CN102005688A - Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal - Google Patents
Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal Download PDFInfo
- Publication number
- CN102005688A CN102005688A CN 201010284508 CN201010284508A CN102005688A CN 102005688 A CN102005688 A CN 102005688A CN 201010284508 CN201010284508 CN 201010284508 CN 201010284508 A CN201010284508 A CN 201010284508A CN 102005688 A CN102005688 A CN 102005688A
- Authority
- CN
- China
- Prior art keywords
- neodymium
- laser
- waveguide
- crystal
- vanadate crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 40
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 title claims abstract description 28
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 claims abstract description 4
- 229910052765 Lutetium Inorganic materials 0.000 claims description 21
- 238000005498 polishing Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000005086 pumping Methods 0.000 abstract description 4
- 230000005693 optoelectronics Effects 0.000 abstract description 2
- 239000007888 film coating Substances 0.000 abstract 1
- 238000009501 film coating Methods 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法,属于光电子器件制备技术领域。The invention relates to a method for preparing a strip waveguide laser device in a neodymium-doped lutetium vanadate crystal, belonging to the technical field of optoelectronic device preparation.
背景技术Background technique
钕掺杂钒酸镥(Nd doped lutecium vanadate,或简写为Nd:LuVO4)晶体是一种应用广泛的激光增益介质,有很强的偏振吸收性,大的受激发射截面,高吸收系数,宽吸收带,对泵浦波长的依赖性小,激光阈值低。可以产生波长为1064或者1340纳米的激光,在激光加工、集成光学、光通讯中具有重要的应用。波导是集成光学的基本元件,被定义为一个相对于周维介质,折射率高的高折射率区域。在波导中,光束由于全反射原理,被限制在高折射率介质中传播。跟据光在波导中,受限制的方式不同分为平面波导(在一个方向上限制光的传播)和条形波导(在两个方向上限制光的传播)。采用一定条件对增益介质材料制备的波导进行泵浦,可以输出波导激光。波导结构可以将光的能量约束在截面非常小的区域内,在低入射能量的情况下,即可达到高的能量密度,所以波导激光的泵浦阈值相对体材料要低很多。而且在波导中泵浦光和波导激光的交叠面积大,可以达到很大的泵浦效率。另外,波导的长度和端面直径的比例大,利于热量散发,大大降低了波导激光的热效应。波导的制备方法有很多种,例如离子注入、脉冲激光沉积、飞秒激光写入、扩散等。2005年和2007年科技期刊杂志《Journal of Crystal Growth》和《Applied SurfaceScience》分别报道了用脉冲激光沉积技术和离子注入技术制备Nd:LuVO4平面波导(Journalof Crystal Growth 281,426(2005),Applied Surface Science 253,9311(2007))等。还没有条形波导制备的报道。也没有波导激光方面的报道。Neodymium-doped lutecium vanadate (Nd doped lutecium vanadate, or Nd:LuVO 4 for short) crystal is a widely used laser gain medium, with strong polarization absorption, large stimulated emission cross section, high absorption coefficient, Broad absorption band, small dependence on pump wavelength, low lasing threshold. It can generate laser with a wavelength of 1064 or 1340 nanometers, and has important applications in laser processing, integrated optics, and optical communications. A waveguide is a basic element of integrated optics, which is defined as a high-refractive-index region with a high refractive index relative to the circumferential medium. In waveguides, light beams are confined to propagate in high-refractive-index media due to the principle of total reflection. According to the way light is restricted in the waveguide, it can be divided into planar waveguide (restricting the propagation of light in one direction) and strip waveguide (restricting the propagation of light in two directions). The waveguide prepared by the gain medium material is pumped under certain conditions, and the waveguide laser can be output. The waveguide structure can confine the energy of light in a very small cross-sectional area, and can achieve high energy density at low incident energy, so the pumping threshold of waveguide lasers is much lower than that of bulk materials. Moreover, in the waveguide, the overlapping area of the pump light and the waveguide laser is large, so that a large pumping efficiency can be achieved. In addition, the ratio of the length of the waveguide to the diameter of the end face is large, which is conducive to heat dissipation and greatly reduces the thermal effect of the waveguide laser. There are many ways to prepare waveguides, such as ion implantation, pulsed laser deposition, femtosecond laser writing, diffusion, etc. In 2005 and 2007, "Journal of Crystal Growth" and "Applied Surface Science" respectively reported the preparation of Nd: LuVO planar waveguide by pulsed laser deposition technology and ion implantation technology (Journal of Crystal Growth 281, 426 (2005), Applied Surface Science 253, 9311(2007)), etc. There is no report on the fabrication of strip waveguides. There are also no reports on waveguide lasers.
发明内容Contents of the invention
本发明提供了一种用350fs飞秒激光直写在钕掺杂钒酸镥(以下简写为Nd:LuVO4)晶体中制作条形波导并实现输出波导激光的方法。The invention provides a method for fabricating a strip waveguide in a neodymium-doped lutetium vanadate (hereinafter abbreviated as Nd:LuVO 4 ) crystal by direct writing with a 350 fs femtosecond laser and realizing the output waveguide laser.
1)将垂直于钕掺杂钒酸镥晶体晶轴即c轴方向的两个面,进行抛光,并对抛光后的样品清洗;1) Polishing the two surfaces perpendicular to the crystal axis of the neodymium-doped lutetium vanadate crystal, that is, the c-axis direction, and cleaning the polished sample;
2)用飞秒激光,透过任一抛光面,沿晶体的a或b轴方向灼烧样品,产生两条间距为20或30微米的踪迹,在两条踪迹间形成条形波导;使用飞秒激光的脉冲重复频率为200千赫兹,能量为2~17微焦每脉冲,写入速度为0.2~15毫米每秒的飞秒激光,波长为1047纳米,脉冲宽度为350飞秒;2) Use a femtosecond laser to burn the sample along the a or b-axis direction of the crystal through any polished surface to produce two traces with a distance of 20 or 30 microns, and form a strip waveguide between the two traces; The pulse repetition frequency of the second laser is 200 kHz, the energy is 2 to 17 microjoules per pulse, the writing speed is 0.2 to 15 millimeters per second femtosecond laser, the wavelength is 1047 nanometers, and the pulse width is 350 femtoseconds;
3)将晶体垂直于条形波导方向的两个端面抛光;3) polishing the two end faces of the crystal perpendicular to the direction of the strip waveguide;
4)在抛光的端面上镀激光谐振腔膜,形成条形钕掺杂钒酸镥晶体波导激光器件;4) Coating a laser resonant cavity film on the polished end face to form a strip-shaped neodymium-doped lutetium vanadate crystal waveguide laser device;
5)利用光源泵浦钕掺杂钒酸镥晶体的条形波导,产生波长为1063±1纳米或者1340±1纳米的波导激光。5) Using a light source to pump a strip waveguide of a neodymium-doped lutetium vanadate crystal to generate waveguide laser light with a wavelength of 1063±1 nm or 1340±1 nm.
使用飞秒激光写入,成本低,任意性强,可控性高;波导区内的折射率改变及波导模式的调整,可以通过调节飞秒激光的能量、脉冲和写入速度来实现。波导激光的输出可以通过精确调控耦合模式的匹配来增强。Using femtosecond laser writing is low cost, strong arbitrariness, and high controllability; the change of the refractive index in the waveguide region and the adjustment of the waveguide mode can be realized by adjusting the energy, pulse, and writing speed of the femtosecond laser. The output of waveguide lasers can be enhanced by precisely tuning the matching of coupling modes.
附图说明Description of drawings
图1为本发明的工艺流程图;Fig. 1 is a process flow diagram of the present invention;
图2飞秒激光直写制备钕掺杂钒酸镥晶体波导的制作工艺示意图;Fig. 2 Schematic diagram of the fabrication process of neodymium-doped lutetium vanadate crystal waveguide by femtosecond laser direct writing;
图3为钕掺杂钒酸镥晶体条形波导激光产生的产生示意图;Fig. 3 is the generation schematic diagram that neodymium-doped lutetium vanadate crystal stripe waveguide laser produces;
图中:1.飞秒激光,2.钕掺杂钒酸镥晶体,3.条形波导,4.激光写入踪迹,5.泵浦光,6.偏振片,7.激光谐振腔输入端镀膜,8.激光谐振腔输出端镀膜,9.凸透镜,10.波导激光。In the figure: 1. Femtosecond laser, 2. Neodymium-doped lutetium vanadate crystal, 3. Strip waveguide, 4. Laser writing trace, 5. Pump light, 6. Polarizer, 7. Input end of laser resonator Coating, 8. Coating at the output end of the laser resonator, 9. Convex lens, 10. Waveguide laser.
具体实施方式Detailed ways
实施例1:在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法Embodiment 1: Method for preparing strip waveguide laser device in neodymium-doped lutetium vanadate crystal
1)将垂直与钕掺杂钒酸镥晶体(2)晶轴方向(c轴)的两个面,进行抛光,并对抛光后的样品清洗;1) Polishing the two surfaces perpendicular to the crystal axis direction (c-axis) of the neodymium-doped lutetium vanadate crystal (2), and cleaning the polished sample;
2)用飞秒激光(1),透过任一抛光面,沿晶体的a轴方向灼烧样品,产生两条间距为30微米的踪迹。在两条踪迹间形成条形波导(3)。使用飞秒激光(1)的脉冲重复频率为200千赫兹,能量为8微焦/脉冲,写入速度为1毫米/秒的飞秒激光,波长为1047纳米,脉冲宽度为350飞秒。2) Use a femtosecond laser (1) to burn the sample along the a-axis direction of the crystal through any polished surface to produce two traces with a distance of 30 microns. A strip waveguide (3) is formed between the two traces. Use a femtosecond laser (1) with a pulse repetition frequency of 200 kHz, an energy of 8 μJ/pulse, a writing speed of 1 mm/s, a wavelength of 1047 nm, and a pulse width of 350 femtoseconds.
3)将晶体垂直于条形波导方向的两个端面抛光。3) Polishing the two end faces of the crystal perpendicular to the direction of the strip waveguide.
4)在抛光的端面上镀激光谐振腔膜(7,8)。通光进入方向谐振腔膜的要求为波长为790-810纳米的光99%透过、波长为1055-1090纳米的光99%反射(7),输出方向谐振腔膜的要求为波长为790-810纳米的光99%反射、波长为1055-1090纳米的光95%反射(8),形成条形钕掺杂钒酸镥晶体波导激光器件;4) Coating the laser cavity film (7, 8) on the polished end face. The resonant cavity film in the direction of passing light is required to pass through 99% of light with a wavelength of 790-810 nanometers, and reflect 99% of light with a wavelength of 1055-1090 nm (7). The requirement for the resonant cavity film in the output direction is that the wavelength is 790- 99% reflection of light at 810 nanometers, and 95% reflection (8) of light with a wavelength of 1055-1090 nanometers, forming a strip-shaped neodymium-doped lutetium vanadate crystal waveguide laser device;
用钛宝石激光器产生中心波长为808纳米连续泵浦光(5)泵浦钕掺杂钒酸镥晶体的条形波导(3),产生波长为1063±1纳米的波导激光。A titanium sapphire laser is used to generate continuous pump light (5) with a center wavelength of 808 nanometers to pump a strip waveguide (3) of a neodymium-doped lutetium vanadate crystal to generate waveguide laser light with a wavelength of 1063±1 nanometers.
实施例2:在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法Embodiment 2: Method for preparing strip waveguide laser device in neodymium-doped lutetium vanadate crystal
1)将垂直与钕掺杂钒酸镥晶体(2)晶轴方向(c轴)的两个面,进行抛光,并对抛光后的样品清洗;1) Polishing the two surfaces perpendicular to the crystal axis direction (c-axis) of the neodymium-doped lutetium vanadate crystal (2), and cleaning the polished sample;
2)用飞秒激光(1),透过任一抛光面,沿晶体的a轴方向灼烧样品,产生两条间距为30微米的踪迹。在两条踪迹间形成条形波导(3)。使用飞秒激光(1)的脉冲重复频率为200千赫兹,能量为9微焦/脉冲,写入速度为2毫米/秒的飞秒激光,波长为1047纳米,脉冲宽度为350飞秒。2) Use a femtosecond laser (1) to burn the sample along the a-axis direction of the crystal through any polished surface to produce two traces with a distance of 30 microns. A strip waveguide (3) is formed between the two traces. Use a femtosecond laser (1) with a pulse repetition frequency of 200 kHz, an energy of 9 microjoules/pulse, a writing speed of 2 mm/s, a wavelength of 1047 nm, and a pulse width of 350 femtoseconds.
3)将晶体垂直于条形波导方向的两个端面抛光。3) Polishing the two end faces of the crystal perpendicular to the direction of the strip waveguide.
4)在抛光的端面上镀激光谐振腔膜(7,8)。通光进入方向谐振腔膜的要求为波长为790-810纳米的光99%透过、波长为1330-1350纳米的光99%反射(7),输出方向谐振腔膜的要求为波长为790-810纳米的光99%反射、波长为1330-1350纳米的光95%反射(8),形成条形钕掺杂钒酸镥晶体波导激光器件;4) Coating the laser cavity film (7, 8) on the polished end face. The resonant cavity film in the direction of passing light is required to pass through 99% of light with a wavelength of 790-810 nanometers, and reflect 99% of light with a wavelength of 1330-1350 nm (7). The requirement for the resonant cavity film in the output direction is that the wavelength is 790- 99% reflection of light at 810 nanometers, and 95% reflection (8) of light at a wavelength of 1330-1350 nanometers, forming a strip-shaped neodymium-doped lutetium vanadate crystal waveguide laser device;
5)用钛宝石激光器产生中心波长为808纳米连续泵浦光(5)泵浦钕掺杂钒酸镥晶体的波导(3),产生波长为1340±1纳米的波导激光。5) Using a Ti:Sapphire laser to generate continuous pump light with a central wavelength of 808 nm (5) to pump the waveguide (3) of a neodymium-doped lutetium vanadate crystal to generate waveguide laser light with a wavelength of 1340±1 nm.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010284508 CN102005688A (en) | 2010-09-17 | 2010-09-17 | Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010284508 CN102005688A (en) | 2010-09-17 | 2010-09-17 | Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102005688A true CN102005688A (en) | 2011-04-06 |
Family
ID=43812843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010284508 Pending CN102005688A (en) | 2010-09-17 | 2010-09-17 | Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102005688A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104767106A (en) * | 2015-04-17 | 2015-07-08 | 山东大学 | An erbium-doped yttrium aluminum garnet crystal nested optical waveguide amplifier and its preparation method |
CN104792730A (en) * | 2015-04-17 | 2015-07-22 | 山东大学 | Blood sugar concentration detector based on optical waveguide laser structure as well as manufacturing method and application of blood sugar concentration detector |
CN106526747A (en) * | 2016-12-15 | 2017-03-22 | 山东师范大学 | Method for manufacturing titanium sapphire waveguide type beam splitter |
CN107046223A (en) * | 2016-12-30 | 2017-08-15 | 中国科学院西安光学精密机械研究所 | Turning mode-locking waveguide laser |
CN109755849A (en) * | 2019-02-14 | 2019-05-14 | 聊城大学 | A method of fabricating a "surface-emitting" waveguide laser resonator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1365500A (en) * | 1999-07-29 | 2002-08-21 | 康宁股份有限公司 | Direct writing of optical device in silica-based glass using femtosecond pulse lasers |
CN1434551A (en) * | 2003-03-04 | 2003-08-06 | 山东大学 | Method for preparing neodymium doped yttrium vanadate crystal waveguide laser by ion implantation |
CN1487636A (en) * | 2003-08-22 | 2004-04-07 | �Ϻ���ͨ��ѧ | Nd2 YVO4 light waveguide film device on Sio2 Substrate and its prepn |
JP2005292718A (en) * | 2004-04-05 | 2005-10-20 | Furukawa Electric Co Ltd:The | Optical waveguide, optical waveguide module, and method of fabricating optical waveguide |
CN101101356A (en) * | 2007-07-25 | 2008-01-09 | 中国科学院上海光学精密机械研究所 | Fabrication of microfluidic optical waveguides on glass substrates using femtosecond laser |
-
2010
- 2010-09-17 CN CN 201010284508 patent/CN102005688A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1365500A (en) * | 1999-07-29 | 2002-08-21 | 康宁股份有限公司 | Direct writing of optical device in silica-based glass using femtosecond pulse lasers |
CN1434551A (en) * | 2003-03-04 | 2003-08-06 | 山东大学 | Method for preparing neodymium doped yttrium vanadate crystal waveguide laser by ion implantation |
CN1487636A (en) * | 2003-08-22 | 2004-04-07 | �Ϻ���ͨ��ѧ | Nd2 YVO4 light waveguide film device on Sio2 Substrate and its prepn |
JP2005292718A (en) * | 2004-04-05 | 2005-10-20 | Furukawa Electric Co Ltd:The | Optical waveguide, optical waveguide module, and method of fabricating optical waveguide |
CN101101356A (en) * | 2007-07-25 | 2008-01-09 | 中国科学院上海光学精密机械研究所 | Fabrication of microfluidic optical waveguides on glass substrates using femtosecond laser |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104767106A (en) * | 2015-04-17 | 2015-07-08 | 山东大学 | An erbium-doped yttrium aluminum garnet crystal nested optical waveguide amplifier and its preparation method |
CN104792730A (en) * | 2015-04-17 | 2015-07-22 | 山东大学 | Blood sugar concentration detector based on optical waveguide laser structure as well as manufacturing method and application of blood sugar concentration detector |
CN106526747A (en) * | 2016-12-15 | 2017-03-22 | 山东师范大学 | Method for manufacturing titanium sapphire waveguide type beam splitter |
CN107046223A (en) * | 2016-12-30 | 2017-08-15 | 中国科学院西安光学精密机械研究所 | Turning mode-locking waveguide laser |
CN109755849A (en) * | 2019-02-14 | 2019-05-14 | 聊城大学 | A method of fabricating a "surface-emitting" waveguide laser resonator |
CN109755849B (en) * | 2019-02-14 | 2020-09-01 | 聊城大学 | A method of fabricating a "surface-emitting" waveguide laser resonator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102318151B (en) | Planar waveguide laser apparatus | |
CN102005688A (en) | Method for preparing slab waveguide laser device in neodymium-doped lutecium vanadate crystal | |
CN102244361A (en) | Self-Raman frequency conversion self-mode locking solid laser | |
CN105140760A (en) | Medical 6-micrometer waveband optical parameter laser | |
CN104765219A (en) | Preparation method of erbium-doped lithium niobate optical waveguide amplifier | |
CN115939919B (en) | Solid laser based on Kerr lens mode locking | |
CN109510060B (en) | An anti-reflection structure for crystal total reflection surface of slab laser | |
CN108493746A (en) | A kind of production method of miniature ridge waveguide and the laser with the waveguide | |
CN111769431A (en) | A structure and implementation method for increasing one-pass gain by angular side pumping | |
CN107863675A (en) | A kind of membrane structure for Slab Geometry Laser Resonator fully reflecting surface | |
CN105071216B (en) | Frequency doubling crystal coupler for improving output efficiency of short-wave deep ultraviolet laser | |
CN112397977B (en) | Lath laser | |
CN107632341B (en) | Preparation method of three-dimensional waveguide beam splitter in double-doped CaF2 crystal | |
CN106299984A (en) | A kind of integrated Q-switched laser and control method thereof | |
CN101969171B (en) | Method for preparing ytterbium-doped yttrium aluminum garnet ceramic plane and strip waveguide laser devices | |
CN101969170B (en) | Preparation method of erbium-doped yttrium aluminum garnet ceramic ridge waveguide laser device | |
CN116826504B (en) | 3 mu m wave band laser based on super surface | |
CN205911599U (en) | Q raman laser system is transferred passively to pulse energy adjustable based on bonded crystal | |
CN101159364A (en) | LD terminal pump Nd:YAG/SrWO4/KTP yellow light laser | |
CN106532422A (en) | Passively Q-switched c-cut Nd:YVO4 self-Raman all-solid-state laser with six-wavelength output | |
CN111769433B (en) | glass/Co for increasing Er, Yb2+:MgAl2O4Method for outputting energy by laser | |
CN107069428A (en) | Based on WS2Passive Q-adjusted c cutting Nd:YVO4From Raman eye-safe laser | |
CN101159362A (en) | LD terminal pump yellow light laser | |
CN1280959C (en) | Method for preparing neodymium doped yttrium vanadate crystal waveguide laser by ion implantation | |
CN105006737B (en) | The compound green (light) laser of electric light, double frequency function based on rubidium oxygen titanium phosphate crystal and its method of work |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20110406 |