[go: up one dir, main page]

CN102005688A - Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal - Google Patents

Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal Download PDF

Info

Publication number
CN102005688A
CN102005688A CN 201010284508 CN201010284508A CN102005688A CN 102005688 A CN102005688 A CN 102005688A CN 201010284508 CN201010284508 CN 201010284508 CN 201010284508 A CN201010284508 A CN 201010284508A CN 102005688 A CN102005688 A CN 102005688A
Authority
CN
China
Prior art keywords
neodymium
laser
waveguide
crystal
vanadate crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010284508
Other languages
Chinese (zh)
Inventor
陈�峰
谭杨
张怀金
路庆明
管婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN 201010284508 priority Critical patent/CN102005688A/en
Publication of CN102005688A publication Critical patent/CN102005688A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

The invention relates to a method for preparing a slab waveguide laser device in a neodymium-doped lutecium vanadate crystal, belonging to the technical field of optoelectronic device preparation. The method mainly comprises the following steps of: forming a slab waveguide in the neodymium-doped lutecium vanadate crystal and realizing the laser output on the slab waveguide. A femtosecond laser the pulse repetition rate of which is 200 KHz, the energy of which is 2-17 millijoule/pulse and the write-in speed of which is 0.2-15mm/second is adopted to form the slab waveguide in the neodymium-doped lutecium vanadate crystal. After laser resonant cavity film coating is carried out on the end surface of the waveguide, a pumping laser is utilized to carry out pumping on the neodymium-doped lutecium vanadate slab waveguide to output an infrared laser the wave length of which is 1063+/-1 or 1340+/-1nm.

Description

在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法 Method for preparing strip waveguide laser device in neodymium-doped lutetium vanadate crystal

技术领域technical field

本发明涉及一种在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法,属于光电子器件制备技术领域。The invention relates to a method for preparing a strip waveguide laser device in a neodymium-doped lutetium vanadate crystal, belonging to the technical field of optoelectronic device preparation.

背景技术Background technique

钕掺杂钒酸镥(Nd doped lutecium vanadate,或简写为Nd:LuVO4)晶体是一种应用广泛的激光增益介质,有很强的偏振吸收性,大的受激发射截面,高吸收系数,宽吸收带,对泵浦波长的依赖性小,激光阈值低。可以产生波长为1064或者1340纳米的激光,在激光加工、集成光学、光通讯中具有重要的应用。波导是集成光学的基本元件,被定义为一个相对于周维介质,折射率高的高折射率区域。在波导中,光束由于全反射原理,被限制在高折射率介质中传播。跟据光在波导中,受限制的方式不同分为平面波导(在一个方向上限制光的传播)和条形波导(在两个方向上限制光的传播)。采用一定条件对增益介质材料制备的波导进行泵浦,可以输出波导激光。波导结构可以将光的能量约束在截面非常小的区域内,在低入射能量的情况下,即可达到高的能量密度,所以波导激光的泵浦阈值相对体材料要低很多。而且在波导中泵浦光和波导激光的交叠面积大,可以达到很大的泵浦效率。另外,波导的长度和端面直径的比例大,利于热量散发,大大降低了波导激光的热效应。波导的制备方法有很多种,例如离子注入、脉冲激光沉积、飞秒激光写入、扩散等。2005年和2007年科技期刊杂志《Journal of Crystal Growth》和《Applied SurfaceScience》分别报道了用脉冲激光沉积技术和离子注入技术制备Nd:LuVO4平面波导(Journalof Crystal Growth 281,426(2005),Applied Surface Science 253,9311(2007))等。还没有条形波导制备的报道。也没有波导激光方面的报道。Neodymium-doped lutecium vanadate (Nd doped lutecium vanadate, or Nd:LuVO 4 for short) crystal is a widely used laser gain medium, with strong polarization absorption, large stimulated emission cross section, high absorption coefficient, Broad absorption band, small dependence on pump wavelength, low lasing threshold. It can generate laser with a wavelength of 1064 or 1340 nanometers, and has important applications in laser processing, integrated optics, and optical communications. A waveguide is a basic element of integrated optics, which is defined as a high-refractive-index region with a high refractive index relative to the circumferential medium. In waveguides, light beams are confined to propagate in high-refractive-index media due to the principle of total reflection. According to the way light is restricted in the waveguide, it can be divided into planar waveguide (restricting the propagation of light in one direction) and strip waveguide (restricting the propagation of light in two directions). The waveguide prepared by the gain medium material is pumped under certain conditions, and the waveguide laser can be output. The waveguide structure can confine the energy of light in a very small cross-sectional area, and can achieve high energy density at low incident energy, so the pumping threshold of waveguide lasers is much lower than that of bulk materials. Moreover, in the waveguide, the overlapping area of the pump light and the waveguide laser is large, so that a large pumping efficiency can be achieved. In addition, the ratio of the length of the waveguide to the diameter of the end face is large, which is conducive to heat dissipation and greatly reduces the thermal effect of the waveguide laser. There are many ways to prepare waveguides, such as ion implantation, pulsed laser deposition, femtosecond laser writing, diffusion, etc. In 2005 and 2007, "Journal of Crystal Growth" and "Applied Surface Science" respectively reported the preparation of Nd: LuVO planar waveguide by pulsed laser deposition technology and ion implantation technology (Journal of Crystal Growth 281, 426 (2005), Applied Surface Science 253, 9311(2007)), etc. There is no report on the fabrication of strip waveguides. There are also no reports on waveguide lasers.

发明内容Contents of the invention

本发明提供了一种用350fs飞秒激光直写在钕掺杂钒酸镥(以下简写为Nd:LuVO4)晶体中制作条形波导并实现输出波导激光的方法。The invention provides a method for fabricating a strip waveguide in a neodymium-doped lutetium vanadate (hereinafter abbreviated as Nd:LuVO 4 ) crystal by direct writing with a 350 fs femtosecond laser and realizing the output waveguide laser.

1)将垂直于钕掺杂钒酸镥晶体晶轴即c轴方向的两个面,进行抛光,并对抛光后的样品清洗;1) Polishing the two surfaces perpendicular to the crystal axis of the neodymium-doped lutetium vanadate crystal, that is, the c-axis direction, and cleaning the polished sample;

2)用飞秒激光,透过任一抛光面,沿晶体的a或b轴方向灼烧样品,产生两条间距为20或30微米的踪迹,在两条踪迹间形成条形波导;使用飞秒激光的脉冲重复频率为200千赫兹,能量为2~17微焦每脉冲,写入速度为0.2~15毫米每秒的飞秒激光,波长为1047纳米,脉冲宽度为350飞秒;2) Use a femtosecond laser to burn the sample along the a or b-axis direction of the crystal through any polished surface to produce two traces with a distance of 20 or 30 microns, and form a strip waveguide between the two traces; The pulse repetition frequency of the second laser is 200 kHz, the energy is 2 to 17 microjoules per pulse, the writing speed is 0.2 to 15 millimeters per second femtosecond laser, the wavelength is 1047 nanometers, and the pulse width is 350 femtoseconds;

3)将晶体垂直于条形波导方向的两个端面抛光;3) polishing the two end faces of the crystal perpendicular to the direction of the strip waveguide;

4)在抛光的端面上镀激光谐振腔膜,形成条形钕掺杂钒酸镥晶体波导激光器件;4) Coating a laser resonant cavity film on the polished end face to form a strip-shaped neodymium-doped lutetium vanadate crystal waveguide laser device;

5)利用光源泵浦钕掺杂钒酸镥晶体的条形波导,产生波长为1063±1纳米或者1340±1纳米的波导激光。5) Using a light source to pump a strip waveguide of a neodymium-doped lutetium vanadate crystal to generate waveguide laser light with a wavelength of 1063±1 nm or 1340±1 nm.

使用飞秒激光写入,成本低,任意性强,可控性高;波导区内的折射率改变及波导模式的调整,可以通过调节飞秒激光的能量、脉冲和写入速度来实现。波导激光的输出可以通过精确调控耦合模式的匹配来增强。Using femtosecond laser writing is low cost, strong arbitrariness, and high controllability; the change of the refractive index in the waveguide region and the adjustment of the waveguide mode can be realized by adjusting the energy, pulse, and writing speed of the femtosecond laser. The output of waveguide lasers can be enhanced by precisely tuning the matching of coupling modes.

附图说明Description of drawings

图1为本发明的工艺流程图;Fig. 1 is a process flow diagram of the present invention;

图2飞秒激光直写制备钕掺杂钒酸镥晶体波导的制作工艺示意图;Fig. 2 Schematic diagram of the fabrication process of neodymium-doped lutetium vanadate crystal waveguide by femtosecond laser direct writing;

图3为钕掺杂钒酸镥晶体条形波导激光产生的产生示意图;Fig. 3 is the generation schematic diagram that neodymium-doped lutetium vanadate crystal stripe waveguide laser produces;

图中:1.飞秒激光,2.钕掺杂钒酸镥晶体,3.条形波导,4.激光写入踪迹,5.泵浦光,6.偏振片,7.激光谐振腔输入端镀膜,8.激光谐振腔输出端镀膜,9.凸透镜,10.波导激光。In the figure: 1. Femtosecond laser, 2. Neodymium-doped lutetium vanadate crystal, 3. Strip waveguide, 4. Laser writing trace, 5. Pump light, 6. Polarizer, 7. Input end of laser resonator Coating, 8. Coating at the output end of the laser resonator, 9. Convex lens, 10. Waveguide laser.

具体实施方式Detailed ways

实施例1:在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法Embodiment 1: Method for preparing strip waveguide laser device in neodymium-doped lutetium vanadate crystal

1)将垂直与钕掺杂钒酸镥晶体(2)晶轴方向(c轴)的两个面,进行抛光,并对抛光后的样品清洗;1) Polishing the two surfaces perpendicular to the crystal axis direction (c-axis) of the neodymium-doped lutetium vanadate crystal (2), and cleaning the polished sample;

2)用飞秒激光(1),透过任一抛光面,沿晶体的a轴方向灼烧样品,产生两条间距为30微米的踪迹。在两条踪迹间形成条形波导(3)。使用飞秒激光(1)的脉冲重复频率为200千赫兹,能量为8微焦/脉冲,写入速度为1毫米/秒的飞秒激光,波长为1047纳米,脉冲宽度为350飞秒。2) Use a femtosecond laser (1) to burn the sample along the a-axis direction of the crystal through any polished surface to produce two traces with a distance of 30 microns. A strip waveguide (3) is formed between the two traces. Use a femtosecond laser (1) with a pulse repetition frequency of 200 kHz, an energy of 8 μJ/pulse, a writing speed of 1 mm/s, a wavelength of 1047 nm, and a pulse width of 350 femtoseconds.

3)将晶体垂直于条形波导方向的两个端面抛光。3) Polishing the two end faces of the crystal perpendicular to the direction of the strip waveguide.

4)在抛光的端面上镀激光谐振腔膜(7,8)。通光进入方向谐振腔膜的要求为波长为790-810纳米的光99%透过、波长为1055-1090纳米的光99%反射(7),输出方向谐振腔膜的要求为波长为790-810纳米的光99%反射、波长为1055-1090纳米的光95%反射(8),形成条形钕掺杂钒酸镥晶体波导激光器件;4) Coating the laser cavity film (7, 8) on the polished end face. The resonant cavity film in the direction of passing light is required to pass through 99% of light with a wavelength of 790-810 nanometers, and reflect 99% of light with a wavelength of 1055-1090 nm (7). The requirement for the resonant cavity film in the output direction is that the wavelength is 790- 99% reflection of light at 810 nanometers, and 95% reflection (8) of light with a wavelength of 1055-1090 nanometers, forming a strip-shaped neodymium-doped lutetium vanadate crystal waveguide laser device;

用钛宝石激光器产生中心波长为808纳米连续泵浦光(5)泵浦钕掺杂钒酸镥晶体的条形波导(3),产生波长为1063±1纳米的波导激光。A titanium sapphire laser is used to generate continuous pump light (5) with a center wavelength of 808 nanometers to pump a strip waveguide (3) of a neodymium-doped lutetium vanadate crystal to generate waveguide laser light with a wavelength of 1063±1 nanometers.

实施例2:在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法Embodiment 2: Method for preparing strip waveguide laser device in neodymium-doped lutetium vanadate crystal

1)将垂直与钕掺杂钒酸镥晶体(2)晶轴方向(c轴)的两个面,进行抛光,并对抛光后的样品清洗;1) Polishing the two surfaces perpendicular to the crystal axis direction (c-axis) of the neodymium-doped lutetium vanadate crystal (2), and cleaning the polished sample;

2)用飞秒激光(1),透过任一抛光面,沿晶体的a轴方向灼烧样品,产生两条间距为30微米的踪迹。在两条踪迹间形成条形波导(3)。使用飞秒激光(1)的脉冲重复频率为200千赫兹,能量为9微焦/脉冲,写入速度为2毫米/秒的飞秒激光,波长为1047纳米,脉冲宽度为350飞秒。2) Use a femtosecond laser (1) to burn the sample along the a-axis direction of the crystal through any polished surface to produce two traces with a distance of 30 microns. A strip waveguide (3) is formed between the two traces. Use a femtosecond laser (1) with a pulse repetition frequency of 200 kHz, an energy of 9 microjoules/pulse, a writing speed of 2 mm/s, a wavelength of 1047 nm, and a pulse width of 350 femtoseconds.

3)将晶体垂直于条形波导方向的两个端面抛光。3) Polishing the two end faces of the crystal perpendicular to the direction of the strip waveguide.

4)在抛光的端面上镀激光谐振腔膜(7,8)。通光进入方向谐振腔膜的要求为波长为790-810纳米的光99%透过、波长为1330-1350纳米的光99%反射(7),输出方向谐振腔膜的要求为波长为790-810纳米的光99%反射、波长为1330-1350纳米的光95%反射(8),形成条形钕掺杂钒酸镥晶体波导激光器件;4) Coating the laser cavity film (7, 8) on the polished end face. The resonant cavity film in the direction of passing light is required to pass through 99% of light with a wavelength of 790-810 nanometers, and reflect 99% of light with a wavelength of 1330-1350 nm (7). The requirement for the resonant cavity film in the output direction is that the wavelength is 790- 99% reflection of light at 810 nanometers, and 95% reflection (8) of light at a wavelength of 1330-1350 nanometers, forming a strip-shaped neodymium-doped lutetium vanadate crystal waveguide laser device;

5)用钛宝石激光器产生中心波长为808纳米连续泵浦光(5)泵浦钕掺杂钒酸镥晶体的波导(3),产生波长为1340±1纳米的波导激光。5) Using a Ti:Sapphire laser to generate continuous pump light with a central wavelength of 808 nm (5) to pump the waveguide (3) of a neodymium-doped lutetium vanadate crystal to generate waveguide laser light with a wavelength of 1340±1 nm.

Claims (2)

1.一种在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法,其特征在于,制备方法如下:1. a method for preparing strip waveguide laser device in neodymium-doped lutetium vanadate crystal, is characterized in that, preparation method is as follows: 1)将垂直于钕掺杂钒酸镥晶体晶轴即c轴方向的两个面,进行抛光,并对抛光后的样品清洗;1) Polishing the two surfaces perpendicular to the crystal axis of the neodymium-doped lutetium vanadate crystal, that is, the c-axis direction, and cleaning the polished sample; 2)用飞秒激光,透过任一抛光面,沿晶体的a或b轴方向灼烧样品,产生两条间距为20或30微米的踪迹,在两条踪迹间形成条形波导;2) Using a femtosecond laser, burn the sample along the a or b axis of the crystal through any polished surface to produce two traces with a distance of 20 or 30 microns, and form a strip waveguide between the two traces; 3)将晶体垂直于条形波导方向的两个端面抛光;3) polishing the two end faces of the crystal perpendicular to the direction of the strip waveguide; 4)在抛光的端面上镀激光谐振腔膜,形成条形钕掺杂钒酸镥晶体波导激光器件;4) Coating a laser resonant cavity film on the polished end face to form a strip-shaped neodymium-doped lutetium vanadate crystal waveguide laser device; 5)利用光源泵浦钕掺杂钒酸镥晶体的条形波导,产生波长为1063±1纳米或者1340±1纳米的波导激光。5) Using a light source to pump a strip waveguide of a neodymium-doped lutetium vanadate crystal to generate waveguide laser light with a wavelength of 1063±1 nm or 1340±1 nm. 2.按照权利要求1所述的在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法,其特征在于:所述的飞秒激光的脉冲宽度为350飞秒,脉冲重复频率为200千赫兹,能量为2~17微焦每脉冲,写入速度为0.2~15毫米每秒,波长为1047纳米。2. according to the method for preparing strip waveguide laser device in neodymium-doped lutetium vanadate crystal according to claim 1, it is characterized in that: the pulse width of described femtosecond laser is 350 femtoseconds, and pulse repetition frequency is 200 kilohertz, the energy is 2-17 microjoules per pulse, the writing speed is 0.2-15 millimeters per second, and the wavelength is 1047 nanometers.
CN 201010284508 2010-09-17 2010-09-17 Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal Pending CN102005688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010284508 CN102005688A (en) 2010-09-17 2010-09-17 Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010284508 CN102005688A (en) 2010-09-17 2010-09-17 Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal

Publications (1)

Publication Number Publication Date
CN102005688A true CN102005688A (en) 2011-04-06

Family

ID=43812843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010284508 Pending CN102005688A (en) 2010-09-17 2010-09-17 Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal

Country Status (1)

Country Link
CN (1) CN102005688A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767106A (en) * 2015-04-17 2015-07-08 山东大学 An erbium-doped yttrium aluminum garnet crystal nested optical waveguide amplifier and its preparation method
CN104792730A (en) * 2015-04-17 2015-07-22 山东大学 Blood sugar concentration detector based on optical waveguide laser structure as well as manufacturing method and application of blood sugar concentration detector
CN106526747A (en) * 2016-12-15 2017-03-22 山东师范大学 Method for manufacturing titanium sapphire waveguide type beam splitter
CN107046223A (en) * 2016-12-30 2017-08-15 中国科学院西安光学精密机械研究所 Turning mode-locking waveguide laser
CN109755849A (en) * 2019-02-14 2019-05-14 聊城大学 A method of fabricating a "surface-emitting" waveguide laser resonator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365500A (en) * 1999-07-29 2002-08-21 康宁股份有限公司 Direct writing of optical device in silica-based glass using femtosecond pulse lasers
CN1434551A (en) * 2003-03-04 2003-08-06 山东大学 Method for preparing neodymium doped yttrium vanadate crystal waveguide laser by ion implantation
CN1487636A (en) * 2003-08-22 2004-04-07 �Ϻ���ͨ��ѧ Nd2 YVO4 light waveguide film device on Sio2 Substrate and its prepn
JP2005292718A (en) * 2004-04-05 2005-10-20 Furukawa Electric Co Ltd:The Optical waveguide, optical waveguide module, and method of fabricating optical waveguide
CN101101356A (en) * 2007-07-25 2008-01-09 中国科学院上海光学精密机械研究所 Fabrication of microfluidic optical waveguides on glass substrates using femtosecond laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365500A (en) * 1999-07-29 2002-08-21 康宁股份有限公司 Direct writing of optical device in silica-based glass using femtosecond pulse lasers
CN1434551A (en) * 2003-03-04 2003-08-06 山东大学 Method for preparing neodymium doped yttrium vanadate crystal waveguide laser by ion implantation
CN1487636A (en) * 2003-08-22 2004-04-07 �Ϻ���ͨ��ѧ Nd2 YVO4 light waveguide film device on Sio2 Substrate and its prepn
JP2005292718A (en) * 2004-04-05 2005-10-20 Furukawa Electric Co Ltd:The Optical waveguide, optical waveguide module, and method of fabricating optical waveguide
CN101101356A (en) * 2007-07-25 2008-01-09 中国科学院上海光学精密机械研究所 Fabrication of microfluidic optical waveguides on glass substrates using femtosecond laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767106A (en) * 2015-04-17 2015-07-08 山东大学 An erbium-doped yttrium aluminum garnet crystal nested optical waveguide amplifier and its preparation method
CN104792730A (en) * 2015-04-17 2015-07-22 山东大学 Blood sugar concentration detector based on optical waveguide laser structure as well as manufacturing method and application of blood sugar concentration detector
CN106526747A (en) * 2016-12-15 2017-03-22 山东师范大学 Method for manufacturing titanium sapphire waveguide type beam splitter
CN107046223A (en) * 2016-12-30 2017-08-15 中国科学院西安光学精密机械研究所 Turning mode-locking waveguide laser
CN109755849A (en) * 2019-02-14 2019-05-14 聊城大学 A method of fabricating a "surface-emitting" waveguide laser resonator
CN109755849B (en) * 2019-02-14 2020-09-01 聊城大学 A method of fabricating a "surface-emitting" waveguide laser resonator

Similar Documents

Publication Publication Date Title
CN102318151B (en) Planar waveguide laser apparatus
CN102005688A (en) Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal
CN102244361A (en) Self-Raman frequency conversion self-mode locking solid laser
CN105140760A (en) Medical 6-micrometer waveband optical parameter laser
CN104765219A (en) Preparation method of erbium-doped lithium niobate optical waveguide amplifier
CN115939919B (en) Solid laser based on Kerr lens mode locking
CN109510060B (en) An anti-reflection structure for crystal total reflection surface of slab laser
CN108493746A (en) A kind of production method of miniature ridge waveguide and the laser with the waveguide
CN111769431A (en) A structure and implementation method for increasing one-pass gain by angular side pumping
CN107863675A (en) A kind of membrane structure for Slab Geometry Laser Resonator fully reflecting surface
CN105071216B (en) Frequency doubling crystal coupler for improving output efficiency of short-wave deep ultraviolet laser
CN112397977B (en) Lath laser
CN107632341B (en) Preparation method of three-dimensional waveguide beam splitter in double-doped CaF2 crystal
CN106299984A (en) A kind of integrated Q-switched laser and control method thereof
CN101969171B (en) Method for preparing ytterbium-doped yttrium aluminum garnet ceramic plane and strip waveguide laser devices
CN101969170B (en) Preparation method of erbium-doped yttrium aluminum garnet ceramic ridge waveguide laser device
CN116826504B (en) 3 mu m wave band laser based on super surface
CN205911599U (en) Q raman laser system is transferred passively to pulse energy adjustable based on bonded crystal
CN101159364A (en) LD terminal pump Nd:YAG/SrWO4/KTP yellow light laser
CN106532422A (en) Passively Q-switched c-cut Nd:YVO4 self-Raman all-solid-state laser with six-wavelength output
CN111769433B (en) glass/Co for increasing Er, Yb2+:MgAl2O4Method for outputting energy by laser
CN107069428A (en) Based on WS2Passive Q-adjusted c cutting Nd:YVO4From Raman eye-safe laser
CN101159362A (en) LD terminal pump yellow light laser
CN1280959C (en) Method for preparing neodymium doped yttrium vanadate crystal waveguide laser by ion implantation
CN105006737B (en) The compound green (light) laser of electric light, double frequency function based on rubidium oxygen titanium phosphate crystal and its method of work

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20110406