CN108802385A - 用于诊断感染的标记和决定因素和其使用方法 - Google Patents
用于诊断感染的标记和决定因素和其使用方法 Download PDFInfo
- Publication number
- CN108802385A CN108802385A CN201810781584.9A CN201810781584A CN108802385A CN 108802385 A CN108802385 A CN 108802385A CN 201810781584 A CN201810781584 A CN 201810781584A CN 108802385 A CN108802385 A CN 108802385A
- Authority
- CN
- China
- Prior art keywords
- infection
- determinant
- trail
- virus
- patient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56911—Bacteria
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44717—Arrangements for investigating the separated zones, e.g. localising zones
- G01N27/44721—Arrangements for investigating the separated zones, e.g. localising zones by optical means
- G01N27/44726—Arrangements for investigating the separated zones, e.g. localising zones by optical means using specific dyes, markers or binding molecules
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44717—Arrangements for investigating the separated zones, e.g. localising zones
- G01N27/44739—Collecting the separated zones, e.g. blotting to a membrane or punching of gel spots
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56983—Viruses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6863—Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6863—Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
- G01N33/6866—Interferon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70575—NGF/TNF-superfamily, e.g. CD70, CD95L, CD153 or CD154
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
第一抗体和第二抗体用于制备区别细菌感染和病毒感染的试剂盒的用途,第一抗体用于确定对象的样本中的TRAIL多肽的表达水平;第二抗体用于确定所述对象的选自PCT、CRP、IP10、和sTREM所组成的组中的多肽的表达水平。
Description
相关申请
本申请要求2012年2月9日提交的U.S.S.N.61/596,950和2012年5月29日提交的U.S.S.N.61/652,631的优先权,所述专利的内容全文以引用方式并入本文中。
技术领域
本发明在其一些实施方式中一般涉及对与细菌和病毒感染相关的生物标记和决定因素的鉴定和在筛查诊断、疗法和感染监测中使用这种生物标记的方法。
背景技术
抗生素(Abx)为具有250-300亿美元全球市场的世界最多的处方类药物。Abx也是世界最为滥用药物,占错误处方的所有药物的显著部分(40-70%)(Linder,J.A.和R.S.Stafford 2001;Scott,J.G.和D.Cohen等人,2001;Davey,P.和E.Brown等人2006;Cadieux,G.和R.Tamblyn等人2007;Pulcini,C.和E.Cua等人,2007)’(“CDC-Get Smart:Fast Facts About Antibiotic Resistance”2011)。
Abx滥用的一种类型是在非细菌性疾病如病毒感染的情况下施用对此疾病是无效的药物。例如,根据美国疾病防控中心CDC,在美国每年治疗流感开出超过6千万个错误Abx处方。Abx过度处方的医疗保健和经济后果包括:(i)全球非必要处方的抗生素的成本,每年估算>100亿美元;(ii)非必要Abx治疗导致的副作用降低医疗保健的品质,导致并发症和长时间住院治疗(如过敏反应,Abx相关腹泻,肠酵母病等)和(iii)由过度使用所致的细菌的抗性菌株的出现(CDC已宣称细菌的抗生素耐性增长为“21世纪世界最紧迫的健康问题之一”(Arias,C.A.和B.E.Murray 2009;“CDC-About Antimicrobial Resistance”,2011))。
抗生素处方不足也并不罕见。例如,在美国,多达15%的成人细菌肺炎住院患者延缓接受或未接受Abx治疗,即便在这些情况下早期治疗可挽救生命并且减少并发症(Houck,P.M.和D.W.Bratzler等人,2002)。
传染病诊断的技术具有降低Abx滥用相关的相关健康和财政负担的潜力。理想地,这种技术应该:(i)精确区分细菌和病毒感染;(ii)迅速(几分钟内);(iii)能够区分病原性和为身体天然菌群一部分的非病原性细菌;(iv)区分混合共感染和纯病毒感染和(v)适用于病原体难于接近的病例(如窦炎、肺炎、中耳炎、支气管炎等)。
目前解决方案(例如培养、PCR和免疫测定法)未满足所有这些要求:(i)一些化验产生很差的诊断精确度(如低灵敏度或特异性)(Uyeki等人,2009),并且受限于有限集合的细菌或病毒菌株;(ii)它们常常需要数小时至数天时间;(iii)它们未辨别病原性和非病原性细菌(Del Mar,C,1992),因此导致假阳性;(iv)它们常常不能辨别混合与纯病毒感染和(v)它们需要对感染位点直接取样,在其中寻找致病剂的踪迹,从而阻碍对病原体位于难于接近的组织中的病情诊断,该情况经常发生。
因而,仍存在诊断缺口,这又常常使医师过度处方Abx(“以防万一方法”),或处方不足Abx(“观望方法”)(Little,P.S.和I.Williamson 1994;Little,P.2005;Spiro,D.M.和K.Y.Tay等人,2006),两者均具有深远的健康和财政后果。
因此,需要一种解决这些挑战的精确区分细菌、病毒、混合和非传染病患者的迅速方法。
发明内容
本发明提出第一抗体和第二抗体用于制备区别细菌感染和病毒感染的试剂盒的用途,第一抗体用于确定对象的样本中的TRAIL多肽的表达水平;第二抗体用于确定所述对象的选自PCT、CRP、IP10、和sTREM所组成的组中的多肽的表达水平。
优选地,所述第二抗体用于确定PCT的表达水平。
优选地,所述试剂盒进一步包括用于检测CRP多肽的表达水平的抗体。
优选地,所述样本为全血或血液分样。
优选地,所述血液分样包含选自淋巴细胞、单核细胞、和粒细胞所组成的组中的细胞。
优选地,所述血液分样包含血清或血浆。
优选地,所述多肽的表达水平通过电泳方式或免疫化学方式确定。
优选地,所述多肽的表达水平是通过流式细胞术、放射免疫测定、免疫荧光测定、或通过酶联免疫吸附测定进行检测的。
优选地,TRAIL的所述表达水平是在获得所述样本后的24小时内测量的。
优选地,TRAIL的所述表达水平是在储存在12℃或更低的所述样品中来测量的,其中所述储存是在获得所述样品后小于24小时开始的。
本发明在其一些实施方式中是基于对与细菌、病毒和混合(即细菌和病毒共感染)感染、具有非传染病的患者和健康对象相关的标记和决定因素的鉴定。本发明的方法允许鉴定对象患有的感染的类型,这接着允许选择恰当的治疗方案。各种本发明的实施方式通过以下来解决当前诊断解决方案的局限:(i)在广泛范围的病原体上允许精确诊断;(ii)使得可以迅速诊断(几分钟内);(iii)对非病原性细菌和病毒的存在不敏感(从而减少假阳性的问题);(iv)提供用于辨别混合感染与纯病毒感染的手段,和(v)消除对病原体的直接取样的需要,从而使得可以诊断难于接近的感染。因此,本发明的一些方法允许选择需要抗生素治疗的对象并且阻止对仅具有病毒感染或非传染病的对象的不必要的抗生素治疗。本发明的一些方法还允许选择抗病毒治疗为有利的对象。为发展和验证本发明的各种方面,发明人进行编入655位具有不同感染类型的医院患者以及对照物(具有非传染病的患者和健康个体)的大型前瞻性多中心临床试验。发明人随后进行细致的分子和生化实验并且使用定量测定法测量超过570个多肽和其他生理决定因素在这些患者中的水平。他们发现,大多数决定因素未指示潜在的感染类型(如细菌、病毒混合和非传染病)。此外,甚至在宿主感染响应中具有得到确认的免疫学作用的决定因素也未能稳健地辨别具有不同潜在感染类型的患者。由此标准分岔出发明人能够鉴定的一些独特决定因素,其能够区分各种感染类型。
在各种方面,本发明提供通过以下方式在对象中排除细菌感染的方法:测量在对象来源样品中的TRAIL的多肽浓度;和如果测定的TRAIL的多肽浓度高于预定第一阈值,则将对象排除细菌感染。任选地,该方法还包括如果TRAIL的多肽浓度高于预定第二阈值,则将对象划入病毒感染。
在另一方面,本发明提供通过以下方式在对象中排除病毒感染的方法:测量在对象来源样品中的TRAIL的多肽浓度;和如果测定的TRAIL的多肽浓度低于预定第一阈值,则将对象排除病毒感染。任选地,该方法还包含如果步骤(a)中测定的TRAIL的所述多肽浓度低于预定第二阈值,则在所述对象中划入细菌感染。
在另一方面,本发明提供通过以下方式在对象中划入细菌感染的方法:测量在对象来源样品中的TRAIL的多肽浓度;和如果TRAIL的多肽浓度低于预定第一阈值,则将对象划入细菌感染。
在其他方面,本发明提供通过以下方式在对象中划入病毒感染的方法:测量在对象来源样品中的TRAIL的多肽浓度;和如果TRAIL的多肽浓度高于预定第一阈值,则将对象划入病毒感染。
在各种方面,本发明包括一种通过以下方式在对象中辨别细菌感染和病毒感染的方法:测量在对象来源样品中的TRAIL和CRP的多肽浓度,对TRAIL和CRP的浓度应用预定数学函数以计算得分并且将该得分与预定参照值比较。
在另一方面,本发明提供一种通过以下方式在对象中辨别细菌或混合感染和病毒感染的方法:测量在对象来源样品中的TRAIL和CRP的多肽浓度,对TRAIL和CRP的浓度应用预定数学函数以计算得分并且将该得分与预定参照值比较。
在各种实施方式中,任何上述方法还包括测量选自SAA、PCT、B2M、Mac-2BP、IL1RA和IP10的一种或多种多肽的多肽浓度,对测量的多肽浓度的浓度应用预定数学函数以计算得分,将所得得分与预定参照值比较。具体而言,在一些实施方式中,测量TRAIL、CRP和SAA;测量TRAIL、CRP和IP10;
测量TRAIL、CRP和PCT;测量TRAIL、CRP和IL1RA;测量TRAIL、CRP和B2M;测量TRAIL、CRP和Mac-2BP;测量TRAIL、CRP、SAA和PCT;测量TRAIL、CRP、Mac-2BP和SAA;测量TRAIL、CRP、SAA和IP10;测量TRAIL、CRP、SAA和IL1RA;TRAIL、CRP、SAA、PCT和IP10;测量TRAIL、CRP、SAA、PCT和IL1RA;或测量TRAIL、CRP、SAA、IP10和IL1RA。
在另一方面,本发明包括通过以下方式为对象提供治疗建议的方法,即,选择治疗方案:测量在对象来源样品中的TRAIL的多肽浓度;并且如果TRAIL的多肽浓度低于预定阈值,则建议对象接受抗生素治疗;如果TRAIL的多肽浓度高于预定阈值,则建议患者不接受抗生素治疗;或如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则建议患者接受抗病毒治疗。
在另一方面,本发明包括一种通过以下方式为对象提供治疗建议的方法:根据所公开方法中任一者的方法来在对象中鉴定感染类型(即细菌、病毒、混合感染或无感染)和如果对象被鉴定为具有细菌感染或混合感染则建议对象接受抗生素治疗;或如果对象被鉴定为具有病毒感染,则为抗病毒治疗。
在又一方面,本发明提供一种通过以下方式为对象提供诊断测试建议的方法:测量在对象来源样品中的TRAIL的多肽浓度;和如果TRAIL的多肽浓度低于预定阈值,则建议针对细菌测试样品;或如果TRAIL的多肽浓度高于预定阈值,则建议针对病毒测试样品。
在另一方面,本发明包括通过以下方式为对象提供诊断测试建议的方法:根据所公开方法的任一者在对象中鉴定感染类型(即细菌、病毒、混合感染或无感染)和
建议如果对象被鉴定为具有细菌感染或混合感染,则测试以确定细菌感染的来源;或如果对象被鉴定为具有病毒感染,则测试以确定病毒感染的来源。
在各种方面,任何上述方法还包括测量以下决定因素中的一者或多者:IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC;IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、IL7;
CRP、SAA、TREM-1、PCT、IL-8、TREM-1和IL6;年龄、嗜中性粒细胞绝对计数(ANC)、淋巴细胞绝对计数(ALC)、嗜中性粒细胞百分比(Neu(%))、淋巴细胞百分比(Lym(%))、单核细胞百分比(Mono(%))、最大温度、症状时间、肌酸酐(Cr)、钾(K)、脉搏和尿素。
在另一方面,本发明提供一种辨别具有传染病的对象和具有非传染病的对象的方法。例如,在一种实施方式中,通过测量在对象来源样品中包括TRAIL、IP10、IL1Ra或Mac-2BP的一种或多种多肽的多肽浓度;对测量的多肽的浓度应用预定数学函数以计算得分,将该得分与预定参照值比较,在对象中排除传染病。任选地,测量包括SAA、CRP、IL6、IL8、和PCT、TREM-1的一种或多种多肽的多肽浓度。
在各种方面,该方法辨别病毒感染的对象与具有非传染病的对象或健康对象;细菌感染的对象与具有非传染病的对象或健康对象;具有传染病的对象与具有非传染病的对象或健康对象;细菌感染的对象与病毒感染的对象;混合感染的对象与病毒感染的对象;混合感染的对象与细菌感染的对象以及细菌或混合感染的对象与病毒感染的对象。
这些方法包括测量包括TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC和TNFR1的第一决定因素在来自所述对象的样品中的水平;和测量包括TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC TNFR1;IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、IL7;CRP、SAA、TREM-1、PCT、IL-8、TREM-1和IL6的第二决定因素的水平;年龄、嗜中性粒细胞绝对计数(ANC)、淋巴细胞绝对计数(ALC)、嗜中性粒细胞百分比(Neu(%))、淋巴细胞百分比(Lym(%))、单核细胞百分比(Mono(%))、最大温度、症状时间、肌酸酐(Cr)、钾(K)、脉搏和尿素并且将第一和第二决定因素的水平与参照值比较,从而在对象中鉴定感染类型,其中相比第一决定因素的测量,第二决定因素的测量提高感染类型的鉴定的精确度。任选地,还包括测量包括以下的一种或多种额外的决定因素的水平TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC TNFR1;IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、IL7;CRP、SAA、TREM-1、PCT、IL-8、TREM-1和IL6;年龄、嗜中性粒细胞绝对计数(ANC)、淋巴细胞绝对计数(ALC)、嗜中性粒细胞百分比(Neu(%))、淋巴细胞百分比(Lym(%))、单核细胞百分比(Mono(%))、最大温度、症状时间、肌酸酐(Cr)、钾(K)、脉搏和尿素;其中相比第一和第二决定因素的测量,额外决定因素的测量提高感染类型的鉴定的精确度。在一个方面,通过测量选自B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1RA、IP10、MCP、Mac-2BP、TRAIL、CD62L和VEGFR2的一种或多种决定因素和选自CRP、TREM-1、SAA、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的一种或多种决定因素,该方法辨别细菌感染的对象与病毒感染的对象。例如,测量CRP和TRAIL;测量CRP和TRAIL和SAA;测量CRP和TRAIL和Mac-2BP;测量CRP和TRAIL和PCT;测量CRP和TRAIL和SAA和Mac-2BP;测量PCT和TRAIL;或测量SAA和TRAIL。在另一方面,该方法通过测量辨别混合感染的对象和病毒感染的对象,其中测量选自TRAIL、IP10、IL1RA、CHI3L1、CMPK2和MCP-2的一种或多种决定因素并且任选地测量选自CRP、SAA、ANC、ATP6V0B、CES1、CORO1A、HERC5、IFITM1、LIPT1、LOC26010、LRDD、Lym(%)、MCP-2、MX1、Neu(%)、OAS2、PARP9、RSAD2、SART3、WBC、PCT、IL-8、IL6和TREM-1的一种或多种决定因素。
在另一方面,该方法通过测量辨别细菌或混合感染的对象和病毒感染的对象,其中测量选自TRAIL、IL1RA、IP10、ARG1、CD337、CD73、CD84、CHI3L1、CHP、CMPK2、CORO1C、EIF2AK2、嗜酸性粒细胞趋化因子、GPR162、HLA-A/B/C、ISG15、ITGAM、Mac-2BP、NRG1、RAP1B、RPL22L1、SSEA1、RSAD2、RTN3、SELI、、VEGFR2、CD62L和VEGFR2的一种或多种决定因素并且任选地测量选自CRP、SAA、PCT、IL6、IL8、ADIPOR1、ANC、年龄、B2M、总胆红素、CD15、Cr、EIF4B、IFIT1、IFIT3、IFITM1、IL7R、K(钾)、KIAA0082、LOC26010、Lym(%)、MBOAT2、MCP-2、MX1、Na、Neu(%)、OAS2、PARP9、PTEN、脉搏、尿素、WBC、ZBP1、mIgG1和TREM-1的一种或多种决定因素。
在另一方面,通过测量选自IP10、IL1RA、TRAIL、BCA-1、CCL19-MIP3b、CES1和CMPK2的一种或多种决定因素,该方法辨别具有传染病的对象和具有非传染病的对象或健康对象。任选地,测量选自CRP、SAA、PCT、IL6、IL8、ARPC2、ATP6V0B、Cr、Eos(%)、HERC5、IFI6、IFIT3、KIAA0082、LIPT1、LOC26010、LRDD、MBOAT2、MX1、最大温度、OAS2、PARP9、脉搏、QARS、RAB13、RPL34、RSAD2、SART3、RIM22、UBE2N、XAF1、IL11、I-TAC和TNFR1的一种或多种决定因素。
任何上述方法可用于进一步选择用于对象的治疗方案。例如,如果对象被鉴定为具有病毒感染,则选择对象接受抗病毒治疗方案。当对象被鉴定为具有非病毒疾病时,选择对象不接受抗病毒治疗方案。当对象被鉴定为具有细菌或混合感染时,选择对象接受抗生素治疗方案。当对象被鉴定为具有病毒感染时,选择非传染病或健康对象不接受抗生素治疗方案。
在另一方面,本发明提供通过以下方式对用于感染的治疗的有效性的监测:检测选自TRAIL、IL1RA、IP10、B2M、Mac-2BP、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、MCP、Mac-2BP、TRAIL、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IL11、IL1a、I-TAC和TNFR1的一种或多种多肽-决定因素在第一时间段在来自对象的第一样品中的水平;检测选自TRAIL、IL1RA、IP10、B2M、Mac-2BP、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子MCP、Mac-2BP、TRAIL、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IL11、IL1a、I-TAC和TNFR1的一种或多种多肽-决定因素在第二时间段在来自对象的第二样品中的水平;和将在第一样品中检测的一种或多种多肽的水平与第二样品中检测的水平、或参照值比较。通过一种或多种多肽的水平的改变来监测治疗的有效性。任选地,该方法还包括在第一和第二样品中检测选自CRP、SAA、TREM-1、PCT、IL-8和IL6的一种或多种多肽-决定因素。
对象此前已针对感染进行治疗。或者,对象此前尚未针对感染进行治疗。在一些方面,从在针对感染进行治疗之前对象中取得第一样品,并且在针对感染进行治疗之后从对象中取得第二样品。在一些方面,在感染复发之后或在感染复发之前,从对象中取得第二样品。
例如,样品为全血或其成分血。成分血样品含有包括淋巴细胞、单核细胞和粒细胞的细胞。通过电泳、或免疫化学测定多肽的表达水平。例如,免疫化学检测是通过流式细胞术、放射性免疫测定、免疫荧光测定或通过酶联免疫吸附测定进行。
在样品中一种或多种多肽的水平的临床显著变更指示对象中有感染。在一些方面,将一种或多种决定因素的水平与参照值如指数值比较。在一些方面,在进行年龄依赖性归一化或分组之后,测定参照值或指数值。在任何上述方法中,优选选择决定因素,使得其MCC>=0.4或AUC>=0.7。在其他方面,优选选择决定因素,以使得其魏克森等级和(Wilcoxon rank sum)p值小于10-6或小于10-4或小于10-3。
在任何上述方法中,TRAIL的浓度在获得样品之后约24小时内测量或中储存于12℃或更低下的样品中测量,其中储存是在获得样品之后小于24小时开始。
感染还包括一种感染参照表达谱,所述感染参照表达谱具有选自TRAIL、IL1RA、IP10、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、MCP、Mac-2BP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IL11、IL1a、I-TAC和TNFR1的两种或更多种多肽的水平的模式,并且任选地还具有选自CRP、SAA、TREM-1、PCT、IL-8和IL6的一种或多种多肽的水平的模式。发明中还包括含有根据本发明的一种或多种感染参照表达谱的机器可读介质。
在另一方面,本发明包括一种试剂盒,其具有检测包括TRAIL、IL1RA、IP10、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、Mac-2BP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IL11、I-TAC和TNFR1的对应多肽的多种多肽检测试剂,并且任选地还具有检测包括CRP、SAA、TREM-1、PCT、IL-8和IL6的对应多肽的多种多肽检测试剂。检测试剂包含一种或多种抗体或其片段。
除非另外定义,否则本文所用所有技术和科学术语具有本发明所属领域普通技术人员通常理解的相同含义。虽然与本文所述那些类似或等同的方法和材料可用于实践本发明,但合适的方法和材料为下文所述。本文提及的所有出版物、专利申请、专利和其他参照文献明确地全文以引用方式并入。假如有矛盾,本说明书(包括定义)将支配。另外,本文所述材料、方法和实例仅为说明性的并非意图进行限制。
本发明的其他特征和优点将以下详细描述和权利要求书从显而易见并且由以下详细描述和权利要求书涵盖。
附图说明
图1:临床研究工作流程。
图2:编入临床研究的575位患者的表征。
图3:患者组群的概要。
图4:整个研究群体(A)(N=575)和儿科患者(B)(N=350)的年龄分布。
图5:根据病原性亚组(A)和菌株(B)(从>1%的患者中分离的菌株)的分离病原体的分布。
图6:传染病患者中涉及的生理系统的分布。(N=484)。
图7:编入临床研究的患者的主要临床综合征(A)和特异性临床综合征(B)的分布(所有的编入患者,N=575)。
图8:最大体温的分布(所有编入的患者,N=575)。
图9:症状起始时间的分布(所有编入的患者,N=575)。
图10:编入临床研究的患者的患者群体(A)的并存病的分布和慢性药疗(B)的分布(所有慢性病患者,N=170)。
图11:募集地点的分布(所有编入的患者,N=575)。
图12:用于TRAIL(A)、Mac-2BP(B)和SAA(C)的校准曲线。
图13:用于TRAIL(A)、Mac-2-BP(B)和SAA(C)的测定内可变性。
图14:用于TRAIL(A)、Mac-2-BP(B)和SAA(C)的测定间可变性。
图15:TRAIL(A)、Mac-2-BP(B)和SAA(C)的血浆与血清浓度的测量。
图16:25℃下TRAIL(A)、Mac-2-BP(B)和SAA(C)的分析物衰变率。
图17:使用ELISA和Luminex测量的TRAIL水平的相关性。
图18:具有免疫学作用的多肽不必然显示差别响应。
图19:体外差别表达的多肽不必然显示体内差别表达。
图20:区分细菌与病毒感染对象的决定因素的实例。
图21:区分混合与病毒感染对象(A)、传染性与非传染性对象(B)以及传染性与健康对象(C)的决定因素的实例。
图22:非传染性和健康对象的定植。
图23:示出使用两种统计学显著决定因素的组合对细菌('+'标识)与病毒('0'标识)感染的患者的诊断的散点图的实例。使用在90%的数据上训练的线性SVM进行患者分类,其中白色和灰色区域指示分别分类为病毒和细菌的决定因素组合的空间。各曲线图对应于两种决定因素的不同组合。
图24:示出使用两种统显著决定因素的组合对混合('+'标识)与病毒('0'标识)感染的患者的诊断的散点图的实例。
图25:在其诊断明确的患者中诊断细菌与病毒感染时的TCM-标记精确度。使用‘明确(细菌、病毒)’组群进行该分析;N=170。
图26:在其诊断由专家的共识确定的患者中诊断细菌与病毒感染时的TCM-标记精确度。使用‘共识(细菌、病毒)’组群进行该分析。
图27:在其诊断由专家组的绝大多数确定的患者中诊断细菌与病毒患者时的TCM-标记精确度。使用‘绝大多数(细菌、病毒)’组群进行该分析。
图28:在其诊断由专家组的绝大多数确定的患者中辨别混合共感染与纯病毒感染时的TCM-标记精确度。使用‘绝大多数(病毒、混合)’组群进行该分析。
图29:在将该研究初始排斥的患者纳入之前和之后在'共识(细菌、病毒)'组群和'绝大多数(细菌、病毒)'组群中诊断细菌与病毒患者时的TCM-标记精确度。
图30:随症状发作时间变化的TCM-标记的精确度。误差条代表95%CI。
图31:随测量的最大发热变化的TCM-标记的精确度。误差条代表95%CI。
图32:随年龄变化的不同感染中的决定因素水平。
图33:在'绝大多数(细菌、病毒、混合、非传染性)'组群中具有非传染性(A)和传染病(B)的患者内选择细菌和病毒菌株的流行性。
图34:通过选择细菌和病毒菌株具有(+)和不具有(-)定植的患者中的TCM标记性能。误差条代表95%CI。
图35:在细菌和病毒患者中TRAIL的水平的散点图(左图)、盒形图(中图)和对数正态分布的近似值(右图)。使用‘共识(细菌、病毒)’组群进行该分析;N=434。
图36:分析物TRAIL的ROC曲线。使用'共识[细菌、病毒]'组群进行该分析;N=343。
图37:被诊断患者的数量和TRAIL测定的精确度之间的平衡。
图38:其mRNA水平经发现相比于细菌感染在病毒感染中差别性表达,但在细菌与病毒感染患者中其多肽水平未显示显著差别响应的决定因素的实例。(A)在细菌(菱形)和病毒(方形)感染中IFI44、IFI44L和IFI27的蛋白水平。(B)在细菌(菱形)和病毒(方形)感染中IFI44、IFI44L和IFI27基因的mRNA表达水平。中值由实线所示。具有不同表达的mRNA在蛋白水平表述上步必然不同。
图39:随着用于滤除具有边际响应的患者的截留值变得更严格,TCM-标记灵敏度和特异性增加。使用'共识(细菌、病毒)'组群进行该分析。每个点对应于在截留值处获得的灵敏度和特异性,其中两次测量保持相同。
图40:随着用于滤除具有边际响应的患者的截留值变得更严格,TCM-标记灵敏度和特异性增加。使用'绝大多数(细菌、病毒)'组群进行该分析。每个点对应于在截留值处获得的灵敏度和特异性,其中两次测量保持相同。
图41:TRAIL的水平在病毒感染的急性期期间增加并随后逐渐降低至基线水平(A,B)。在具有急性细菌感染的患者中,其水平降低并随后在康复期间(C)再增加至基线水平。可以看到TRAIL动态是疾病的阶段(从发作到康复)的指示。
图42:各生物体内TRAIL的基因序列的比较。
具体实施方式
本发明在其一些实施方式中涉及对与细菌、病毒和混合(即细菌和病毒共感染)感染相关的标记和决定因素的鉴定。更具体地讲,我们发现某些多肽-决定因素在具有细菌、病毒或混合感染(即细菌和病毒共感染)的对象中以及非传染病和健康对象中以统计学显著方式差别性表达。这些多肽-决定因素包括TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC、TNFR1、IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、IL7、CRP、SAA、TREM-1、PCT、IL-8、TREM-1、IL6、ARG1、ARPC2、ATP6V0B、BCA-1、BRI3BP、CCL19-MIP3b、CES1、CORO1A、HERC5、IFI6、IFIT3、KIAA0082、LIPT1、LRDD、MCP-2、PARP9、PTEN、QARS、RAB13、RPL34、SART3、TRIM22、UBE2N、XAF1和ZBP1。
在一些实施方式中,多肽-决定因素为可溶多肽,其包括B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、IP10、MCP、Mac-2BP、TRAIL、CD62L、VEGFR2、IL11、IL1RA、I-TAC和TNFR1。
在其他实施方式中,多肽-决定因素为细胞内-多肽,其包括CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1和RTN3。
在其他实施方式中,多肽-决定因素为膜多肽,其包括CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2和SSEA1。
在其他实施方式中,多肽-决定因素还包括选自EIF4B、IFIT1、IFIT3、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、IFITM3、IL7R、CRP、SAA、sTREM、PCT、IL-8和IL6的多肽。
在其他实施方式中,决定因素还包括选自以下的临床-决定因素:ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和脲。
在一些实施方式中,决定因素还包含对选自以下的一种或多种多肽或临床-决定因素的测量:ARG1、ARPC2、ATP6V0B、BILI(胆红素)、BRI3BP、CCL19-MIP3B、CES1、CORO1A、EOS(%)、HERC5、IFI6、IFIT3、KIAA0082、LIPT1、LRDD、MCP-2、NA(钠)、PARP9、PTEN、QARS、RAB13、RPL34、SART3、TRIM22、UBE2N、WBC(全血计数)、XAF1和ZBP1。
不同传染剂具有可以被鉴定并且由免疫系统靶向的独特分子模式。病原体-相关的分子模式(PAMPs)为与病原体的不同组相关并且可以通过使用Toll样受体(TLRs)和其他模式识别受体(如NOD蛋白)的先天免疫系统的细胞识别的这种分子的例子(Akira,S.和S.Uematsu等人,2006年;Murphy,K.和P.Travers等人,2007)。这些模式可以在病原体的不同类别之间显著变化并因此引出不同免疫响应。例如,TLR-4可识别脂多糖(革兰氏阴性菌的组分)以脂磷壁酸(革兰氏阳性菌的组分),从而促进抗免疫系统的微生物响应(Akira,S.和S.Uematsu等人,2006年;Murphy,K.和P.Travers等人,2007)。TLR-3可识别单链RNA(常常指示病毒感染)并因此激起恰当的抗病毒响应(Akira,S.和S.Uematsu等人,2006年;Murphy,K.和P.Travers等人,2007)。通过辨别不同类别的病原体(如细菌与病毒),免疫系统可发动恰当防御。
在过去几十年中,已鉴定了若干宿主标记,它们可用于在各种征候中对感染源进行差别诊断。一个例子为原降钙素(PCT),甲状腺的C-细胞产生的激素降钙素的前体。健康个体的血流中的PCT水平几乎不可检测(在pg/ml范围内),但作为水平上升至达100ng/ml的严重感染的结果,PCT水平可能戏剧性增加。PCT频繁用于诊断具有全身感染、败血病的患者,灵敏度为76%并且特异性为70%(Jones,A.E.和J.F.Fiechtl等人,2007)。然而,尤其当分离使用时,测试PCT在其他非全身感染如肺炎或上呼吸道感染中的诊断价值的研究发现其价值有限(Brunkhorst,F.M.和B.Al-Nawas等人,2002年;Tang M.P.和Eslick GD,2007)。
另一个广泛使用的标记为急性期蛋白,C-反应性蛋白(CRP)。血液中的CRP水平常常响应于炎症上升。因此,当在正确临床背景下用作辅助生物标记时,CRP可以证明可用于改善感染的检测精确度(Povoa P.2002)。然而,在一些征候如败血病中,发现其特异性和灵敏度显著低于PCT(Hatherill,M.和S.M.Tibby等人1999)。另外,其作为用于Abx处方决定的独立标记的临床效用已受到批评(Brian Clyne和Jonathan S Olshaker 1999)。在传染病的背景下CRP有限的精确度的一个原因源于CRP可能在除了细菌感染的征候下上升的事实。例如,包括腺病毒的一些病毒感染(Appenzeller C等人,2002年;A.Putto,O.Meurman和O.Ruuskanen,1986)已知引起模拟细菌响应的CRP的水平显著增加因此限制用于区分病毒和细菌感染的单个标记的CRP的精确度。CRP还可在非传染病如创伤下上升。提出用于检测感染和败血病的不同源的其他标记包括CD64(Rudensky,B.和G.Sirota等人,2008)和HNL(Fjaertoft,G.和T.Foucard等人,2005)。支持为了在广泛的背景下诊断病毒与细菌感染使用这些标记的可靠性和证据是有限的。
本发明在其一些实施方式中通过以下方式寻求克服上述诊断挑战:(i)使得能精确区分广范围的细菌与病毒感染;(ii)使得能迅速诊断(几分钟内);(iii)避免对为身体天然菌群一部分的非病原性细菌的"假阳性"鉴定;(iv)允许精确区别混合和纯病毒感染以及(v)允许在病原体难于接近的情况下诊断。
为此,发明人寻求鉴定和测试其水平在病毒、细菌和混合感染的患者在和在具有非传染病的患者中差别性表达的新型生物标记集合,并且使用与模式识别算法结合的这些生物标记的组合测量来为了辅助医师精确为正确治疗开处方而精确鉴定感染源。
为有利于一般适用的解决方案,发明人进行大型临床试验,其中他们编招包括不同年龄、医疗背景技术、种族、病原体类型、临床综合征和症状、发烧、共发病出现时间的655位患者的非均相组群(参见图4-10)。发明人随后使用定量测定法测量超过570个不同多肽的水平并且能够筛选在不同感染类型中稳健地差别性表达的多肽的小型亚组。他们使用这些选定多肽的组合标记来发展和测试本解决方案的各种方面。
为了解决迅速诊断的挑战,本发明的一些方面专注于可被迅速测量的生物标记,例如蛋白,而非其测量可能需要数小时至数天的生物标记,例如核酸基生物标记。注意,近年来使用诸如微阵列和深度测序之类技术使得为了生物标记发现的核酸的高通量定量测定已变得可行。然而,进行对蛋白质组水平的这种定量高通量测量仍存在挑战。因此,本发明的一些方面专注于蛋白质组水平。
为解决混合感染诊断和治疗的临床挑战,本发明的一些方面包括一种用于区分混合感染(尽管存在病毒,其需要Abx治疗)和纯病毒感染(不需要Abx治疗)的方法。
本发明的一些方面也解决由于身体天然菌群的一部分的细菌的非病原性菌株所致的"假阳性"诊断的挑战。这通过测量来源于宿主而非病原体的生物标记来实现。
本发明的另一个方面使得能诊断不同感染,这在存在或不存在定殖菌(例如为天然菌群的一部分的细菌和病毒)的情况下是不变的。这解决当今传染病诊断的至少一个主要挑战:由于定殖菌所致的"假阳性"。
重要地,本发明的一些方面不需要直接接近病原体,因为免疫系统在整个身体内循环,从而有利于在其中病原体难于接近的情况下诊断。
本发明的另一个方面为其中测量所述生物标记的成分,其影响在临床设置中并且尤其在照护点进行测定的容易度。例如,与白细胞成分中的核酸或细胞内蛋白相比,更容易测量血清或成分血浆中的蛋白(前者需要额外实验步骤,其中白细胞从全血样品中分离、洗涤和溶解)。因此,本发明的一些方面还描述可容易使用在临床设置中可用的各种免疫测定法测量的血清和血浆基蛋白标记。
本发明的其他方面提供用于通过检测与感染相关的决定因素来鉴定具有感染的对象的方法,包括对所述感染无症状的那些对象。这些标记和决定因素也可用于监测经受用于感染的治疗和疗法的对象,和用于选择或修改可能在具有感染的对象中有效的诊断、疗法和治疗。
本发明中测量的示例性多肽-决定因素
本文示出的多肽-决定因素名称以举例的方式提供。许多替代性名称、别名、修改、同种型和变型形式将对本领域的技术人员显而易见。因此,旨在涵盖所有替代性蛋白名称、别名、修改、同种型和变型形式。
B2M:B2M的其他别名包括但不限于β-2-微球蛋白和CDABP0092。B2M为MHC I类分子的组分,其存在于所有有核细胞上。由此基因编码的蛋白也编码血清中存在的同种型。该蛋白具有占主导的β-折叠片状结构,其在一些病理状况下可形成淀粉样纤维。
BCA1:BCA1为B淋巴细胞化学引诱物(独立克隆和命名的Angie),为在脾脏、淋巴结和派伊尔淋巴集结的毛囊中强烈表达的CXC趋化因子。其优选显而易见地通过刺激钙流入促进B淋巴细胞(相比T细胞和巨噬细胞)的迁移,并且促进表达伯基特淋巴瘤受体1(BLR-1)的细胞的趋化性。其可能因此作用为使B淋巴细胞归巢至毛囊(由RefSeq提供)。
CHI3L1:几丁质酶3-类1(软骨糖蛋白-39);CHI3L1的其他别名包括但不限于ASRT7、CGP-39、GP-39、GP39、HC-gp39、HCGP-3P、YKL-40、YKL40、YYL-40和hCGP-39。几丁质酶催化甲壳质的水解,其为在昆虫外骨骼和真菌细胞壁中发现的丰富含糖聚合物。几丁质酶的配醣水解酶18家族包括8种人类家族成员。该基因编码不含几丁质酶活性的糖基水解酶18家族的糖蛋白成员,所述糖蛋白成员可由活化的巨噬细胞、软骨细胞、嗜中性粒细胞和滑液细胞分泌。CHI3L1抑制氧化剂诱导的肺损伤,增强获得性Th2免疫,调控细胞凋亡,刺激替代性巨噬细胞活化,并且有助于纤维化和伤口愈合。
嗜酸性粒细胞趋化因子:该基因是染色体17的q-臂上簇生的若干Cys-Cys(CC)细胞因子基因之一。细胞因子是免疫调控和炎性过程中涉及的分泌蛋白的家族。CC细胞因子为蛋白的特征为两个相邻半胱氨酸。该基因编码的细胞因子显示用于嗜酸性粒细胞而非单核细胞或嗜中性粒细胞的趋化活性。该嗜酸性粒细胞特异性趋化因子被假定为涉及嗜伊红炎性疾病如特应性皮炎、变应性鼻炎、哮喘和寄生感染(RefSeq提供)。响应于变应原的存在,该蛋白直接促进嗜酸性粒细胞的积聚,这是过敏炎性反应的突出特征。
IL1A:该基因编码的蛋白为白介素1细胞因子家族的成员。该细胞因子为涉及各种免疫响应、炎性过程和血细胞生成的多效细胞因子。该细胞因子可由作为前蛋白的单核细胞和巨噬细胞产生,其以蛋白水解方式处理并且响应于细胞损伤而释放,并因此诱导细胞凋亡。该基因和8个其他白介素1家族基因形成染色体2上的细胞因子基因簇。IL-1蛋白涉及炎性响应,被鉴定为内源性致热原,并且被报道刺激前列腺素和胶原酶从滑液细胞中释放。
MCP:由此基因编码的蛋白为I型膜蛋白并且为补体系统的调控部分。编码的蛋白具有用于通过血清因子I灭活补体组分C3b和C4b的辅因子活性,其保护宿主细胞以免补体被损坏。另外,编码的蛋白可充当用于
麻疹病毒的埃德蒙斯顿(Edmonston)菌株、人类疱疹病毒-6和病原性奈瑟氏球菌的IV型菌毛的受体。该基因编码的蛋白可以涉及在受精期间精子与卵母细胞的熔融。该基因座上的突变与溶血性尿毒症综合征易感性相关。编码不同同种型的选择性剪接转录物变体已有所描述(RefSeq提供)。
MAC-2-BP:MAC-2-BP的其他别名包括但不限于LGALS3BP、90K、血清蛋白90K、BTBD17B、M2BP和凝集素、半乳糖苷结合、可溶、3结合蛋白。半乳凝素为涉及调制细胞-细胞和细胞-基体相互作用的β-半乳糖苷-结合蛋白的家族。发现MAC-2-BP的水平在癌症患者的血清中有所提高。其似乎涉及与天然杀伤细胞(NK)和淋巴因子-活化的杀伤细胞(LAK)细胞细胞毒性相关的免疫响应。天然蛋白可特异性结合到人类巨噬细胞-相关的称为Mac-2的凝集素以及半乳凝素1。
CD62L:该基因编码属于黏着/归巢受体的家族的细胞表面黏着分子。编码的蛋白含有C型凝集素类域,钙结合表皮生长因子类域和两个短补体类重复。需要基因产物用于在内皮细胞上白细胞的结合和后续滚动,有利于其迁移到二级淋巴器官和炎症位点中。该基因中单个-核苷酸多态性与包括免疫球蛋白A肾病的各种疾病相关。已发现用于该基因的选择性剪接转录物变体(RefSeq提供)。该基因编码的蛋白具有表示为sCD62L的可溶形式。
VEGFR2:脉管内皮生长因子(VEGF)为内皮细胞的主要生长因子。此基因编码VEGF的两个受体之一。该受体(称为致活酶插入域受体)为III型受体酪氨酸致活酶。其用作VEGF-诱导的内皮增殖、存活、迁移、肾小管形态发生和萌发的主要介体。该受体的信号转导和运输通过多个因子介导,包括Rab GTP酶、P2Y嘌呤核苷酸受体、整联蛋白alphaVbeta3、T-细胞蛋白酪氨酸磷酸酶等。该基因的突变涉及幼儿毛细血管瘤(RefSeq提供)。该基因编码的蛋白具有表示为sVEGFR2的可溶形式。
TRAIL:该基因编码的蛋白为属于肿瘤坏死因子(TNF)配体家族的细胞因子。该基因的其他名称包括但不限于APO2L、TNF-相关细胞凋亡诱导配体、TNFSF10和CD253。TRAIL存在于膜结合形式和可溶形式中,这两者均可在不同细胞中(例如转化肿瘤细胞)诱导细胞凋亡。该蛋白结合至TNF受体超家族的若干成员如TNFRSF10A/TRAILR1、NFRSF10B/TRAILR2、NFRSF10C/TRAILR3、TNFRSF10D/TRAILR4,并且可能还结合至NFRSF11B/OPG。可以通过结合至不可能诱导细胞凋亡的诱骗受体例如NFRSF10C/TRAILR3、TNFRSF10D/TRAILR4和NFRSF11B/OPG,调制该蛋白的活性。该蛋白与其受体的结合已表明触发MAPK8/JNK、半胱天冬酶8和半胱天冬酶3的活化。已发现用于此基因的编码不同同种型的选择性剪接转录物变体。TRAIL可从由细胞表面溶解蛋白性裂解以产生具有同源三聚体结构的可溶形式。
CHP:此基因编码结合到Na+/H+交换体NHE1的磷蛋白。该蛋白充当支持NHE家族成员的生理活性的必需辅因子并且可在NHE1的有丝分裂调控中发挥作用。蛋白与钙调磷酸酶B和钙调蛋白具有相似性并且其还已知为钙调磷酸酶活性(RefSeq提供)的内源性抑制因子。
CMPK2:该基因编码可以在线粒体中参与dUTP和dCTP合成的蛋白。能够用ATP作为磷酸根供体来磷酸化dUMP、dCMP、CMP、UMP和嘧啶核苷类似物ddC、dFdC、araC、BVDU和FdUrd的单磷酸盐。dUMP的功效最高,然后是dCMP;CMP和UMP是差底物。可能涉及用ddC或其他嘧啶类似物长期治疗导致的mtDNA耗竭。
CORO1C:该基因编码WD重复蛋白家族的成员。WD重复为通常由gly-his和trp-asp(GH-WD)括入的大约40个氨基酸的最小保守区域,其可以有利于形成异源三聚体或多蛋白络合物。该家族的成员涉及多种细胞过程,包括细胞周期进程、信号转导、细胞凋亡和基因调控。
EIF2AK2:EIF2AK2为蛋白丝氨酸/苏氨酸致活酶,其在自磷酸化(双链RNA(dsRNA)介导的过程)之后取得酶活性。另外的别名包括但不限于:PKR、PRKR、EIF2AK1、蛋白致活酶、干扰素-可诱导的双链RNA依赖性p68激酶等。EIF2AK2的活化允许激酶磷酸化其天然底物,真核蛋白合成起动因子-2的α亚基(EIF2-α;MIM 603907),导致抑制蛋白合成。
ISG15:ISG15泛素样修饰子;ISG15的另外的别名包括但不限于G1P2、IFI15、IP17、UCRP和hUCRP。在IFN-α或IFN-β刺激之后,此泛素样蛋白轭合至细胞内靶蛋白。其酶通道在部分上不同于泛素的通道,不同之处为底物特异性和与连接酶的相互作用。ISG15轭合通道使用专用E1酶,但似乎在特异性E2酶的水平处与Ub轭合通道会聚。靶标包括STAT1、SERPINA3G/SPI2A、JAK1、MAPK3/ERK1、PLCG1、EIF2AK2/PKR、MX1/MxA和RIG-1。表明针对嗜中性粒细胞的特异性趋化活性并且将其活化以诱导释放嗜酸性粒细胞趋化因子。可充当反式作用结合因子,其引导连接的靶蛋白缔合至中间体原丝。可能部分通过由单核细胞和巨噬细胞诱导IFN-γ分泌,还可能涉及自分泌、旁分泌和内分泌性机制,如在细胞间信号转导中。
RTN3:可能涉及早期分泌性通道中的膜运输。抑制BACE1活性和淀粉样前体蛋白处理。可诱导半胱天冬酶-8级联和细胞凋亡。可有助于BCL2在内质网应激之后易位至线粒体。在肠病毒感染的情况下,RTN3可涉及病毒复制或发病机理。
CD112:该基因编码具有两个Ig样C2-型域和Ig样V-型域的单程I型膜糖蛋白。该蛋白为黏着连接的浆膜组分之一。其还充当疱疹单纯病毒和伪狂犬病病毒的入口,并且其涉及这些病毒的细胞间扩散。该基因的变型与多发性硬化症的严重程度不同相关。选择性转录剪接变体(编码不同同种型)已被表征。(RefSeq提供)。
CD134:此基因编码的蛋白为TNF-受体超家族的成员。此受体已显示通过其与衔接蛋白TRAF2和TRAF5的相互作用来活化NF-kappaB。小鼠中的敲除研究表明,此受体促进表达of细胞凋亡抑制因子BCL2和BCL2lL1/BCL2-XL,并且因此抑制细胞凋亡。敲除研究还表明该受体在CD4+T细胞响应中以及在T细胞依赖性B细胞增殖和分化中的作用(RefSeq提供)。
CD182:由此基因编码的蛋白为G-蛋白偶联受体家族的成员。此蛋白为用于白介素8(IL8)的受体。其以高亲和力结合到IL8,并且通过G-蛋白活化的第二信使系统转导信号。此受体还结合到趋化因子(C-X-C基元)配体1(CXCL1/MGSA)(具有黑素瘤生长刺激活性的蛋白),并且已显示为血清依赖性黑素瘤细胞生长所需的主要组分。此受体介导嗜中性粒细胞向炎症位点的迁移。已经发现IL8在肠微脉管内皮细胞中的血管生成作用受此受体介导。小鼠中的敲除研究表明,此受体通过阻止其迁移而控制在发育的脊髓中少突胶质细胞前体的定位。此基因、IL8RA(编码另一个高亲和力IL8受体的基因)以及IL8RBP(IL8RB的伪基因)在基因定位至染色体2q33-q36的区域中形成基因簇。编码相同蛋白的选择性剪接变体已被鉴定(RefSeq提供)。
CD231:此基因编码的蛋白为跨膜4超家族(也称为跨膜四蛋白家族)的成员。这些成员的大多数为特征为存在四个疏水性域的细胞表面蛋白。该蛋白介导在细胞发育、活化、生长和能动性的调控中发挥作用的信号转导事件。该编码蛋白为细胞表面糖蛋白并且可以在神经突增生的控制中起到作用。已知其与整联蛋白络合。该基因与X连锁智力迟钝和神经精神性疾病相关,例如亨廷顿氏舞蹈病、脆性X染色体综合征和肌强直营养不良(RefSeq提供)。
CD235a:CD235a为红细胞的主要内在膜蛋白。位于红细胞膜外部的N-端糖基化段具有MN血型受体。似乎对于SLC4A1的功能是重要的并且是SLC4A1的高活性所需的。可涉及SLC4A1向浆膜的易位。为用于流行性感冒病毒的受体。为用于恶性疟原虫红细胞-结合抗原175(EBA-175)的受体;EBA-175的结合取决于O-联聚糖的唾液酸残基。似乎为用于甲型肝炎病毒(HAV)受体。
CD335:细胞毒性-活化受体,其可有助于增加活化天然杀伤细胞(NK)介导肿瘤细胞溶解的效率。
CD337:此基因编码的蛋白为天然细胞毒性受体(NCR),其可在肿瘤细胞的溶解中辅助NK细胞。编码的蛋白与CD3-zeta(CD247)(T-细胞受体)相互作用。在此基因的5'未易位区域中的单个核苷酸多态性与轻度疟疾易感性相关。已发现用于此基因的编码不同同种型的三个转录物变体。
CD45:由此基因编码的蛋白为蛋白酪氨酸磷酸酶(PTP)家族的成员。PTP已知为信号转导分子,其调控多种细胞过程,包括细胞生长、分化、有丝分裂周期和致癌性转化。此PTP含有细胞外域、单个跨膜区段和两个串联胞质内催化域,并且因此属于受体型PTP。此基因在造血细胞中特异性表达。此PTP已显示为T-和B-细胞抗原受体信号转导的必需调节因子。其通过与抗原受体络合物的组分直接相互作用,或通过活化抗原受体信号转导所需的各种Src家族激酶来起作用。此PTP还抑制JAK激酶,并因此用作细胞因子受体信号转导的调节因子。已报道了编码不同同种型的此基因的若干选择选择性剪接转录物变体。
CD49d:此基因的产物属于蛋白的整联蛋白α链家族。整联蛋白为由α链和β链构成的异源二聚体整合膜蛋白。此基因编码α4链。与其他整联蛋白α链不同,α4既不含有I-域,也不经历二硫化物联裂解。α4链与β1链或β7链(RefSeq提供)缔合。
CD66a:此基因编码癌胚抗原(CEA)基因家族的成员,其属于免疫球蛋白超家族。CEA家族的两个亚组(CEA细胞黏着分子和妊娠特异性糖蛋白)位于染色体19的长臂上的1.2Mb簇内。该簇中还发现CEA细胞黏着分子亚组的11个伪基因。编码的蛋白初始在肝脏的胆管中作为胆汁糖蛋白描述。随后,据发现为在白细胞、上皮和内皮上检测到的细胞间黏着分子。编码的蛋白经由与亚组的其他蛋白的同嗜性以及异嗜性结合来介导细胞黏着。多个细胞活性已归因于所述编码蛋白,包括在组织三维结构的分化和布置、血管生成、细胞凋亡、肿瘤抑制、转移以及先天和适应性免疫响应的调制中的作用。已发现编码不同同种型的多个转录物变体。
CD66c:癌胚抗原(CEA;MIM 114890)为癌症的血清免疫测定法测定中最广泛使用的肿瘤标记之一。用于CEA的绝对癌症特异性的明显缺乏可能部分是由于与CEA的180-kD形式共用抗原决定因素的抗原的正常和赘生性组织的存在(Barnett等人,1988年(PubMed3220478))。基因的CEA家族的背景信息参见CEACAM1(MIM 109770)(OMIM提供)。
CD66d:该基因编码癌胚抗原-相关细胞黏着分子(CEACAMs)的家族的成员,其由若干细菌病原体用来结合和侵入宿主细胞。编码跨膜蛋白引导对若干细菌物种的吞噬,其依赖于小GTP酶Rac。认为其通过先天免疫系统在人类-特异性病原体的控制中发挥重要作用。已描述选择性剪接转录物变体,但其生物有效性尚未确定(RefSeq提供)。
CD66e:CD66e(CEACAM子家族的成员)充当在细胞黏着和细胞内信号转导中发挥作用的表面糖蛋白。CD66e也充当用于大肠杆菌Dr粘附素的受体。
CD84:CD84作为黏着受体通过同嗜性相互作用并且通过成簇来发挥作用。补充含SH2域蛋白SH2D1A/SAP。增加活化T-细胞的增生性响应并且发现此过程不需要SH2D1A/SAP。同嗜性相互作用增强淋巴细胞中的干扰素γ/IFNG分泌并且经由SH2D1A/SAP依赖性通道诱导血小板刺激。CD84还可充当用于造血祖细胞的标记。
EGFR:此基因编码的蛋白为跨膜糖蛋白,其为蛋白激酶超家族的成员。此蛋白为用于表皮生长因子家族的成员的受体。EGFR为结合到表皮生长因子的细胞表面蛋白。蛋白与配体的结合诱导受体二聚化和酪氨酸自磷酸化并且导致细胞增殖。此基因中的突变与肺癌相关。已发现用于此基因的编码不同蛋白同种型的多个选择性剪接转录物变体(RefSeq提供)。
GPR162:此基因在对人类染色体12p13上基因致密区域的基因组学分析之后被鉴定。似乎主要在大脑中表达;然而,其功能未知。编码不同同种型的选择性剪接转录物变体已被鉴定(RefSeq提供)。
HLA-A:HLA-A属于HLA I类重链旁系同源物。I类分子为由重链和轻链(β-2微球蛋白)组成的异源二聚体。重链锚定在膜中。I类分子通过提供来源于内质网腔的肽在免疫系统中发挥中心作用。它们在几乎所有细胞中表达。重链为大约45kDa并且其基因含有8个外显子。外显子1编码前导肽,外显子2和3编码α1和α2域,这二者均结合所述肽,外显子4编码α3域,外显子5编码跨膜区域,并且外显子6和7编码胞质尾区。外显子2和外显子3内的多态性是各I类分子的肽结合特异性的原因。为骨髓和肾移植常规地进行这些多态性的定型。数百HLA-A等位基因已有所描述(RefSeq提供)。
HLA-B:HLA-B属于HLA I类重链旁系同源物。I类分子为由重链和轻链(β-2微球蛋白)组成的异源二聚体。重链锚定在膜中。I类分子通过提供来源于内质网腔的肽在免疫系统中发挥中心作用。它们在几乎所有细胞中表达。重链为大约45kDa并且其基因含有8个外显子。外显子1编码前导肽,外显子2和3编码α1和α2域,这二者均结合所述肽,外显子4编码α3域,外显子5编码跨膜区域,并且外显子6和7编码胞质尾区。外显子2和外显子3内的多态性是各I类分子的肽结合特异性的原因。为骨髓和肾移植常规地进行这些多态性的定型。数百HLA-B等位基因已有所描述(RefSeq提供)。
HLA-C:HLA-C属于HLA I类重链旁系同源物。I类分子为由重链和轻链(β-2微球蛋白)组成的异源二聚体。重链锚定在膜中。I类分子通过提供来源于内质网腔的肽在免疫系统中发挥中心作用。它们在几乎所有细胞中表达。重链为大约45kDa并且其基因含有8个外显子。外显子1编码前导肽,外显子2和3编码α1和α2域,这二者均结合所述肽,外显子4编码α3域,外显子5编码跨膜区域,并且外显子6和7编码胞质尾区。外显子2和外显子3内的多态性是各I类分子的肽结合特异性的原因。为骨髓和肾移植常规地进行这些多态性的定型。超过一百个HLA-C等位基因已有所描述(RefSeq提供)。
ITGAM:此基因编码整联蛋白αM链。整联蛋白为由α链和β链构成的异源二聚体整合膜蛋白。含有α整联蛋白的此I-域与β2链(ITGB2)组合以形成称为巨噬细胞受体1('Mac-1')、或未活化的-C3b(iC3b)受体3('CR3')的白细胞-特异性整联蛋白。αMβ2整联蛋白在嗜中性粒细胞和单核细胞与受刺激内皮的黏着以及在补体包覆粒子的吞噬中十分重要。已发现用于此基因的编码不同同种型的多个转录物变体(RefSeq提供)。
NRG1:此基因编码的蛋白初始鉴定为44-kD糖蛋白,其与NEU/ERBB2受体酪氨酸激酶相互作用以增加其在酪氨酸残基上的磷酸化。此蛋白为信号转导蛋白,其介导细胞间相互作用并且在多个器官系统的生长和发育的发挥关键性作用。已知通过选择性启动子使用和剪接,由此基因产生多种多样的不同同种型。这些同种型为组织特异性表达并且它们结构上显著不同,并因而这些同种型被分类为I型、II型、III型、IV型、V型和VI型。基因失调与诸如癌症、精神分裂症和双相性精神障碍(BPD)之类疾病有关联(RefSeq提供)。
RAP1B:具有内在GTP酶活性的GTP-结合蛋白。在正确内皮细胞极性和脉管腔的建立和维持中有助于KRIT1和CDH5的偏振活性。是将磷酰化PRKCZ、PARD3和TIAM1定位到细胞连接所需的。
SELI:此基因编码硒蛋白,其在其活性位点含有硒代半胱氨酸(Sec)残基。硒代半胱氨酸通过正常发送易位终止信号的UGA密码子来编码。硒蛋白基因的3'UTR具有通用茎-环结构,sec插入序列(SECIS),其为对将UGA识别为Sec密码子而非停止信号所必需的(RefSeq提供)。
SPINT2:此基因编码具有抑制多种丝氨酸蛋白酶的两个细胞外Kunitz域的跨膜蛋白。该蛋白抑制HGF活化剂或阻止活性肝细胞生长因子的形成。此基因是假定肿瘤抑制子,并且此基因中的突变导致先天性钠腹泻。已发现用于此基因的编码不同同种型的多个转录物变体(RefSeq提供)。
EIF4B:mRNA与核糖体结合所需。功能与EIF4-F和EIF4-A关系密切。其在存在EIF-4F和ATP的情况下在mRNA的5'-端帽附近结合。其促进ATP酶活性和EIF4-A和EIF4-F的ATP依赖性RNA解旋活性。
IFIT1:具有三角四肽重复的干扰素-诱导蛋白。
IFITM3/IFITM2:IFN-诱导抗病毒蛋白,其通过抑制复制的早期步骤,介导对至少三个主要人类病原体(即,流行性感冒A H1N1病毒、西尼罗病毒(WNV)和登革热病毒(WNV))的细胞先天免疫。
RSAD2:含有2的基S-腺苷甲硫氨酸域;RSAD2的其他别名包括但不限于2510004L01Rik、cig33、cig5和vig1。RSAD2可通过在浆膜处破坏脂筏削弱病毒萌芽,该特征为许多病毒的萌芽过程必需。通过结合并且灭化FPPS来作用,酶涉及胆固醇、法尼基化和香叶基化蛋白、泛醌长醇和血红素的合成。
ADIPOR1:ADIPOR1为球状和全长脂联素(APM1)的受体,APM1为脂肪细胞分泌的充当抗糖尿病药的必需激素。其可能涉及调控类脂代谢如脂肪酸氧化的代谢通道。其介导增加的AMPK、PPARA配体活性、脂肪酸氧化和通过脂联素的葡萄糖摄取。ADIPOR1具有用于球状脂联素的一些高亲和力受体和用于全长脂联素的低亲和力受体。
CD15(FUT4):此基因的产物将岩藻糖转移至N-乙酰氨基乳糖多糖而生成岩藻糖基化碳水化合物结构。其催化非-唾液酸化抗原Lewis x(CD15)的合成。
CD73:此基因编码的蛋白为浆膜蛋白,其催化细胞外核苷酸向膜可渗透核苷的转化。编码的蛋白用作淋巴细胞分化的决定因素。此基因中的缺陷可导致关节和动脉的钙化。已发现用于此基因的编码不同同种型的两个转录物变体。
CD8A:CD8抗原为在大多数细胞毒素T淋巴细胞上发现的细胞表面糖蛋白,其介导在免疫系统内有效的细胞间相互作用。CD8抗原在T淋巴细胞上与T-细胞受体充当共阻遏物以识别在I类MHC分子的背景下由抗原呈递细胞(APC)显示的抗原。共同受体用作由两个α链构成的同源二聚体,或用作由一个α和一个β链构成的异源二聚体。α和β链共用对免疫球蛋白可变轻链的显著同源性。此基因编码CD8α链同种型。已发现用于此基因的编码不同同种型的多个转录物变体(RefSeq提供)。
IFITM1:IFN-诱导抗病毒蛋白,其通过抑制复制的早期步骤,介导对至少三个主要人类病原体(即,流行性感冒A H1N1病毒、西尼罗病毒和登革热病毒)的细胞先天免疫。通过抑制ERK活动或通过以p53依赖性方式在G1期阻止细胞生长,在IFN-γ的抗增殖作用中起到发挥作用。意味着在细胞生长的控制下。多聚体络合物的组分涉及抗增殖和同型黏着信号的转导。
IFITM3:IFN-诱导抗病毒蛋白,其通过抑制复制的早期步骤,介导对至少三个主要人类病原体(即,流行性感冒A H1N1病毒、西尼罗病毒(WNV)和登革热病毒(WNV))的细胞先天免疫。
IL7R:此基因编码的蛋白为白介素7(IL7)的受体。此受体的功能需要白介素2受体、γ链(IL2RG),其为由各种细胞因子(包括白介素2、4、7、9和15)的受体共用的通用γ链。此蛋白已显示在淋巴细胞发育期间在V(D)J重组中发挥关键性作用。还发现此蛋白通过STAT5和组蛋白乙酰化控制TCRγ基因座的可达性。小鼠中敲除研究表明,阻断细胞凋亡是此蛋白在T淋巴细胞的分化和活化期间的必需功能。在此蛋白中的功能性缺陷可能与重度联合免疫缺陷症(SCID)的发病机理相关。
CRP:C-反应性蛋白;CRP的其他别名包括但不限于RP11-419N10.4和PTX1。此基因编码的蛋白属于正五聚蛋白家族。基于其识别外来病原体和宿主的受损细胞以及通过在血液中与体液和细胞效应器系统相互作用来引发它们的消除的能力,其涉及若干宿主防御有关功能。因此,在急性期期间,血浆中此蛋白的水平极大增加对组织损伤、感染、或其他炎性刺激的响应。CRP显示与宿主防御相关的若干功能:其通过其与磷酸胆碱的钙依赖性结合促进凝集,细菌荚膜肿胀,吞噬和补体固定。
TREM1:触发在骨髓细胞1上表达的受体;TREM1的其他别名为CD354和TREM-1。此基因编码受体属于在骨髓细胞上表达的Ig超家族。通过刺激前炎性趋化因子和细胞因子的释放以及细胞活化标记的增加的表面表达,此蛋白扩大由细菌和真菌感染触发的嗜中性粒细胞和单核细胞-介导炎性响应。已注意到用于此基因的编码不同同种型的选择性剪接转录物变体。此基因编码的蛋白具有由sTREM1表示的可溶形式。
PCT:原降钙素(PCT)为激素降钙素的肽前体,所述激素降钙素涉及钙体内平衡。原降钙素的水平响应于促炎刺激而上升。
SAA:编码载脂蛋白的血清淀粉样A家族的成员。编码的蛋白为响应于炎症和组织损伤而高度表达的主要急性期蛋白。此蛋白还在HDL代谢和胆固醇体内平衡中发挥重要作用。此蛋白的高水平与慢性炎性疾病相关,包括动脉硬化症、类风湿性关节炎、阿尔茨海默病和克隆氏病。此蛋白还可能是某些肿瘤的潜在生物标记。选择性剪接产生编码相同蛋白的多个转录物变体。
IL6:此基因编码在B细胞的炎症和成熟中起作用的细胞因子。另外,编码的蛋白已显示为能够在具有自身免疫疾病或感染的人中诱导发烧的内源性致热原。该蛋白主要在急性和慢性炎症的位点产生,其中其分泌到血清中并且通过白介素-6受体(α)诱导转录炎性响应。此基因的功能化涉及广泛炎症-相关的疾病状态,包括糖尿病和全身性少年类风湿性关节炎(RefSeq提供)的易感性。
ARG1:精氨酸酶催化精氨酸向鸟氨酸和尿素的水解。存在哺乳动物精氨酸酶的至少两个同种型(I型和II型),它们在它们的组织分布、亚细胞定位、免疫学交叉反应性和生理功能上不同。此基因编码的I型同种型为胞质酶并且主要作为尿素循环的组分在肝脏中表达。该酶的遗传缺陷导致精氨酸血症、特征为高氨血的常染色体隐性病(RefSeq提供)。
ARPC2:此基因编码人类Arp2/3蛋白络合物的7个亚基之一。Arp2/3蛋白络合物涉及对细胞中肌动蛋白聚合的控制并且通过演化保存。此基因(p34亚基)编码的蛋白的确切作用尚未确定。两个选择性剪接变体目前已被表征。已描述另外的选择性剪接变体,但它们的全长度性质尚不确定(RefSeq提供)。
ATP6V0B:H+-ATP酶(空泡ATP酶、V-ATP酶)为酶转运蛋白,其作用为酸化真核细胞中的细胞内区室。其无所不在地表达并且存在于内膜细胞器官中,例如在空泡、溶酶体、核内体、高尔基体、嗜铬粒和有衣小泡以及浆膜中。H+-ATP酶为由两个域构成的多-亚基络合物。V1域是ATP水解的原因并且V0域是蛋白易位的原因。存在两个主机制of调控H+-ATP酶活性;向和从全酶络合物的浆膜和葡萄糖-灵敏度组装/解装循环利用含H+-ATP酶囊泡。这些转运蛋白在诸如受体-介导胞吞作用、蛋白降解和偶联转运的过程中发挥重要作用。它们在骨骼再吸收中具有作用并且A3基因中的突变引起隐性骨硬化病。此外,H+-ATP酶涉及肿瘤转移和精子能动性和成熟的调控。
BRI3BP:涉及肿瘤生成并且可能通过稳定p53/TP53起作用。
CCL19:此基因为染色体9的p-臂上簇生的若干CC细胞因子基因之一。细胞因子是免疫调控和炎性过程中涉及的分泌蛋白的家族。CC细胞因子为蛋白的特征为两个相邻半胱氨酸。此基因编码的细胞因子可能在正淋巴细胞再循环和归巢中发挥作用。其还在胸腺内T细胞的运输中以及在T细胞和B细胞向二级淋巴器官的迁移中发挥重要作用。其特异性结合到趋化因子受体CCR7(RefSeq提供)。
CES1:涉及生物异源物质的去毒和酯和酰胺前药的活化。水解芳族和脂族酯,但对酰胺或脂肪酰-CoA酯无催化活性。水解可卡因的甲基酯基以形成苯甲酰芽子碱。催化可卡因酯交换作用以形成可卡乙碱。显示脂肪酸乙酯合酶活性,催化油酸至油酸乙酯的乙基酯化反应。
CORO1A:可能是高度运动性细菌细胞的细胞骨架的关键组分,在浆膜的大块件的内陷以及涉及细胞移动的浆膜的形成凸起中起作用。在分枝杆菌感染的细胞中,其在吞噬体膜上的保持阻止吞噬体和溶酶体之间的融合。
HERC5:用于ISG15轭合的主要E3连接酶。在干扰素诱导的细胞中充当先天抗病毒响应的正调节因子。成为以广泛和相对非特异性方式识别靶蛋白的ISG化机械的一部分。催化IRF3的ISG化,产生持续活化。其衰减IRF3-PIN1相互作用,其对抗IRF3泛素化和降解,并且推动抗病毒响应。催化流行性感冒A病毒NS1的ISG化,衰减毒力;ISG化NS1未能形成同源二聚体并因此与其RNA靶相互作用。其催化乳头瘤病毒16型L1蛋白的ISG化,导致对病毒传染力的主要负面的影响。与多核糖体实质缔合,以共易位方式广泛修饰新合成蛋白。在干扰素刺激的细胞中,新易位病毒蛋白为ISG15的首要靶标。
IFI6:此基因首先鉴定为干扰素诱导的许多基因之一。编码蛋白可在细胞凋亡的调控中起关键作用。类似于哺乳动物剪接供体共有序列的由12个核苷酸重复元件的26个重复组成的微型随体在第二外显子的末端处开始。通过使用两个下游重复单元作为剪接供体位点编码不同同种型的选择性剪接转录物变体已有描述。
IFIT3:该蛋白的其他别名包括但不限于:具有三角四肽重复3的干扰素-诱导蛋白、IFI60、ISG60和干扰素-诱导60kDa蛋白。
MBOAT2:酰基转移酶,其介导溶血磷脂酰-胆胺(1-酰基-sn-丙三基-3-磷酸乙醇胺或LPE)成为磷脂酰基-胆胺(1,2-二酰基-sn-丙三基-3-磷酸乙醇胺或PE)的转化(LPEAT活性)。还催化溶血磷脂酸(LPA)成为磷脂酸(PA)的酰化(LPAAT活性)。还具有极弱溶血磷脂酰-胆碱酰基转移酶(LPCAT活性)。优选油酰基-CoA用作酰基供体。溶血磷脂酰基转移酶(LPLATs)催化磷脂重塑通道的再酰化步骤(也称为Lands循环)。
MX1/MXA:黏病毒(流行性感冒病毒)抵抗蛋白1;MX1的其他别名包括但不限于IFI-78K、IFI78、MX和MxA。在小鼠中,干扰素-可诱导Mx蛋白是抗流行性感冒病毒感染的特异性抗病毒状态的原因。如由其抗原关联性、感应状况、物理化学性质和氨基酸分析确定,此基因编码的蛋白类似于小鼠蛋白。此细胞质蛋白为发动蛋白家族和大GTP酶的家族的成员。
OAS2:此基因编码2-5A合成酶家族的成员,涉及对病毒感染的先天免疫响应的必需蛋白。编码的蛋白通过干扰素诱导并且在2'-特异性核苷酸基转移反应中使用腺苷三磷酸来合成2',5'-寡腺苷酸酯(2-5As)。这些分子活化潜在性RNase L,其导致病毒RNA降解和病毒复制抑制作用。此基因家族的三个已知成员位于染色体12的簇上。编码不同同种型的选择性剪接转录物变体已有所描述。
KIAA0082(FTSJD2):S-腺苷-L-甲硫氨酸依赖性甲基转移酶,介导mRNA帽12'-O-核糖甲基化为mRNAs的5'-帽结构。甲基化m(7)GpppG-封帽mRNA的第一核苷酸的核糖以产生m(7)GpppNmp(cap1)。Cap1修饰与易位的更高水平有关。可能涉及干扰素。
LIPT1:转移硫辛酸至蛋白的过程为两步骤过程。第一步骤为通过硫辛酸酯-活化酶来活化硫辛酸以形成硫辛酰-AMP。对于第二步骤,此基因编码的蛋白将硫辛酰部分转移至脱辅蛋白质。此基因的5'UTR中的选择性剪接产生5个转录物变体,其编码相同蛋白。(RefSeq提供)
LRDD:此基因编码的蛋白含有富亮氨酸重复和死域。显示这个蛋白与其他死亡结构域蛋白(例如Fas(TNFRSF6)-相关死域(FADD)和包含MAP激酶活化死域的蛋白(MADD))相互作用,并且因此可以作为细胞死亡相关信号传导过程的衔接蛋白起作用。已发现此基因的小鼠副本的表达受肿瘤抑制子p53正调控并且响应于DNA损伤诱导细胞细胞凋亡,这表明此基因作为p53依赖性细胞凋亡的效应器的作用。选择性剪接导致多个转录物变体。
MCP-2:此基因为染色体17的q-臂上簇生的若干细胞因子基因之一。细胞因子是免疫调控和炎性过程中涉及的分泌蛋白的家族。此基因编码的蛋白在结构上与细胞因子的CXC子家族有关。该子家族的成员的特征在于由单个氨基酸分隔的两个半胱氨酸。该细胞因子显示针对单核细胞、淋巴细胞、嗜碱细胞和嗜酸性粒细胞的趋化活性。通过向炎症位点补充白细胞,该细胞因子可以有助于肿瘤相关白细胞渗透以及抗HIV感染的抗病毒状态(RefSeq提供)。
PARP9:聚(ADP-核糖)聚合酶(PARP)通过添加多个ADP-核糖部分催化蛋白的后易位修饰。PARP从烟酰胺二核苷酸(NAD)转移ADP-核糖至在底物蛋白上的glu/asp残基,并且还聚合ADP-核糖以形成长/支链聚合物。正开发PARP抑制因子用于包括癌症、糖尿病、中风和心血管疾病的大量病理学。
PTEN:肿瘤抑制子。充当双特异性蛋白磷酸酶,磷酸化酪氨酸-、丝氨酸-和苏氨酸-磷酰化蛋白。还充当类脂磷酸酶,在肌醇基环的D3位中从磷脂酰肌醇(PI)3,4,5-三磷酸盐、PI 3,4-二磷酸盐、PI 3-磷酸盐和肌醇基1,3,4,5-四磷酸盐中移除磷酸盐,体外底物优选顺序PtdIns(3,4,5)P3>PtdIns(3,4)P2>PtdIns3P>Ins(1,3,4,5)P4。类脂磷酸酶活性对其肿瘤抑制子功能是关键性的。通过使磷酸肌醇脱磷酸并从而调制细胞循环进程和细胞存活,对抗PI3K-AKT/PKB信号转导通道。非磷酰化形式与AIP1合作以抑制AKT1活化。使酪氨酸-磷酰化的黏着斑激酶脱磷酸并且抑制细胞迁移和整联蛋白-介导细胞扩散和黏着斑形成。在成人神经形成期间(包括正确神经元定位、枝状发育和突触形成)发挥控制新生神经元整合过程的速度的AKT-mTOR信号转导通道的关键调制剂的作用。可能为脂肪组织中胰岛素信号转导和葡萄糖代谢的负调节因子。细胞核单泛素化形式具有更大细胞凋亡潜在性,因而细胞质非泛素化形式诱导更少肿瘤抑制能力。
QARS:氨酰基-tRNA合成酶通过其关连氨基酸催化tRNA的氨酰化。因为其在联接氨基酸与tRNAs中所含核苷酸三联体时的中心作用,认为氨酰基-tRNA合成酶属于演化中出现的第一蛋白。在后生动物中,对谷氨酰胺(gln)、谷氨酸(glu)和7个其他氨基酸特异性的9个氨酰基-tRNA合成酶与多酶络合物相关。虽然存在于真核生物中,但许多原核生物、线粒体和叶绿体缺乏麸酰胺酰基-tRNA合成酶(QARS),其中Gln-tRNA(Gln)通过误酰化Glu-tRNA(Gln)的转酰胺基作用来形成。麸酰胺酰基-tRNA合成酶属于I类氨酰基-tRNA合成酶家族。
RAB13:可能参与极化转运,紧密连接的组装和/或活性。
RPL34:核糖体(催化蛋白合成的细胞器官)由小40S亚基和大60S亚基组成。这些亚基由4个RNA物种和大约80个结构不同蛋白构成。此基因编码为60S亚基的组分的核糖体蛋白。该蛋白属于核糖体蛋白的L34E家族。其位于细胞质内。初始认为此基因位于17q21,但已基因定位至4q。来源于选择性剪接、选择性转录起始位点和/或选择性聚腺苷酸化的转录物变体存在;这些变体编码相同蛋白。如编码核糖体蛋白的基因通常所见,存在基因组中分散的此基因的多重处理伪基因。
SART3:此基因编码的蛋白为RNA-结合细胞核蛋白,其为肿瘤排斥抗原。该抗原具有能够在癌症患者中诱导HLA-A24-约束的和肿瘤-特异性的细胞毒素T淋巴细胞的肿瘤表位并且可用于特异性免疫疗法。发现此基因产物是HIV-1基因表达和病毒复制的重要细胞因子。其在剪接体循环的再循环期期间还与U6和U4/U6snRNPs暂态缔合。认为该编码蛋白涉及mRNA剪接的调控。
TRIM22:涉及细胞先天免疫的干扰素-诱导抗病毒蛋白。抗病毒活性可能由病毒蛋白的TRIM22依赖性泛素化部分介导。在约束HIV-1、脑心肌炎病毒(EMCV)和肝炎B病毒(HBV)的复制中发挥作用。充当HBV核心启动子的转录阻遏蛋白。可能具有E3泛素-蛋白连接酶活性。
UBE2N:UBE2V1-UBE2N和UBE2V2-UBE2N异源二聚体催化非规范'Lys-63'-联接聚泛素链的合成。聚泛素化的这种类型不导致蛋白被蛋白酶体降解。其介导靶基因的转录活化。其在通过细胞循环和分化对进程的控制中发挥作用。在无误DNA修复通道中发挥作用并且有助于在DNA损伤之后细胞的存活。与E3连接酶、HLTF和SHPRH一起在PCNA的'Lys-63'-联接聚泛素化中在基因毒性应激之后起作用,这是DNA修复所需的。其似乎与E3连接酶RNF5一起在JKAMP的'Lys-63'-联接聚泛素化中起作用,从而通过减少其与蛋白酶体和ERAD的组分的缔合来调控JKAMP功能。
XAF1:似乎充当IAP(细胞凋亡蛋白的抑制因子)家族的成员的负调节因子。抑制BIRC4的抗半胱天冬酶活性。不依赖于半胱天冬酶活化,诱导BIRC4的裂解和失活。介导TNF-α-诱导的细胞凋亡并且涉及滋养层细胞的细胞凋亡。可以通过活化线粒体细胞凋亡通道间接抑制BIRC4。易位至线粒体之后,促进BAX易位至线粒体并且从线粒体释放细胞色素c。似乎促进BIRC4从细胞质向核重新分布,可能不依赖于似乎在细胞质中发生的BIRC4失活。BIRC4-XAF1络合物介导BIRC5/存活素的下调;该过程需要BIRC4的E3连接酶活性。似乎涉及对TRAIL的促凋亡作用的细胞灵敏度。可以是通过介导癌细胞的细胞凋亡抗性的肿瘤抑制子。
ZBP1:DLM1编码Z-DNA结合蛋白。Z-DNA形成为动态过程,主要通过超螺旋的量控制。可在抗肿瘤和病原体的宿主防御中发挥作用。结合Z-DNA(通过类似点)。
IL11:此基因编码的蛋白为细胞因子的gp130家族的成员。这些细胞因子驱动多亚基受体络合物的组装,所有多亚基受体络合物均含有跨膜信号转导受体IL6ST(gp130)的至少一个分子。该细胞因子显示刺激产生免疫球蛋白的B细胞的T-细胞依赖性发育。还发现支持造血干细胞和巨核细胞祖细胞的增殖。
IL1RA:此基因编码的蛋白为属于白介素1受体家族的细胞因子受体。此蛋白为用于白介素α(IL1A)、白介素β(IL1B)和白介素1受体I型(IL1R1/IL1RA)的受体。其为涉及许多细胞因子诱导的免疫和炎性响应的重要介体。该基因的其他名称包括但不限于:CD121A、IL-1RT1、p80、CD121a抗原、CD121A、IL1R和IL1ra。
IP10:此基因编码CXC子家族的趋化因子和用于受体CXCR3的配体。该蛋白与CXCR3的结合导致多效效应,包括刺激单核细胞、自然杀伤细胞和T-细胞迁移,和调制黏着分子表达。该基因的其他名称包括但不限于:CXCL10、γ-IP10、INP10和趋化因子(C-X-C基元)配体10。
I-TAC:对白介素-活化的T-细胞但非未刺激的T-细胞、嗜中性粒细胞或单核细胞为趋化性。在活化T-细胞中诱导钙释放。结合到CXCR3。可能在涉及T-细胞补充的CNS疾病中发挥重要作用。该基因的其他名称包括但不限于:SCYB11、SCYB9B和CXCL11。
TNFR1:用于TNFSF2/TNF-α和同源三聚体TNFSF1/淋巴细胞毒素-α的受体。衔接子分子FADD补充半胱天冬酶-8至活化受体。所得死亡-诱导信号转导络合物(DISC)进行半胱天冬酶-8蛋白分解活化,其引发介导细胞凋亡的半胱天冬酶(天冬氨酸盐-特异性半胱氨酸蛋白酶)的后续级联。该基因的其他名称包括但不限于:TNFRSF1A、TNFAR、p55、p60、CD120a抗原和CD120a抗原。
IL-8:该基因编码的CXC趋化因子家族的成员。IL-8的其他别名包括但不限于:白介素8、K60、CXCL8、SCYB8、GCP-1、TSG-1、MDNCF、b-ENAP、MONAP、肺泡巨噬细胞趋化因子I、NAP-1、β内皮细胞-衍生嗜中性粒细胞活化肽、GCP1、β-血小板球蛋白样蛋白、LECT、趋化因子(C-X-C基元)配体8、LUCT、依莫白介素、LYNAP、白介素-8、NAF、肺巨细胞癌-衍生趋化蛋白、NAP1、淋巴细胞衍生嗜中性粒细胞活化肽、IL-8、嗜中性粒细胞活化肽1、粒细胞趋化蛋白1、小可诱导细胞因子子家族B、成员8、单核细胞-衍生嗜中性粒细胞趋化因子、肿瘤坏死因子-诱导基因1、单核细胞-衍生嗜中性粒细胞-活化肽、依莫白介素、T-细胞趋化因子、-X-C基元趋化因子8、3-10C、嗜中性粒细胞-活化蛋白1、AMCF-I和蛋白3-10C。此趋化因子为炎性响应的主要介体之一。该趋化因子由若干细胞类型分泌。其充当化学引诱物,并且也是强力血管生成因子。此基因据信在细支气管炎(病毒感染导致的普通呼吸道疾病)的发病机理中发挥作用。此基因和CXC趋化因子基因家族的其他10个成员在基因定位至染色体4q的区域中形成趋化因子基因簇。(RefSeq提供,2008年7月)IL-8为趋化因子吸引嗜中性粒细胞、嗜碱细胞和T-细胞,但不吸引单核细胞。其还涉及嗜中性粒细胞活化。分别而言,IL-8(6-77)对嗜中性粒细胞活化具有5-10倍更高的活性,IL-8(5-77)对嗜中性粒细胞活化具有增加的活性并且IL-8(7-77)与IL-8(1-77)相比对受体CXCR1和CXCR2具有更高亲和力。
定义
“决定因素”在本发明的上下文中涵盖但不限于多肽、肽、蛋白、蛋白同种型(如诱骗受体同种型)和代谢物。决定因素还可包括突变蛋白:“决定因素”涵盖所有多肽中的一种或多种或其水平在具有感染的对象中有改变。个体决定因素包括TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC、TNFR1、IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、IL7、CRP、SAA、TREM-1、PCT、IL-8、TREM-1、IL6、ARG1、ARPC2、ATP6V0B、BCA-1、BRI3BP、CCL19-MIP3b、CES1、CORO1A、HERC5、IFI6、IFIT3、KIAA0082、LIPT1、LRDD、MCP-2、PARP9、PTEN、QARS、RAB13、RPL34、SART3、TRIM22、UBE2N、XAF1和ZBP1,并且本文尤其共同地称为“感染-相关蛋白”或“感染-相关多肽”、“决定因素-多肽”、“多肽-决定因素”、“决定因素-蛋白“或“蛋白-决定因素”。
决定因素还涵盖健康状况的非多肽、非血源性因子或非分析物生理标记,本文尤其称为"临床-决定因素"或"临床决定因素"。
决定因素还包括数学上创建的任何计算指数或上述测量的任何一种或多种的组合,包括时间趋势和差值。在可用的情况下并且除非本文另外描述,为基因产物的决定因素基于由国际人类基因组组织命名委员会(HGNC)指定并且在美国国家生物技术信息中心(NCBI)网站(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene)(也称为EntrezGene)上该文件的数据中列出的官方字母缩写或基因符号鉴定。
"临床-决定因素"涵盖健康状况的非多肽、非血源性因子或非分析物生理标记,包括本文定义的“临床参数”,以及也在本文定义的“传统实验室风险因子”。
“传统实验室风险因子”涵盖分离或来源于对象样品的生物标记,其当前在临床实验室中评估并且用于传统全球风险评价算法,例如嗜中性粒细胞绝对计数(缩写ANC),淋巴细胞绝对计数(缩写ALC),白细胞计数(缩写WBC),嗜中性粒细胞%(定义为为嗜中性粒细胞的白血细胞的部分并且缩写Neu(%)),淋巴细胞%(定义为为淋巴细胞的白血细胞的部分并且缩写Lym(%)),单核细胞%(定义为为单核细胞的白血细胞的部分并且缩写Mon(%))、钠(缩写Na)、钾(缩写K)、胆红素(缩写Bili)。
“临床参数”涵盖对象健康状况的所有非样品或非分析物生物标记或其他特性,例如但不限于年龄(Age)、种族(RACE)、性别(Sex)、核心体温(缩写"温度")、症状初始出现后的最大核心体温(缩写"最大温度")、症状初始出现时间(缩写"症状时间")或家族历史(缩写FamHX)。
“可溶-决定因素”、“分泌-决定因素”和"可溶多肽"为存在于细胞内部之外的在不同体液如血清、血浆、尿液、CSF、唾液、汗、粪便、精液等中的多肽-决定因素。
“细胞内-决定因素”、"细胞内蛋白”和"细胞内多肽"为细胞内存在的多肽。
“膜-决定因素”、"膜蛋白”和"细胞内决定因素"为在细胞表面或膜上存在的多肽。
“感染基准表达谱”为与由生物样品(或样品群体或组)的评估产生的两个或更多个决定因素相关的一组值。
"具有非传染病的对象"为其疾病不由传染病剂(如细菌或病毒)导致的对象。在本文呈现的研究中,这包括具有急性心肌梗塞、物理损伤、癫痫发作等的患者。
"急性感染"的特征为疾病的迅速发作,症状的相对短暂时间,和数天内解决。
"慢性感染"为发展缓慢并且持续很长时间的感染。可以导致慢性感染的病毒包括丙型肝炎和HIV。急性和慢性感染之间的差异在于,在急性感染期间,免疫系统常常产生抗传染剂的IgM+抗体,因而感染的慢性期通常为IgM-/IgG+抗体的特性。另外,急性感染导致免疫介导坏死过程,而慢性感染常常导致炎性介导纤维化过程并且留疤(如肝脏中的丙型肝炎)。因此,急性和慢性感染可以引出不同潜在免疫学基质。
所谓感染类型是指包括细菌感染、混合感染、病毒感染、无感染、传染性或非传染性。
所谓“划入”感染,是指对象具有感染的类型。
所谓“排除”感染,其是指对象不具有感染的类型。
"天然菌群"、或"定殖菌"是指微生物,例如细菌或病毒,其可能存在于健康无症状对象和患病对象中。
"抗病毒治疗"包括施用化合物、药物、服法或行为,当其通过具有病毒感染的对象进行时可有助于对象从感染中或向症状缓解恢复。抗病毒治疗的例子包括但不限于施用以下药物:奥塞米韦(oseltamivir)、RNAi抗病毒剂、单克隆抗体respigams、扎那米韦(zanamivir)和神经氨酸酶阻断剂。
“TP”为真阳性,是指精确反映所测试活性的阳性测试结果。例如,在本发明的上下文中,TP(例如但不限于)真实地如实分类细菌感染。
“TN”为真阴性,是指精确反映所测试活性的阴性测试结果。例如,在本发明的上下文中,TN(例如但不限于)真实地如实分类病毒感染。
“FN”为假阴性,是指看起来阴性但未能反映情况的结果。例如,在本发明的上下文中,FN(例如但不限于)不实地将细菌感染分类为病毒感染。
“FP”为假阳性,是指错误地分类在阳性类别中的测试结果。例如,在本发明的上下文中,FP(例如但不限于)不实地将病毒感染分类为细菌感染。
“灵敏度”通过TP/(TP+FN)或疾病对象真阳性部分来计算。
“特异性”通过TN/(TN+FP)或非疾病或正常对象的真阴性部分来计算。
"总精确度"通过(TN+TP)/(TN+FP+TP+FN)计算。
“阳性预测值”或“PPV”通过TP/(TP+FP)或所有阳性测试结果的真阳性部分来计算。其固然受到预期被测试的群体的疾病和预测概率的流行性影响。
“阴性预测值”或“NPV”通过TN/(TN+FN)或所有阴性测试结果的真阴性部分来计算。其也固然受到预期被测试的群体的疾病和预测概率的流行性影响。参见例如O’Marcaigh AS,Jacobson RM,“Estimating The Predictive Value Of A DiagnosticTest,How To Prevent Misleading Or Confusing Results,”Clin.Ped.1993,32(8):485-491,其讨论测试(如临床诊断测试)的特异性、灵敏度和阳性和阴性预测值。
"MCC"(Mathwes相关系数)如下计算:MCC=(TP*TN–FP*FN)/{(TP+FN)*(TP+FP)*(TN+FP)*(TN+FN)}^0.5,其中TP、FP、TN、FN分别为真阳性、假阳性、真阴性和假阴性。注意到MCC值范围为-1至+1,分别指示完全错误和完美分类。MCC为0表明随机分类。MCC已表明可用于将灵敏度和特异性组合成单一度量(Baldi,Brunak等人,2000)。其还可在不平衡的类别大小的情况下用于测量和优化分类精确度(Baldi,Brunak等人,2000)。
常常,对于使用连续诊断测试测量的二元疾病状态分类方法,灵敏度和特异性通过根据Pepe等人“Limitations of the Odds Ratio in Gauging the Performance of aDiagnostic,Prognostic,or Screening Marker,”Am.J.Epidemiol 2004,159(9):882-890的接受者操作特性(ROC)曲线归纳,并且通过曲线下面积(AUC)或c-统计量(允许在仅具有单个值的测试(或测定)切点的整个范围上表示测试、测定、或方法的灵敏度和特异性的指标)归纳。还可参见例如Shultz,“Clinical Interpretation Of LaboratoryProcedures,”chapter 14in Teitz,Fundamentals of Clinical Chemistry,Burtis和Ashwood(eds.),4th edition 1996,W.B.Saunders Company,pages 192-199;和Zweig等人,“ROC Curve Analysis:An Example Showing The Relationships Among Serum LipidAnd Apolipoprotein Concentrations In Identifying Subjects With CoronoryArtery Disease,”Clin.Chem.,1992,38(8):1425-1428.使用似然函数、让步比、信息理论、预测值、校准(包括适合度)和重分类测量的替代性方法根据Cook的“Use and Misuse ofthe Receiver Operating Characteristic Curve in Risk Prediction,”Circulation2007,115:928-935归纳。
“精确度”是指测量或计算的数量(测试报告值)与其实际(或真实)值的符合程度。临床精确度是指真实输出(真阳性(TP)或真阴性(TN)与误分类输出(假阳性(FP)或假阴性(FN))的比例,并且除了别的测量以外,可以表述为灵敏度、特异性、阳性预测值(PPV)或阴性预测值(NPV)、Matheus相关系数(MCC),或似然度、让步比、接受者操作特性(ROC)曲线、曲线下面积(AUC)。
“公式”、“算法”或“模型”为任何数学公式、算法、分析或程式化过程、或统计技术,其采用一种或多种连续或类别输入(本文称为“参数”)并且计算输出值(有时称为“指数”或“指数值”)。“公式”的非限制性实例包括总和、比率和回归算子(例如系数或幂(exponent))、生物标记值转化和归一化(包括但不限于基于临床-决定因素如性别、年龄、或种族的那些归一化方案)、规则和准则、统计分类模型和在历史群体上训练的神经网。在组合决定因素中特别使用线性和非线性公式和统计分类分析以确定对象样品中检测的决定因素的水平与具有感染或某类型感染的对象的概率之间关系。在组和组合构建中,特别要关注的是结构和句法统计分类算法,和指数构建、利用模式识别特征的方法,包括已确认技术,如互相关法,主组分分析法(PCA),因子旋转法,逻辑回归法(LogReg),线性判别分析法(LDA),Eigengene线性判别分析法(ELDA),支持向量机法(SVM),随机森林法(RF),递归分割树法(RPART)以及其他有关决定树分类技术,缩小重心法(SC),StepAIC,Kth-NearestNeighbor,Boosting,决策树,Neural Networks,贝叶斯网络法,和隐马尔可夫模型等等。其他技术可以在事件危害分析的存活和时间中使用,包括本领域的技术人员熟知的Cox、Weibull、Kaplan-Meier和Greenwood模型。许多这些技术可与决定因素选择技术组合使用,例如前向选择,向后选择,或逐步选择,给定大小的所有潜在组的全面调查,基因算法,或它们可以自身包括在其自身技术内的生物标记选择方法。这些可以与信息标准例如Akaike信息标准(AIC)或Bayes信息标准(BIC)结合,以便定量其他生物标记和模型改进之间的折衷,并且有助于最小化过度拟合。使用诸如Bootstrap、Leave-One-Out(LOO)和10-Fold交叉验证验证(10-Fold CV)之类技术,所得预测模型可以在其他研究中验证,或在最初训练的研究中交叉验证。在各种步骤中,错误发现率可以根据本领域已知技术通过值置换来估算。“健康经济效用函数”为一种公式,其来源于在护理的标准中引入诊断或治疗干预之前和之后,理想化可适用患者群体中的临床输出的范围的期望概率的组合。其涵盖这种干预的精确度、有效性和性能特性的估计值,和与各输出相关的成本和/或价值测算值(效用),其可能来源于护理的实际健康系统成本(服务、供应、装置和药物等)和/或作为导致各输出的每生活质量调整寿命年(QALY)的估算可接受值。用于输出的预测群体大小乘以各自的输出的预期效用的积的总和(所有预测输出)为给定护理标准的总健康经济效用。(i)对具有干预的护理标准计算的总健康经济效用与(ii)对无干预的护理标准的总健康经济效用之间差异产生干预的健康经济成本或价值的总体测量。这可以在被分析的整个患者组中(或单独在干预组中)分配以达成每单位干预的成本,并且指导作为健康系统接受性的市场定位、定价和假设的这种决定。这种健康经济效用函数常常用于比较干预的成本效益,但也可转化以估计保健系统愿意付出的每QALY可接受值,或新干预所需的可接受的成本有效的临床性能特性。
对于本发明的诊断性(或预后性)干预,由于各输出(其在疾病分类诊断测试中可能为TP、FP、TN、或FN)承担不同成本,健康经济效用函数可能基于临床情况和个体输出成本和值,优选倾向灵敏度超过特异性,或PPV超过NPV,因此提供健康经济性能和值的另一个测量,该测量可能不同于更直接临床或分析性能测量。这些不同测量和相对折衷一般将仅在具有零误差率的完美测试(也称零预测对象输出误分类或FP和FN)的情况下会聚,所有性能测量将倾向不完美,但程度不同。
“测量”或“测定”或者“检测”或“检查”是指评价临床中给定物质或者对象衍生样品(包含这种物质的定性或定量浓度水平的衍生)的存在、不存在、数量或量(其能是有效量),或另外评估对象的非分析物临床参数或临床-决定因素的值或分类。
“分析精确性”指测量方法本身的可再现性和可预测性,并且可以在这种测量中归纳为变异系数(CV)、皮尔逊相关,和一致性测试及校准用不同时间、用户、设备和/或试剂的相同样品或对照。评估新生物标记的这些和其他考虑也归纳于Vasan,2006。
术语“性能”是涉及总体使用性和诊断或预后测试质量的术语,包含临床和分析精确性、其他分析和过程特性,例如使用特性(如稳定性,易于使用),健康经济价值和所述测试组分的相对成本等等。任何这些因子可以是优异性能的来源且因此测试的使用性可以通过合适的“性能度量”来测量,例如AUC和MCC、时间-结果、储存寿命等作为相关物。
本发明上下文中的“样品”是从对象中分离的生物样品,并且能包括,例如但不限于,全血、血清、血浆、口水、黏液、呼吸的空气、尿液、CSF、唾液、汗、粪便、毛发、精液、活检物、鼻液溢、组织活检物、细胞学样品、血小板、网状细胞、白细胞、上皮细胞、或全血细胞。
所谓“统计学显著”指改变大于单独偶然发生可预期(可以是“假阳性”)。统计学显著能用本领域已知的任何方法测定。常用的显著性量度包括p值,其表示至少极限值在给定数据点获得结果的概率,假定该数据点是单独偶然结果。p值是0.05或更小时,通常认为结果显著性高。
在本发明上下文中“对象”优选人类。对象可为男性或女性。对象是原先诊断或鉴定有感染,并且任选地已经经受或正在经受感染治疗干预的人。或者,对象也可以是先前未诊断有感染的对象。例如,对象可显示一种或多种有感染的风险因子。
在本发明的上下文中,可以使用以下缩写:抗生素(Abx)、不良事件(AE)、任意单位(A.U.)、全血球计数(CBC)、病历报告形式(CRF)、胸部X-射线(CXR)、电子病历报告形式(eCRF)、美国食品与药物管理局(FDA)、优质临床规范(GCP)、胃肠的(GI)、胃肠炎(GE)、国际协调会议(ICH)、传染病(ID)、体外诊断(IVD)、下呼吸道感染(LRTI)、心肌梗塞(MI)、聚合酶链反应(PCR)、Per-oss(P.O)、经结肠(P.R)、护理标准(SoC)、标准操作方法(SOP)、尿路感染(UTI)、上呼吸道感染(URTI)。
本发明的方法和使用
本文所公开的方法用于鉴定具有感染或特定感染类型的对象。所谓感染类型意思包括细菌感染、病毒感染、混合感染、无感染(即无传染性)。更具体地讲,本发明的一些方法用于辨别具有细菌感染、病毒感染、混合感染(即细菌和病毒共感染)的对象,具有非传染病的患者和健康个体。还使用本发明的一些方法来监控或选择用于具有感染的对象的治疗方案,并且筛选先前未诊断有感染的对象,例如显示发展感染的风险因子的对象。本发明的方法用于鉴定和/或诊断无感染症状的对象。“无症状”指没有显示传统征兆和症状。
术语"革兰氏阳性菌"为通过革兰氏染色法被深蓝染色的细菌。因为细胞壁中高量的肽聚糖,革兰氏阳性生物体能够保持结晶紫色斑。
术语"革兰氏阴性菌"为在革兰氏染色方案中不保持结晶紫染料的细菌。
术语"非典型细菌"为不属于经典“革兰氏”群组之一的细菌。它们常常是(虽然不总是)细胞内细菌病原体。它们包括但不限于支原体属、军团菌属(Legionella)、立克次体属和衣原体。
如本文所用,感染是指包括病毒或细菌起源的任何传染剂。细菌感染可以是革兰氏阳性、革兰氏阴性菌或非典型细菌的结果。
通过测量对象衍生样品中决定因素的有效数目(可能是一种或多种)的量(包含存在或不存在)来鉴定有感染的对象。测定决定因素水平的临床显著改变。或者,所述量与参照值作比较。然后鉴定对象样品中表达决定因素的量和模式相较参照值的改变。在多个实施方式中,测量2、3、4、5、6、7、8、9、10或更多种决定因素。例如,决定因素的组合可以根据表2-3中列举的任何模型选择。
在一些实施方式中,决定因素的组合包含选自TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC和TNFR1的一种或多种多肽的测量。
在一些实施方式中,决定因素的组合包含选自B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、IL1RA、IP10、MCP、Mac-2BP、TRAIL、CD62L和VEGFR2的一种或多种可溶多肽的测量。
在一些实施方式中,决定因素的组合包含选自CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1和RTN3的一种或多种细胞内-多肽的测量。
在一些实施方式中,决定因素的组合包含选自TRAIL、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2和SSEA1的一种或多种膜多肽的测量。
在一些实施方式中,多肽测量还包含选自EIF4B、IFIT1、IFIT3、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、IFITM3、IL7R、CRP、SAA、sTREM、PCT、IL-8和IL6的一种或多种多肽的测量。
在一些实施方式中,多肽测量还包含选自ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的一种或多种临床-决定因素的测量。
在一些实施方式中,多肽或临床-决定因素测量还包含选自ARG1、ARPC2、ATP6V0B、BILI(胆红素)、BRI3BP、CCL19-MIP3B、CES1、CORO1A、EOS(%)、HERC5、IFI6、IFIT3、KIAA0082、LIPT1、LRDD、MCP-2、NA(钠)、PARP9、PTEN、QARS、RAB13、RPL34、SART3、TRIM22、UBE2N、WBC(全血计数)、XAF1和ZBP1的一种或多种多肽或临床-决定因素的测量。
在各种方面,该方法辨别病毒感染的对象与具有非传染病的对象或健康对象;细菌感染的对象与具有非传染病的对象或健康对象;具有传染病的对象与具有非传染病的对象或健康对象;细菌感染的对象与病毒感染的对象;混合感染的对象与病毒感染的对象;混合感染的对象与细菌感染的对象以及细菌或混合感染的对象与病毒感染的对象。
例如,本发明提供一种通过以下方式在对象中鉴定感染类型的方法:在来自对象的样品中测量选自TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC和TNFR1的第一决定因素的水平;和测量第二决定因素的水平。第二决定因素选自TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC和TNFR1;IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、和IL7;CRP、SAA、TREM-1、PCT、IL-8、TREM-1和IL6;年龄、嗜中性粒细胞绝对计数(ANC)、淋巴细胞绝对计数(ALC)、嗜中性粒细胞%(Neu(%))、淋巴细胞%(Lym(%))、单核细胞%(Mono(%))、最大温度、症状时间、肌酸酐(Cr)、钾(K)、脉搏和尿素。将第一和第二决定因素的水平与参照值比较,从而在对象中鉴定感染类型,其中相比单独第一决定因素的测量,第二决定因素的测量提高对感染类型鉴定的精确度。任选地,测量选自TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC和TNFR1;IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、和IL7;CRP、SAA、TREM-1、PCT、IL-8、TREM-1和IL6;年龄、嗜中性粒细胞绝对计数(ANC)、淋巴细胞绝对计数(ALC)、嗜中性粒细胞%(Neu(%))、淋巴细胞%(Lym(%))、单核细胞%(Mono(%))、最大温度、症状时间、肌酸酐(Cr)、钾(K)、脉搏和尿素的一种或多种额外决定因素。相比第一和第二决定因素的测量,额外决定因素的测量提高感染类型的鉴定的精确度。
在优选的实施方式中,测量以下决定因素:
测量B2M,并且测量选自BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、IP10、MCP、Mac-2BP、TRAIL、sCD62L、VEGFR2、CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量BCA-1,并且测量选自CHI3L1、嗜酸性粒细胞趋化因子、IL1a、IP10、MCP、Mac-2BP、TRAIL、CD62L、VEGFR2、CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量CHI3L1,并且测量选自嗜酸性粒细胞趋化因子、IL1a、IP10、MCP、Mac-2BP、TRAIL、CD62L、VEGFR2、CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量嗜酸性粒细胞趋化因子,并且测量选自IL1a、IP10、MCP、Mac-2BP、TRAIL、CD62L、VEGFR2、CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量IL1a,并且测量选自IP10、MCP、Mac-2BP、TRAIL、CD62L、VEGFR2、CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量IP10,并且测量选自MCP、Mac-2BP、TRAIL、CD62L、VEGFR2、CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量MCP,并且测量选自Mac-2BP、TRAIL、CD62L、VEGFR2、CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量Mac-2BP,并且测量选自TRAIL、CD62L、VEGFR2、CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量TRAIL,并且测量选自CD62L、VEGFR2、CRP、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量CD62L,并且测量选自VEGFR2、CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;
测量VEGFR2,并且测量选自CRP、SAA、TREM-1、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素;或
测量TREM-1,并且测量选自CRP、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的第二决定因素。
在一个方面,该方法通过测量选自B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1RA、IP10、MCP、Mac-2BP、TRAIL、CD62L和VEGFR2的一种或多种决定因素以及选自CRP、TREM-1、SAA、PCT、IL-8、IL6、ANC、ALC、Neu(%)、Lym(%)、Mono(%)、最大温度、症状时间、年龄、肌酸酐(Cr)、钾(K)、脉搏和尿素的一种或多种决定因素,辨别细菌感染的对象与病毒感染的对象。例如,测量CRP和TRAIL;测量CRP和TRAIL和SAA;测量CRP和TRAIL和Mac-2BP;测量CRP和TRAIL和PCT;测量CRP和TRAIL和SAA和Mac-2BP;测量PCT和TRAIL;或测量SAA和TRAIL。在另一个方面,该方法通过测量辨别混合感染的对象和病毒感染的对象,其中测量选自TRAIL、IP10、IL1RA、CHI3L1、CMPK2和MCP-2的一种或多种决定因素并且任选地选自CRP、SAA、ANC、ATP6V0B、CES1、CORO1A、HERC5、IFITM1、LIPT1、LOC26010、LRDD、Lym(%)、MCP-2、MX1、Neu(%)、OAS2、PARP9、RSAD2、SART3、WBC、PCT、IL-8、IL6和TREM-1的一种或多种决定因素。
在另一方面,该方法通过测量辨别细菌或混合感染的对象和病毒感染的对象,其中测量选自TRAIL、IL1RA、IP10、ARG1、CD337、CD73、CD84、CHI3L1、CHP、CMPK2、CORO1C、EIF2AK2、嗜酸性粒细胞趋化因子、GPR162、HLA-A/B/C、ISG15、ITGAM、Mac-2BP、NRG1、RAP1B、RPL22L1、SSEA1、RSAD2、RTN3、SELI、、VEGFR2、CD62L和VEGFR2的一种或多种决定因素并且任选地测量选自CRP、SAA、PCT、IL6、IL8、ADIPOR1、ANC、年龄、B2M、总胆红素、CD15、Cr、EIF4B、IFIT1、IFIT3、IFITM1、IL7R、K(钾)、KIAA0082、LOC26010、Lym(%)、MBOAT2、MCP-2、MX1、Na、Neu(%)、OAS2、PARP9、PTEN、脉搏、尿素、WBC、ZBP1、mIgG1和TREM-1的一种或多种决定因素。
在另一方面,通过测量选自IP10、IL1RA、TRAIL、BCA-1、CCL19-MIP3b、CES1和CMPK2的一种或多种决定因素,该方法辨别具有传染病的对象和具有非传染病的对象或健康对象。任选地,测量选自CRP、SAA、PCT、IL6、IL8、ARPC2、ATP6V0B、Cr、Eos(%)、HERC5、IFI6、IFIT3、KIAA0082、LIPT1、LOC26010、LRDD、MBOAT2、MX1、最大温度、OAS2、PARP9、脉搏、QARS、RAB13、RPL34、RSAD2、SART3、RIM22、UBE2N、XAF1、IL11、I-TAC和TNFR1的一种或多种决定因素。
在具体实施方式中,本发明包括确定对象是否不具有细菌感染(即排除细菌感染)。如果测定的TRAIL的多肽浓度高于预定第一阈值,则排除细菌感染。任选地,该方法还包括测定对象是否具有病毒感染(即划入病毒感染)。如果TRAIL的多肽浓度高于预定第二阈值,则划入病毒感染。
在另一个具体实施方式中,本发明包括确定对象是否不具有病毒感染(即排除病毒感染)。如果测定的TRAIL的多肽浓度低于预定第一阈值,则排除病毒感染。任选地,该方法还包括测定对象是否具有细菌感染(即划入细菌感染)。如果TRAIL的多肽浓度低于预定第二阈值,则划入细菌感染。
在其他实施方式中,本发明包括一种通过以下方式在对象中辨别细菌感染和病毒感染的方法:测量在对象来源样品中的TRAIL和CRP的多肽浓度,对TRAIL和CRP的浓度应用预定数学函数以计算得分并且将该得分与预定参照值比较。任选地,测量SAA、PCT、B2MMac-2BP、IL1RA或IP10中的一种或多种。
在另一个实施方式中,本发明提供一种通过以下方式在对象中辨别细菌或混合感染和病毒感染的方法:测量在对象来源样品中的TRAIL和CRP的多肽浓度,对TRAIL和CRP的浓度应用预定数学函数以计算得分并且将该得分与预定参照值比较。任选地,测量SAA、PCT、B2M Mac-2BP、IL1RA或IP10中的一种或多种。
例如,为辨别细菌感染与病毒感染或细菌或混合感染与病毒感染,测量TRAIL、CRP和SAA;测量TRAIL、CRP和IP10;测量TRAIL、CRP和PCT;测量TRAIL、CRP和IL1RA;测量TRAIL、CRP和B2M;测量TRAIL、CRP和Mac-2BP;测量TRAIL、CRP、SAA和PCT;测量TRAIL、CRP、Mac-2BP和SAA;测量TRAIL、CRP、SAA和IP10;测量TRAIL、CRP、SAA和IL1RA;测量TRAIL、CRP、SAA、PCT和IP10;测量TRAIL、CRP、SAA、PCT和IL1RA;或测量TRAIL、CRP、SAA、IP10和IL1RA。
参照值可能相对于来源于群体研究的数目或值,包括但不限于,such具有相同感染的对象,具有相同或类似年龄范围的对象,在相同或类似种族中的对象,或相对于经受感染治疗的对象的起始样品。这种参照值可来源于感染的数学算法和计算指数获得的群体统计分析和/或风险预测数据。参照决定因素指数也可能使用算法和其他统计和结构分类方法构建和使用。
在本发明的一个实施方式中,参照值是从一个或多个没有感染(即健康和或非感染个体)对象获得的对照样品中决定因素的量(即水平)。在另一个实施方式中,在这种测试证实感染的持续不存在后,监控所述对象和/或周期性重新测试诊断相关时间段(“纵向研究”)。这种时间段可以是从测定参照值的起始测试日期开始的1天、2天、2至5天、5天、5至10天、10天、或者10或更多天。另外,在合适储存的(banked)历史对象样品中的决定因素的回顾性测量可以用于建立这些参照值,因此缩短需要的研究时间。
参照值也可能包含来源于显示感染处理和/或治疗所产生改善的对象的决定因素的量。参照值也可能包含来源于通过已知技术确证感染的对象的决定因素的量。
在另一个实施方式中,参照值为指数值或基线值。指数值或基线值是没有感染的一个或多个对象的有效量决定因素的复合样品。基线值也可能包含已经就感染显示处理和治疗改善的对象衍生样品中决定因素的量。在这个实施方式中,为比较所述对象衍生的样品,相似计算决定因素的量并与指数值作比较。任选地,选择鉴定有感染的对象接受治疗方案以减缓进展或消除感染。
另外,决定因素的量可能在测试样品中测量并且与“正常对照水平”作比较,使用技术例如参照限值、判别限值或风险定义阈值以定义截留点和异常值。“正常对照水平”指通常在没有遭受感染的对象中发现的一种或多种决定因素或组合决定因素指数的水平。这种正常对照水平和截留点可以根据决定因素单独使用或是以与其他决定因素组合成指数的公式使用而不同。或者,正常对照水平可能是前面测试对象的决定因素模式的数据库。
治疗方案的有效性可能通过检测随时间获自对象的有效量(一种或多种)样品中的决定因素和比较所检测决定因素的量来监控。例如,第一样品可能在对象接受治疗前获得,而一种或多种后续样品在对象治疗后或治疗中获得。
例如,本发明的方法可能用于判别细菌、病毒和混合感染(即细菌和病毒共感染)。这使患者可能分组并且据此治疗。
在本发明的具体实施方式中,本发明通过以下方式为对象提供治疗建议(即,选择治疗方案):测量在对象来源样品中的TRAIL的多肽浓度;并且如果TRAIL的多肽浓度低于预定阈值,则建议对象接受抗生素治疗;如果TRAIL的多肽浓度高于预定阈值,则建议患者不接受抗生素治疗;或如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则建议患者接受抗病毒治疗。
在本发明的另一个具体实施方式中,本发明通过以下方式为对象提供治疗建议(即,选择治疗方案):根据所公开方法中任一者的方法来在对象中鉴定感染类型(即细菌、病毒、混合感染或无感染)和如果对象被鉴定为具有细菌感染或混合感染则建议对象接受抗生素治疗;或如果对象被鉴定为具有病毒感染,则为抗病毒治疗。
在另一个实施方式中,本发明的方法可用于提示另外的目标诊断,例如病原体特异性PCRs、胸部X-射线、培养物等。例如,指示病毒感染的参照值可以提示使用另外的病毒特异性多重-PCRs,而指示细菌感染的参照值可以提示使用细菌特异性多重-PCR。因此,人们可减少患者不需要的昂贵诊断的费用。
在具体实施方式中,通过以下方式为对象提供诊断测试建议:测量在对象来源样品中的TRAIL的多肽浓度;和如果TRAIL的多肽浓度低于预定阈值,则建议针对细菌测试样品;或如果TRAIL的多肽浓度高于预定阈值,则建议针对病毒测试样品。
在另一个具体实施方式中,通过以下方式为对象提供诊断测试建议:根据所公开方法的任一者在对象中鉴定感染类型(即细菌、病毒、混合感染或无感染)和
建议如果对象被鉴定为具有细菌感染或混合感染,则测试以确定细菌感染的来源;或如果对象被鉴定为具有病毒感染,则测试以确定病毒感染的来源。
本发明的一些方面还包含具有结合一种或多种决定因素的检测试剂的试剂盒。本发明还提供检测试剂的阵列,如能结合一种或多种决定因素多肽的抗体。在一个实施方式中,决定因素为多肽并且所述阵列含有结合选自以下的一种或多种决定因素的抗体:TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性束缚分子、IL1、I-TAC、TNFR1、IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、IL7、CRP、SAA、TREM-1、PCT、IL-8、TREM-1、IL6、ARG1、ARPC2、ATP6V0B、BCA-1、BRI3BP、CCL19-MIP3b、CES1、CORO1A、HERC5、IFI6、IFIT3、KIAA0082、LIPT1、LRDD、MCP-2、PARP9、PTEN、QARS、RAB13、RPL34、SART3、TRIM22、UBE2N、XAF1和ZBP1,足以测量决定因素表达中统计学显著的改变。
优选地,在获得样品之后约24小时以内测量多肽-决定因素的浓度。或者,当在获得样品之后储存开始小于24小时时,在12℃或更低下储存的样品中测量多肽-决定因素的浓度。
在另一个实施方式中,决定因素为TRAIL并且该阵列含有结合TRAIL的抗体。在另一个实施方式中,决定因素为TRAIL和CRP并且阵列含有结合TRAIL和CRP的抗体。在另一个实施方式中,决定因素为TRAIL、CRP和VEGFR2并且该阵列含有结合TRAIL、CRP和VEGFR2的抗体。在另一个实施方式中,决定因素为TRAIL、CRP和Mac2-BP并且该阵列含有结合TRAIL、CRP和Mac2-BP的抗体。在另一个实施方式中,决定因素为TRAIL、CRP、VEGFR2和Mac2-BP并且阵列含有结合TRAIL、CRP、VEGFR2和Mac2-BP的抗体。在另一个实施方式中,决定因素为TRAIL、CRP和SAA并且阵列含有结合TRAIL、CRP和SAA的抗体。在另一个实施方式中,决定因素为TRAIL、CRP、SAA和Mac2-BP并且阵列含有结合TRAIL、CRP、SAA和Mac2-BP的抗体。在另一个实施方式中,决定因素为TRAIL、CRP、SAA和IL1RA并且阵列含有结合TRAIL、CRP、SAA和IL1RA的抗体。图21-22中示出不同类型感染中决定因素的水平。我们发现病毒感染患者中的TRAIL浓度高于细菌感染患者(中值:121±132pg/ml对比52±65pg/ml),支持其中测量TRAIL浓度的实施方式。此外,当我们在感染病毒的患者中随时间监测TRAIL浓度时,我们发现感染之后浓度短暂显著增加,然后逐渐降低并且回到基础水平(例如参见图41)。不同感染中TRAIL浓度的更多实例示于图35-39中。有趣地,我们发现TRAIL水平(其在病毒感染中比细菌感染中更高)和CRP水平(其在细菌感染中比病毒感染中更高)组合实现优于任何个体生物标记的诊断精确度。例如,我们发现通过计算预定数学公式组合CRP和TRAIL的水平产生比每个单独生物标记更精确诊断感染源的得分(TRAIL AUC=0.89,CRP AUC=0.89,TRAIL和CRP组合AUC=0.94)。例如,参见图23-24直观化用于将TRAIL和CRP的水平纳入单个得分中的线性公式。存在本领域的技术人员已知的其他公式。TRAIL和CRP诊断协同作用可归因于这两个生物标记之间的低相关性。当组合SAA和TRAIL的浓度时我们观察到类似结果(例如参见图23-24)。
我们使用UCSC基因组浏览器在不同生物体中比较TRAIL的基因序列(人类,2009年2月(GRCh37/hg19)组件,并且发现其为演化保守的(尤其在外显子区域中)(参见图42)。例如,我们在大型和小型哺乳动物如母牛、马、狗和猫中发现序列保守性。这表明TRAIL可以在不同生物体中具有类似于我们在人类中所发现的类似蛋白行为(包括在病毒感染中上调)。
值得注意的是,TRAIL在其他组织和样品中高度表达,包括但不限于CSF、唾液和上皮细胞、骨髓穿刺、尿液、粪便、肺泡灌洗、唾液、唾液(Secchiero,Lamberti等人,2009)。因此,本发明的一些实施方式可用于这种组织和样品中测量TRAIL,其中TRAIL浓度的增加表明病毒感染增加的可能性。
本发明的某些方面也可用于筛选任何设置数目的患者或对象群体。例如,健康维护组织、公共健康实体或学校健康计划能筛选对象组以鉴定那些如上述需要干预的对象或收集流行病学数据。保险公司(如健康、生命或残疾)可以在测定覆盖或定价或者存在可能干预的客户的过程中筛选申请人。在这种群筛选(特别是当把任何临床发展与病情如感染密切相关时)中收集的数据,会在例如健康维护组织、公共健康计划和保险公司的操作中具有价值。这种数据阵列或收集能存储于机器可读介质中,并且用于任意数目的健康相关数据管理系统以提供改善的健康护理服务、符合成本效益的健康护理、改进的保险经营等。参见例如美国专利申请No.2002/0038227;美国专利申请No.US 2004/0122296;美国专利申请No.US 2004/0122297;和美国专利No.5,018,067。如本文进一步详述,这种系统能利用直接来自内部数据存储或间接来自一种或多种数据存储点的数据。
机器可读存储介质能包含用机器可读数据或数据阵列编码的数据存储材料,当使用所述数据应用说明书编程的机器时,能用于多种目的。测量有效量的本发明生物标记和/或从所述生物标记风险得到的评估能在可编程计算机上执行的计算机程序中实现,尤其包含处理器、数据存储系统(包含易失和非易失记忆体和/或存储元件),至少一个输入设备和至少一个输出设备。程序码能用于输入数据以运行上述功能和产生输出信息。输出信息能根据本领域已知方法用于一种或多种输出设备。计算机可以是例如个人计算机、微型计算机或传统设计的工作站。
每个程序可能在高水平程序或面向对象的编程语言中执行以与计算机系统交互。如果需要。然而,如果需要,程序可能在汇编或机器语言中执行。语言可能是编译或解释语言。每个这种计算机程序可能存储在由普通或特殊目的可编程计算机可读的存储介质或装置上(如ROM或磁盘或在本公开别处定义的其他种类),以用于在所述存储介质或装置由计算机读取以运行本文所述程序时,配置或操作计算机。本发明的一些方面中所述健康相关数据管理系统也可以认为是作为配置有计算机程序的计算机可读存储介质来执行,其中,所述存储介质配置成引起计算机以特殊和预定方式运行从而行使本文所述多种功能。
本发明的决定因素在其一些实施方式中可用于产生没有感染的那些对象的“参照决定因素概况”。本文公开的决定因素也能用于生成取自有感染患者的“对象决定因素概况”。对象决定因素概况能与参照决定因素概况作比较以诊断或鉴定有感染的对象。不同感染类型的对象决定因素概况可进行比较以诊断或鉴定感染类型。本发明的所述参照和对象决定因素概况可能包含在机器可读介质中,例如但不限于,模拟磁带如VCR、CD-ROM、DVD-ROM、USB闪存可读的那些等。这种机器可读介质也能包含额外测试结果,例如但不限于临床参数和传统实验室风险因子的测量。或者或此外,所述机器可读介质也能包含对象信息例如病史和任何相关的家族史。所述机器可读介质也能包含与其他疾病风险算法和如本文所述那些计算指数相关的信息。
本发明的性能和精确性测量
本发明的性能和因而的绝对和相对临床有用性能以上述多种方式评价。在性能的多种评价中,本发明的一些方面意在提供临床诊断和预后的精确性。诊断或预后测试、试验或方法的精确性涉及所述测试、试验或方法辨别有感染对象的能力,基于对象在决定因素水平是否有“显著改变”(例如临床显著“诊断显著)。所谓“有效量”指测量合适数目的决定因素(可以是一种或多种)以生成与所述决定因素的预定截留点(或阀值)不同的“显著改变”(如决定因素的表达或活性水平),并且因此指示所述对象感染,其中所述决定因素是决定因素。决定因素水平的差异优选在统计学上显著。如下所述,并且不受本发明的任何限制,达到统计学显著性并且因此优选分析、诊断和临床精确性,通常但不是总是需要组合若干决定因素,所述决定因素在组中共同使用并且与数学算法联用以实现统计学显著的决定因素指数。
在疾病状态的分类诊断中,改变测试(或试验)的截留点或阈值通常改变灵敏度和特异性,但是以定性反比关系。因此,在评价对象情况的建议医学试验、分析或方法的准确性和有用性评价中,应该总是考虑灵敏度和特异性两者,并且因为灵敏度和特异性可在截留点范围内显著变化,应注意在报告灵敏度和特异性处的截留点如何。实现的一种方式是使用取决于灵敏度和特异性的MCC度量。使用统计学例如包含所有潜在截留值的AUC,当使用本发明的一些方面时,优选用于本发明的大部分分类风险量度,而对持续风险量度,优选观察结果或其他黄金标准的拟合优度统计和校准。
预定水平的可预测性指所述方法提供可接受水平的临床或诊断特异性和灵敏度。使用这种统计,“可接受程度的诊断精确性”在本文中定义为某一测试或试验(例如测定决定因素临床显著出现的本发明的一些方面中所用测试,从而指示存在某一感染类型),其中AUC(所述测试或试验的ROC曲线下面积)是至少0.60、希望至少0.65、更希望至少0.70、优选至少0.75、更优选至少0.80且最优选至少0.85。
所谓“非常高程度的诊断精确性”指某一测试或试验,其中AUC(所述测试或试验的ROC曲线下面积)是至少0.75、0.80、希望至少0.85、更希望至少0.875、优选至少0.90、更优选至少0.925且最优选至少0.95。
或者,所述方法预测感染的存在或不存在或响应治疗,有至少75%精确性、更优选80%、85%、90%、95%、97%、98%、99%或更高精确性。
或者,所述方法预测感染的存在或不存在或响应治疗,有大于0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9或1.0的MCC。
任何测试的预测值取决于该测试的灵敏度和特异性,和测试人群的病症流行性。基于贝叶斯定理的这个概念提出个体或人群(验前概率)中出现的筛选病症的可能性越大,正测试有效性越高并且结果是真阳性的可能性越大。因此,在任何人群中使用测试出现低病症可能性的问题是阳性结果的价值有限(即更像假阳性)。相似地,极高风险的人群中,阴性检验结果更像假阴性。
结果,ROC和AUC能误导成低疾病流行性测试人群(定义为每年小于1%发生率(发病率)或特定时间范围内小于10%累积流行性)中测试的临床效用。
健康经济效用函数是测量给定测试的性能和临床价值的另一个方法,由根据各自临床和经济价值实际测量的加权潜在分组测试输出组成。健康经济性能与精确性密切相关,因为健康经济效用函数特定为测试对象的正确分类优点和错误分类成本分配经济值。作为性能测量,通常需要测试以实现引起每个测试(在测试成本前)健康经济值增加超过测试靶标价格的性能水平。
通常,当疾病分类没有由相关医疗学会和医药实践清晰定义,其中尚未建立治疗使用阈值或不存在疾病前诊断的黄金标准时,测定诊断精确性的替代方法通常用于持续测量。对风险的持续测量而言,计算指数的诊断精确性量度通常是基于预测持续值和实际观察值(或历史指数计算值)之间的曲线拟合和校准,并且利用量度如R平方、Hosmer-Lemeshow P值统计和置信区间。使用这种报道的算法对于预测值是正常的,包含基于历史观察组群预测的置信区间(通常90%或95%CI),如购自Genomic Health公司(RedwoodCity,California)的未来乳腺癌复发风险的测试。
通常,通过定义诊断精确性的程度即ROC曲线上的分割点,定义可接受的AUC值和测定组成有效量的本发明决定因素的相对浓度的可接受范围,使本领域技术人员使用决定因素来鉴定、诊断或预测有预定水平可预测性和性能的对象。
另外,其他未列举的生物标记与决定因素非常高度相关(为了本申请的目的,当确定系数(R2)为0.5或更高时,认为任意两个变量是“非常高度相关”)。。本发明的一些方面涵盖与前述决定因素的这种函数和统计当量。另外,这种额外决定因素的统计使用是基本依赖于多个生物标记之间的交叉相关,并且经常需要组内操作任何新的生物标记以详细阐述基础生物学(underlying biology)的意义。
在其一些实施方式中,可在本发明的实践中检测所列举决定因素中的一种或多种。例如,可检测二(2)、三(3)、四(4)、五(5)、十(10)、十五(15)、二十(20)、四十(40)或更多种决定因素。
在一些方面,可检测本文所列所有决定因素。可能检测决定因素数目的优选范围,包括由选自1和特定2、3、4、5、6、7、8、9、10、20、或40的任何最小量结合的范围。特定优选范围包含二到五(2-5)、二到十(2-10)、二到二十(2-20)或二到四十(2-40)。
决定因素组的构建
在“组”中包含决定因素的分组,也称为"决定因素-标记"、"决定因素标记"、或"多-决定因素标记"。本发明上下文中“组”指包括一种或多种决定因素的生物标记(是否是决定因素、临床参数或传统实验室风险因子)的分组。组也可包含额外的生物标记,如已知感染中出现或相关的临床参数、传统实验室风险因子(已知存在或与感染相关),与选择本文列举的选定决定因素组联合。
如上所述,当单独使用和不作为决定因素的多重生物标记组成员时,许多所列单个决定因素、临床参数和传统实验室风险因子,在可靠区分单个正常对象、有感染(如细菌、病毒或共感染)风险的对象中有很少或没有临床应用,并且因此不能在这三个状态之间分类任何对象中单独可靠使用。甚至在每个群体的平均测量有统计学显著差异时,如经常在充分有效的研究中所发生,这种生物标记可以对单个对象保持有限的适用性并且对该对象的诊断或预后预测贡献很小。统计显著性的常用量度是p值,指示仅偶然产生的观察的可能性;优选,这种p值是0.05或更小,代表偶然产生的感兴趣观察是5%或更小的几率。这种p值明显依赖于所进行研究的效力。
尽管有此单独决定因素性能和仅与传统临床参数及很少传统实验室风险因子组合公式的通常性能,本发明人注意到两种或更多种决定因素的某些特定组合也能用作多重生物标记组,所述组包含已知参与一种或多种生理或生物通路的决定因素组合,和通过使用包括统计分类算法等在内的各种公式,这种信息能组合和在临床有用,联用并且在很多示例中使所述组合的性能特性延伸超过单个决定因素。这些特定组合显示可接受水平的诊断精确性,和当多个决定因素的足够信息在训练的公式中组合时,它们经常可靠地实现从一个群向另一个群转移的高水平诊断精确性。
两个更小特异性或更低性能的决定因素如何组合成所指适应症的新型和更有用组合的一般概念是本发明的一些实施方式的关键方面。当使用合适的数学和临床算法时,多个生物标记经常可产生比单个组分更好的性能;这通常在灵敏度和特异性中明显,并且产生更大的AUC或MCC。第二,在现有生物标记中经常有未被察觉的新信息,因而需要如此以通过新的公式实现灵敏度或特异性水平的提高。这种隐藏的信息对生物标记可以保持真实,所述生物标记通常认为本身有次最优的临床性能。事实上,在单独测量的单个生物标记的高假阳性率方面所述次最优性能可以是很好的指示物,一些重要附加信息包含于生物标记结果–信息在没有第二生物标记和数学公式的组合中不能阐明。
本领域已知的数个统计学和建模算法能用于辅助决定因素选定选择和优化结合这些选择的算法。统计工具例如因子和交互生物标记相关/协方差分析使组构建有更多合理的方案。宜使用显示决定因素之间的欧几里德标准距离的数学聚类和分类树。也可以使用得知起始这种统计分类技术的通路,因为合理方案可基于根据其参与特定通路或生理功能选择单个决定因素。
最终,公式例如统计分类算法能直接用于选择决定因素和生成及训练对将来自多个决定因素结果组合成单个指数所需的最优公式。通常,使用技术例如向前(从零潜在解释性参数开始)和向后选择(从所有可用的潜在解释性参数开始),并且信息标准例如AIC或BIC用于定量所用决定因素组和数目的性能和诊断精确性之间的平衡。正向和反向选择组上单个决定因素的位置能与所述算法的增量信息含量规定密切相关,因此所述作用程度高度依赖于该组中其他组分决定因素。
临床算法的构建
任何公式可以用于将决定因素结果组合成本发明实践中使用的指数。如上所述且非限制,在多个其他指示中,这种指数可以指示概率、可能性、绝对或相对风险、从一种疾病到另一种疾病状态的转化时间或速率,或对感染的未来生物标记测量作出预测。这可以是特定时间段或范围,或保持终身风险,或简单作为相对于另一个参照对象群的指数提供。
尽管本文描述了多个优选的公式,超过本文描述和上面定义的数个其他模型和公式类型为本领域技术人员已知。使用的实际模型类型或公式本身可选自基于训练群中其结果的性能和诊断精确性特性的可能模型领域。公式本身的特异性通常可获自相关训练群中的决定因素结果。在其他使用中,这种公式意在把获自一种或多种决定因素输入的特性空间绘图成对象种类组(例如用于预测对象归属关系为正常、有感染对象),使用贝叶斯方法获得对风险概率函数的估计,或估计种类条件概率,然后使用贝叶斯法则以生成如前面示例的种类概率函数。
优选公式包括广义类的统计分类算法,并特定使用判别分析。判别分析目标是从原先鉴定的特性组中预测归属关系。在线性判别分析(LDA)情况中,特征线性结合是通过一些准则对组之间进行最大区分而鉴定的。能用不同阈值的基于特征基因(eigengene)方法(ELDA)或根据多元方差分析(MANOVA)的分步算法就LDA确定特征。可运行向前、向后和逐步算法,根据霍特林-劳利(Hotelling-Lawley)统计使不分离概率最小化。
基于特征基因(Eigengene)的线性判别分析(ELDA)是Shen等(2006)开发的特征挑选技术。所述公式在多变量结构中使用改良特征分析(eigen analysis)选择特征(如生物标记)以确定与最重要特征向量相关的特征。“重要”定义为那些在尝试相对一些阈值分类的样品中解释最大差异方差的特征向量。
支持向量机(SVM)是尝试找到区分两种类型的超平面的分类公式。超平面含有支持向量,离超平面精确边际距离的数据点。在目前数据维度中不存在分离超平面的可能事件中,由初始变量的非线性函数通过投射数据到更大维度而大幅扩展维度(Venables和Ripley,2002)。尽管不必须,SVM特征过滤一般改善预测。能使用非参数Kruskal-Wallis(KW)检验选择最佳单变量特征来就支持向量机鉴定特征(例如生物标记)。随机森林法(RF,Breiman,2001)或递归分区(RPART,Breiman等,1984)也能单独或联用以确定最重要的生物标记组合。KW和RF两者需要从总体中选择一些特征。RPART使用可用生物标记亚组来创建单独分类树。
可以使用其他公式以在预测公式的表述前将单个决定因素测量的结果预处理成信息的更有价值形式。最值得注意的是,使用常见数学转化如对数或逻辑函数标准化生物标记结果作为涉及群平均值等的正常或其他分布位置,这为本领域技术人员熟知。特别感兴趣的是基于临床-决定因素的标准化组,所述参数如年龄、症状时间、性别、种族、或性别,其中仅在某一种类的对象上使用特定公式或连续组合临床-决定因素作为输入。在其他示例中,基于分析物的生物标记能组合成后续出现在公式中的计算变量。
除了可能被标准化的对象的个体参数值以外,所有对象或任何已知对象种类的总预测公式本身可以重新校准或另外基于群期望流行和平均生物标记参数值的调整而调节,根据D'Agostino等,(2001)JAMA 286:180-187概括的技术或其他相似的标准化和重新校准技术。这种流行病学调整统计可以通过模型所示过往数据注册来捕捉、确证、提高和持续更新,其可以是机器可读或其他形式,或者偶然通过回顾查询这种参数和统计学的历史研究的存储样品或参照。可以是公式重新校准或其他调整对象的额外示例包含Pepe,M.S.等,2004对让步比限定的研究;Cook,N.R.,2007关于ROC曲线的研究使用的统计。最终,分类器(classifier)公式本身的数字结果可以通过其参照实际临床群和研究结果和观察的终点来加工后转化,从而校准绝对风险和对分类器或风险公式的可变数字结果提供置信区间。
一些决定因素可以显示取决于患者年龄的趋势(如群体基线可以作为年龄的函数上升或下降)。可使用'年龄依赖性归一化或分组'方案来调整年龄有关差异。进行年龄依赖性归一化或分组可用于提高区分不同类型感染的决定因素的精确度。例如,本领域技术人员可生成拟合作为年龄的函数的各决定因素的群体平均水平的函数并且使用其来归一化不同年龄的个体对象水平的决定因素。另一个实例为根据他们的年龄将对象分组并且为各年龄组独立地确定年龄特异性阈值或指数值。
决定因素的测量
可使用本领域已知的任何方法以蛋白或多肽水平测定决定因素的水平或量的实际测量。
例如,通过测量本文所述基因产物编码的多肽的水平,或亚细胞定位或其活性。这种方法为本领域熟知,并且包含如基于对蛋白、适体或分子印迹的抗体的免疫试验。任何生物材料能用于蛋白或其活性的检测/定量。或者,可能选择合适的方法以根据各分析蛋白活性测定标记基因编码的蛋白活性。
决定因素蛋白、多肽、突变和其多态性可以任何合适的方式测定,但通常通过接触有抗体(所述抗体结合决定因素蛋白、多肽、突变、多态性或翻译后修饰添加(如碳水化合物))的对象样品并随后检测反应产物的出现和消失来测定。所述抗体可以是如上详述的单克隆、多克隆、嵌合或上述的片段,并且检测反应产物的步骤可用任何合适的免疫试验进行。对象的样品通常是如上所述的生物样品,并且可以是用于进行上述方法的生物样品的相同样品。
根据本发明的一些实施方式进行的免疫试验可以是均相试验或非均相试验。在均相试验中,所述免疫反应通常涉及特异性抗体(如抗决定因素蛋白抗体)、标记分析物和感兴趣样品。抗体与标记分析物结合后,直接或间接修饰来自标记的信号。免疫反应和其程度检测都能在均相溶液中进行。可以使用的免疫化学标记包括自由基、放射性同位素、荧光染料、酶、噬菌体或辅酶。
在非均相试验方法中,试剂通常是样品、抗体和生产可检测信号的方法。可以使用上述样品。所述抗体能固定在支持物上,例如珠(如蛋白A和蛋白G琼脂糖珠)、板或片,并且接触液相中怀疑含有抗原的样品。然后所述支持物从液相分离,并且使用生成所述信号的方法检查支持物相或液相的可检测信号。所述信号与样品中分析物的存在有关。生成可检测信号的方法包括使用放射性标记、荧光标记或酶标记。例如,如果待检测抗原含有第二结合位点,结合所述位点的抗体能轭合到可检测基团并且在分离步骤前加入到液相反应溶液中。固体支持物上可检测基团的出现指示测试样品中抗原的存在。合适免疫试验的实例是寡核苷酸、免疫印迹、免疫荧光方法、免疫沉淀、化学发光方法、电化学发光(ECL)或酶联免疫测定法。
本领域技术人员熟悉可以用于运行本文所述方法的多种特定免疫试验模式和其变体。通常参见E.Maggio,Enzyme-Immunoassay,(1980)(CRC Press,Inc.,Boca Raton,Fla.);也参见Skold等,题为“Methods for Modulating Ligand-Receptor Interactionsand their Application”的美国专利No.4,727,022,Forrest等,题为“Immunoassay ofAntigens”的美国专利No.4,659,678,David等,题为“Immunometric Assays UsingMonoclonal Antibodies”的美国专利No.4,376,110,Litman等,题为“MacromolecularEnvironment Control in Specific Receptor Assays”的美国专利No.4,275,149,Maggio等,题为“Reagents and Method Employing Channeling”的美国专利No.4,233,402和Boguslaski等,题为“Heterogenous Specific Binding Assay Employing a Coenzyme asLabel”的美国专利No.4,230,767。所述决定因素也能使用流式细胞仪通过抗体检测。本领域技术人员熟悉可用于完成本文所公开方法的流式细胞仪技术(Shapiro 2005)。这些包括但不限于细胞因子小珠阵列(Becton Dickinson)和Luminex技术。
抗体能根据已知技术例如被动结合来轭合到适于诊断试验(如蛋白A或蛋白G琼脂糖珠,诸如胶乳或聚苯乙烯等材料形成的微球、板、片或孔)的固体支持物上。本文所述抗体可以根据已知技术类似轭合到可检测标记或基团上,例如放射性标记(如35S、125I、131I)、酶标记(如辣根过氧化物酶、碱性磷酸酶)和荧光标记(如荧光素、Alexa、绿色荧光蛋白、罗丹明)。
抗体能用于检测决定因素蛋白、多肽、突变和多态性的翻译后修饰,例如酪氨酸磷酸化、苏氨酸磷酸化、丝氨酸磷酸化、糖基化(例如O-GlcNAc)。这种抗体特异性检测感兴趣的一种或多种蛋白中磷酸化的氨基酸,并且能用于本文所述的免疫印迹、免疫荧光和ELISA试验。这些抗体为本领域技术人员熟知,且市售可得。翻译后修饰也能在反射器基体辅助激光解吸电离飞行时间质谱(MALDI-TOF)中使用亚稳离子测定(Wirth U.和Muller D.,2002)。
对已知有酶活性的决定因素蛋白、多肽、突变和多态性而言,所述活性能使用本领域已知酶试验体外测定。这种试验包括但不限于,激酶试验、磷酸酶试验、还原酶试验等。酶活性动态的调节能通过使用已知算法测量速率常数KM,所述算法如希尔图、米氏(Michaelis-Menten)方程、线性回归图如双倒数曲线(Lineweaver-Burk)分析,和斯卡查德(Scatchard)图。
术语"代谢物"包括代谢过程的任何化学或生化产物,例如通过处理、裂解或消耗of a生物分子(如蛋白、核酸、碳水化合物或类脂)所产生的任何化合物。代谢物可按本领域的技术人员已知方式检测,包括折射率光谱学(RI)、紫外光光谱学(UV)、荧光分析、放射化学分析、近红外光谱学(近-IR)、核磁共振光谱学(NMR)、光散射分析(LS)、质谱分析、热解质谱分析、浊度法、分散拉曼光谱、结合质谱分析的气体色谱法、结合质谱分析的液相色谱法、结合质谱分析的基体辅助激光解吸电离飞行时间(MALDI-TOF)、结合质谱分析的离子喷雾光谱学、毛细管电泳、NMR和IR检测。就这一点而言,可使用上述检测方法、或技术人员已知的其他方法测量其他决定因素分析物。例如,可使用荧光染料如聚-氨基曱酸、Fluo系列、Fura-2A、Rhod-2、比率钙指示剂Indo-1等等在样品中检测循环钙离子(Ca 2+)。其他决定因素代谢物可类似地使用专门设计或定制用于检测这种代谢物的试剂来检测。
试剂盒
本发明一些方面也包含决定因素检测试剂、或一起封装在试剂盒形式中的抗体。所述试剂盒可以在分开的容器中含有抗体(或者已经结合到固体基体,或者与试剂分开包装以使其结合到基体)、对照制剂(阳性和/或阴性)、和或可检测标签,如荧光素、绿色荧光蛋白、若丹明、花青染料、Alexa染料、萤光素酶、放射性标记等。完成所述试验的说明书(如书面、磁带、VCR、CD-ROM等)包含在试剂盒中。例如,本试验可以是本领域已知的夹心ELISA形式。
例如,决定因素检测试剂能固定于固体基体如多孔条以形成至少一个决定因素检测位点。多孔条的测量或检测区可以包括多个位点。测试条也可以含有阴性和/或阳性对照的位点。或者,对照位点能定位在与测试条不同的条上。任选地,不同检测位点可以含有不同量的固定检测试剂,如第一检测位点的更高量和后续位点的更低量。加入测试样品后,显示可检测信号的位点数目提供样品中所出现决定因素量的定量指示。检测位点可以任何合适的检测形状配置,并且通常是跨越测试条宽度的条或点的形状。
决定因素检测抗体的合适来源包含市售可得来源,例如Abazyme、Abnova、AssayPro、Affinity Biologicals、AntibodyShop、Aviva bioscience、Biogenesis、Biosense Laboratories、Calbiochem、Cell Sciences、Chemicon International、Chemokine、Clontech、Cytolab、DAKO、Diagnostic BioSystems、eBioscience、EndocrineTechnologies、Enzo Biochem、Eurogentec、Fusion Antibodies、Genesis Biotech、GloboZymes公司、Haematologic Technologies、Immunodetect、Immunodiagnostik、Immunometrics、ImmunoStar、Immunovision、Biogenex、Invitrogen、JacksonImmunoResearch Laboratory、KMI Diagnostics、Koma Biotech、LabFrontier LifeScience Institute、Lee Laboratories、Lifescreen、Maine Biotechnology Services、Mediclone、MicroPharm Ltd.、ModiQuest、Molecular Innovations、Molecular Probes、Neoclone、NeuromicsNew England Biolabs、Novocastra、Novus Biologicals、OncogeneResearch Products、Orbigen、Oxford Biotechnology、Panvera、PerkinElmer LifeSciences、Pharmingen、Phoenix Pharmaceuticals、Pierce Chemical Company、PolymunScientific、Polysiences、Promega Corporation、Proteogenix、Protos Immunoresearch、QED Biosciences,Inc.、R&D Systems、Repligen、Research Diagnostics、Roboscreen、Santa Cruz Biotechnology、Seikagaku America、Serological Corporation、Serotec、SigmaAldrich、StemCell Technologies、Synaptic Systems GmbH、Technopharm、TerraNova Biotechnology、TiterMax、Trillium Diagnostics、Upstate Biotechnology、USBiological、Vector Laboratories、Wako Pure Chemical Industries和Zeptometrix。然而,技术人员能常规制备针对本文所述任意多肽决定因素的抗体。
我们注意到,其中具备多肽决定因素的部分影响在临床设置上进行测定的容易性。例如,在临床设置中,尤其在照护点,与白细胞成分内的细胞内多肽相比,常常更容易测量存在于血清或血浆部分中的多肽。这是因为前者需要另外的其中从全血样品中分离白细胞、洗涤并且裂解的实验步骤。
我们注意到,在一些临床设置中,更方便的是应用测量多肽而非RNA的测定。具体而言,发现在不同感染类型中差别性诱导的RNA水平并不必然表现多肽水平的相同行为。例如,已发现与细菌感染相比,IFI44、IFI44L和IFI27的mRNAs在病毒感染中差别性表达。然而,当测量和比较它们在细菌感染和病毒感染患者中的多肽水平时,未观察到显著差别性响应(图38)。
"测量TRAIL的单克隆抗体"的实例包括但不限于:小鼠,单克隆(55B709-3)IgG;小鼠,单克隆(2E5)IgG1;小鼠,单克隆(2E05)IgG1;小鼠,单克隆(M912292)IgG1к;小鼠,单克隆(IIIF6)IgG2b;小鼠,单克隆(2E1-1B9)IgG1;小鼠,单克隆(RIK-2)IgG1,к;小鼠,单克隆M181IgG1;小鼠,单克隆VI10E IgG2b;小鼠,单克隆MAB375IgG1;小鼠,单克隆MAB687IgG1;小鼠,单克隆HS501IgG1;小鼠,单克隆75411.11小鼠IgG1;小鼠,单克隆T8175-50IgG;小鼠,单克隆2B2.108IgG1;小鼠,单克隆B-T24IgG1;小鼠,单克隆55B709.3IgG1;小鼠,单克隆D3IgG1;山羊,单克隆C19IgG;兔子,单克隆H257IgG;小鼠,单克隆500-M49IgG;小鼠,单克隆05-607IgG;小鼠,单克隆B-T24IgG1;大鼠,单克隆(N2B2),IgG2a,к;小鼠,单克隆(1A7-2B7),IgG1;小鼠,单克隆(55B709.3),IgG和小鼠,单克隆B-S23*IgG1。
"测量CRP的单克隆抗体"的实例包括但不限于:小鼠,单克隆(108-2A2);小鼠,单克隆(108-7G41D2);小鼠,单克隆(12D-2C-36),IgG1;小鼠,单克隆(1G1),IgG1;小鼠,单克隆(5A9),IgG2aк;小鼠,单克隆(63F4),IgG1;小鼠,单克隆(67A1),IgG1;小鼠,单克隆(8B-5E),IgG1;小鼠,单克隆(B893M),IgG2b,λ;小鼠,单克隆(C1),IgG2b;小鼠,单克隆(C11F2),IgG;小鼠,单克隆(C2),IgG1;小鼠,单克隆(C3),IgG1;小鼠,单克隆(C4),IgG1;小鼠,单克隆(C5),IgG2a;小鼠,单克隆(C6),IgG2a;小鼠,单克隆(C7),IgG1;小鼠,单克隆(CRP103),IgG2b;小鼠,单克隆(CRP11),IgG1;小鼠,单克隆(CRP135),IgG1;小鼠,单克隆(CRP169),IgG2a;小鼠,单克隆(CRP30),IgG1;小鼠,单克隆(CRP36),IgG2a;兔子,单克隆(EPR283Y),IgG;小鼠,单克隆(KT39),IgG2b;小鼠,单克隆(N-a),IgG1;小鼠,单克隆(N1G1),IgG1;单克隆(P5A9AT);小鼠,单克隆(S5G1),IgG1;小鼠,单克隆(SB78c),IgG1;小鼠,单克隆(SB78d),IgG1和兔子,单克隆(Y284),IgG。
"测量SAA的单克隆抗体"的实例包括但不限于:小鼠,单克隆(SAA15),IgG1;小鼠,单克隆(504),IgG2b;小鼠,单克隆(SAA6),IgG1;小鼠,单克隆(585),IgG2b;小鼠,单克隆(426),IgG2b;小鼠,单克隆(38),IgG2b;小鼠,单克隆(132),IgG3;小鼠,单克隆(S3-F11),IgM;小鼠,单克隆(513),IgG1;小鼠,单克隆(291),IgG2b;小鼠,单克隆(607),IgG1;小鼠,单克隆(115),IgG1;小鼠,单克隆(B332A),IgG1;小鼠,单克隆(B336A),IgG1;小鼠,单克隆(B333A),IgG1;兔子,单克隆(EPR2927);兔子,单克隆(EPR4134);小鼠,单克隆(Reu86-1),IgG1;小鼠,单克隆(Reu86-5),IgG1;小鼠,单克隆(291),IgG2bк;小鼠,单克隆(504),IgG2bк;小鼠,单克隆(585),IgG2bк;小鼠,单克隆(S3),IgMк;小鼠,单克隆(mc1),IgG2aк;小鼠,单克隆(Reu 86-2),IgG2a;小鼠,单克隆(3C11-2C1),IgG2bк和兔子,单克隆(EPR2926),IgG。
测量决定因素的多克隆抗体包括但不限于通过以下一种或多种的活性免疫由血清产生的抗体:兔子、山羊、绵羊、鸡、鸭、豚鼠、小鼠、驴、骆驼、大鼠和马。
检测剂的实例包括但不限于:scFv、dsFv、Fab、sVH、F(ab')2、环肽、Haptamers、单域抗体、Fab片段、单链可变片段、Affibody分子、Affilins、Nanofitins、Anticalins、Avimers、DARPins、Kunitz域、Fynomers和Monobody。
实施例
实施例1:一般方法
临床研究概述
进行多中心、观察性、前瞻性临床研究,其目标在于发展和测试用于迅速和精确诊断具有病毒和细菌性疾病的患者的决定因素-标记。募集总共655位患者,具有疑似传染病的609位和具有非传染病的46位(对照组)。该研究由Bnai Zion机构审查委员会(IRB)和以色列的Hillel Yaffe医疗中心批准,其中患者募集自2010至2012年。
研究流程的概述示于图1。简而言之,使用数据可利用电子病历报告形式(eCRF)来记录各患者的临床研究,病史,微生物学,放射学和实验室数据(eCRF记录设计成保持患者匿名)。基于临床综合征,一种或多种以下样品彻底微生物和分子研究:血液,尿液,粪便,唾液,脑脊液(CSF)和鼻腔拭子。通过培养物、血清学、抗原测定和多重-PCRs方法的复合应用,在具有疑似传染病的患者组群中鉴定总共44个不同病原体菌株。通过至少三专家的小组(医院的主治医师,两个独立资深传染病专家[IDEs],和如果患者≤18岁,资深儿科医师),基于专家组的共识或绝大多数决定,确定诊断(细菌、病毒、混合、非传染性和不确定),并且在eCRF上记录。另外,在抽自这些患者的血液中定量570个不同分析物生物标记(如蛋白和代谢物)的水平(由于样品体积限制,仅测量患者亚组中一些蛋白)。构建数据库,其包括用于各患者的所有含eCRF数据(即,数百个数字和类别特征以及生物标记生化测测量值)。该数据库随后用于发展和测试决定因素-标记。
纳入标准
至少一个月大并且愿意(该对象或法定监护人)签署知情同意书的患者有纳入资格。对于传染性和非传染病组,必须满足额外的纳入标准。这些包括:
●传染病组:
-发烧峰值>37.5℃
-急性传染病的临床怀疑
-症状持续时间≤10天
●非传染病对照组:
-非传染病的临床怀疑
排除标准
满足以下标准的患者从研究中排除:
●最后两周中急性传染病的另一次发作的证据
●诊断的先天性免疫缺陷(CID)
●采用免疫抑制疗法的当前治疗诸如:
-活性化学疗法
-移植后药物
-高剂量类固醇(>40mg/天的泼尼松或等同物)
-活性放射疗法
-免疫-调制/抑制性药物,包括单克隆抗体、静脉注射免疫球蛋白(IVIG)、环孢霉素和抗肿瘤坏死因子(TNF)剂
●采用免疫刺激剂的当前治疗诸如:
-白介素(IL)-2
-粒细胞菌落-刺激因子(G-CSF)或粒细胞-巨噬细胞菌落-刺激因子(GM-CSF)
-干扰素(所有种类)
●活性恶性血液肿瘤(如慢性淋巴细胞白血病[CLL])
●脊髓发育不良综合征(MDS)或骨髓增生性疾病(MPD)的诊断
●证明或疑似的人类免疫缺陷病毒(HIV)-1、乙型肝炎病毒(HBV)、或丙型肝炎病毒(HCV)感染
编入方法
签署知情同意书之后,各患者经受以下程序:
●基线变量的物理检验和记录,包括:
-人口统计:性别,年龄,出生日期,募集日期,募集地点等。
-病史:不适主诉,基础疾病,慢性施用药物,症状发作时间,最大发热等。
-物理检验:直接物理检验,脉搏,听诊,喉部检查,皮疹,淋巴结病筛选等。
-疾病-特异性变量(如用于疑似下呼吸道感染[LRTI]的胸部X-射线,疑似尿路感染[UTI]的侧腹触痛)
-全血球计数(CBC)研究,包括:全血计数,嗜中性粒细胞绝对计数(ANC),嗜中性粒细胞百分比,淋巴细胞百分比等。
●化学实验室:肌酸酐,尿素,肝脏酶等。
●用鼻拭子对上呼吸道取样用于进一步微生物研究
●基于临床症状的样品收集(如具有疑似UTI的患者的尿液培养物,具有疑似胃肠炎的患者的粪便取样)
●在MeMed实验室中用于分析物生物标记测量的血液取样:在含EDTA的CBC管中收集2-6ml外周静脉血。该血液随后储存在下1-4小时。
编入30天之后,对治疗的病程和响应记录于eCRF上,以及记录在编入日不可得的细节如临床的、放射学的、实验室的和微生物的结果。
微生物和分子测试
为允许专家组建立具有高置信水平的最终诊断,通过测试西方世界的大多数致病剂进行彻底微生物和分子研究。在这一部分,我们示出微生物和分子研究的综述。
对于每个患者,在得自鼻咽拭子的标本上应用两次最先进CE-体外诊断(IVD)-标记的多重PCR测定:
●RV15 ACE(SeeGene Ltd,Seoul,Korea)。该测定设计为检测绝大多数已知呼吸性病毒(15个病毒亚组,包括变异流行性感冒病毒1、2、3和4,冠状病毒229E/NL63,腺病毒A/B/C/D/E,博卡病毒1/2/3/4,流行性感冒病毒A和B,偏肺病毒,冠状病毒OC43,鼻病毒A/B/C,呼吸性合胞病毒A和B,和肠道病毒)
●PneumoBacter ACE(SeeGene Ltd,Seoul,Korea)。该测定设计未同时检测六种致肺炎细菌(肺炎链球菌[SP],流行性感冒嗜血杆菌[HI],肺炎嗜衣原体[CP],嗜肺性军团病杆菌[LP],百日咳博德特氏杆菌[BP],和肺炎支原体[MP])
根据其疑似临床综合征,测试患者的另外病原体(细节参见临床研究方案)。例如:
●使用设计为检测10种病原体(轮状病毒,星状病毒,肠道菌腺病毒,诺罗病毒GI,诺罗病毒GII,弧菌属,志贺氏杆菌属,弯曲菌属,艰难梭状芽孢杆菌毒素B,和沙门氏菌属)的多重PCR测定,分析具有胃肠炎的患者的粪便样品
●在所有临床相关亚组中进行细胞巨化病毒(CMV)、EB病毒(EBV)、MP和伯氏考克斯氏体(Q-Fever)的血清学测试
●在临床相关亚组中进行血液、尿液和粪便培养物
总体来说,我们的方法在>50%的具有传染病的患者中检测到病原体。还使用这些结果来检验不同诊断方法的效率和精确度并且评估在具有非传染病的患者中的假发现率。
创建参照标准
当前,不存在用于在各式各样临床综合征中确定细菌和病毒感染的单个参照标准。因此,遵循诊断精确度记录标准(STARD)建议(Bossuyt等人,2003)并且创建用于测试决定因素标记的高度严苛复合参照标准。以两个步骤创建复合参照标准。首先,对每个患者进行彻底研究。这包括收集传统类型的诊断信息,例如病史、临床症状、病程和实验室测定值的记录,以及包括微生物的、血清学和分子研究(如上所述)的更高级诊断信息。然后,将所有累积原始信息提供给至少三专家的小组(对于成人患者[>18岁],专家包括医院主治医师和两个独立高级IDEs;对于儿童[≤18岁],该小组包括作为专家组的第四成员的高级儿科医师)。基于该信息,专家组的每个成员给患者之一指定以下诊断标签之一:(i)细菌;(ii)病毒;(iii)混合(即细菌和病毒共感染);(iv)非传染性;或(v)不确定。重要地,对专家遮蔽其专家组同事的诊断标签。随后通过专家组的绝大多数确定诊断。在我们的研究中,在对编入患者(n=575)应用上述方法之后,该组群包括242个具有病毒感染的患者(42%),208个具有细菌感染的患者(36%),34个具有混合感染的患者(6%),46个具有非传染病的患者(8%),和45个具有不确定诊断的患者(8%)(因为专家组未达成绝大多数[所有患者的6%]或因为专家组指定该患者为'不确定'诊断[所有患者的2%])(图2)。
随后将专家组指定的诊断标签用于创建具有增加的置信水平的组群。
●绝大多数组群:如果专家组的绝大多数(>50%)指定患者为细菌('细菌患者')、病毒('病毒患者')、混合感染('混合患者')、或非传染病的诊断,则将他们纳入该组群。
●共识组群:绝大多数组群的该亚组包括专家组全体一致指定为一种诊断(细菌、病毒、混合、或非传染性)的患者。
●明确诊断组群:共识组群的该亚组包括具有细菌或病毒感染的患者,所述患者由专家组全体一致指定所述诊断并且还满足以下额外标准。被纳入细菌患者,患者必须具有菌血症(血液培养阳性)、细菌脑膜炎(CSF培养阳性或>1,000嗜中性粒细胞/μL)、肾盂肾炎(尿液培养阳性和肾损害的超声波信息)、UTI(尿液培养阳性)、败血症性休克(血液培养阳性)、蜂窝织炎、或扁桃体周脓肿(手术探查证实)(Thorn等人,1977)。被纳入病毒患者,患者必须具有强制性病毒的微生物分离阳性。
值得注意的是,在以下实例表和图中,除非明确地另外提及,否则患者参照标准基于绝大多数组群来确定。上述复合物参照标准策略遵守建议的传染病的诊断研究中的最佳实践方针。针对此参照标准分析本文记录的决定因素和决定因素标记性能。
膜结合或细胞内多肽决定因素的测量
全血分成细胞和血浆部分,并且随后用红细胞裂解缓冲液(BD Bioscience)处理。白细胞随后用pH 7.3磷酸盐缓冲盐水洗涤三次。为了测量膜相关决定因素多肽的水平,所述细胞用一抗孵育40分钟,洗涤两次并且用PE轭合的二抗(Jackson Laboratories,发射575nm)再孵育20分钟。在胞内决定因素多肽情况下,细胞首先用固定和透化缓冲液试剂盒(eBioscience)固定和透化。固定和透化后,细胞用一抗孵育40分钟,洗涤两次并且用PE轭合的二抗再孵育20分钟。每个染色模式中用IgG同种型对照作为阴性对照背景。染色过程后,细胞使用LSRII流式细胞仪分析。通过使用SSC/FSC点图互相辨别粒细胞、单核细胞和淋巴细胞。对每个特定抗原测定淋巴细胞、单核细胞和粒细胞的背景和特定染色。通过对所有细胞类型的决定因素多肽水平求和并除以白细胞计数来计算总体白细胞平均水平。
使用该方案测量的多肽-决定因素包括:
CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、EIF4B、IFIT1、IFIT3、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1、IFITM3、IL7R、ARG1、ARPC2、ATP6V0B、BCA-1、BRI3BP、CCL19-MIP3b、CES1、CORO1A、HERC5、IFI6、IFIT3、KIAA0082、LIPT1、LRDD、MCP-2、PARP9、PTEN、QARS、RAB13、RPL34、SART3、TRIM22、UBE2N、XAF1和ZBP1。
使用ELISA测量可溶决定因素
为测定人类血浆样品中可溶决定因素的浓度,使用标准夹心ELISA(酶联免疫吸附测定)。简而言之,96孔板的孔用对感兴趣可溶决定因素特异性的捕获抗体涂布并且在涂布缓冲液(如1xPBS)中稀释,然后4℃下过夜孵育。所述孔用洗涤缓冲液(如1xPBS,具有0.2%Tween-20)洗涤两次并且随后用含有蛋白(如1xPBS,具有0.2%Tween-20和5%无脂奶)的阻断缓冲液在室温下阻断至少2小时或在4℃下过夜。该步骤增加测定信杂比。孔随后用洗涤缓冲液洗涤两次。蛋白标准和血浆样品分别使用稀释液缓冲液(如1xPBS,具有0.2%Tween-20和5%无脂奶)以足够浓度和稀释因子稀释,然后在室温下两小时孵育。然后,所述孔用洗涤缓冲液洗涤三次并且随后用对感兴趣可溶决定因素特异性的生物素酰化检测-抗体孵育,在室温下在阻断缓冲液稀释至少两小时。
所述孔用洗涤缓冲液洗涤四次并随后用链亲和素-HRP(即辣根过氧化物酶)孵育,在在室温下阻断缓冲液中稀释1小时。所述孔用洗涤缓冲液洗涤四此并随后用含有生色HRP底物(如TMB;3,3′,5,5′-四甲基联苯胺)的反应溶液孵育。充分彩色显影之后,向各孔添加停止液。用ELISA读板仪确定HRP反应产物的吸光度。
使用上述方案测量的可溶多肽包含:
B2M、CHI3L1、Mac-2BP、SAA、TRAIL、sCD62L、sTREM、IL11、IL1RA、IP10、I-TAC和TNFR1。
使用Luminex测量可溶决定因素
为测定可溶决定因素在人类血浆样品中的浓度,还使用xMAP免疫测定法(Luminex公司,Austin,Tex.)(方案细节可得自供应商)。简而言之,该测定使用用精确比率的两种荧光染料浸渍的5微米聚苯乙烯小珠,产生多达100个光谱可鉴定小珠。这些小珠的表面用羧基端涂布(估算1百万每小珠),其充当分析物特异性抗体的附连点。使用标准免疫测定原则,为各靶生物标记进行夹心模式或竞争测定。这包括具有预定分析物浓度的标准物的制备,样品的6时孵育,然后流式细胞仪读数。两个激光器查询小珠:一个用于其具体ID号;第二个用于得自免疫测定法的藻红素(PE)信号的强度。该测定允许同时测量数十个待同时测量的分析物特异性小珠,因此允许生物标记筛选。
更具体地讲,在进行该测定的1小时内,制备标准物和抗体轭合小珠和样品。当与血清/血浆样品、或50%测定稀释剂+用于其他类型样品的50%血清基体一起运行时,在0.5mL测定稀释剂中重组蛋白标准物。避免混合。测定该测定所需孔数。如果需要,标准曲线和样品可以单一或重复运行。预润湿96微量滴定板。0.2mL工作洗涤液移取到指定孔中。等待15至30秒并且使用真空歧管从孔中抽吸洗涤液。分配之前,小珠涡旋30秒,然后超声水浴中超声处理30秒。25uL所需小珠移取到各孔中。一旦分配,小珠应该使用铝箔包裹的盖板来保持避光。使用真空歧管通过微真空抽吸液体。由待多重的另外10x捕获小珠浓缩物制备1x捕获小珠溶液。25uL另外1x小珠溶液移取到各孔中。添加0.2mL工作洗涤溶液到孔中。允许小珠浸泡15至30秒,然后通过用真空歧管抽吸从孔中移除工作洗涤液。重复该洗涤步骤。在干净纸巾上吸干过滤板的底部以移除残余液体。50uL孵育缓冲液移取到各孔中。向指定用于标准曲线的孔移取100uL的恰当标准稀释液。向指定用于样品测量的孔移取50uL的测定稀释剂,然后50uL样品。在室温下在轨道式震荡器上孵育该板2小时。摇晃应该足以保持小珠在孵育期间悬浮(500-600rpm)。在孵育结束之前10至15分钟,制备生物素酰化检测器抗体。2小时捕获小珠孵育之后,通过用真空歧管抽吸从孔中移除液体。添加0.2mL工作洗涤溶液到孔中。允许小珠浸泡15至20秒,然后用真空歧管抽吸。重复该洗涤步骤。在干净纸巾上吸干过滤板的底部以移除残余液体。将100uL制备的1x生物素酰化检测器抗体加入各孔并且在室温下在轨道式震荡器上孵育该板1小时。摇晃应该足以保持小珠在孵育期间悬浮(500-600rpm)。在检测器孵育步骤结束之前10至15分钟,制备链亲和素-RPE。通过用真空歧管抽吸从孔中移除液体。添加0.2mL工作洗涤溶液到孔中。允许小珠浸泡15至30秒,然后用真空歧管抽吸。重复该洗涤步骤。用干净纸巾吸干过滤板的底部以移除残余液体。将100uL制备的1x链亲和素-RPE加入各孔并且在室温下在轨道式震荡器上孵育该板30分钟。摇晃应该足以保持小珠在孵育期间悬浮(500-600rpm)。在此孵育步骤期间预备Luminex仪器。通过用真空歧管抽吸从孔中移除液体。注意到需要5英寸Hg的最小压力。通过将0.2mL工作洗涤液加入孔来洗涤小珠,允许小珠浸泡10秒,然后用真空歧管抽吸。额外重复此洗涤步骤两次,总共3次洗涤。将100uL工作洗涤液加入各孔。在轨道式震荡器(500-600rpm)上摇晃该板2-3分钟以再悬浮小珠。揭开所述板,将板插入Luminex仪器的XY平台并且分析所述样品。使用曲线拟合软件,由标准曲线,测定样品的浓度。四参数算法通常提供最佳拟合。如果不能在测定日读取所述底片,则它们可以被遮盖并且在2-8℃下储存在黑暗位置过夜,以便在第二天读取而不显著损失荧光强度。从储存的板上抽吸工作洗涤液并且添加100uL新鲜工作洗涤液。将板放置在轨道式震荡器上2-3分钟,然后分析。使用上述方案测量的可溶多肽包含:BCA-1、TRAIL、嗜酸性粒细胞趋化因子、IL1a、IP10、MCP和VEGFR2。
CRP可溶决定因素的测量
在其中患者编入的医院的化学实验室中,使用自动化免疫测定机测量CRP浓度。
决定因素归一化
为避免数值偏差,一些多参数模型(例如SVMs)需要模型中所用数值决定因素具有类似比例。因此,当进行多参数分析时,使用以下线性归一化:各患者的决定因素水平除以在研究中所有群体上计算的决定因素平均水平。为了避免由于异常引起的数值偏差(>平均值±3x标准偏差),截短这些测量并且赋值为平均值±3x标准偏差。
缺少值/删失/不连续的处理
缺少决定因素值可能由于处理方法中的技术问题(如用于测量特定决定因素的抗体的恶化)引起。此外,一些决定因素(尤其多肽决定因素)可能仅在患者的亚组上测量,因为从任何给定患者抽取的临床样品的量不足以测量决定因素的整个小组。因而,一些对象可以具有用于一些其决定因素测量的缺失值。为解决该问题,仅在各自标记物中不具有任何缺少值的患者中计算各决定因素或多决定因素标记物的精确度。
决定因素诊断统计分析
依据灵敏度、特异性、PPV、NPV、MCC、AUC和魏克森等级和p值或t测试p值,测量个体决定因素的分类精确度和统计显著性。使用弃10%法交叉验证方案测定多个决定因素标记物的诊断精确性,以训练和测试有线性函数的支持向量机(SVM)(CJC Burges,1998)。使用如单个决定因素中相同标准测量分类精确性。也使用其他多参数模型测试分类精确性,包含:(i)RBF核SVM,(ii)人工神经网络(一个隐藏层,有三个节点、一个输出节点和tansig转移函数),(iii)朴素贝叶斯网络,和(iv)k-最近邻(k-nearest-neighbor)分类算法。对于大多数测试决定因素组合,相比其他模型,依据AUC和MCC,线性SVM产生大致相同分类结果。因此本文仅记录线性SVM的结果。
实施例2:为有利于广泛适用的诊断解决方案,在患者的高度非均相组群上进行临床研究
该研究所用患者组群的概述
为该研究募集总共655位患者并且575位患者适合编入。基于上述参照标准方法,患者被指定至5个不同诊断组:病毒感染(42%患者)、细菌感染(36%患者)、混合感染(6%患者)、非传染病(8%患者)和不确定(8%患者)(图2)。总计,92%的所有编入患者被指定诊断,该比例接近文献证明的极限(Clements等人,2000;Johnstone等人,2008;等人,2011).
如上所述(创建参照标准),在具有增加的置信水平的一系列患者组群中进行决定因素标记技术的发展和测试。在575位编入患者中,530人具有专家组的绝大多数指定的诊断(细菌、病毒、混合或非传染性)。在这530位患者中,376人具有全体一致指定的这些诊断(即'共识'诊断)。在所述376位患者中,170位患者具有如上所述确定的明确诊断。
各种组群和各组群中细菌、病毒、混合和非传染性患者的数目示于图3。
年龄和性别分布
募集所有年龄的患者进行研究。研究群体(n=575)包括的儿科患者(≤18years)多于成人(>18years)患者(60%vs 40%)。年龄分布对于年龄20-80岁的患者相对均匀,并且对于儿科患者,年龄≤4岁为峰值(图4)。儿科患者的所观察年龄分布与预期符合并且代表住院环境中的背景分布(Craig等人2010)(如急症科[ED]、儿科和内科)。
募集两性患者进行研究。关于性别分布(49%女性,51%男性)平衡患者群体。
分离病原体
使用各种各样的微生物工具来最大化病原体分离率。在53%的具有急性传染病的患者(所有575个编入患者的49%)中分离出至少一种病原体。使用多重PCR、抗原检测和血清学研究主动检测总计33种不同病原体。使用标准培养技术或室内PCR分离另外11种病原体。总计,所有主要病原性亚组的44种不同病原体被分离(图5A)。病原体鉴定率类似于先前公布的研究所报道(Cillóniz等人2011;Restrepo等人2008;Song等人2008;Johansson等人2010;Shibli等人2010)并且包括来自所有主要病原性亚组的病原体(革兰氏阴性菌,革兰氏阳性菌,非典型细菌,RNA病毒,和DNA病毒)。在几乎20%的患者中,检测来自>1个上述病原性亚组的病原体(图5A)。
该研究中发现的病原性菌株是西方世界的绝大多数急性传染病的原因并且包括关键病原体如流行性感冒A/B、呼吸性合胞病毒(RSV)、变异流行性感冒病毒、大肠杆菌、A组链球菌等。要注意的是,分离病原体的分析表明无病原体是占主导的(图5B)。流行性感冒A或RSV主导性的缺乏归因于两个原因:全年取样(即取样不限于冬季)并且在研究时间段内以色列未爆发流行性感冒和RSV流行病(2010-2012)。
涉及的生理系统和临床综合征
传染病患者(所有具有最终诊断的患者,排除具有非传染病的那些,n=484)表现出在各种生理系统中(图6)具有感染。最频繁涉及的生理系统为呼吸系统(45%),然后是全身感染(18%)。不涉及上述系统并且不是胃肠、泌尿、心血管、或中枢神经系统(CNS)感染的所有感染归类为'其他'(如蜂窝织炎、脓肿)。生理系统涉及性的所观察分布代表天然分布并且符合全年取样的患者的大组群的记录(CDC.gov 2012)。
我们研究中的患者(所有编入患者,n=575)表现出具有多种临床综合征(图7),这反映全年收集的儿科和成人患者的组群中的预期临床不均匀性。最频繁临床综合征为LRTI(25%),主要包括肺炎、支气管炎、细支气管炎、慢性阻塞性肺病(COPD)恶化,以及非特异性LRTI。第二频繁临床综合征为URTI(20%),主要包括急性扁桃体炎、急性咽头炎、非特异性URTI、急性窦炎和急性中耳炎。第三频繁综合征为全身感染(17%),主要包括无源发烧和神秘菌血症情况。全身感染主要在<3岁的儿童中检测到,但也在一些成人患者中检测到。全身感染构成真实临床挑战,因为在患者风险和测试/治疗成本之间的平衡不太清楚。其次频繁综合征为胃肠炎(11%)、UTI(8%)和蜂窝织炎(4%)。CNS感染(2%)包括败血病性和非败血病性脑膜炎。所有其他临床综合征(3%)分类为'其他'并且包括不常见感染(如扁桃体周围脓肿,外耳道炎、附睾炎等)。临床综合征分布的所观察模式代表大多数频繁和临床相关的综合征并且与先前公布大型研究相符(Craig等人2010)。
核心体温
核心体温为评估传染病严重程度的重要参数。使用最高测得体温(经口或经直肠),检查所有编入患者(n=575)的最大体温的分布。最大体温的分布在38℃和40℃之间相对均一,峰值在39℃(图8)。8%的患者(具有非传染病的患者的亚组)记录体温≤37.5℃。体温≥40.5℃不多(<3%患者)。总计,所观察分布代表在临床设置中正常温度的范围(Craig等人,2010)。
症状发作时间
'症状时间'定义为自第一主要症状出现的持续时间(天)(第一主要症状可能为发烧,但也可能为另一症状,例如发烧前的恶心或头痛)。在我们的组群中(所有编入患者,n=575)的'症状时间'的分布集中于症状初发2-4天之后(40%的患者),并且显著比例的患者迟早转到医疗援助(图9)。症状初发时间的所观察分布代表临床设置中的典型模式。
并存病和慢性药物服法
理论上,并存病和慢性药物服法可能影响诊断测试。我们的患者群体(所有编入的患者,n=575)包括不具有并存病并且未用慢性药疗治疗的患者(70%)和具有≥1的慢性疾病并且用慢性药疗治疗的患者(30%)。在我们的患者群体中最频繁慢性疾病为高血压,血脂异常,肺病(如COPD、哮喘等),糖尿病(大多数为2型),和缺血性心脏病,反映出西方世界的最常见慢性疾病(图10A)。具有慢性疾病的所有患者用药疗长期治疗。患者群体所用慢性药物的分布与记录的慢性疾病的范围强烈相关(例如具有并存病的42%患者具有血脂异常并且降血脂剂为最频繁使用药物)。其他频繁使用药物包括阿司匹林、血糖控制药物和β阻断剂(图10B)。
患者募集地点
研究中的募集地点包括ED(儿科、成人)和其他医院科室(儿科、成人)。儿科ED为最常见募集地点(43%)并且其他地点具可比性(17-22%),反映相对平衡的募集方法。对于成人,ED患者和住院患者之间比率为~1:1,并且对于儿童,为~2:1(图11)。
比较细菌组和病毒组的基线特性。
通过年龄比较细菌组和病毒组的基线特性(儿童vs成人;表4)。在儿童和成人中,实验室参数如WBC水平、嗜中性粒细胞(%)、淋巴细胞(%)和ANC在细菌和病毒患者之间显著不同(P<0.001),符合这两个感染类型的确实差异(Christensen、Bradley和Rothstein1981;Peltola、Mertsola和Ruuskanen 2006)。在儿童中,还观察到年龄(P<0.001)和最大体温(P<0.007)的显著差异。这些发现与更幼小儿童中病毒感染的增加的流行性相符以及与细菌和病毒感染中常常存在的更高温度相符(Pickering和DuPont 1986)。其他变量(如呼吸率、尿素和心率)在细菌组和病毒组之间未显示出统计学显著差异,在各组中指示类似的临床表观。
排除的患者的特性
募集用于研究的655位患者中,80位患者(12%)被排除。排除的最频繁原因是具有低于研究阈值37.5℃的发烧(n=40;所有排除患者的50%),然后症状初发时间>10天(n=15,所有排除患者的19%)和最近曾患(此前14天)传染病(n=13,所有排除患者的16%)。排除的其他原因包括具有恶性肿瘤(恶性血液肿瘤[所有排除患者的9%],实体恶性肿瘤[所有排除患者的5%])和免疫失能(如由于用免疫抑制药物治疗;所有排除患者的1%)。
实施例3:决定因素水平的测量在日常技术重复和不同测量平台上高度可复制
测定性能和QA
校准曲线在生理浓度范围内为线性
测定制造商提供的标准制备充当校准曲线的参照标准。TRAIL、Mac-2BP和SAA的校准曲线的代表性样品示于图12。我们发现细菌和病毒感染之间的所有最佳截留值处于所述比例的线性范围内并且所有标准曲线具有~2-2.5对数比例的动态范围。
测定内可变性
我们在相同ELISA板(图13)内在患者的8个独立血清样品上测试测定内可变性。我们发现TRAIL、Mac-2-BP和SAA的测定内CV%分别为4.4%、7.5%和4.4%。与其他手动ELISA测定相比,这些值在正常测定内变化范围之内。使用自动装置或改善测定模式可能降低测定内可变性并且增加生物标记精确度。
测定间可变性
我们分别在20个、8个和8个独立样品中测试TRAIL、Mac-2BP和SAA的测定间可变性。我们观察到分别为6.6%、8.1%和12.3%的变化(图14)。
分析物水平在血清和血浆中类似
我们分别在32位、35位和46位个体的成对血清和血浆样品的组群中测试TRAIL、Mac-2-BP和SAA的水平。对于所有三个分析物,我们观察到强相关性(r2在0.88和0.98之间)和血浆和血清浓度之间可比较的浓度(斜度在0.92和1.05之间)(图15)。
分析物在临床设置的典型条件下为稳定的
生物标记的效用取决于其在现实临床设置中的稳定性(例如其在分析物测量之前样品储存在室温下时的衰变率)。为解决此问题,我们检验TRAIL、Mac-2-BP和SAA在21小时内在4℃(冷藏)和25℃(室温)下在四个、三个和五个独立个体的血清样品中的稳定性。100μL各血浆样品的等分试样移取到0.2mL管中并且保持在4℃或25℃下0至21小时。随后,我们测量分析物的水平(使用相同板和试剂测量不同时间点的相同分析物)。所有三个分析物的平均水平在4℃下首个21小时内大致稳定。25℃下TRAIL、Mac-2-BP和SAA的分析物半衰期分别为24±5、>48和>48小时。(图16)。这些半衰期与对临床急救设置中所用其他生物标记观察到的那些可比较(Rehak和Chiang 1988;Boyanton和Blick 2002;Guder等人2007)。值得注意的是,在真实临床设置中,如果样品储存在室温下,则TRAIL的浓度应该在获得样品之后约24小时内测量。或者,样品应该储存在低于12℃下,随后可在获得样品大于24之后测量TRAIL。
测量在不同平台上可复制。
使用两个不同平台(ELISA和Luminex)测试80个独立样品中TRAIL的水平,并且使结果相关并且可比较(r2=0.89,P<10-5;图17)。重要地,ELISA和Luminex测定在一些基本方面上不同。例如,Luminex测定是基于直接荧光检测,而ELISA是基于比色检测。此外,捕获和检测抗体的在测定之间不同。尽管这些和其他差异,但结果可比较,证明决定因素-标记方法对其他平台的适用性。
实施例4:大多数多肽-决定因素、甚至具有免疫学作用的那些在具有不同感染类型的患者中未差别性表达
为筛选可能在不同类型感染中差别性表达的潜在决定因素,我们在取自编入临床研究的患者的样品中进行超过500个多肽的生化测量。发现大多数决定因素在具有不同感染类型的对象中未差别性表达。此外,发现甚至在抗感染免疫防御具有确实机械作用或参与炎性过程的多肽-决定因素也常常显示对感染源的鉴定的差诊断精确度。这点如图18和表1所示,其表明具有确实免疫学或炎性作用的多肽-决定因素的实例在具有病毒或细菌感染中患者之间无差别性表达。例如,不同类型的INF-α(INF-a)在抗病毒细胞过程中具有确实作用。它们主要通过白细胞产生并且可能由发热温度强化。我们测量22位细菌患者和27位病毒患者中INF-a的血浆水平并且发现无差别性响应(魏克森等级和P=0.8)(图18)。蛋白INF-γ(ING-g)为另一种对抗病毒和细菌感染的先天和适应性免疫关键性的细胞因子,其未显示差别性响应(魏克森等级和P=0.9)。TNF-α(TNF-a)为主要由活化巨噬细胞产生的细胞因子。其为细胞凋亡的主要外在介体并且被发现在病毒感染中发挥作用(Gong等人1991)。以下这些观察假设TNF-a可能用于诊断感染源。我们在具有细菌的患者和病毒感染患者中测量TNF-a水平并且发现弱差别性响应(魏克森等级和P=0.9)。另外,另一个实例为CD95,在细胞凋亡期间参与死亡-诱导-信号转导-络合物的过程的Fas配体受体。该受体被发现涉及对不同感染的宿主响应(Grassmé等人2000)。我们发现CD95在淋巴细胞和单核细胞上的水平在细菌和病毒患者中并未以统计学显著方式差别性表达(P=0.1,和P=0.9,分别)。我们还测量许多其他白介素、细胞因子和其受体、趋化因子和其受体、HLAs和参与感染的免疫响应的其他决定因素的水平,并且发现在大多数情况下,决定因素的水平在病毒和细菌感染之间并无差别性表达(更多例子参见图18)。因此,多肽-决定因素的免疫学或炎性作用并非必然暗示诊断效用。
实施例5:对不同感染类型的体外差别性响应不必然指示对应体内差别性响应
我们检验在体外感染期间差别性表达的生物标记是否体内可能为精确诊断标记。发现在许多情况下,体外差别性表达并不必然转化成对应的体内差别性表达。以下部分示出该比较的实例。
先前体外研究表明,精氨酸酶1(ARG1)的mRNA和蛋白水平在病毒感染中上调并且在细菌感染中仍很低。简而言之,人类肝胚细胞瘤HepG2细胞和含丙型肝炎病毒(HCV)的传染性cDNA克隆的人类肝癌Huh-7细胞的体外转染导致ARG1 mRNA和蛋白水平的约三倍升高(P<0.01)(Cao等人2009)。相比之下,与幽门螺旋杆菌SS1共培养的小鼠巨噬细胞的ARG1mRNA表达水平并未升高(Gobert等人2002)。
合在一起,这两个体外研究促使我们检验ARG1是否可充当在病毒感染中上调而在细菌感染中维持基本水平的可靠体内诊断标记。我们测量具有细菌感染的41位患者的ARG1蛋白水平并且将其与具有病毒感染的46位患者中的水平比较。在粒细胞、淋巴细胞和全体白细胞上进行测量。在所有情况下,与细菌感染患者相比,我们未观察到病毒感染患者中ARG1水平的增加(图19)。特别地,粒细胞上ARG1水平未差别性表达(魏克森等级和P=0.3),而与病毒感染患者相比,淋巴细胞和全体白细胞显示在细菌感染患者中略微增加(魏克森等级和P分别为0.09和0.003),这是与体外研究中记录的行为的相反的行为。
另一个实例为白介素-8(IL-8),其水平用幽门螺旋杆菌Sydney菌株1脂多糖治疗之后在人类胃SGC-7901腺癌细胞的细胞培养基中增加(Zhou等人2008)。相比之下,发现幽门螺旋杆菌-感染患者的体内IL-8血清水平类似于幽门螺旋杆菌-阴性对照组的IL-8血清水平(等人2004)。
因此,不同体外感染中的差别性表达不必然体内暗示差别性表达。
实施例6:区分不同感染类型的决定因素
我们测量超过570个多肽并且发现大多数(超过95%)未区分不同感染类型。背离该标准中的显示出在各式各样患者特性和病原体内一致和稳健差别性响应的多肽的独特亚组(细节参见患者特性部分)。以下部分描述多肽和其组合,其可用于诊断不同感染源。
区分细菌与病毒感染对象的决定因素
我们鉴定以统计学显著方式在具有细菌与病毒感染的对象中差别性表达的决定因素的亚组(魏克森等级和P<0.001)。决定因素名称和分类精确度列于表2A。各决定因素的分布和个体对象测量示于图20(圆点对应于个体对象中的决定因素测量并且长条指示组中间值)。各子图对应于不同决定因素。缩写mono、lymp、gran、mean和total用于分别表示在单核细胞、淋巴细胞、粒细胞上的多肽-决定因素以及平均和全体白细胞测量。缩写intra和membrane用于表示分别在细胞内和膜部分中测量的蛋白。
另外,我们发现与细菌患者相比,使用非特异性小鼠IgG1和IgG3同种型对照物作为一级抗体(与恰当荧光标记偶联)一致性地在病毒患者的淋巴细胞和单核细胞中显示出增加的信号(表2A)。当测量PE偶联山羊IgG的信号时,观察到类似差别性响应(表2A)。虽然在绝对水平上差别性信号很弱,但与得自特异性结合的信号相比,其统计学显著(魏克森等级和P<0.001)。该现象可能是由于IgG对Fcγ受体的非特异性结合,或结合Ig类域的其他受体,其水平可能响应于病毒感染而在宿主细胞上升高。
区分混合和病毒感染对象的决定因素
区分混合感染(即细菌和病毒共感染)和纯病毒感染对决定恰当治疗十分重要。为解决这一问题,我们鉴定在具有混合感染与病毒感染的对象中以统计学显著方式差别性表达的一组决定因素(魏克森等级和P<0.001)。决定因素名称和分类精确度列于表2B。每个决定因素的分布和个体对象测量示于图21。
区分混合和细菌感染对象的决定因素
我们鉴定在具有混合感染与细菌感染的对象中以统计学显著方式差别性表达的一组决定因素(魏克森等级和P<0.001)。决定因素名称和分类精确度列于表2C。
区分细菌或混合与病毒感染对象的决定因素。
我们鉴定在具有细菌或混合感染与病毒感染的对象中以统计学显著方式差别性表达的一组决定因素(魏克森等级和P<0.001)。决定因素名称和分类精确度列于表2D、2E和2F。
区分具有传染病与非-传染病的对象的决定因素
我们鉴定在具有传染病的对象与具有非感染疾病的对象中以统计学显著方式差别性表达的一组决定因素(魏克森等级和P<0.001)。决定因素名称和分类精确性列于表2G。一些决定因素的分布和个体对象测量示于图21B中。注意到,尽管在具有非传染病的患者的组中存在非病原性微生物体,仍获得表2G中记录的诊断精确度(细节参见图22)。这种非病原性微生物的存在对寻求直接鉴定病原体的诊断方法构成主要挑战,常常导致"假阳性"。通过本发明的一些方法克服该挑战。为进一步确立结果,一些决定因素在表2G中所示的另外的非传染性患者上(至多83位患者)测量。
区分具有传染病的对象与健康对象的决定因素
我们鉴定在具有传染病的对象与健康对象中以统计学显著方式差别性表达的一组决定因素(魏克森等级和P<0.001)。决定因素名称和分类精确度列于表2H。一些决定因素的分布和个体对象测量示于图21C中。注意到,尽管在健康对象中存在非病原性微生物体,仍获得表2H中记录的诊断精确度(参见图22)。健康对象中这种非病原性微生物的存在对寻求直接鉴定病原体的诊断方法构成主要挑战,常常导致"假阳性"。通过本发明的方法克服该挑战。
实施例7:决定因素标记可改善不同感染类型的诊断精确度
区分细菌与病毒感染对象的决定因素标记
我们扫描决定因素组合的空间并且鉴定组合标记(使用多参数模型)以比对应个体决定因素的分类精确度显著改善的方式区分具有细菌与病毒感染的对象的决定因素的对和三联组。例如,TRAIL、Mac-2BP和CRP的诊断精确度分别为0.86、0.78和0.85AUC。(TRAIL,CRP)、(Mac-2B,CRP)和(TRAIL,Mac-2BP,CRP)组合分别显示0.945、0.939和0.954AUC的增加的诊断精确度。决定因素对、三联组和四联组的组合分类精确度的其他实例示于表3A、B、G和图23。
区分混合与病毒感染对象的决定因素标记
我们鉴定组合标记区分具有混合与病毒感染的对象的决定因素的对。决定因素对、三联组和四联组的组合分类精确度示于表3C、D、G和图24。
区分具有传染病的对象与具有非传染病对象的决定因素标记
我们鉴定组合标记区分具有传染病与非传染病的对象的决定因素的对。决定因素对和三联组的组合分类精确度示于表3E,F。
实施例8:性能分析:多决定因素标记精确诊断不同感染源
包括CRP和TRAIL的测量的决定因素标记对于区分具有不同感染类型的患者是高度精确的。
我们发现包括TRAIL和CRP的决定因素标记产生特别高的精确度水平。举例而言且非限制,某些以下部分提供针对组合TRAIL、CRP和Mac-2BP的血清或血浆水平的测量的多决定因素标记(称为"TCM-标记")获得的结果。产生精确诊断的其他多决定因素标记的实例包括但不限于(TRAIL和CRP)、(TRAIL、CRP和年龄)、(TRAIL、CRP和SAA)、(TRAIL、CRP、SAA和IL1RA)和(TRAIL、CRP、SAA和IP10)。举例而言,我们使用上述患者组群在一系列分析中评价TCM-标记的诊断精确度,从参照标准的置信度最高的组群开始。第一分析所用的组群包括其诊断(细菌、病毒)明确(即'明确[细菌、病毒]'组群)的患者。该组群包括170位患者。第二和第三分析中所用的组群包括全体一致('共识[细菌、病毒]'组群;n=343)、或由专家组的绝大多数('绝大多数[细菌、病毒]'组群;n=450)诊断为细菌或病毒患者的患者。第四分析评价TCM-标记在诊断(病毒或混合)由我们的专家组的绝大多数('绝大多数[病毒、混合]'组群;n=276)指定的患者的组群中区分病毒与混合感染的能力。此系列中的最后分析评价TCM-标记技术是否可能甚至在加回研究初始排除但由专家组(全体一致或绝大多数)做出病毒或细菌诊断的患者之后,进行精确诊断。这些分析所用的组群包括368位患者(专家组全体一致诊断)和504位患者(绝大多数诊断)。
在诊断明确的患者中辨别细菌与病毒感染的精确度
通过检验TCM-标记在具有明确诊断的细菌和病毒患者('明确[细菌、病毒]'组群中的精确度来开始;细节参见先前部分)。简而言之,如果他们由专家组全体一致诊断并且具有菌血症(阳性血液培养物)、细菌脑膜炎、肾盂肾炎、UTI、败血症性休克、蜂窝织炎、或扁桃体周围脓肿,则患者指定为细菌诊断。如果他们由专家组全体一致诊断并且具有用于强制性病毒的阳性微生物测试,则患者指定为病毒诊断。此分析的组群包括170位患者(57位细菌和113位病毒)。
我们测试使用弃10%法交叉验证方案的TCM-标记的精确度并且发现高诊断精确度(AUC为0.96)。精确度的不同诊断测量的细节和其95%CIs示于图25和表5中。
使用由2/3的患者组成的训练组和由剩余1/3患者组成的独立测试组,评估TCM-标记的精确度。该评估产生与使用交叉验证方案获得的那些类似的结果。
在诊断由专家的共识确定的患者中辨别细菌与病毒感染的精确度
接着,我们在由专家组('共识[细菌、病毒]'组群)全体一致诊断为细菌(153位患者)或病毒(190位患者)的343位患者的组群中检验TCM-标记的精确度。弃10%法交叉验证方案产生十分精确诊断,AUC为0.97。诊断精确度的另外测量和其95%CIs示于图26和表6。使用训练组(2/3的患者)和独立测试组(1/3的患者)评价TCM-标记的性能产生类似结果。
由于儿童和成人中发现的病原体清单常常不同,我们通过年龄将患者分组并且重复所述分析。我们发现TCM-标记性能在不同年龄组内维持稳定(图26)。
在诊断由专家组的绝大多数确定的患者中辨别细菌与病毒感染的精确度
接着,我们在由专家组的绝大多数诊断为细菌或病毒的患者的组群('绝大多数[细菌、病毒]'组群)中检验TCM-标记的精确度。所述组群由450位患者组成(208位细菌,242位病毒)。弃10%法交叉验证方案产生诊断,AUC为0.95。诊断精确度的另外测量和其95%CIs示于图27和表7。使用训练组(2/3的患者)和独立测试组(1/3的患者)评价TCM-标记的性能产生类似结果。基于年龄分组分析也产生可比较的结果(图27和表7)。
该组群与'共识(细菌、病毒)'组群相比的性能轻微降低(AUC为0.95与0.97)可能部分归因于在后一个组群中患者诊断的更高置信度。因此,用于'绝大多数(细菌、病毒)'组群的精确度测量可能代表对TCM-标记的真实精确度的较低界定。因此,为产生TCM-标记性能的保守估计,从此处起,除非另外提及,否则我们记录'绝大多数'组群。
辨别混合共感染与纯病毒感染的精确度
总共34位患者(具有传染病的所有患者的~6%)由组中专家的绝大多数诊断为具有混合共感染(即背景具有病毒共感染的细菌感染)。临床上,重要的是辨别混合共感染和纯病毒感染,因为仅前者应该用抗生素治疗。混合共感染的正确诊断具有挑战,因为宿主对细菌和病毒感染的双重响应可能改变免疫-标记。
我们使用弃10%法交叉验证方案,在诊断由组中专家的绝大多数('绝大多数[病毒、混合]'组群)的确定为病毒或混合的患者的组群中测试TCM-标记辨别混合共感染和纯病毒感染的能力。在儿童、成人和所有年龄中诊断精确度以AUC计分别为0.97、0.93和0.95,证明TCM-标记成功辨别这两个感染类型(图28,表8)的能力。
当测试包括研究初始排除的患者的组群时,诊断精确度保持稳健。
TCM-标记任选地设计为遵守纳入/排除标准的预定义列表诊断具有的急性细菌/病毒感染的患者。
我们通过分别将排除患者(诊断由全体一致或通过专家组的绝大多数确定)加入'共识(细菌、病毒)'组群和'绝大多数(细菌、病毒)'组群,并且比较添加之前和之后的诊断精确度,使用弃10%法交叉验证方案,测试TCM-标记诊断排除患者(如发烧低于37.5℃的患者)的能力(表9和图29)。具有(n=368)和不具有(n=343)排除患者的'共识(细菌、病毒)'组群中的精确度保持相同(两个情况下AUC为0.97)。在具有(n=450)和不具有(n=504)排除患者的情况下'绝大多数(细菌、病毒)'组群中的精确度也类似(AUC为0.95和0.94)。因此,甚至在将排除患者加入分析之后,TCM-标记性能仍保持稳健。
通过排除具有边际决定因素-标记的患者,诊断精确度的水平可增加。
通过排除具有边际决定因素标记的患者(即,产生中间得分的决定因素-标记,例如既非病毒也非细菌行为的特性的得分),可进一步提高诊断精确度的水平(例如参见表14-15和图39-40)。
实施例9决定因素标记的诊断精确度在不同患者亚组中维持稳健。
询问决定因素标记的诊断精确度在不同患者亚组和临床设置中是否维持稳健。为此,根据各式各样患者特性,包括症状发作时间、特定临床综合征、最大温度、病原体子家族、并存病和慢性疾病药物的治疗,将患者分组,并且发现诊断精确度维持稳健。举例而言且非限制,以下部分中,TCM-标记诊断精确度在不同患者亚组中十分稳健。观察到在包括但不限于(TRAIL和CRP)、(TRAIL和CRP和SAA)、(TRAIL和CRP和年龄)、(TRAIL和CRP和SAA和年龄)、(TRAIL、CRP、SAA、Mac-2BP)、(TRAIL和CRP和SAA和IL1RA)以及(TRAIL和CRP和SAA和IP-10)的其他决定因素标记中的精确度的稳健水平。这些结果还显示出在真实临床设置的背景下本发明的一些实施方式的诊断效用和其源于患者异质性的内在复杂性。
基于症状发作时间的分组
参与感染的免疫响应的分子的水平通常表现瞬态行为(如不同抗体同种型,例如IgM和IgG显示对感染发作的不同瞬态响应)。不意外地,发现本研究中测试的许多分析物表现在症状初现之后的各种瞬间动态。决定因素标记旨在通过考虑多个具有不同瞬间动态(用于彼此补偿)的分析物的水平,保持对症状发作时间(至多10天)不变的精确度水平。
为检验作为症状发作时间的函数的决定因素标记的性能,我们将'绝大多数(细菌、病毒)'组群中的所有患者根据症状初现时间(0-2、2-4、4-6和6-10天)分组并且测试各亚组中的决定因素标记性能。精确度在评估亚组中维持大致相同(例如,TCM-标记的性能示于图30和表10A),指示该性能一般在症状发作之后首个10天是稳健的。临床综合征分组
我们检验在不同生理系统和临床综合征中发生的感染中的决定因素标记的精确度(表10B)。TCM-标记证明在呼吸性和全身感染中的极高精确度(AUC分别为0.95和0.96)以及胃肠感染中略低的精确度(AUC为0.89)。TCM-标记性能在包括无源发烧、社区获得性肺炎和急性扁桃体炎的不同临床综合征中也是稳健的(AUC分别为0.96、0.94和0.94)。其他小组(包括测量CRP和TRAIL的小组)显示类似的稳健结果。
最大温度分组
诊断测定的精确度可能取决于疾病严重程度。传染病的严重程度可使用感染期间测量的最大核心体温来评价。我们通过将'绝大多数(细菌、病毒)'组群中患者基于他们的最大温度分组并且测试在各组中的性能,检验决定因素标记性能是否取决于患者发烧。发现高烧(>39℃)患者中的诊断精确度与低至中烧(38–39℃)患者中观察到的类似(例如,TCM-标记的AUC分别为0.956和0.952)(图31)。
因为儿童发烧往往比成人更高,我们将组群分为儿童(≤18岁)和成人(>18岁)并且重复该分析。再者,对高烧与低至中烧的患者未观察到决定因素标记性能中有显著差异(图30)。
病原体子家族分组
从编入当前研究的患者中分离总计44种不同病原体菌株。评价决定因素标记在不同菌株上的性能。为此,具有阳性分离的'绝大多数(细菌、病毒、混合)'组群的患者根据分离病原体分组。针对所有病毒患者测试各细菌菌株,并且针对所有细菌患者测试各病毒菌株(例如参见表10C)。在各式各样病原体内观察到平均AUC为0.94的稳健结果。
精确诊断腺病毒-诊断特别有挑战的病毒亚组
腺病毒为诊断特别有挑战的病毒的亚组,因为它们诱导常常极似细菌感染导的那些的临床症状和实验室结果。因此,腺病毒感染被当作细菌感染来治疗(Kunze、Beier和Groeger,2010)。此外,因为其在儿童中的广泛流行性(儿童中呼吸性和胃肠感染的5-15%)(Kunze、Beier和Groeger 2010),该亚组特别重要。我们在具有任何细菌感染的儿童(年龄≤18年)与具有病毒感染和腺病毒的阳性分离的儿童中(分别79位和27位儿童),测试决定因素标记精确度。与标准临床和实验室参数相比,决定因素标记实现显著更高精确度水平(例如参见表10D)。
精确诊断非典型细菌
非典型细菌感染常常导致类似病毒感染症状的临床症状,因此构成临床诊断挑战(Principi和Esposito 2001)。非典型细菌感染的患者可能得益于大环内酯类抗生素;然而,他们常常未被治疗(Marc等人,2000)。另外,具有病毒感染的患者常常疑似具有非典型细菌,导致错误施用抗生素(Hersh等人,2011)。我们在感染非典型细菌(16种肺炎支原体,4种肺炎衣原体,2种嗜肺性军团病杆菌和1种康氏立克次氏体)的23位患者中与242位病毒患者中,测试决定因素标记精确度。使用标准临床和实验室参数进行相同测试。结果归纳于表10E。例如,TCM-标记的性能显著好于任何临床和实验室参数的性能(当将任何临床或实验室参数AUC与TCM-标记的AUC比较时,P<0.001)。
基于并存病的分组
在真实临床实践中,患者常常具有背景并存病,其可能潜在地影响由决定因素标记测量的分析物的水平。因此检验某些并存病是否影响决定因素标记的性能。为此,我们分析患者组群中最普遍的并存病:高血压、血脂过多、肥胖症、哮喘、动脉硬化症相关疾病(如缺血性心脏病、心肌梗塞和脑血管意外)、糖尿病2和炎性疾病(如类风湿性关节炎、溃疡性结肠炎、贝赛特氏病、克隆氏病、糖尿病1、纤维肌痛和家族性地中海热[FMF])。对于每个这些并存病,我们检验构建某些决定因素标记的分析物的浓度并且寻找具有和不具有所述并存病的患者之间分析物水平的差异。具体而言,首先通过疾病类型(细菌或混合、病毒和非传染病)划分患者。对于每个所述并存病,根据他们是(目标组)否(背景组)患有所述病,进一步划分患者。因为一些并存病是年龄依赖性的,我们通过计算目标组中的特征性年龄间隔(平均±2xSD)来控制目标组和背景组中的年龄差异,并且排除目标和背景组中不在此间隔内的任何患者。接着,我们使用WS P-值(表10F),测试构建某些决定因素标记的分析物的浓度是否在目标组与背景组中不同。任何评估的并存病与标记分析物的水平的显著改变不相关(目标组与背景组),指示构建决定因素标记的分析物大体上对评估的并存病不敏感。
通过慢性药物服法分组
在真实临床实践中,患者常常处于各种慢性药物服法下,所述慢性药物服法可能潜在地影响决定因素标记中包括的分析物的水平。因此,通过进行与并存病相同的分析,检验特异性药物是否影响决定因素标记的性能(参见上文)。检验以下药物:斯达汀(辛伐他汀、普伐他汀、立普妥和可定)、糖尿病相关药物(胰岛素、二甲双胍、优降糖、瑞格列奈、西他列汀和阿卡波糖)、β-阻滞剂(阿替洛尔、卡维地洛、美托洛尔、Normalol、普萘洛尔和比索洛尔)、阿司匹林、抗酸剂(奥美拉唑、雷尼替丁和法莫替丁)、吸入性皮质类固醇(布德松、沙美特罗、结合福莫特罗的布德松以及氢化可的松)、支气管扩张剂(异丙托铵、沙丁胺醇和孟鲁斯特)和利尿剂(速尿、Disothiazide和螺甾内酯)。表10G示出WS P值,用于比较在处于具体药物服法下与未处于具体药物服法下的患者中测量的分析物浓度。评估的药物组与决定因素标记分析物的水平的显著改变不相关。
基于败血病的分组
败血病为潜在致命医疗状况,特征为全身炎性状态(称为全身性炎性响应综合征[SIRS])和存在已知或疑似感染(Levy等人,2003)。具有细菌败血病的患者得益于早期抗生素疗法;延误或误诊可能有严重或甚至致命的后果(Bone等人,1992;Rivers等人,2001)。我们专注于SIRS的界定很明确的成人患者并且检验决定因素标记辨别具有细菌败血病的成人患者和具有病毒感染的成人患者以及具有细菌败血病的成人患者和具有病毒败血病的成人患者的能力。
根据美国胸内科医师学会和美国危重病医学学会界定具有细菌败血病的成人患者(Bone等人,1992)。通过存在至少两种以下发现来界定SIRS:(i)体温<36℃或>38℃,(ii)心率>90次/分钟,(iii)呼吸率>20次/分钟,或在血气上,PaCO2<32mm Hg(4.3kPa),和(iv)WBC<4,000个细胞/mm3或>12,000个细胞/mm3或>10%带型。发现决定因素标记实现极高的辨别具有细菌败血病的成人患者和具有病毒感染的成人患者的精确度水平(例如,TCM-标记对于'共识[成人细菌败血病、成人病毒]'和'绝大多数[成人细菌败血病、成人病毒]'组群分别显示0.98和0.96的AUC,表10H)。对辨别具有细菌败血病的患者和具有病毒败血病的患者观察到类似结果(对于'共识[成人细菌败血病、成人病毒败血病]'和'绝大多数[成人细菌败血病、成人病毒败血病]'组群,AUC分别为0.97和0.95)。这些结果显示出决定因素标记区分具有细菌败血病的成人患者与具有病毒感染的成人患者的效用。
实施例10:决定因素标记性能在不同临床部位和设置中保持稳健
基于临床设置的分组
在以下临床设置中比较决定因素标记性能:急症设置(即儿科ED[PED]和ED)和非急症设置(即儿科和内科)(表11)。急症和非急症设置中的性能类似(例如,TCM-标记的AUC分别为0.95与0.96in the在'共识[细菌、病毒]'组群中,在'绝大多数[细菌、病毒、混合]'组群,TCM-标记的AUC分别为0.92与0.91)。
另外,我们在编入两个不同医院的患者中比较决定因素标记性能并且在各地点上发现性能类似(表12)。
实施例11:作为年龄函数的决定因素水平改变
我们检验作为年龄函数的病毒和细菌患者的决定因素水平。发现许多决定因素的水平是年龄依赖性的。例如,病毒诱导的决定因素RSAD2、MX1、TRAIL和Mac-2BP的水平在年轻儿童中显示相对高水平,然后随年龄逐渐降低。相比之下,CHI3L1的决定因素水平随年龄增加。图32示出不同感染中决定因素水平作为年龄的函数的实例。该发现可用于通过进行年龄依赖性归一化或分组(即年龄依赖性归一化或分组)来改善区分不同感染类型的决定因素的精确度。例如,本领域技术人员可生成拟合作为年龄的函数的各决定因素的群体平均水平的函数并且使用其来归一化不同年龄的个体对象水平的决定因素。改善诊断精确度的另一方法为根据年龄将对象分组并且独立地确定各年龄组的阈值或指数值。例如,当仅在年轻儿童(年龄0至5岁)上测试决定因素精确度时,以下决定因素改善其精确度:TRAIL(0.9至0.93的AUC)、RSAD2(0.81至0.83的AUC)和Mac-2BP(0.78至0.85的AUC)。
实施例12:性能对为天然菌群的一部分的细菌和病毒的存在是稳健的
许多致病病原体也是天然菌群的一部分,并且很多情况下在健康个体和在具有非传染病的患者中发现(Vaneechoutte等人,1990;Regev-Yochay等人,2004;Shaikh、Leonard和Martin 2010)。这些非病原性细菌和病毒(称为定殖菌)构成相当多诊断挑战,因为其存在不必然暗示致病性。换句话讲,仅从患者中分离这些细菌/病毒菌株并不必然表明它们为致病剂;因此,恰当的治疗可能仍不清楚。
我们研究决定因素标记性能是否受定植影响,专注于患者组群中的最普遍细菌菌株(肺炎链球菌(SP)和流感嗜血杆菌(HI))和病毒菌株鼻病毒A/B/C。为检测这些菌株,将多重PCR用于'绝大多数(细菌、病毒、混合、非传染性)'组群的鼻咽洗涤液。首先,检验这些菌株在具有非传染病的患者中的流行性(n=46)(图33.A)。根据先前研究,(约5倍)in儿童中(≤18岁)的分离率比成人中(>18岁)更高(Regev-Yochay等人,2012)。接着,检验这些菌株在由家组的绝大多数确定具有细菌(n=208)、病毒(n=242)和混合(n=34)感染的患者中的流行性(图33.B和表13)。细菌菌株SP和HI在病毒患者中高度流行(分别51%和36%)并且在4%的细菌患者中检测到鼻病毒A/B/C。因此,不能仅基于具体菌株的分离推导出细菌或病毒病因学。
为测试决定因素标记性能是否受SP定植的影响,将患者基于SP定植分组并且独立地检验决定因素标记(病毒与细菌)在各组中的精确度。例如,发现TCM-标记在两个组中性能类似(在具有和不具有SP定植的组中,AUC分别为0.95±0.03与0.94±0.04)。使用相同方法来评估HI和鼻病毒A/B/C定植的影响并且结果是可相比的(图34)。因此,结果表明决定因素标记性能对由SP、HI、或鼻病毒A/B/C定植患者是稳健的。
实施例13:Trail为诊断病毒感染的有效多肽
在其中资源有限的设置中(如家庭医生办公室),可能有利的是甚至以降低诊断精确度为代价具有迅速、容易进行的测定。在此部分,我们探究TRAIL作为单个多肽检测病毒感染的精确度。虽然TRAIL的精确度低于一些决定因素标记,但其需要单个多肽的测量并且因此易于在各式各样机器(包括广泛分布于照护点设置处的侧流免疫测定分析器)中测量。
使用'共识(细菌、病毒)'组群(n=343,153位细菌和190位病毒)来检验TRAIL的诊断效用并且发现TRAIL浓度在病毒患者中显著高于细菌患者中(t测试P<10-23)(图35)并且AUC为0.9(图36)。
TRAIL基测定的一种应用为排除细菌感染(如使用产生97%的灵敏度和55%的特异性的截留值;图36)。在其中细菌和病毒感染之间比率为~1:4的门诊病人设置中,这将转化为99%的NPV和35%的PPV。因此,在阴性测试结果的情况下可保留抗生素,而阳性测试结果将需要另外处理来有利于知情治疗决定。
排除具有边际TRAIL信号(calls)的患者(即截留值附近的患者)可进一步增加精确度的水平。诊断患者的数量和测定的精确度之间的平衡示于图37。
有趣地,当在不同患者亚组上比较TRAIL水平时,发现其浓度在病毒患者中最高(中间值121±132pg/ml),在健康和非传染性患者中较低(中间值88±41pg/ml),并且在细菌患者中最低(52±65pg/ml)。这些结果表明不仅病毒感染上调TRAIL水平,而且细菌感染下调TRAIL水平。细菌感染下调TRAIL的该发现进一步受受我们观察结果支持,即,在病毒和细菌共感染中(即混合感染),TRAIL水平很低(可能由于细菌响应占主导)。总而言之,除了病毒感染中TRAIL的上调,细菌感染中其下调有助于其精确辨别病毒和细菌感染的能力。这一点在图41中进一步示出。
值得注意的是,TRAIL动态与疾病阶段相关(图41)。因此,TRAIL不仅可用于诊断感染,而且可用于鉴定疾病阶段和预后。
表
在下表中,缩写mono、lymp、gran、mean和total用于分别表示在单核细胞、淋巴细胞、粒细胞上的多肽-决定因素以及平均和全体白细胞测量。缩写intra和membrane用于表示分别在细胞内和膜部分中测量的蛋白。
表1具有不区分细菌与病毒感染对象的免疫学作用的多肽-决定因素的实例。
阳性和阴性分别对应于细菌和病毒感染患者。阳性(P)和阴性(N)分别对应于细菌和病毒感染患者。TA、Sen、Spe和log2(R)分别对应于总精确灵敏度、特异性和阳性和阴性类别的中间值之间log2比率。
表2A区分细菌与病毒感染对象的决定因素
阳性(P)和阴性(N)分别对应于细菌和病毒感染患者。
TA、Sen、Spe和log2(R)分别对应于总精确灵敏度、特异性和阳性和阴性类别的中间值之间log2比率。
*在参照标准由专家共识确定的患者上获得的结果
表2B区分混合和病毒感染对象的决定因素
阳性(P)和阴性(N)分别对应于混合(即细菌和病毒共感染)和病毒感染患者。TA、Sen、Spe和log2(R)分别对应于总精确灵敏度、特异性和阳性和阴性类别的中间值之间log2比率。
表2C区分混合和细菌感染对象的决定因素
阳性(P)和阴性(N)分别对应于混合(即细菌和病毒共感染)和细菌感染患者。TA、Sen、Spe和log2(R)分别对应于总精确灵敏度、特异性和阳性和阴性类别的中间值之间log2比率。
表2D区分细菌或混合与病毒感染对象的决定因素。
阳性(P)和阴性(N)分别对应于细菌或混合和病毒感染患者。TA、Sen、Spe和log2(R)分别对应于总精确灵敏度、特异性和阳性和阴性类别的中间值之间log2比率。
表2E区分细菌或混合与病毒感染对象的决定因素对。
阳性(P)和阴性(N)分别对应于细菌或混合和病毒感染患者。TA、Sen、Spe和log2(R)分别对应于总精确灵敏度、特异性和阳性和阴性类别的中间值之间log2比率。
决定因素#1 | 决定因素#2 | AUC | MCC | Sen% | Spe% | PPV% | NPV% | P | N |
CRP,可溶 | Mac-2BP,可溶 | 0.91 | 0.66 | 83 | 85 | 83 | 84 | 243 | 268 |
CRP,可溶 | SAA,可溶 | 0.87 | 0.64 | 78 | 83 | 80 | 81 | 244 | 274 |
CRP,可溶 | TRAIL(ELISA测量),可溶 | 0.91 | 0.66 | 84 | 82 | 81 | 85 | 245 | 273 |
Mac-2BP,可溶 | SAA,可溶 | 0.85 | 0.54 | 76 | 80 | 77 | 78 | 243 | 268 |
Mac-2BP,可溶 | TRAIL(ELISA测量),可溶 | 0.87 | 0.54 | 78 | 80 | 78 | 80 | 243 | 267 |
SAA,可溶 | TRAIL(ELISA测量),可溶 | 0.88 | 0.61 | 82 | 80 | 78 | 83 | 244 | 273 |
表2F区分细菌或混合与病毒感染对象的决定因素三联组。
阳性(P)和阴性(N)分别对应于细菌或混合和病毒感染患者。TA、Sen、Spe和log2(R)分别对应于总精确灵敏度、特异性和阳性和阴性类别的中间值之间log2比率。
表2G区分具有传染病与非-传染病的对象的决定因素
阳性(P)和阴性(N)分别对应于具有传染性和非传染病的患者。TA、Sen、Spe和log2(R)分别对应于总精确灵敏度、特异性和阳性和阴性类别的中间值之间log2比率。
表2H A.区分具有传染病的对象与健康对象的决定因素;B.区分具有传染病的对象与健康对象的决定因素对;C.区分具有传染病的对象与健康对象的决定因素三联组
阳性(P)和阴性(N)分别对应于具有传染病的患者和健康对象。TA、Sen、Spe和log2(R)分别对应于总精确灵敏度、特异性和阳性和阴性类别的中间值之间log2比率。
A.
B.
决定因素#1 | 决定因素#2 | AUC | MCC | Sen% | Spe% | PPV% | NPV% | P | N |
CRP | IL1ra | 0.863 | 0.339 | 80 | 86 | 99 | 27 | 265 | 22 |
CRP | IP10 | 0.911 | 0.391 | 82 | 86 | 99 | 29 | 265 | 22 |
CRP | SAA | 0.946 | 0.43 | 86 | 95 | 100 | 37 | 265 | 22 |
IL1ra | IP10 | 0.879 | 0.348 | 83 | 86 | 99 | 29 | 265 | 22 |
IL1ra | SAA | 0.93 | 0.484 | 92 | 95 | 100 | 49 | 265 | 22 |
IP10 | SAA | 0.943 | 0.517 | 89 | 95 | 100 | 43 | 265 | 22 |
C.
决定因素#1 | 决定因素#2 | 决定因素#3 | AUC | MCC | Sen% | Spe% | PPV% | NPV% | P | N |
CRP | IL1ra | IP10 | 0.912 | 0.401 | 84 | 86 | 99 | 31 | 265 | 22 |
CRP | IL1ra | SAA | 0.944 | 0.498 | 91 | 95 | 100 | 47 | 265 | 22 |
CRP | IP10 | SAA | 0.953 | 0.527 | 91 | 95 | 100 | 46 | 265 | 22 |
IL1ra | IP10 | SAA | 0.942 | 0.517 | 92 | 91 | 99 | 49 | 265 | 22 |
表3A区分细菌与病毒感染对象的决定因素对阳性和阴性分别对应于细菌和病毒感染患者。
*在参照标准由专家共识确定的患者上获得的结果
表3B区分细菌与病毒感染对象的决定因素三联组
*在参照标准由专家共识确定的患者上获得的结果
表3C区分混合与病毒感染对象的决定因素对
*阳性和阴性对应于混合和病毒感染患者。
表3D区分混合与病毒感染对象的决定因素三联组
阳性和阴性分别对应于混合和病毒感染患者。
表3E区分传染病与非传染病患者的决定因素对
阳性(P)和阴性(N)分别对应于具有传染性和非传染病的患者。
表3F区分传染病与非传染病患者的决定因素三联组
阳性(P)和阴性(N)分别对应于具有传染性和非传染病的患者。
表3G决定因素四联组诊断精确度
混合与病毒感染患者(决定因素四联组)
决定因素#1 | 决定因素#2 | 决定因素#3 | 决定因素#4 | AUC | Sen% | Spe% |
CRP | Mac-2BP,血浆 | TRAIL,血浆 | sVEGFR2,血浆 | 0.949 | 94 | 89 |
CRP | Mac-2BP,血浆 | SAA,血浆 | sVEGFR2,血浆 | 0.909 | 100 | 82 |
Mac-2BP,血浆 | SAA,血浆 | TRAIL,血浆 | sVEGFR2,血浆 | 0.864 | 100 | 73 |
CRP | SAA,血浆 | TRAIL,血浆 | sVEGFR2,血浆 | 0.727 | 100 | 55 |
CRP | Mac-2BP,血浆 | SAA,血浆 | TRAIL,血浆 | 0.63 | 67 | 89 |
细菌或混合与病毒感染患者(决定因素四联组)
细菌与病毒感染患者(决定因素四联组)
*在参照标准由专家共识确定的患者上获得的结果
表4划分年龄组的细菌和病毒患者的基线特性。A,儿科患者;B,成人患者。
A.儿科患者
B.成人患者
表5:在诊断明确的患者中('明确[细菌、病毒]'组群)诊断细菌与病毒感染的TCM-标记精确度。
表6:A.'共识[细菌、病毒]'组群的年龄分布;B.划分年龄组的该组群中的诊断细菌与病毒感染的TCM-标记精确度。
A.
*在相同年龄组中的患者当中
B.
表7:A.'绝大多数[细菌、病毒]'组群的年龄分布;B.划分年龄组的该组群中的诊断细菌与病毒感染的TCM-标记精确度。
A.
*相同年龄组中患者的
B.
表8:'绝大多数[病毒、混合]'组群的年龄分布。
*相同年龄组中患者的
表9:用于研究TCM-标记在初始排除的患者中性能的患者组群。
表10A:'绝大多数(细菌、病毒)'组群中的症状发作时间的分布。
*在相同亚组中的患者当中
表10B:在生理系统和临床综合征中TCM-标记的精确度(使用'绝大多数[细菌、病毒]'组群进行分析并且因此记录的精确度水平为实际精确度的保守估计)。
表10C:TCM-标记在不同病原体上的精确度(使用'绝大多数[细菌、病毒、混合]'组群进行分析)。
表10D:比较用于鉴定细菌与腺病毒感染的TCM-标记和标准实验室参数。
表10E:比较用于鉴定非典型细菌的TCM-标记和标准实验室参数。
表10F:决定因素对各种并存病的灵敏度的评估
表10G:决定因素对各种类型慢性药物服法的灵敏度的评估。
表10H:在成人患者中诊断细菌败血病与病毒感染的TCM-标记精确度。
表11:TCM-标记对各种类型临床设置的灵敏度的评估。
*内科'共识(细菌、病毒)'仅具有少量病毒患者(n=6)并且因此排除于此分析。
表12:TCM-标记对临床地点的灵敏度
表13:在划分年龄组的具有传染病的患者中选择细菌和病毒菌株的流行性('绝大多数[细菌、病毒、混合]'组群)。
表14:当用于具有边际响应的过滤患者的截留值变得更严格时,TCM-标记诊断效用增加。使用'共识(细菌、病毒)'组群计算结果。
表15:当用于具有边际响应的过滤患者的截留值变得更严格时,TCM-标记诊断效用增加。使用'绝大多数(细菌、病毒)'组群计算结果。
参考文献
A.Putto,O.Meurman,and O.Ruuskanen.1986.“C-reactive Protein in theDifferentiation of Adenoviral,Epstein-Barr Viral and StreptococcalTonsillitis in Children.”European Journal of Pediatrics 145(3).http://www.springerlink.com/content/n1526441457905pl/.
Akira,S.,and S.Uematsu,et al.2006.“Pathogen Recognition and InnateImmunity.”Cell 124(4):783–801.
Appenzeller C,Ammann RA,Duppenthaler A,Gorgievski-Hrisoho M,and AebiC.2002.“Serum C-reactive Protein in Children with Adenovirus Infection.”SwissMed Wkly 132.
Arias,C.A.,and B.E.Murray.2009.“Antibiotic-resistant Bugs in the 21stCentury--a Clinical Super-challenge.”The New England Journal of Medicine 360(5):439–443.
Taner,Ahmet SükrüAras,Selim Aydemir,CanYücelHulusi Atmaca,and Ali Borazan.2004.“Serum Levels of Tumor NecrosisFactor-alpha,Interleukin-6and Interleukin-8Are Not Increased in DyspepticPatients with Helicobacter Pylori-associated Gastritis.”Mediators ofInflammation 13(1)(February):25–28.doi:10.1080/09629350410001664789.
Bone,R C,R A Balk,F B Cerra,R P Dellinger,A M Fein,W A Knaus,R MSchein,and W J Sibbald.1992.“Definitions for Sepsis and Organ Failure andGuidelines for the Use of Innovative Therapies in Sepsis.The ACCP/SCCMConsensus Conference Committee.American College of Chest Physicians/Societyof Critical Care Medicine.”Chest 101(6)(June):1644–1655.
Bossuyt,Patrick M,Johannes B Reitsma,David E Bruns,Constantine AGatsonis,Paul P Glasziou,Les M Irwig,David Moher,Drummond Rennie,Henrica C.WDe Vet,and Jeroen G Lijmer.2003.“The STARD Statement for Reporting Studies ofDiagnostic Accuracy:Explanation and Elaboration.”Annals of Internal Medicine138(1)(January 7):W1–W12.
Brian Clyne,and Jonathan S Olshaker.1999.“The C-reactive Protein.”TheJournal of Emergency Medicine 17(6):1019–1025.doi:10.1016/S0736-4679(99)00135-3.
Brunkhorst,F.M.,and B.Al-Nawas,et al.2002.“Procalcitonin,C-reactiveProtein and APACHE II Score for Risk Evaluation in Patients with SeverePneumonia.”Clinical Microbiology and Infection:The Official Publication ofthe European Society of Clinical Microbiology and Infectious Diseases 8(2):93–100.
Cadieux,G.,and R.Tamblyn,et al.2007.“Predictors of InappropriateAntibiotic Prescribing Among Primary Care Physicians.”CMAJ:Canadian MedicalAssociation Journal=Journal De l’Association Medicale Canadienne 177(8):877–883.
Cao,Wenjun,Bill Sun,Mark A Feitelson,Tong Wu,Ran Tur-Kaspa,and QishiFan.2009.“Hepatitis C Virus Targets Over-expression of Arginase I inHepatocarcinogenesis.”International Journal of Cancer.Journal InternationalDu Cancer 124(12)(June 15):2886–2892.doi:10.1002/ijc.24265.
“CDC-About Antimicrobial Resistance.”2011.http://www.cdc.gov/drugresistance/about.html.
“CDC-Get Smart:Fast Facts About Antibiotic Resistance.”2011.
http://www.cdc.gov/getsmart/antibiotic-use/fast-facts.html.
CDC.gov.2012.“NAMCS/NHAMCS-NCHS Reports Using Ambulatory Health CareData.”Accessed June 6.http://www.cdc.gov/nchs/ahcd/ahcd_reports.htm.
Christensen,R D,P P Bradley,and G Rothstein.1981.“The Leukocyte LeftShift in Clinical and Experimental Neonatal Sepsis.”The Journal of Pediatrics98(1)(January):101–105.
Cillóniz,Catia,Santiago Ewig,Eva Polverino,Maria Angeles Marcos,Cristina Esquinas,Albert Gabarrús,Josep Mensa,and Antoni Torres.2011.“Microbial Aetiology of Community-Acquired Pneumonia and Its Relation toSeverity.”Thorax 66(4)(April 1):340–346.doi:10.1136/thx.2010.143982.
Clements,Helena,Terence Stephenson,Vanessa Gabriel,Timothy Harrison,Michael Millar,Alan Smyth,William Tong,and Chris J Linton.2000.“RationalisedPrescribing for Community Acquired Pneumonia:A Closed Loop Audit.”Archives ofDisease in Childhood 83(4)(October 1):320–324.doi:10.1136/adc.83.4.320.
Craig,Jonathan C,Gabrielle J Williams,Mike Jones,Miriam Codarini,Petra Macaskill,Andrew Hayen,Les Irwig,Dominic A Fitzgerald,David Isaacs,andMary McCaskill.2010.“The Accuracy of Clinical Symptoms and Signs for theDiagnosis of Serious Bacterial Infection in Young Febrile Children:Prospective Cohort Study of 15 781 Febrile Illnesses.”
BMJ:British Medical Journal 340.doi:10.1136/bmj.c1594.
Davey,P.,and E.Brown,et al.2006.“Systematic Review of AntimicrobialDrug Prescribing in Hospitals.”Emerging Infectious Diseases 12(2):211–216.
Fjaertoft,G.,and T.Foucard,et al.2005.“Human Neutrophil Lipocalin(HNL)as a Diagnostic Tool in Children with Acute Infections:a Study of theKinetics.”Acta Paediatrica(Oslo,Norway:1992)94(6):661–666.
Gobert,Alain P,Yulan Cheng,Jian-Ying Wang,Jean-Luc Boucher,RamaswamyK Iyer,Stephen D Cederbaum,Robert A Casero Jr,Jamie C Newton,and Keith TWilson.2002.“Helicobacter Pylori Induces Macrophage Apoptosis by Activationof Arginase II.”Journal of Immunology(Baltimore,Md.:1950)168(9)(May 1):4692–4700.
Gong,Jh,H Sprenger,F Hinder,A Bender,A Schmidt,S Horch,M Nain,and DGemsa.1991.“Influenza A Virus Infection of Macrophages.Enhanced TumorNecrosis Factor-alpha (TNF-alpha)Gene Expression and Lipopolysaccharide-Triggered TNF-alpha Release.”The Journal of Immunology 147(10)(November 15):3507–3513.
Grassmé,Heike,Susanne Kirschnek,Joachim Riethmueller,Andrea Riehle,Gabriele von Kürthy,Florian Lang,Michael Weller,and Erich Gulbins.2000.“CD95/CD95 Ligand Interactions on Epithelial Cells in Host Defense to PseudomonasAeruginosa.”Science 290(5491)(October 20):527–530.doi:10.1126/science.290.5491.527.
Hatherill,M.,and S.M.Tibby,et al.1999.“Diagnostic Markers ofInfection:Comparison of Procalcitonin with C Reactive Protein and LeucocyteCount.”Archives of Disease in Childhood 81(5):417–421.
Nevin,Ayper Somer,Selim Badur,Emin Unüvar,MeralEnsar Yekeler,Nuran Salman,Melike Keser,Hüsemand RenginSiraneci.2011.“Viral Etiology in Hospitalized Children with Acute LowerRespiratory Tract Infection.”The Turkish Journal of Pediatrics 53(5)(October):508–516.
Hersh,Adam L,Daniel J Shapiro,Andrew T Pavia,and Samir S Shah.2011.“Antibiotic Prescribing in Ambulatory Pediatrics in the United States.”Pediatrics 128(6)(December):1053–1061.doi:10.1542/peds.2011-1337.
Houck,P.M.,and D.W.Bratzler,et al.2002.“Pneumonia Treatment Processand Quality.”Archives of Internal Medicine 162(7):843–844.
Johansson,Niclas,Mats Kalin,Annika Tiveljung-Lindell,Christian GGiske,and Jonas Hedlund.2010.“Etiology of Community-acquired Pneumonia:Increased Microbiological Yield with New Diagnostic Methods.”ClinicalInfectious Diseases:An Official Publication of the Infectious DiseasesSociety of America 50(2)(January 15):202–209.doi:10.1086/648678.
Johnstone,Jennie,Sumit R Majumdar,Julie D Fox,and Thomas JMarrie.2008.“Viral Infection in Adults Hospitalized With Community-AcquiredPneumonia Prevalence,Pathogens,and Presentation.”Chest 134(6)(December 1):1141–1148.doi:10.1378/chest.08-0888.
Jones,A.E.,and J.F.Fiechtl,et al.2007.“Procalcitonin Test in theDiagnosis of Bacteremia:a Meta-analysis.”Annals of Emergency Medicine 50(1):34–41.
Kunze,Wolfgang,Dietmar Beier,and Katrin Groeger.2010.“AdenovirusRespiratory Infections In Children.Do They Mimic Bacterial Infections?”(October 31).http://www.webmedcentral.com/article_view/1098.
Levy,Mitchell M,Mitchell P Fink,John C Marshall,Edward Abraham,DerekAngus,Deborah Cook,Jonathan Cohen,Steven M Opal,Jean-Louis Vincent,and GrahamRamsay.2003.“2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis DefinitionsConference.”Critical Care Medicine 31(4)(April):1250–1256.doi:10.1097/01.CCM.0000050454.01978.3B.
Linder,J.A.,and R.S.Stafford.2001.“Antibiotic Treatment of Adultswith Sore Throat by Community Primary Care Physicians:a National Survey,1989-1999.”JAMA:The Journal of the American Medical Association 286(10):1181–1186.
Little,P.2005.“Delayed Prescribing of Antibiotics for UpperRespiratory Tract Infection.”BMJ(Clinical Research Ed.)331(7512):301–302.
Little,P.S.,and I.Williamson.1994.“Are Antibiotics Appropriate forSore Throats?Costs Outweigh the Benefits.”BMJ(Clinical Research Ed.)309(6960):1010–1011.
Del Mar,C.1992.“Managing Sore Throat:a Literature Review.I.Making theDiagnosis.”The Medical Journal of Australia 156(8):572–575.
Marc,E,M Chaussain,F Moulin,J L Iniguez,G Kalifa,J Raymond,and DGendrel.2000.“Reduced Lung Diffusion Capacity After Mycoplasma PneumoniaePneumonia.”The Pediatric Infectious Disease Journal 19(8)(August):706–710.
Murphy,K.,and P.Travers,et al.2007.“Janeway’s Immunobiology,SeventhEdition|Mendeley.”
http://www.mendeley.com/research/janeways-immunobiology-seventh-edition-immunobio logy-immune-system-janeway/.
Peltola,Ville,Jussi Mertsola,and Olli Ruuskanen.2006.“Comparison ofTotal White Blood Cell Count and Serum C-reactive Protein Levels in ConfirmedBacterial and Viral Infections.”The Journal of Pediatrics 149(5)(November):721–724.
doi:10.1016/j.jpeds.2006.08.051.
Pickering,Larry K.,and Herbert L.DuPont.1986.Infectious Diseases ofChildren and Adults:a Step-by-step Approach to Diagnosis andTreatment.Addison-Wesley,Health Sciences Division.
Povoa P.2002.“C-reactive Protein:a Valuable Marker of Sepsis.”Intensive Care Medicine 28(3):235–243.
Principi,N,and S Esposito.2001.“Emerging Role of MycoplasmaPneumoniae and Chlamydia Pneumoniae in Paediatric Respiratory-tractInfections.”The Lancet Infectious Diseases 1(5)(December):334–344.doi:10.1016/S1473-3099(01)00147-5.
Pulcini,C.,and E.Cua,et al.2007.“Antibiotic Misuse:a ProspectiveClinical Audit in a French University Hospital.”European Journal of ClinicalMicrobiology&Infectious Diseases:Official Publication of the European Societyof Clinical Microbiology 26(4):277–280.
Regev-Yochay,Gili,Izzeldin Abullaish,Richard Malley,Bracha Shainberg,Miriam Varon,Yulia Roytman,Arnona Ziv,et al.2012.“Streptococcus PneumoniaeCarriage in the Gaza Strip.”PloS One 7(4):e35061.doi:10.1371/journal.pone.0035061.
Regev-Yochay,Gili,Meir Raz,Ron Dagan,Nurith Porat,Bracha Shainberg,Erica Pinco,Nathan Keller,and Ethan Rubinstein.2004.“Nasopharyngeal Carriageof Streptococcus Pneumoniae by Adults and Children in Community and FamilySettings.”Clinical Infectious Diseases 38(5)(March 1):632–639.doi:10.1086/381547.
Restrepo,Marcos I,Eric M Mortensen,Jose A Velez,Christopher Frei,andAntonio Anzueto.2008.“A Comparative Study of Community-Acquired PneumoniaPatients Admitted to the Ward and the ICU*.”Chest 133(3)(March 1):610–617.doi:10.1378/chest.07-1456.
Rivers,E,B Nguyen,S Havstad,J Ressler,A Muzzin,B Knoblich,E Peterson,and M Tomlanovich.2001.“Early Goal-directed Therapy in the Treatment ofSevere Sepsis and Septic Shock.”The New England Journal of Medicine 345(19)(November 8):1368–1377.doi:10.1056/NEJMoa010307.
Rudensky,B.,and G.Sirota,et al.2008.“Neutrophil CD64 Expression as aDiagnostic Marker of Bacterial Infection in Febrile Children Presenting to aHospital Emergency Department.”Pediatric Emergency Care 24(11):745–748.
Scott,J.G.,and D.Cohen,et al.2001.“Antibiotic Use in AcuteRespiratory Infections and the Ways Patients Pressure Physicians for aPrescription.”The Journal of Family Practice 50(10):853–858.
Shaikh,Nader,Erica Leonard,and Judith M Martin.2010.“Prevalence ofStreptococcal Pharyngitis and Streptococcal Carriage in Children:a Meta-analysis.”Pediatrics 126(3)(September):e557–564.doi:10.1542/peds.2009-2648.
Shapiro,Howard.2005.Practical Flow Cytometry.
http://onlinelibrary.wiley.com/doi/10.1002/0471722731.fmatter/summary.
Shibli,Fahmi,Bibiana Chazan,Orna Nitzan,Edit Flatau,Hana Edelstein,Orna Blondheim,Raul Raz,and Raul Colodner.2010.“Etiology of Community-acquired Pneumonia in Hospitalized Patients in Northern Israel.”The IsraelMedical Association Journal:IMAJ 12(8)(August):477–482.
Song,Jae-Hoon,Won Sup Oh,Cheol-In Kang,Doo Ryeon Chung,Kyong RanPeck,Kwan Soo Ko,Joon Sup Yeom,et al.2008.“Epidemiology and Clinical Outcomesof Community-acquired Pneumonia in Adult Patients in Asian Countries:aProspective Study by the Asian Network for Surveillance of ResistantPathogens.”International Journal of Antimicrobial Agents 31(2)(February):107–114.
doi:10.1016/j.ijantimicag.2007.09.014.
Spiro,D.M.,and K.Y.Tay,et al.2006.“Wait-and-see Prescription for theTreatment of Acute Otitis Media:a Randomized Controlled Trial.”JAMA:TheJournal of the American Medical Association 296(10):1235–1241.
Tang M.P.,and Eslick GD.2007.“Accuracy of Procalcitonin for SepsisDiagnosis in Critically Ill Patients:Systematic Review and Meta-analysis.”TheLancet Infectious Diseases 7(3):210–217.
Thorn,George W.,Adams,Braunwald,Isselbacher,andPetersdorf.1977.Harrison’s Principles of Internal Medicine.8th Edition.
Uyeki,Timothy M,Ramakrishna Prasad,Charles Vukotich,Samuel Stebbins,Charles R Rinaldo,Yu-Hui Ferng,Stephen S Morse,et al.2009.“Low Sensitivity ofRapid Diagnostic Test for Influenza.”Clinical Infectious Diseases:An OfficialPublication of the Infectious Diseases Society of America 48(9)(May 1):e89–92.doi:10.1086/597828.
Vaneechoutte,M,G Verschraegen,G Claeys,B Weise,and A M Van denAbeele.1990.
“Respiratory Tract Carrier Rates of Moraxella(Branhamella)Catarrhalisin Adults and Children and Interpretation of the Isolation of M.Catarrhalisfrom Sputum.”Journal of Clinical Microbiology 28(12)(December):2674–2680.
Wirth U.,and Muller D.2002.“Post-translational Modification DetectionUsing Metastable Ions in Reflector Matrix-assisted Laser Desorption/ionization-time of Flight Mass Spectrometry.”Proteomics 2(10):1445–1451.
Zhou,Chao,Feng-Zhen Ma,Xue-Jie Deng,Hong Yuan,and Hong-Sheng Ma.2008.“Lactobacilli Inhibit Interleukin-8 Production Induced by Helicobacter PyloriLipopolysaccharide-activated Toll-like Receptor 4.”World Journal ofGastroenterology:WJG 14(32)(August 28):5090–5095.doi:10.3748/wjg.14.5090.
Claims (10)
1.第一抗体和第二抗体用于制备区别细菌感染和病毒感染的试剂盒的用途,第一抗体用于确定对象的样本中的TRAIL多肽的表达水平;第二抗体用于确定所述对象的选自PCT、CRP、IP10、和sTREM所组成的组中的多肽的表达水平。
2.如权利要求1所述的用途,其中,所述第二抗体用于确定PCT的表达水平。
3.如权利要求2所述的用途,其中,所述试剂盒进一步包括用于检测CRP多肽的表达水平的抗体。
4.如权利要求1或3所述的用途,其中,所述样本为全血或血液分样。
5.如权利要求4所述的用途,其中,所述血液分样包含选自淋巴细胞、单核细胞、和粒细胞所组成的组中的细胞。
6.如权利要求4所述的用途,其中,所述血液分样包含血清或血浆。
7.如权利要求1-4中任一项所述的用途,其中,所述多肽的表达水平通过电泳方式或免疫化学方式确定。
8.如权利要求7所述的用途,其中,所述多肽的表达水平是通过流式细胞术、放射免疫测定、免疫荧光测定、或通过酶联免疫吸附测定进行检测的。
9.如权利要求1-3中任一项所述的用途,其中,TRAIL的所述表达水平是在获得所述样本后的24小时内测量的。
10.如权利要求1-3中任一项所述的用途,其中,TRAIL的所述表达水平是在储存在12℃或更低的所述样品中来测量的,其中所述储存是在获得所述样品后小于24小时开始的。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261596950P | 2012-02-09 | 2012-02-09 | |
US61/596,950 | 2012-02-09 | ||
US201261652631P | 2012-05-29 | 2012-05-29 | |
US61/652,631 | 2012-05-29 | ||
CN201380019055.0A CN104204803B (zh) | 2012-02-09 | 2013-02-08 | 用于诊断感染的标记和决定因素和其使用方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380019055.0A Division CN104204803B (zh) | 2012-02-09 | 2013-02-08 | 用于诊断感染的标记和决定因素和其使用方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108802385A true CN108802385A (zh) | 2018-11-13 |
CN108802385B CN108802385B (zh) | 2022-02-08 |
Family
ID=47678877
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810781584.9A Active CN108802385B (zh) | 2012-02-09 | 2013-02-08 | 用于诊断感染的标记和决定因素和其使用方法 |
CN201380019055.0A Active CN104204803B (zh) | 2012-02-09 | 2013-02-08 | 用于诊断感染的标记和决定因素和其使用方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380019055.0A Active CN104204803B (zh) | 2012-02-09 | 2013-02-08 | 用于诊断感染的标记和决定因素和其使用方法 |
Country Status (13)
Country | Link |
---|---|
US (4) | US9726668B2 (zh) |
EP (3) | EP3882633A1 (zh) |
JP (3) | JP6169619B2 (zh) |
CN (2) | CN108802385B (zh) |
AU (2) | AU2013217935B2 (zh) |
BR (1) | BR112014019733B1 (zh) |
CA (2) | CA2863819C (zh) |
ES (2) | ES2886979T3 (zh) |
HK (2) | HK1204065A1 (zh) |
IL (3) | IL233998A (zh) |
IN (1) | IN2014MN01780A (zh) |
WO (1) | WO2013117746A1 (zh) |
ZA (1) | ZA201405993B (zh) |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK3059337T3 (da) | 2009-01-15 | 2019-07-22 | Adaptive Biotechnologies Corp | Adaptive immunity profiling og metoder til frembringelse af monoklonale antibodier |
CN103119444B (zh) | 2010-04-21 | 2016-10-26 | 米密德诊断学有限公司 | 区分细菌与病毒感染的标记物和决定因素以及其使用方法 |
CA2863819C (en) | 2012-02-09 | 2021-11-23 | Memed Diagnostics Ltd. | Signatures and determinants for diagnosing infections and methods of use thereof |
ES2662128T3 (es) | 2012-03-05 | 2018-04-05 | Adaptive Biotechnologies Corporation | Determinación de cadenas de receptor inmunitario emparejadas a partir de la frecuencia de subunidades coincidentes |
WO2013169957A1 (en) | 2012-05-08 | 2013-11-14 | Adaptive Biotechnologies Corporation | Compositions and method for measuring and calibrating amplification bias in multiplexed pcr reactions |
US9708657B2 (en) | 2013-07-01 | 2017-07-18 | Adaptive Biotechnologies Corp. | Method for generating clonotype profiles using sequence tags |
US20170292149A1 (en) | 2014-03-05 | 2017-10-12 | Adaptive Biotechnologies Corporation | Methods using randomer-containing synthetic molecules |
WO2015138991A2 (en) * | 2014-03-13 | 2015-09-17 | Opgen, Inc. | Methods of detecting multi-drug resistant organisms |
US11390921B2 (en) | 2014-04-01 | 2022-07-19 | Adaptive Biotechnologies Corporation | Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs) |
US10066265B2 (en) | 2014-04-01 | 2018-09-04 | Adaptive Biotechnologies Corp. | Determining antigen-specific t-cells |
EP3132059B1 (en) | 2014-04-17 | 2020-01-08 | Adaptive Biotechnologies Corporation | Quantification of adaptive immune cell genomes in a complex mixture of cells |
WO2015184017A1 (en) | 2014-05-27 | 2015-12-03 | Opgen, Inc. | Systems, apparatus, and methods for generating and analyzing resistome profiles |
US10308989B2 (en) | 2014-06-13 | 2019-06-04 | North Carolina State University | Aptamers with binding affinity to norovirus |
KR20170041907A (ko) * | 2014-08-14 | 2017-04-17 | 메메드 다이어그노스틱스 리미티드 | 매니폴드 및 초평면을 이용한 생물학적 데이터의 컴퓨터 분석법 |
WO2016059636A1 (en) | 2014-10-14 | 2016-04-21 | Memed Diagnostics Ltd. | Signatures and determinants for diagnosing infections in non-human subjects and methods of use thereof |
ES2784343T3 (es) | 2014-10-29 | 2020-09-24 | Adaptive Biotechnologies Corp | Detección simultánea altamente multiplexada de ácidos nucleicos que codifican heterodímeros de receptores inmunes adaptativos emparejados de muchas muestras |
US10246701B2 (en) | 2014-11-14 | 2019-04-02 | Adaptive Biotechnologies Corp. | Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture |
US11270782B2 (en) | 2014-11-19 | 2022-03-08 | Koninklijke Philips N.V. | Diagnostic method employing HNL |
EP3230740A4 (en) * | 2014-12-11 | 2018-10-17 | Memed Diagnostics Ltd. | Marker combinations for diagnosing infections and methods of use thereof |
CA2976580A1 (en) * | 2015-02-24 | 2016-09-01 | Adaptive Biotechnologies Corp. | Methods for diagnosing infectious disease and determining hla status using immune repertoire sequencing |
CA2979726A1 (en) | 2015-04-01 | 2016-10-06 | Adaptive Biotechnologies Corp. | Method of identifying human compatible t cell receptors specific for an antigenic target |
EP3139171B1 (en) * | 2015-09-02 | 2020-02-12 | Labsystems Diagnostics Oy | Novel methods and kits for detecting of urea cycle disorders using mass spectrometry |
EP3356558B1 (en) * | 2015-09-30 | 2022-03-30 | Immunexpress Pty Ltd | Sirs pathogen biomarkers and uses therefor |
CN106918698B (zh) * | 2015-12-25 | 2019-11-22 | 广州瑞博奥生物科技有限公司 | 一种检测人受体酪氨酸激酶的磷酸化抗体芯片试剂盒 |
US11466331B2 (en) | 2016-03-03 | 2022-10-11 | Memed Diagnostics Ltd. | RNA determinants for distinguishing between bacterial and viral infections |
WO2017149547A1 (en) | 2016-03-03 | 2017-09-08 | Memed Diagnostics Ltd. | Analyzing rna for diagnosing infection type |
CN106053831A (zh) * | 2016-06-05 | 2016-10-26 | 潘时辉 | 一种用于自身免疫病检测的试剂盒 |
KR102515555B1 (ko) * | 2016-06-07 | 2023-03-28 | 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 | 세균성 감염 및 바이러스성 감염의 진단 방법 |
WO2017221255A1 (en) | 2016-06-23 | 2017-12-28 | Memed Diagnostics Ltd. | Measuring trail by lateral flow immunoassay |
WO2018011795A1 (en) | 2016-07-10 | 2018-01-18 | Memed Diagnostics Ltd. | Protein signatures for distinguishing between bacterial and viral infections |
EP3482201B1 (en) | 2016-07-10 | 2022-12-14 | Memed Diagnostics Ltd. | Early diagnosis of infections |
WO2018029690A1 (en) | 2016-08-10 | 2018-02-15 | Memed Diagnostics Ltd. | System and method for analysis of biological data |
US10428325B1 (en) | 2016-09-21 | 2019-10-01 | Adaptive Biotechnologies Corporation | Identification of antigen-specific B cell receptors |
WO2018060999A1 (en) | 2016-09-29 | 2018-04-05 | Memed Diagnostics Ltd. | Methods of risk assessment and disease classification |
WO2018060998A1 (en) | 2016-09-29 | 2018-04-05 | Memed Diagnostics Ltd. | Methods of prognosis and treatment |
JP6903494B2 (ja) * | 2017-06-09 | 2021-07-14 | シスメックス株式会社 | 感染症を識別するための粒子分析方法 |
US10209260B2 (en) | 2017-07-05 | 2019-02-19 | Memed Diagnostics Ltd. | Signatures and determinants for diagnosing infections and methods of use thereof |
EP3662285A4 (en) * | 2017-07-31 | 2021-04-28 | University Health Network | Biomarkers in ex vivo lung perfusion (evlp) perfusate |
EP3707161A4 (en) * | 2017-11-07 | 2021-10-27 | Memed Diagnostics Ltd. | ANTI-TRAIL ANTIBODIES AND METHOD OF USING THEM |
US11896680B2 (en) * | 2017-11-28 | 2024-02-13 | Mie University | Detection method |
US11254980B1 (en) | 2017-11-29 | 2022-02-22 | Adaptive Biotechnologies Corporation | Methods of profiling targeted polynucleotides while mitigating sequencing depth requirements |
CN108039206B (zh) * | 2017-12-21 | 2021-11-09 | 北京大学深圳研究生院 | 一种传染病的诊治方法及系统 |
WO2019147850A1 (en) * | 2018-01-27 | 2019-08-01 | Becton, Dickinson And Company | Multiplex lateral flow assay for differentiating bacterial infections from viral infections |
US11484273B2 (en) * | 2018-03-06 | 2022-11-01 | International Business Machines Corporation | Determining functional age indices based upon sensor data |
WO2019236768A1 (en) * | 2018-06-05 | 2019-12-12 | Washington University | Nasal genes used to identify, characterize, and diagnose viral respiratory infections |
CN108486246B (zh) * | 2018-06-06 | 2020-06-09 | 青岛泱深生物医药有限公司 | 子痫前期的诊治标志物 |
CN112840314A (zh) * | 2018-08-02 | 2021-05-25 | 布莱特临床研究有限公司 | 对正在运行中的临床试验进行动态数据监测和实时优化的系统、方法及实施过程 |
US20210389329A1 (en) * | 2018-10-29 | 2021-12-16 | Thomas Jefferson University | Compositions and Methods for Discriminating Infectious from Non-Infectious CNS Disorders |
WO2021057986A1 (zh) * | 2019-09-27 | 2021-04-01 | 成都中医药大学 | 检测粪钙卫蛋白含量的试剂在制备卵巢病变筛查试剂盒中的用途 |
EP4073514A4 (en) * | 2019-12-11 | 2024-02-28 | Ichilov Tech Ltd. | NON-INVASIVE TEST TO DIFFERENTIATE FROM BACTERIAL AND VIRAL INFECTIONS |
CN110923333B (zh) * | 2019-12-11 | 2020-09-29 | 湖北省农业科学院畜牧兽医研究所 | 山羊zbp1基因第一内含子内与产羔数关联的单倍型标记及其应用 |
EP4097485A4 (en) * | 2020-01-29 | 2024-05-15 | MeMed Diagnostics Ltd. | METHODS OF DIAGNOSIS AND CLASSIFICATION OF VIRAL INFECTIONS |
CA3170374A1 (en) * | 2020-02-09 | 2021-08-12 | Nlc Pharma Ltd | Rapid detection test for sars-cov-2 |
WO2021204984A1 (en) | 2020-04-09 | 2021-10-14 | B.R.A.H.M.S Gmbh | Biomarkers for the diagnosis of respiratory tract infections |
JPWO2022004730A1 (zh) * | 2020-06-30 | 2022-01-06 | ||
CN111816245B (zh) * | 2020-07-20 | 2022-09-09 | 成都博欣医学检验实验室有限公司 | 结合mNGS和临床知识库的病原微生物检测方法及系统 |
WO2022153323A1 (en) * | 2021-01-18 | 2022-07-21 | Memed Diagnostics Ltd. | Markers for diagnosing infections |
EP4308729A1 (en) * | 2021-03-16 | 2024-01-24 | Cepheid | Methods for discriminating bacterial and viral infections in a human subject |
CN113945712A (zh) * | 2021-12-21 | 2022-01-18 | 山东中鸿特检生物科技有限公司 | 一种区别细菌、病毒感染的检测方法及检测试剂盒 |
CN114441506B (zh) * | 2022-04-08 | 2022-06-21 | 港湾之星健康生物(深圳)有限公司 | 量子磁光传感器 |
EP4357778A1 (en) | 2022-10-20 | 2024-04-24 | Heraeus Medical GmbH | Treatment of microbial infections diagnosed using the biomarker d-lactate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009025743A2 (en) * | 2007-08-17 | 2009-02-26 | University Of Massachusetts Medical School | Use of trail compositions as antiviral agents |
CN101617230A (zh) * | 2007-02-28 | 2009-12-30 | B.R.A.H.M.S股份公司 | 用于诊断目的的选择性测定降钙素原1-116的方法、以及实施该方法的抗体和试剂盒 |
CN101622364A (zh) * | 2007-01-11 | 2010-01-06 | 杜克大学 | 监测hiv感染的方法 |
CN101790687A (zh) * | 2007-08-03 | 2010-07-28 | B.R.A.H.M.S有限公司 | 降钙素原(pct)在患原发性非传染疾病的患者的风险分级和预后中的应用 |
WO2011132086A2 (en) * | 2010-04-21 | 2011-10-27 | MeMed Diagnostics, Ltd. | Signatures and determinants for distinguishing between a bacterial and viral infection and methods of use thereof |
Family Cites Families (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1178414A (en) | 1978-02-08 | 1984-11-27 | Toyo Boseki Kabushiki Kaisha (Trading Under The Name Of Toyobo Co., Ltd.) | Packaging material having excellent seal packaging property |
US4233402A (en) | 1978-04-05 | 1980-11-11 | Syva Company | Reagents and method employing channeling |
US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
US4376110A (en) | 1980-08-04 | 1983-03-08 | Hybritech, Incorporated | Immunometric assays using monoclonal antibodies |
US4659678A (en) | 1982-09-29 | 1987-04-21 | Serono Diagnostics Limited | Immunoassay of antigens |
US4727022A (en) | 1984-03-14 | 1988-02-23 | Syntex (U.S.A.) Inc. | Methods for modulating ligand-receptor interactions and their application |
US5018067A (en) | 1987-01-12 | 1991-05-21 | Iameter Incorporated | Apparatus and method for improved estimation of health resource consumption through use of diagnostic and/or procedure grouping and severity of illness indicators |
DE4322330A1 (de) | 1992-08-31 | 1994-03-03 | Behringwerke Ag | Verwendung des IL-4-Rezeptors zur Therapie, Prophylaxe und Diagnose von allergischen, viralen, parasitären und bakteriellen Erkrankungen sowie von Pilzinfektionen |
DE4227454C1 (de) | 1992-08-19 | 1994-02-03 | Henning Berlin Gmbh | Verfahren zur Früherkennung, zur Erkennung des Schweregrads sowie zur therapiebegleitenden Verlaufsbeurteilung einer Sepsis sowie Mittel zur Durchführung des Verfahrens |
SE9401351D0 (sv) | 1994-04-21 | 1994-04-21 | Venge | A method for diagnosis |
US5910421A (en) | 1995-12-21 | 1999-06-08 | University Of Florida | Rapid diagnostic method for distinguishing allergies and infections |
US6077665A (en) | 1996-05-07 | 2000-06-20 | The Board Of Trustees Of The Leland Stanford Junior University | Rapid assay for infection in neonates |
EP1042459A4 (en) | 1997-12-24 | 2003-07-23 | Diatech Pty Ltd | BIFUNCTIONAL MOLECULES |
JP2002515267A (ja) | 1998-05-18 | 2002-05-28 | アポトーシス テクノロジー・インコーポレーテッド | 抗アポトーシス遺伝子及び遺伝子産物に関する化合物、スクリーニング方法並びに用途 |
DE19847690A1 (de) | 1998-10-15 | 2000-04-20 | Brahms Diagnostica Gmbh | Verfahren und Substanzen für die Diagnose und Therapie von Sepsis und sepsisähnlichen systemischen Infektionen |
US6709855B1 (en) | 1998-12-18 | 2004-03-23 | Scios, Inc. | Methods for detection and use of differentially expressed genes in disease states |
WO2000040749A2 (en) | 1999-01-06 | 2000-07-13 | Genenews Inc. | Method for the detection of gene transcripts in blood and uses thereof |
ATE346914T1 (de) | 1999-08-24 | 2006-12-15 | Glycozym Aps | Udp-n-acetylglucosamin: galaktose-beta 1,3-n- acetylgalaktosamin-alpha-r/(glcnac -galnac) beta 1,6-n-acetylglucosaminyltransferase, c2gnt3 |
IL132687A0 (en) | 1999-11-01 | 2001-03-19 | Keren Mechkarim Ichilov Pnimit | System and method for evaluating body fluid samples |
US20020038227A1 (en) | 2000-02-25 | 2002-03-28 | Fey Christopher T. | Method for centralized health data management |
US7668661B2 (en) | 2000-04-28 | 2010-02-23 | Siemens Healthcare Diagnostics Inc. | Liver disease-related methods and systems |
WO2002007064A2 (en) | 2000-07-17 | 2002-01-24 | Labnetics, Inc. | Method and apparatus for the processing of remotely collected electronic information characterizing properties of biological entities |
US20020055176A1 (en) | 2000-11-08 | 2002-05-09 | Ray Robert A. | Diagnostic assay system |
US20040043379A1 (en) | 2001-03-27 | 2004-03-04 | Koji Hashimoto | Method of detectingnucleic acid relating to disease |
US7713705B2 (en) | 2002-12-24 | 2010-05-11 | Biosite, Inc. | Markers for differential diagnosis and methods of use thereof |
DE10119804A1 (de) | 2001-04-23 | 2002-10-24 | Brahms Ag | Entzündungsspezifische Peptide und deren Verwendungen |
KR100932577B1 (ko) | 2001-05-18 | 2009-12-17 | 기린 홀딩스 가부시키가이샤 | 항 trail-r 항체 |
FI115165B (fi) | 2001-06-04 | 2005-03-15 | Aboatech Ab Oy | Menetelmä infektion laadun määrittämiseksi |
DE10130985B4 (de) | 2001-06-27 | 2004-03-18 | B.R.A.H.M.S Ag | Verfahren zur Diagnose von Sepsis und schweren Infektionen unter Bestimmung löslicher Cytokeratin-1-Fragmente |
US20040209307A1 (en) * | 2001-08-20 | 2004-10-21 | Biosite Incorporated | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
DE50103907D1 (de) | 2001-12-07 | 2004-11-04 | Brahms Ag | Verwendungen der Aldose-1-Epimerase (Mutarotase) für die Diagnose von Entzündungserkrankungen und Sepsis |
US6953435B2 (en) | 2001-12-10 | 2005-10-11 | Kabushiki Gaisha K -And- S | Biological data observation apparatus |
US20040038201A1 (en) | 2002-01-22 | 2004-02-26 | Whitehead Institute For Biomedical Research | Diagnostic and therapeutic applications for biomarkers of infection |
US20040122296A1 (en) | 2002-12-18 | 2004-06-24 | John Hatlestad | Advanced patient management for triaging health-related data |
US7468032B2 (en) | 2002-12-18 | 2008-12-23 | Cardiac Pacemakers, Inc. | Advanced patient management for identifying, displaying and assisting with correlating health-related data |
WO2004040263A2 (en) | 2002-10-31 | 2004-05-13 | Health Research, Inc. | Diagnostic test for west nile virus |
WO2003081240A1 (fr) | 2002-03-22 | 2003-10-02 | Kyowa Medex Co., Ltd. | Procede de recherche d'infection virale |
US7485298B2 (en) * | 2002-05-23 | 2009-02-03 | Michael Powell | Diagnosis and treatment of human dormancy-related sequellae |
KR20050040866A (ko) | 2002-06-11 | 2005-05-03 | 아이다호 리서치 파운데이션 | 바이러스 감염의 검출을 위한 ⅰ형 인터페론-유도성 단백질 |
US8563476B2 (en) | 2002-11-15 | 2013-10-22 | Morehouse School Of Medicine | Anti-CXCL9, anti-CXCL10, anti-CXCL11, anti-CXCL13, anti-CXCR3 and anti-CXCR5 agents for inflammatory disorders |
AU2004245998A1 (en) | 2003-06-04 | 2004-12-16 | The Government of the United States as represented by The Secretary of the Department of Health and Human Services, Centres for Disease Control and Prevention | PNI microarray and uses |
WO2005033327A2 (en) | 2003-09-29 | 2005-04-14 | Biosite Incorporated | Methods and compositions for the diagnosis of sepsis |
JP2005106694A (ja) | 2003-09-30 | 2005-04-21 | Mochida Pharmaceut Co Ltd | 敗血症早期検出及び重篤度評価 |
GB0401730D0 (en) | 2004-01-27 | 2004-03-03 | Bioxell Spa | Diagnosis method |
US8906630B2 (en) | 2004-02-27 | 2014-12-09 | The Trustees Of The University Of Pennsylvania | Assays for detecting pathogenic respiratory bacteria |
US7892539B2 (en) * | 2004-03-24 | 2011-02-22 | The Regents Of The University Of California | Modulation of an innate immune response by altering TRIAL-R signaling |
US8155993B2 (en) | 2004-06-15 | 2012-04-10 | Janssen Pharmaceutica, N.V. | Apparatus and methods for assessing a pharmaceutical product |
CA2614507A1 (en) | 2004-07-09 | 2006-08-17 | Amaox, Ltd. | Immune cell biosensors and methods of using same |
US7598080B2 (en) | 2004-08-20 | 2009-10-06 | Carl Deirmengian | Diagnostic assay for source of inflammation |
JP2008514955A (ja) | 2004-09-28 | 2008-05-08 | シンギュレックス・インコーポレイテッド | サンプル分析システムおよび方法 |
US7572640B2 (en) | 2004-09-28 | 2009-08-11 | Singulex, Inc. | Method for highly sensitive detection of single protein molecules labeled with fluorescent moieties |
WO2007011412A2 (en) | 2004-11-05 | 2007-01-25 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Diagnosis and prognosis of infectious diesease clinical phenotypes and other physiologic states using host gene expresion biomarkers in blood |
WO2007018574A2 (en) | 2004-11-10 | 2007-02-15 | The United States Of America As Represented By The Secretary Of The Navy | Diagnostic assay for rickettsia prowazekii disease by detection of responsive gene expression |
AU2006236588A1 (en) | 2005-04-15 | 2006-10-26 | Becton, Dickinson And Company | Diagnosis of sepsis |
CN101208602A (zh) | 2005-04-15 | 2008-06-25 | 贝克顿迪金森公司 | 脓毒症的诊断 |
US20070015172A1 (en) | 2005-06-01 | 2007-01-18 | Z-Biomed, Inc. | Expression profiles for microbial infection |
UA78641C2 (en) | 2005-08-29 | 2007-04-10 | Open Joint Stock Company Conce | A process for the preparation of carbamide-formaldehyde resin |
DE102005050933A1 (de) | 2005-10-21 | 2007-04-26 | Justus-Liebig-Universität Giessen | Erfindung betreffend Expressionsprofile zur Vorhersage von septischen Zuständen |
CN101374964B (zh) | 2005-12-09 | 2013-07-17 | 贝勒研究院 | 外周血液白细胞转录模式的模块水平分析 |
GB0601959D0 (en) | 2006-01-31 | 2006-03-15 | King S College London | Sepsis test |
US20070184460A1 (en) | 2006-02-09 | 2007-08-09 | Wei-Mei Ching | Diagnostic assay for Orientia tsutsugamushi by detection of responsive gene expression |
NZ573052A (en) | 2006-04-26 | 2012-03-30 | Vertex Pharma | Hepatitis c virus infection biomarkers |
SG177956A1 (en) | 2006-08-11 | 2012-02-28 | Baylor Res Inst | Gene expression signatures in blood leukocytes permit differential diagnosis of acute infections |
AU2012244350B2 (en) | 2006-09-05 | 2013-08-15 | Statens Serum Institut | Ip-10 based immunological monitoring |
PL2128612T3 (pl) | 2006-09-05 | 2011-09-30 | Statens Seruminstitut | Monitorowanie immunologiczne na podstawie IP-10 |
JP2010506166A (ja) | 2006-10-05 | 2010-02-25 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | デング熱の診断及び治療 |
US20100143373A1 (en) | 2006-12-06 | 2010-06-10 | Medimmune, Llc | Methods of treating systemic lupus erythematosus |
DE102006060112A1 (de) | 2006-12-20 | 2008-06-26 | Brahms Aktiengesellschaft | Diagnose und Risikostratifizierung mittels dem neuen Marker CT-proADM |
WO2008076077A1 (en) | 2006-12-21 | 2008-06-26 | Innogene Kalbiotech Pte Ltd | Method of early diagnosis of epstein-barr virus-related cancer and respective reagents and kits |
US8293489B2 (en) | 2007-01-31 | 2012-10-23 | Henkin Robert I | Methods for detection of biological substances |
MX2009009146A (es) | 2007-02-28 | 2009-09-03 | Procter & Gamble | Metodos y objetivos para identificar compuestos para regular la infeccion por rinovirus. |
CA2689306C (en) | 2007-06-01 | 2019-01-15 | Council Of Scientific & Industrial Research | A novel method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system |
RU2352948C1 (ru) | 2007-06-15 | 2009-04-20 | Государственное образовательное учреждение высшего профессионального образования "КРАСНОЯРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ" | Способ прогноза исхода заболевания пациентов с ургентной хирургической патологией органов брюшной полости |
IL184478A (en) | 2007-07-08 | 2017-07-31 | Hadasit Medical Res Services & Development Ltd | Preparations, methods and kits for identifying carriers of mutations in genes 1brca and 2brca and for the early detection of cancers associated with mutations in these genes |
DE102007035640A1 (de) | 2007-07-27 | 2009-01-29 | Lkh-Kunststoffwerk Gmbh & Co. Kg | Tauchkolben |
EP2020603A1 (en) | 2007-08-03 | 2009-02-04 | BRAHMS Aktiengesellschaft | Method for risk stratification in stable coronary artery disease |
TW200920358A (en) | 2007-08-13 | 2009-05-16 | Lundbeck & Co As H | Method of treating stress-mediated depression |
ATE463700T1 (de) | 2007-09-24 | 2010-04-15 | Bmdsys Production Gmbh | Kryostat mit stabilisiertem aussengefäss |
EP2071334A1 (en) | 2007-12-14 | 2009-06-17 | Transmedi SA | Compositions and methods of detecting TIABS |
WO2009100907A1 (en) | 2008-02-14 | 2009-08-20 | Dianeering Diagnostics Engineering And Research Gmbh | Means and methods for assessing the risk of patients presenting to emergency departments based on very low concentrations of troponin i or t or using a combination of markers |
US8293880B2 (en) | 2008-03-25 | 2012-10-23 | University Of Southern California | Prognostic panel for urinary bladder cancer |
SG190570A1 (en) | 2008-04-21 | 2013-06-28 | Novartis Forschungsstiftung | Antiviral therapy |
US9910036B2 (en) | 2008-05-20 | 2018-03-06 | Rapid Pathogen Screening, Inc. | Method and device for combined detection of viral and bacterial infections |
EP2300829B1 (en) | 2008-05-23 | 2014-07-23 | Pronota NV | New biomarker for diagnosis, prediction and/or prognosis of sepsis and uses thereof |
AU2009262112A1 (en) | 2008-06-25 | 2009-12-30 | Baylor Research Institute | Blood transcriptional signature of mycobacterium tuberculosis infection |
WO2010046136A1 (en) | 2008-10-24 | 2010-04-29 | B.R.A.H.M.S. Ag | Prognosis and risk assessment in stroke patients by determining the level of marker peptides |
GB2463401B (en) | 2008-11-12 | 2014-01-29 | Caris Life Sciences Luxembourg Holdings S A R L | Characterizing prostate disorders by analysis of microvesicles |
TW201021778A (en) | 2008-11-12 | 2010-06-16 | Alcon Res Ltd | Intraocular lens delivery device with a multi-part plunger tip |
US20160041153A1 (en) | 2008-11-12 | 2016-02-11 | Kirk Brown | Biomarker compositions and markers |
UA92843C2 (ru) | 2009-05-21 | 2010-12-10 | Институт Технической Теплофизики Национальной Академии Наук Украины | Способ получения порошкообразного пищевого красителя из столовой свеклы |
WO2010138618A1 (en) | 2009-05-26 | 2010-12-02 | Duke University | Molecular predictors of fungal infection |
WO2010139475A1 (en) | 2009-06-05 | 2010-12-09 | B.R.A.H.M.S Gmbh | Detection of bacterial infections in subjects suffering from dyspnea |
CA2770259A1 (en) | 2009-08-07 | 2011-02-10 | Rules-Based Medicine, Inc. | Methods and devices for detecting obstructive uropathy and associated disorders |
JP5667353B2 (ja) | 2009-09-25 | 2015-02-12 | シスメックス株式会社 | 血球計数装置、診断支援装置、診断支援方法及びコンピュータプログラム |
JP5722587B2 (ja) | 2009-10-13 | 2015-05-20 | ベー.エル.アー.ハー.エム.エス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 急性脳卒中または一過性脳虚血発作を有する患者における細菌感染の診断のためのプロカルシトニン及び抗生物質治療のガイダンス |
WO2011047358A1 (en) | 2009-10-15 | 2011-04-21 | Crescendo Bioscience | Biomarkers and methods for measuring and monitoring inflammatory disease activity |
JP2013513387A (ja) | 2009-12-09 | 2013-04-22 | アヴィール インコーポレイテッド | 循環器疾患の診断と分類のためのバイオマーカーアッセイ |
US20110312534A1 (en) | 2010-03-05 | 2011-12-22 | Erasmus University Medical Center Rotterdam | Method for prediction of human iris color |
EP2365456B1 (en) | 2010-03-11 | 2016-07-20 | CompuGroup Medical SE | Data structure, method and system for predicting medical conditions |
US20130071866A1 (en) | 2010-05-31 | 2013-03-21 | The University Of Tokushima | Method for testing the severtiy of an illness |
GB2482187A (en) | 2010-07-23 | 2012-01-25 | Univ Exeter | Predicting response to surgery |
US8877212B2 (en) | 2011-02-07 | 2014-11-04 | Trudeau Institute | Use of an IL12 receptor-beta 1 splice variant to diagnose active tuberculosis |
RU2476887C2 (ru) | 2011-03-29 | 2013-02-27 | Учреждение Российской академии медицинских наук Дальневосточный научный центр физиологии и патологии дыхания Сибирского отделения РАМН | Способ прогнозирования развития осложнений у больных внебольничной пневмонией |
JPWO2012176779A1 (ja) | 2011-06-20 | 2015-02-23 | 協和発酵キリン株式会社 | 抗erbB3抗体 |
WO2013040062A2 (en) | 2011-09-12 | 2013-03-21 | Vanderbilt University | Characterizing multiple sclerosis |
JP5842107B2 (ja) | 2011-10-19 | 2016-01-13 | パナソニックIpマネジメント株式会社 | 循環動態測定装置 |
ES2656150T3 (es) | 2011-11-14 | 2018-02-23 | Universitätsklinikum Jena | Diagnóstico de la sepsis y del síndrome de respuesta inflamatoria sistémica |
WO2013119632A1 (en) | 2012-02-07 | 2013-08-15 | Ingber Michael | Apparatus and methods for analyzing a medical condition |
CA2863819C (en) | 2012-02-09 | 2021-11-23 | Memed Diagnostics Ltd. | Signatures and determinants for diagnosing infections and methods of use thereof |
KR102057132B1 (ko) | 2012-03-08 | 2019-12-18 | 토멘 메디칼 아게 | 염증성 조직을 진단하기 위한 치과적 용도의 츄잉검 |
EP2637023A1 (en) | 2012-03-08 | 2013-09-11 | B.R.A.H.M.S GmbH | Prediction of outcome in patients with chronic obstructive pulmonary disease |
CN114042171B (zh) | 2012-03-30 | 2024-12-06 | 文森医学公司 | 细菌成像剂及其使用方法 |
GB201211982D0 (en) | 2012-07-05 | 2012-08-22 | Isis Innovation | Biomarker |
DK2872891T3 (da) | 2012-07-10 | 2019-05-13 | Nepean Blue Mountains Local Health Distr | Risikostratificering ved influenza |
FR2996003B1 (fr) | 2012-09-25 | 2014-10-17 | Commissariat Energie Atomique | Methode pour detecter specifiquement dans un echantillon une metalloprotease matricielle (mmp) d'interet uniquement dans sa forme active |
US20140127827A1 (en) | 2012-11-05 | 2014-05-08 | Gwangju Institute Of Science And Technology | Method for detection of antigen using fluorescence resonance energy transfer immunoassay |
EP2926138A4 (en) | 2012-11-30 | 2016-09-14 | Applied Proteomics Inc | METHOD FOR ASSESSING THE PRESENCE OR RISK OF COLON TUMORS |
MX360384B (es) | 2013-01-22 | 2018-10-31 | Imicroq S L | Metodo rapido para la deteccion de patogenos. |
MX2015009780A (es) | 2013-01-29 | 2016-04-04 | Molecular Health Gmbh | Sistemas y metodos para soporte de decision clinica. |
WO2014144029A2 (en) | 2013-03-15 | 2014-09-18 | Boston Scientific Neuromodulation Corporation | Clinical response data mapping |
US10689701B2 (en) | 2013-03-15 | 2020-06-23 | Duke University | Biomarkers for the molecular classification of bacterial infection |
EP3047270A4 (en) | 2013-09-20 | 2017-07-19 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of appendicitis and differentiation of causes of abdominal pain |
WO2015048098A1 (en) | 2013-09-24 | 2015-04-02 | Washington University | Diagnostic methods for infectious disease using endogenous gene expression |
KR20170041907A (ko) | 2014-08-14 | 2017-04-17 | 메메드 다이어그노스틱스 리미티드 | 매니폴드 및 초평면을 이용한 생물학적 데이터의 컴퓨터 분석법 |
WO2016059636A1 (en) | 2014-10-14 | 2016-04-21 | Memed Diagnostics Ltd. | Signatures and determinants for diagnosing infections in non-human subjects and methods of use thereof |
US11270782B2 (en) | 2014-11-19 | 2022-03-08 | Koninklijke Philips N.V. | Diagnostic method employing HNL |
EP3230740A4 (en) | 2014-12-11 | 2018-10-17 | Memed Diagnostics Ltd. | Marker combinations for diagnosing infections and methods of use thereof |
KR20160072626A (ko) | 2014-12-15 | 2016-06-23 | 전북대학교산학협력단 | 패혈증 인자 il-6 간이 진단 키트 |
CA3003104A1 (en) | 2015-11-01 | 2017-05-04 | Elminda Ltd. | Method and system for estimating potential distribution on cortical surface |
WO2017149547A1 (en) | 2016-03-03 | 2017-09-08 | Memed Diagnostics Ltd. | Analyzing rna for diagnosing infection type |
US11466331B2 (en) | 2016-03-03 | 2022-10-11 | Memed Diagnostics Ltd. | RNA determinants for distinguishing between bacterial and viral infections |
WO2017221255A1 (en) | 2016-06-23 | 2017-12-28 | Memed Diagnostics Ltd. | Measuring trail by lateral flow immunoassay |
EP3482201B1 (en) | 2016-07-10 | 2022-12-14 | Memed Diagnostics Ltd. | Early diagnosis of infections |
WO2018011795A1 (en) | 2016-07-10 | 2018-01-18 | Memed Diagnostics Ltd. | Protein signatures for distinguishing between bacterial and viral infections |
CN116429665A (zh) | 2016-09-16 | 2023-07-14 | 芯片生物技术株式会社 | 微粒分注装置、微粒分析装置、反应检测装置、以及使用它们的方法 |
WO2018060998A1 (en) | 2016-09-29 | 2018-04-05 | Memed Diagnostics Ltd. | Methods of prognosis and treatment |
WO2018060999A1 (en) | 2016-09-29 | 2018-04-05 | Memed Diagnostics Ltd. | Methods of risk assessment and disease classification |
US10209260B2 (en) * | 2017-07-05 | 2019-02-19 | Memed Diagnostics Ltd. | Signatures and determinants for diagnosing infections and methods of use thereof |
US20220329345A1 (en) | 2021-04-08 | 2022-10-13 | Infinidome Ltd. | Adjustable null steering in a stationary network |
-
2013
- 2013-02-08 CA CA2863819A patent/CA2863819C/en active Active
- 2013-02-08 BR BR112014019733-4A patent/BR112014019733B1/pt active IP Right Grant
- 2013-02-08 CA CA3133249A patent/CA3133249C/en active Active
- 2013-02-08 US US14/377,887 patent/US9726668B2/en active Active
- 2013-02-08 CN CN201810781584.9A patent/CN108802385B/zh active Active
- 2013-02-08 WO PCT/EP2013/052619 patent/WO2013117746A1/en active Application Filing
- 2013-02-08 EP EP21170448.1A patent/EP3882633A1/en active Pending
- 2013-02-08 ES ES18162713T patent/ES2886979T3/es active Active
- 2013-02-08 JP JP2014556086A patent/JP6169619B2/ja active Active
- 2013-02-08 EP EP18162713.4A patent/EP3367099B1/en active Active
- 2013-02-08 EP EP13703112.6A patent/EP2812700B1/en active Active
- 2013-02-08 CN CN201380019055.0A patent/CN104204803B/zh active Active
- 2013-02-08 AU AU2013217935A patent/AU2013217935B2/en active Active
- 2013-02-08 IN IN1780MUN2014 patent/IN2014MN01780A/en unknown
- 2013-02-08 ES ES13703112.6T patent/ES2679107T3/es active Active
-
2014
- 2014-08-07 IL IL233998A patent/IL233998A/en active IP Right Grant
- 2014-08-15 ZA ZA2014/05993A patent/ZA201405993B/en unknown
-
2015
- 2015-05-18 HK HK15104723.9A patent/HK1204065A1/zh unknown
- 2015-05-18 HK HK18112832.7A patent/HK1253780A1/zh unknown
-
2016
- 2016-08-16 US US15/237,728 patent/US10502739B2/en active Active
-
2017
- 2017-06-28 JP JP2017126712A patent/JP6725456B2/ja active Active
- 2017-08-22 IL IL254095A patent/IL254095B/en unknown
-
2018
- 2018-03-29 AU AU2018202302A patent/AU2018202302C1/en active Active
-
2019
- 2019-11-19 US US16/687,726 patent/US11175291B2/en active Active
-
2020
- 2020-06-25 JP JP2020109710A patent/JP2020180975A/ja active Pending
-
2021
- 2021-06-30 IL IL284506A patent/IL284506B/en unknown
- 2021-10-22 US US17/507,994 patent/US12188934B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101622364A (zh) * | 2007-01-11 | 2010-01-06 | 杜克大学 | 监测hiv感染的方法 |
CN101617230A (zh) * | 2007-02-28 | 2009-12-30 | B.R.A.H.M.S股份公司 | 用于诊断目的的选择性测定降钙素原1-116的方法、以及实施该方法的抗体和试剂盒 |
CN101790687A (zh) * | 2007-08-03 | 2010-07-28 | B.R.A.H.M.S有限公司 | 降钙素原(pct)在患原发性非传染疾病的患者的风险分级和预后中的应用 |
WO2009025743A2 (en) * | 2007-08-17 | 2009-02-26 | University Of Massachusetts Medical School | Use of trail compositions as antiviral agents |
WO2011132086A2 (en) * | 2010-04-21 | 2011-10-27 | MeMed Diagnostics, Ltd. | Signatures and determinants for distinguishing between a bacterial and viral infection and methods of use thereof |
Non-Patent Citations (8)
Title |
---|
ALEXANDER KOTELKIN ET AL.: "Respiratory syncytial virus infection sensitizes cells to apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand", 《JOURANL OF VIROLOGY》 * |
CHRISTINA FALSCHLEHNER ET AL.: "Following TRAIL"s path in the immune system", 《IMMUNOLOGY.》 * |
NATHAN CUMMINS ET AL.: "The TRAIL to Viral Pathogenesis: The Good, the Bad and the Ugly", 《CURR MOL MED.》 * |
PAOLA SECCHIERO ET AL.: "Potential prognostic significance of decreased serum levels of TRAIL after acute myocardial infarction", 《PLOS ONE》 * |
YAO LIANG TANG ET AL.: "Hypoxic Preconditioning Enhances the Benefit of Cardiac Progenitor-Cell Therapy for Treatment of Myocardial Infarction by Inducing CXCR4 Expression", 《CIRC RES.》 * |
居阳 等: "部分炎症标志物在感染性疾病中的研究进展", 《中国实用内科杂志》 * |
白丽红: "炎症性疾病早期诊断的新指标-sTREM-1", 《国际病理科学与临床杂志》 * |
蔡木发 等: "感染性疾病PCT与CRP相关性分析", 《齐齐哈尔医学院学报》 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104204803B (zh) | 用于诊断感染的标记和决定因素和其使用方法 | |
US10859574B2 (en) | Signatures and determinants for diagnosing infections in non-human subjects and methods of use thereof | |
US10209260B2 (en) | Signatures and determinants for diagnosing infections and methods of use thereof | |
Laing et al. | A dynamic COVID-19 immune signature includes associations with poor prognosis | |
CN103119444B (zh) | 区分细菌与病毒感染的标记物和决定因素以及其使用方法 | |
Nagura-Ikeda et al. | Clinical characteristics and antibody response to SARS-CoV-2 spike 1 protein using VITROS Anti-SARS-CoV-2 antibody tests in COVID-19 patients in Japan | |
Ben Tekaya et al. | Prevalence of indeterminate tuberculosis interferon‐gamma release assays in COVID‐19 patients: Systematic review and meta‐analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |