CN108823639A - 1.5 micron wave length hot keys of one kind and laser cooling preparation method - Google Patents
1.5 micron wave length hot keys of one kind and laser cooling preparation method Download PDFInfo
- Publication number
- CN108823639A CN108823639A CN201810747488.2A CN201810747488A CN108823639A CN 108823639 A CN108823639 A CN 108823639A CN 201810747488 A CN201810747488 A CN 201810747488A CN 108823639 A CN108823639 A CN 108823639A
- Authority
- CN
- China
- Prior art keywords
- glass
- spinel
- temperature
- erbium
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 238000000960 laser cooling Methods 0.000 title 1
- 239000013078 crystal Substances 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 239000011029 spinel Substances 0.000 claims abstract description 28
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 28
- 239000011521 glass Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 25
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 15
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 8
- 239000002131 composite material Substances 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 6
- 230000004913 activation Effects 0.000 claims abstract description 5
- 238000004140 cleaning Methods 0.000 claims abstract description 5
- 239000005365 phosphate glass Substances 0.000 claims description 6
- KWMNWMQPPKKDII-UHFFFAOYSA-N erbium ytterbium Chemical compound [Er].[Yb] KWMNWMQPPKKDII-UHFFFAOYSA-N 0.000 claims description 5
- 229920002120 photoresistant polymer Polymers 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract description 2
- 238000005498 polishing Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 erbium ions Chemical class 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/02—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1608—Solid materials characterised by an active (lasing) ion rare earth erbium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/162—Solid materials characterised by an active (lasing) ion transition metal
- H01S3/1621—Solid materials characterised by an active (lasing) ion transition metal cobalt
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
Abstract
一种1.5微米波长热键和复合激光晶体制备方法,属于激光晶体和固体激光技术领域。包括以下步骤:对铒玻璃和掺钴尖晶石的表面进行处理;材料表面加工处理后,再经过清洗、活化处理后,进行光胶,光胶好的晶体在常温环境下静置一段时间后,放入加热炉对得到的Er:Yb:glass‑spinel进行热处理;热处理采用升温、降温按照“缓慢、阶梯式”的过程进行,同时还采用恒温过程。采用本发明方法得到的热键和复合晶体Er:Yb:glass‑co:spinel做激光实验,能够得到1.5μm的激光输出。The invention discloses a preparation method of a 1.5 micron wavelength hot bond and composite laser crystal, which belongs to the technical field of laser crystal and solid laser. The method includes the following steps: treating the surface of erbium glass and cobalt-doped spinel; after the surface processing of the material, after cleaning and activation treatment, photoresisting is carried out, and the crystals with good photoresisting are left at room temperature for a period of time , put into a heating furnace to heat-treat the obtained Er:Yb:glass-spinel; the heat treatment adopts the process of heating up and cooling down in accordance with the "slow, stepped" process, and also adopts a constant temperature process. The hot bond obtained by the method of the present invention and the composite crystal Er:Yb:glass-co:spinel are used for laser experiments, and a laser output of 1.5 μm can be obtained.
Description
技术领域technical field
本发明是一种1.5微米波长热键和复合激光晶体制备方法,属于激光晶体和固体激光技术领域。The invention relates to a method for preparing a 1.5-micron wavelength hot bond and a composite laser crystal, which belongs to the technical field of laser crystals and solid lasers.
背景技术Background technique
1.5μm属于人眼安全波段,且正好处于大气窗口。目前获得1.5μm激光主要有两种方式。一种是通过非线性光学过程频率变换,另一种是激光工作物质直接产生两种方式。前一种方式主要利用光参量振荡(OPO),受激拉曼散射(SRS),自激拉曼散射等方式实现频率转换获得1.5μm激光[1-5]。后一种方式主要包括直接输出1.5μm激光半导体激光器和LD抽运掺铒离子的玻璃晶体激光器。利用LD抽运掺Er3+/Yb3+共掺磷酸盐玻璃方式可以满足高峰值功率、小体积等要求,同时具有光束质量好,转换效率高的特点。在人眼安全激光测距/目标指示、军事和光纤通信中有着广泛的应用需求。1.5μm belongs to the human eye safety band, and it is just in the atmospheric window. At present, there are two main ways to obtain 1.5μm laser. One is the frequency conversion through the nonlinear optical process, and the other is the direct generation of laser working substances. The former method mainly uses Optical Parametric Oscillation (OPO), Stimulated Raman Scattering (SRS), Self-excited Raman Scattering and other methods to achieve frequency conversion to obtain 1.5 μm laser [1-5] . The latter method mainly includes a direct output 1.5μm laser semiconductor laser and a glass crystal laser pumped by LD erbium ions. Using LD to pump Er 3+ /Yb 3+ co-doped phosphate glass can meet the requirements of high peak power and small volume, and has the characteristics of good beam quality and high conversion efficiency. It has a wide range of application requirements in eye-safe laser ranging/target indication, military and optical fiber communication.
晶体键合技术是将同质或者异质晶体材料,经晶体制备(即表面加工处理)、清洗、活化处理,不使用任何粘接物质,在一定的条件下直接贴合成一体,晶体通过范德华力、分子力、甚至原子力结合在一起。晶体键合技术在新型光器件、新型固体激光器研究方面具有非常重要的意义。Crystal bonding technology is to directly bond homogeneous or heterogeneous crystal materials into one under certain conditions through crystal preparation (ie surface processing), cleaning, and activation treatment without using any adhesive substances. , molecular forces, and even atomic forces combine together. Crystal bonding technology is of great significance in the research of new optical devices and new solid-state lasers.
发明内容Contents of the invention
本发明解决的技术问题:提供一种能够在1.5微米附近实现激光输出的,Er:Yb:glass和co:spinel的热键和复合晶体制备方法。The technical problem to be solved by the present invention is to provide a hot bond and compound crystal preparation method of Er:Yb:glass and co:spinel, which can realize laser output near 1.5 microns.
本发明的技术方案,包括以下步骤:Technical scheme of the present invention comprises the following steps:
(1)材料表面加工处理(1) Material surface processing
铒镱共掺磷酸盐玻璃的莫氏硬度4~5,铒镱共掺磷酸盐玻璃Er:Yb:glass,以下简称“铒玻璃”,将铒玻璃的表面进行加工,最终得到Er:Yb:glass的表面均方根粗糙度σ≤0.3nm,面型≤λ/10;掺钴尖晶石(co:spinel)的莫氏硬度是8,对其研磨和抛光co:spinel的表面均方根粗糙度σ≤0.6nm,面型≤λ/10;The Mohs hardness of erbium-ytterbium co-doped phosphate glass is 4-5. Erbium-ytterbium co-doped phosphate glass Er:Yb:glass, hereinafter referred to as "erbium glass", processes the surface of erbium glass to finally obtain Er:Yb:glass The root mean square roughness of the surface is σ≤0.3nm, and the surface shape is ≤λ/10; the Mohs hardness of cobalt-doped spinel (co:spinel) is 8, and the surface root mean square roughness of the ground and polished co:spinel Degree σ≤0.6nm, surface type≤λ/10;
(2)热键合(2) thermal bonding
步骤(1)材料表面加工处理后,再经过清洗、活化处理后,进行光胶,光胶好的晶体在常温环境下静置一段时间后,放入加热炉对得到的Er:Yb:glass-spinel进行热处理;热处理采用升温、降温按照“缓慢、阶梯式”的过程进行,同时还采用恒温过程;Step (1) After the surface of the material is processed, after cleaning and activation treatment, photoresist is carried out. After the crystals of the photoresist are left for a period of time at room temperature, they are placed in a heating furnace to treat the obtained Er:Yb:glass- The spinel is heat treated; the heat treatment is carried out in a "slow, step-by-step" process of heating and cooling, and a constant temperature process is also used;
设定最高恒温温度T2为290-310℃中的某一温度,优选300℃;室温-T1每5分钟升1-2℃(优选1℃),T1为190-210℃中的某一温度,优选200℃;然后在T1恒温不低于10小时;升温从T1升温到T2,每10分钟升1-2℃(优选1℃),在T2恒温不低于10小时;降温过程与升温过程对称,但没有恒温过程;Set the highest constant temperature T2 as a certain temperature in 290-310°C, preferably 300°C; room temperature-T1 rises by 1-2 °C (preferably 1 °C) every 5 minutes, and T1 is a certain temperature in 190-210°C One temperature, preferably 200°C; then keep the constant temperature at T1 for not less than 10 hours; raise the temperature from T1 to T2, increase the temperature by 1-2 °C (preferably 1 °C) every 10 minutes, keep the temperature at T2 for not less than 10 hours ;The cooling process is symmetrical to the heating process, but there is no constant temperature process;
热处理的关键要素是热处理温度和热处理时间。热处理温度的最高值一般选择两块晶体中低熔点材料熔点的0.4-0.9倍。另外,为了防止晶体在加热过程中发生相变,温度也需要比晶体发生相变的温度低80-100℃。热处理时间与键合面的尺寸大小、新化学键形成与排布的速率有关。通常情况下,热处理的高温保持时间长度在8-50小时,根据加热材料的成分不同,实际时间可以适当缩短或者延长。The key elements of heat treatment are heat treatment temperature and heat treatment time. The highest value of the heat treatment temperature is generally selected to be 0.4-0.9 times the melting point of the low melting point material in the two crystals. In addition, in order to prevent the crystal from undergoing phase transition during heating, the temperature also needs to be 80-100°C lower than the temperature at which the crystal undergoes phase transition. The heat treatment time is related to the size of the bonding surface, the rate of formation and arrangement of new chemical bonds. Normally, the high temperature holding time of heat treatment is 8-50 hours, and the actual time can be appropriately shortened or extended according to the composition of the heating material.
铒玻璃为玻璃态材料,没有固定的熔点,其玻璃软化温度为450℃。尖晶石(spinel)的熔点为2135℃。两个材料的温度点差别很大,热处理的最高恒温温度应当按照铒玻璃的温度点来考虑。进一步优选设定最高恒温温度为300℃,对Er:Yb:glass-spinel进行热处理。升温、降温按照“缓慢、阶梯式”的安排进行,室温-200℃每5分钟升1℃,在200℃恒温10小时,200-300℃每10分钟升1℃,在300℃恒温10小时,降温过程与升温过程对称。最终成功实现了Er:Yb:glass-spinel的异种材料热键合。Erbium glass is a glassy material without a fixed melting point, and its glass softening temperature is 450°C. The melting point of spinel is 2135°C. The temperature points of the two materials are very different, and the maximum constant temperature of heat treatment should be considered according to the temperature point of erbium glass. It is further preferred to set the maximum constant temperature at 300° C. to heat-treat the Er:Yb:glass-spinel. Heating and cooling are carried out according to the "slow, step-by-step" arrangement. Room temperature -200°C rises by 1°C every 5 minutes, keeps the temperature at 200°C for 10 hours, 200-300°C rises by 1°C every 10 minutes, and keeps the temperature at 300°C for 10 hours. The cooling process is symmetrical to the heating process. Finally, the Er:Yb:glass-spinel thermal bonding of dissimilar materials was successfully realized.
采用本发明方法得到的热键和复合晶体Er:Yb:glass-co:spinel做激光实验,能够得到1.5μm的激光输出。The hot bond obtained by the method of the present invention and the composite crystal Er:Yb:glass-co:spinel are used for laser experiments, and a laser output of 1.5 μm can be obtained.
附图说明Description of drawings
图1Er:Yb:glass表面形貌Figure 1Er:Yb:glass surface morphology
图2表面干涉图样Figure 2 Surface interference pattern
图3co:spinel表面形貌Figure 3co: surface morphology of spinel
图4外貌图;(a)co:spinel和Er:Yb:glass;(b)热键和复合晶体Figure 4 appearance diagram; (a) co:spinel and Er:Yb:glass; (b) hot bond and composite crystal
图5Er:Yb:glass-co:spinel键合界面HR-TEM大视场图像Figure 5Er:Yb:glass-co:spinel bonding interface HR-TEM large field image
图6铒玻璃-尖晶石键合晶体实验装置图Figure 6 Erbium glass-spinel bonded crystal experimental setup
具体实施方式Detailed ways
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。The present invention will be further described below in conjunction with the examples, but the present invention is not limited to the following examples.
实施例1Example 1
1、表面加工(精度)1. Surface processing (precision)
铒镱共掺磷酸盐玻璃(Er:Yb:glass,以下简称“铒玻璃”)的莫氏硬度4~5,我们使用粒径3μm的金刚石研磨液对铒玻璃表面进行研磨,每隔一段时间,使用激光平面干涉仪对表面查看,直到干涉仪中加工表面的图像变成一个圆光斑后,再进行下个加工步骤——粗抛光。铒玻璃的粗抛光使用粒径500目(25μm)的氧化铈抛光液进行,每隔一段时间之后,使用激光平面干涉仪查看加工表面,直到干涉仪中加工表面的图像出现宽的平行条纹时,再进行最后的精抛光。铒玻璃的硬度较低,抛光时表面形貌变化较快。精抛使用1.5μm的氧化铈抛光液对铒玻璃进行精抛光。在进行的精抛光时,每隔一段时间使用激光平面干涉仪和Zygo轮廓仪对表面形貌进行观察,保证其平面度和粗糙度满足光胶要求。最终得到Er:Yb:glass的表面均方根粗糙度σ为0.3nm,面型<λ/10。Zygo轮廓仪的检测图像如图1所示,面型如图2所示。Erbium-ytterbium co-doped phosphate glass (Er:Yb:glass, hereinafter referred to as "erbium glass") has a Mohs hardness of 4 to 5. We use diamond abrasives with a particle size of 3 μm to grind the surface of the erbium glass. Use a laser plane interferometer to view the surface until the image of the processed surface in the interferometer becomes a circular spot, and then proceed to the next processing step - rough polishing. The rough polishing of erbium glass is carried out with a cerium oxide polishing solution with a particle size of 500 mesh (25 μm). After a period of time, use a laser plane interferometer to view the processed surface until wide parallel stripes appear on the image of the processed surface in the interferometer. Then carry out the final fine polishing. The hardness of erbium glass is low, and the surface topography changes rapidly when polished. Fine polishing Use 1.5μm cerium oxide polishing solution to fine polish the erbium glass. During the fine polishing, the surface morphology is observed at regular intervals using a laser plane interferometer and a Zygo profiler to ensure that its flatness and roughness meet the requirements of optical glue. Finally, the surface root mean square roughness σ of Er:Yb:glass is 0.3nm, and the surface type is <λ/10. The detection image of the Zygo profiler is shown in Figure 1, and the surface shape is shown in Figure 2.
掺钴尖晶石(co:spinel)的莫氏硬度是8,对其研磨和抛光过程与铒玻璃类似。使用粒径3μm的氧化铝微粉研磨液对晶体表面进行研磨,使用粒径0.5μm的氧化铝微粉研磨液对晶体表面进行粗抛光,最后使用粒径0.05μm的氧化铝微粉研磨液对晶体表面进行精抛光。co:spinel的表面均方根粗糙度σ为0.6nm,面型<λ/10。Zygo轮廓仪的检测图像如图3所示,面型参照图3所示。The Mohs hardness of cobalt-doped spinel (co:spinel) is 8, and its grinding and polishing process is similar to that of erbium glass. Use alumina micropowder grinding liquid with a particle size of 3 μm to grind the crystal surface, use alumina fine powder grinding liquid with a particle size of 0.5 μm to roughly polish the crystal surface, and finally use alumina fine powder grinding liquid with a particle size of 0.05 μm to polish the crystal surface Finely polished. The surface root mean square roughness σ of co:spinel is 0.6nm, and the surface type is <λ/10. The detection image of the Zygo profiler is shown in Figure 3, and the surface shape is shown in Figure 3.
2、热键合(工艺)2. Thermal bonding (process)
材料表面加工处理后,再经过清洗、活化处理后,进行光胶,光胶好的晶体在常温环境下静置一段时间后,放入加热炉进行热处理。热处理的关键要素是热处理温度和热处理时间。After the surface of the material is processed, after cleaning and activation treatment, the photoresist is carried out. After the photoresisted crystal is left at room temperature for a period of time, it is put into a heating furnace for heat treatment. The key elements of heat treatment are heat treatment temperature and heat treatment time.
设定最高恒温温度为300℃,对Er:Yb:glass-spinel进行热处理。升温、降温按照“缓慢、阶梯式”的安排进行,室温-200℃每5分钟升1℃,在200℃恒温10小时,200-300℃每10分钟升1℃,在300℃恒温10小时,降温过程与升温过程对称。最终成功实现了Er:Yb:glass-spinel的异种材料热键合。Set the maximum constant temperature to 300°C, and heat-treat the Er:Yb:glass-spinel. Heating and cooling are carried out according to the "slow, step-by-step" arrangement. Room temperature -200°C rises by 1°C every 5 minutes, keeps the temperature at 200°C for 10 hours, 200-300°C rises by 1°C every 10 minutes, and keeps the temperature at 300°C for 10 hours. The cooling process is symmetrical to the heating process. Finally, the Er:Yb:glass-spinel thermal bonding of dissimilar materials was successfully realized.
键合实验采用的co:spinel尺寸为直径22mm,厚度3mm,Er:Yb:glass尺寸为直径25mm,厚度5mm。The size of the co:spinel used in the bonding experiment is 22mm in diameter and 3mm in thickness, and the size of Er:Yb:glass is 25mm in diameter and 5mm in thickness.
为了分析Er:Yb:glass-co:spinel的键合效果,我们使用高分辨率透射电镜(HR-TEM)对两者的键合面进行大视场成像,如图5所示。从图5看出,键合面平滑,没有明显缺陷。In order to analyze the bonding effect of Er:Yb:glass-co:spinel, we used a high-resolution transmission electron microscope (HR-TEM) to image the bonding surface of the two with a large field of view, as shown in Figure 5. It can be seen from Figure 5 that the bonding surface is smooth without obvious defects.
同时用热键和复合晶体Er:Yb:glass-co:spinel做激光实验,得到了单脉冲能量120μJ,脉宽5ns,重复频率10Hz,M2=1.3的1.5μm的激光输出。At the same time, the laser experiment was carried out with the hot bond and the compound crystal Er:Yb:glass-co:spinel, and a laser output of 1.5μm with a single pulse energy of 120μJ, a pulse width of 5ns, a repetition frequency of 10Hz, and M 2 =1.3 was obtained.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810747488.2A CN108823639A (en) | 2018-07-09 | 2018-07-09 | 1.5 micron wave length hot keys of one kind and laser cooling preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810747488.2A CN108823639A (en) | 2018-07-09 | 2018-07-09 | 1.5 micron wave length hot keys of one kind and laser cooling preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108823639A true CN108823639A (en) | 2018-11-16 |
Family
ID=64136577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810747488.2A Withdrawn CN108823639A (en) | 2018-07-09 | 2018-07-09 | 1.5 micron wave length hot keys of one kind and laser cooling preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108823639A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109942209A (en) * | 2019-04-25 | 2019-06-28 | 北京工业大学 | A kind of preparation method of erbium-ytterbium co-doped phosphate glass and magnesium fluoride crystal bonded planar waveguide |
CN110071414A (en) * | 2019-04-09 | 2019-07-30 | 青岛海泰光电技术有限公司 | Miniature Er-Yb codoped phosphate laser glass with both ends bonding body |
CN113131320A (en) * | 2021-04-06 | 2021-07-16 | 北京工业大学 | Erbium glass planar waveguide passive Q-switched laser |
CN116360131A (en) * | 2021-12-28 | 2023-06-30 | 成都拟合未来科技有限公司 | Manufacturing method of intelligent fitness mirror based on full bonding process |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5669275A (en) * | 1979-11-08 | 1981-06-10 | Showa Denko Kk | Molddreleasing lubricating boron nitride molded body |
JPH06325918A (en) * | 1993-05-11 | 1994-11-25 | Nippon Steel Corp | Ferrite magnetic material |
CN1658451A (en) * | 2005-01-08 | 2005-08-24 | 中国科学院安徽光学精密机械研究所 | Polygon thermally bonded composite laser medium and its preparation method |
CN1688014A (en) * | 2005-05-11 | 2005-10-26 | 华东师范大学 | Preparing method and application of heterobonded wafer |
CN101565857A (en) * | 2009-05-25 | 2009-10-28 | 浙江大学 | Method of thermally bonding single-end growing type composite crystal into double-end growing type composite crystal |
CN102912449A (en) * | 2012-10-14 | 2013-02-06 | 北京工业大学 | Bonding method for improving bonding force and optical properties of bonding crystal |
CN103490275A (en) * | 2013-09-24 | 2014-01-01 | 中国科学院福建物质结构研究所 | 1.5-1.6 micron wave band based on bonding crystal and frequency conversion laser device thereof |
CN104577699A (en) * | 2014-12-31 | 2015-04-29 | 西南技术物理研究所 | Diffusion bonding method of recombination laser media |
CN105154975A (en) * | 2015-09-11 | 2015-12-16 | 中国科学院合肥物质科学研究院 | Near-1.33-mu-mu-wavelength thermally-bonded composite laser crystal and preparation method thereof |
CN106087055A (en) * | 2016-06-15 | 2016-11-09 | 北京雷生强式科技有限责任公司 | A kind of yttrium aluminate composite crystal and preparation method thereof |
-
2018
- 2018-07-09 CN CN201810747488.2A patent/CN108823639A/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5669275A (en) * | 1979-11-08 | 1981-06-10 | Showa Denko Kk | Molddreleasing lubricating boron nitride molded body |
JPH06325918A (en) * | 1993-05-11 | 1994-11-25 | Nippon Steel Corp | Ferrite magnetic material |
CN1658451A (en) * | 2005-01-08 | 2005-08-24 | 中国科学院安徽光学精密机械研究所 | Polygon thermally bonded composite laser medium and its preparation method |
CN1688014A (en) * | 2005-05-11 | 2005-10-26 | 华东师范大学 | Preparing method and application of heterobonded wafer |
CN101565857A (en) * | 2009-05-25 | 2009-10-28 | 浙江大学 | Method of thermally bonding single-end growing type composite crystal into double-end growing type composite crystal |
CN102912449A (en) * | 2012-10-14 | 2013-02-06 | 北京工业大学 | Bonding method for improving bonding force and optical properties of bonding crystal |
CN103490275A (en) * | 2013-09-24 | 2014-01-01 | 中国科学院福建物质结构研究所 | 1.5-1.6 micron wave band based on bonding crystal and frequency conversion laser device thereof |
CN104577699A (en) * | 2014-12-31 | 2015-04-29 | 西南技术物理研究所 | Diffusion bonding method of recombination laser media |
CN105154975A (en) * | 2015-09-11 | 2015-12-16 | 中国科学院合肥物质科学研究院 | Near-1.33-mu-mu-wavelength thermally-bonded composite laser crystal and preparation method thereof |
CN106087055A (en) * | 2016-06-15 | 2016-11-09 | 北京雷生强式科技有限责任公司 | A kind of yttrium aluminate composite crystal and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
J. MLYNCZAK,ET AL.: "Performance analysis of thermally bonded Er3+,Yb3+ :glass/Co2+ :MgAl2O4 microchip lasers", 《OPT QUANT ELECTRON》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110071414A (en) * | 2019-04-09 | 2019-07-30 | 青岛海泰光电技术有限公司 | Miniature Er-Yb codoped phosphate laser glass with both ends bonding body |
CN109942209A (en) * | 2019-04-25 | 2019-06-28 | 北京工业大学 | A kind of preparation method of erbium-ytterbium co-doped phosphate glass and magnesium fluoride crystal bonded planar waveguide |
CN113131320A (en) * | 2021-04-06 | 2021-07-16 | 北京工业大学 | Erbium glass planar waveguide passive Q-switched laser |
CN116360131A (en) * | 2021-12-28 | 2023-06-30 | 成都拟合未来科技有限公司 | Manufacturing method of intelligent fitness mirror based on full bonding process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108823639A (en) | 1.5 micron wave length hot keys of one kind and laser cooling preparation method | |
CN104099665B (en) | A kind of lithium yttrium fluoride composite crystal and preparation method thereof | |
Ikesue et al. | Synthesis and performance of advanced ceramic lasers | |
US7463660B2 (en) | Gain media edge treatment to suppress amplified spontaneous emission in a high power laser | |
CN108346970B (en) | Saturable absorber mirror based on lithium niobate wafer, preparation method and application to 1 micron pulsed laser | |
CN103490275A (en) | 1.5-1.6 micron wave band based on bonding crystal and frequency conversion laser device thereof | |
CN105063755A (en) | Erbium-ion-excited mesosilicate crystal and 1.55-mu-m-waveband solid laser thereof | |
CN106087055B (en) | A kind of yttrium aluminate composite crystal and preparation method thereof | |
CN208352709U (en) | A kind of microplate ridge waveguide laser and microplate ridge waveguide tunable laser | |
CN109590820B (en) | Processing method of surface roughness of superhard laser crystal | |
CN118268871B (en) | Laser-ultraviolet light-microwave multi-energy field coupling ultra-precise machining system and method | |
US7164525B2 (en) | Wavelength converting devices | |
Zheng et al. | Laser damage threshold and nonlinear optical properties of large aperture elements of YCOB crystal | |
CN102005688A (en) | Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal | |
CN101565857A (en) | Method of thermally bonding single-end growing type composite crystal into double-end growing type composite crystal | |
WO2020144915A1 (en) | Light-absorbing layer and joined body provided with light-absorbing layer | |
CN100532318C (en) | A kind of laser transparent ceramic and preparation method thereof | |
JP2002031827A (en) | Periodic polarization reversal nonlinear optical material with structure having increased effective opening area | |
CN101969170B (en) | Preparation method of erbium-doped yttrium aluminum garnet ceramic ridge waveguide laser device | |
CN101159362A (en) | LD terminal pump yellow light laser | |
CN109942209A (en) | A kind of preparation method of erbium-ytterbium co-doped phosphate glass and magnesium fluoride crystal bonded planar waveguide | |
US5402434A (en) | Er:YVO4 laser oscillator, solid-state laser material and method for manufacturing the same | |
CN103972784B (en) | The thin disk laser of 1.5 to 1.6 micron wavebands of one kind | |
JP5292049B2 (en) | Cleaving method of brittle material substrate | |
TW544441B (en) | Substrate cutting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20181116 |
|
WW01 | Invention patent application withdrawn after publication |