;
其中x1~x4分别为所述四电机伺服系统的第一~第四状态变量;
x1=θm,θm为所述四电机伺服系统负载端的转角;为*的一阶导数;bm为所述四电机伺服系统负载端的粘性摩擦系数;Jm为所述四电机伺服系统负载端的转动惯量;k为所述四电机伺服系统的刚度系数;c为所述四电机伺服系统的阻尼系数;符号函数χi为第i电机的驱动负载的标志因子,所述四电机伺服系统中齿隙的大小为2α;zi=θi-θm是所述四电机伺服系统中第i电机和负载端的位置差;θi为所述四电机伺服系统中第i电机的转角,当|zi|≥α时,χi=1;当|zi|<α时,χi=0;i=1,2,3,4;
x3i=zi-sgn(zi)α为所述四电机伺服系统中第i电机的齿隙内部状态;
为所述四电机伺服系统中第i电机的齿隙内部状态的一阶导数;ui为所述四电机伺服系统的输入转矩;
y为所述四电机伺服系统的输出;
针对所述系统的状态空间方程,θm=rθi,其中r>0为传动比,是常数值;
令第五状态变量为Xi=[x3i x4i]T,建立四电机互联系统状态方程为
其中设置第一~第四参数分别为Ai、Bi、Ci、Zj:
j=1,2,3,4;
ΔAi为Ai的参数不确定性;ΔBi为Bi的参数不确定性;
Zj满足如下条件
||Zj||≤γijTjXj
其中γij为正常数,Tj为正定对称矩阵;
步骤二、依据所述四电机互联系统状态方程,取其标称互联系统为:
针对第i电机设计最优分散鲁棒控制器,使得第i电机的输出yi跟踪参考信号yd,并且使得性能指标最小;
Γi(Xi,ui)为关于参数不确定性的有界函数;对于Ai和Bi的参数不确定性ΔAi和ΔBi,存在函数Γ(Xi,ui):
使得式成立;
其中Fi和Gi均为正定矩阵,λi为拉格朗日乘子向量;
步骤三,对于所述标称互联系统,在所述性能指标下建立最优分散控制器为:
指第i电机的最优控制值;
对于所述标称互联系统,建立不含互联项的孤立单电机系统为:
针对所述孤立单电机系统,建立最优反馈控制器为:
指第i电机的最优反馈控制器输出值;πi为0~1之间的常数;则对于所述标称互联系统,存在一个正常数选取则所述最优反馈控制器为所述标称互联系统的最优分散鲁棒控制器。
2.如权利要求1所述的方法,其特征在于,所述步骤一,针对所述四电机伺服系统,采用齿隙的死区模型,建立系统的状态空间方程,具体为:
S101、针对所述四电机伺服系统建立含参数不确定性的四电机伺服系统的动态方程为:
其中Ji为所述四电机伺服系统中第i电机的转动惯量;wi为偏置力矩;τi为所述四电机伺服系统中第i电机和负载端之间的传输力矩;bi所述四电机伺服系统中第i电机的粘性摩擦系数;θi为所述四电机伺服系统中第i电机的转角;
S102、建立齿隙的死区模型,所述四电机伺服系统中第i电机和负载端之间的传输力矩τi为死区函数,具体为:
τi不同时为零,即
S103、根据所述含参数不确定性的四电机伺服系统的动态方程,以及所述死区函数,获得所述四电机驱动系统的状态空间方程,即:
3.如权利要求1所述的方法,其特征在于,所述拉格朗日乘子向量λi具体为:
λi=PiXi-Ni,Pi和Ni为对称正定阵,可由如下黎卡提方程得出:
4.如权利要求1所述的方法,其特征在于,在所述步骤三之后,还包括:
步骤四,采用粒子群算法对所述四电机伺服系统的参数bi,Ji,k,c,以及控制参数πi,Ri,Gi,Qi,Fi进行寻优;
寻优过程中的性能指标函数E为:
其中t为时间,em(t)为四电机伺服系统负载端的跟踪误差,ρ为正常数;em(t)=y-ryd;
E的约束条件为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810884740.4A CN108832850B (zh) | 2018-08-06 | 2018-08-06 | 一种四电机伺服系统的最优分散鲁棒控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810884740.4A CN108832850B (zh) | 2018-08-06 | 2018-08-06 | 一种四电机伺服系统的最优分散鲁棒控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108832850A true CN108832850A (zh) | 2018-11-16 |
CN108832850B CN108832850B (zh) | 2020-05-05 |
Family
ID=64152705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810884740.4A Expired - Fee Related CN108832850B (zh) | 2018-08-06 | 2018-08-06 | 一种四电机伺服系统的最优分散鲁棒控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108832850B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110943649A (zh) * | 2019-12-31 | 2020-03-31 | 北京理工大学 | 一种双电机伺服系统的输入量化控制方法和系统 |
CN111880483A (zh) * | 2020-08-11 | 2020-11-03 | 青岛大学 | 一种雷达天线四电机驱动伺服系统预定性能控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1198899A (ja) * | 1997-09-19 | 1999-04-09 | Yaskawa Electric Corp | Acモータ駆動装置 |
CN103701368A (zh) * | 2014-01-14 | 2014-04-02 | 北京理工大学 | 双电机节能消隙控制方法 |
CN104614994A (zh) * | 2015-02-11 | 2015-05-13 | 南京理工大学 | 一种含输入死区的非线性系统鲁棒自适应控制方法 |
CN105867136A (zh) * | 2016-05-16 | 2016-08-17 | 北京理工大学 | 基于参数辨识的多电机伺服系统同步与跟踪控制方法 |
CN108092560A (zh) * | 2018-01-16 | 2018-05-29 | 北京理工大学 | 一种双电机伺服系统的保性能鲁棒分散控制方法 |
CN108228975A (zh) * | 2017-12-14 | 2018-06-29 | 北京理工大学 | 电机伺服系统参数辨识方法以及消隙控制方法 |
-
2018
- 2018-08-06 CN CN201810884740.4A patent/CN108832850B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1198899A (ja) * | 1997-09-19 | 1999-04-09 | Yaskawa Electric Corp | Acモータ駆動装置 |
CN103701368A (zh) * | 2014-01-14 | 2014-04-02 | 北京理工大学 | 双电机节能消隙控制方法 |
CN104614994A (zh) * | 2015-02-11 | 2015-05-13 | 南京理工大学 | 一种含输入死区的非线性系统鲁棒自适应控制方法 |
CN105867136A (zh) * | 2016-05-16 | 2016-08-17 | 北京理工大学 | 基于参数辨识的多电机伺服系统同步与跟踪控制方法 |
CN108228975A (zh) * | 2017-12-14 | 2018-06-29 | 北京理工大学 | 电机伺服系统参数辨识方法以及消隙控制方法 |
CN108092560A (zh) * | 2018-01-16 | 2018-05-29 | 北京理工大学 | 一种双电机伺服系统的保性能鲁棒分散控制方法 |
Non-Patent Citations (1)
Title |
---|
李兵强等: "机电伺服系统齿隙补偿及终端滑模控制", 《电工技术学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110943649A (zh) * | 2019-12-31 | 2020-03-31 | 北京理工大学 | 一种双电机伺服系统的输入量化控制方法和系统 |
CN110943649B (zh) * | 2019-12-31 | 2021-04-20 | 北京理工大学 | 一种双电机伺服系统的输入量化控制方法和系统 |
CN111880483A (zh) * | 2020-08-11 | 2020-11-03 | 青岛大学 | 一种雷达天线四电机驱动伺服系统预定性能控制方法 |
CN111880483B (zh) * | 2020-08-11 | 2024-01-26 | 青岛大学 | 一种雷达天线四电机驱动伺服系统预定性能控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108832850B (zh) | 2020-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105329777B (zh) | 带有持续扰动的可升降桥式吊车系统的模糊控制方法 | |
WO2022087799A1 (zh) | 一种考虑电流饱和以及干扰抑制的永磁同步电机速度控制方法 | |
CN105610350B (zh) | 一种用于双电机伺服系统的消隙同步控制方法 | |
CN113093541B (zh) | 一种欠驱动吊车微分平坦跟踪控制方法 | |
CN112147887B (zh) | 一种基于模糊滑模控制的桥式起重机定位消摆方法 | |
CN105227035B (zh) | 一种永磁直线电机控制方法 | |
CN108549229A (zh) | 一种桥式吊车神经网络自适应控制器及其设计方法 | |
CN110407095B (zh) | 一种基于在线轨迹规划的桥式起重机定位消摆控制方法 | |
CN111142384A (zh) | 二级摆型塔式吊车自适应神经网络跟踪控制方法及系统 | |
CN111007716A (zh) | 基于预测函数的交流伺服电机变论域模糊pi控制方法 | |
CN108832850A (zh) | 一种四电机伺服系统的最优分散鲁棒控制方法 | |
CN110131312A (zh) | 五自由度交流主动磁轴承自抗扰解耦控制器及构造方法 | |
CN109911771A (zh) | 变系数自抗扰控制器设计方法、及吊车自抗扰控制器 | |
CN108092560A (zh) | 一种双电机伺服系统的保性能鲁棒分散控制方法 | |
CN112162483B (zh) | 一种比例-积分控制器的最优参数获取方法 | |
CN102790577B (zh) | 一种无轴承永磁同步电机悬浮子系统控制器的构造方法 | |
Li et al. | Neural network‐based continuous finite‐time tracking control for uncertain robotic systems with actuator saturation | |
Zhang et al. | Fuzzy sliding mode control on positioning and anti-swing for overhead crane | |
Ji et al. | Research on speed control algorithm of belt conveyor based on controllable parameter PSO-PID | |
Sun et al. | Designing and application of fuzzy PID control for overhead crane systems | |
CN108252984A (zh) | 一种变频泵控液压锚杆钻机钻臂摆角控制方法 | |
CN114249238B (zh) | 一种桥式吊车的防摆控制方法 | |
Huang et al. | PID-based fuzzy sliding mode control for twin rotor multi-input multi-output systems | |
Guo et al. | Research on energy-saving optimization control system of mine belt conveyor | |
CN103560723A (zh) | 蚁群优化降阶模糊控制器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200505 |
|
CF01 | Termination of patent right due to non-payment of annual fee |