CN108776244B - Electronic load - Google Patents
Electronic load Download PDFInfo
- Publication number
- CN108776244B CN108776244B CN201810826155.9A CN201810826155A CN108776244B CN 108776244 B CN108776244 B CN 108776244B CN 201810826155 A CN201810826155 A CN 201810826155A CN 108776244 B CN108776244 B CN 108776244B
- Authority
- CN
- China
- Prior art keywords
- current
- power
- voltage
- sampling
- reference value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005070 sampling Methods 0.000 claims abstract description 89
- 238000012360 testing method Methods 0.000 claims abstract description 31
- 238000004146 energy storage Methods 0.000 claims abstract description 7
- 230000008859 change Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/20—Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及测试技术领域,特别是涉及一种电子负载。The invention relates to the technical field of testing, in particular to an electronic load.
背景技术Background technique
随着电动汽车的快速普及,充电桩已经越来越普及。为了确保充电桩各项功能正常,在出厂前都需要对充电桩进行严格的测试,如恒压以及恒流等测试。传统的电子负载都是电阻型负载,需要测试人员不断去调节负载以满足充电桩等电源设备的测试要求,很不方便测试。With the rapid popularization of electric vehicles, charging piles have become more and more popular. In order to ensure the normal functions of the charging pile, the charging pile needs to be strictly tested before leaving the factory, such as constant voltage and constant current tests. Traditional electronic loads are resistive loads, which require testers to continuously adjust the load to meet the test requirements of power supply equipment such as charging piles, which is very inconvenient for testing.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对传统的电子负载需要测试人员不断去调节负载以满足充电设备的测试需求,很不方便测试的问题,提供一种电子负载。Based on this, it is necessary to provide an electronic load for the problem that the traditional electronic load requires testers to continuously adjust the load to meet the test requirements of the charging equipment, which is very inconvenient for testing.
一种电子负载,包括:An electronic load comprising:
负载单元,用于与待测电源设备连接,作为所述待测电源设备的负载;a load unit, which is used for connecting with the power supply device to be tested as a load of the power supply device to be tested;
电压采样单元,用于采集所述待测电源设备的输出电压作为采样电压;a voltage sampling unit for collecting the output voltage of the power supply device to be tested as a sampling voltage;
电流采样单元,用于采集所述待测电源设备的输出电流作为第一采样电流,并采集所述负载单元的储能元件上的电流作为第二采样电流;a current sampling unit, configured to collect the output current of the power supply device to be tested as the first sampling current, and collect the current on the energy storage element of the load unit as the second sampling current;
负载调节单元,分别与所述负载单元、所述电压采样单元和所述电流采样单元连接,所述负载调节单元用于接收电压参考值和电流参考值,并根据所述电流参考值、电压参考值、所述采样电压、所述第一采样电流和所述第二采样电流生成调制信号;所述调制信号用于对所述负载单元进行调节以实现对所述待测电源设备的输出控制;以及a load adjustment unit, connected to the load unit, the voltage sampling unit and the current sampling unit respectively, the load adjustment unit is used for receiving the voltage reference value and the current reference value, and according to the current reference value, the voltage reference value value, the sampled voltage, the first sampled current and the second sampled current to generate a modulation signal; the modulation signal is used to adjust the load unit to realize output control of the power supply device to be tested; as well as
控制单元,与所述负载调节单元连接;所述控制单元用于接收模式切换指令,并根据所述模式切换指令对所述电流参考值和所述电压参考值进行调节。The control unit is connected to the load adjustment unit; the control unit is configured to receive a mode switching instruction, and adjust the current reference value and the voltage reference value according to the mode switching instruction.
上述电子负载可以通过控制单元根据模式切换指令来对电流参考值、电压参考值进行调节,从而使得负载调节单元可以根据调节后的电流参考值、电压参考值以及采样得到的采样电压、第一采样电流以及第二采样电流来生成调制信号以对负载单元进行调节从而实现对待测电源设备的输出控制,从而满足待测电源设备的测试要求,具有较好的便利性。The above-mentioned electronic load can adjust the current reference value and the voltage reference value through the control unit according to the mode switching instruction, so that the load adjustment unit can adjust the current reference value, the voltage reference value after adjustment and the sampled voltage obtained by sampling, the first sample The current and the second sampling current are used to generate a modulation signal to adjust the load unit so as to realize the output control of the power supply device to be tested, so as to meet the test requirements of the power supply device to be tested, and has good convenience.
在其中一个实施例中,所述负载单元包括滤波电路、模拟负载电路和能量回馈电路;所述模拟负载电路通过所述滤波电路与所述待测电源设备连接;所述模拟负载电路还与所述能量回馈电路连接,所述能量回馈电路还用于与市电连接;所述电流采样单元用于采集所述模拟负载电路的输出端的电流作为第二采样电流。In one embodiment, the load unit includes a filter circuit, an analog load circuit, and an energy feedback circuit; the analog load circuit is connected to the power supply device to be tested through the filter circuit; the analog load circuit is also connected to the The energy feedback circuit is connected to the energy feedback circuit, and the energy feedback circuit is also used for connecting with the commercial power; the current sampling unit is used for collecting the current of the output end of the analog load circuit as the second sampling current.
在其中一个实施例中,所述负载调节单元包括电流外环电路、电压环电路、选择电路、电流内环电路以及脉冲宽度调制电路;所述电流外环电路用于根据所述电流参考值和所述第一采样电流之间的误差信号生成电流控制量输出给选择电路;所述电压环电路用于根据所述电压参考值和所述采样电压之间的误差信号生成电压控制量输出给选择电路;所述选择电路用于选取输入中的各控制量中的最小控制量并作为所述电流内环电路的电流给定值;所述电流内环电路用于根据所述电流给定值和所述第二采样电流之间的误差信号生成控制信号;所述脉冲宽度调制电路用于根据所述控制信号生成所述调制信号。In one of the embodiments, the load adjustment unit includes a current outer loop circuit, a voltage loop circuit, a selection circuit, a current inner loop circuit and a pulse width modulation circuit; the current outer loop circuit is used for according to the current reference value and The error signal between the first sampled currents generates a current control amount and outputs it to the selection circuit; the voltage loop circuit is configured to generate a voltage control amount according to the error signal between the voltage reference value and the sampled voltage and output it to the selection circuit circuit; the selection circuit is used to select the minimum control quantity among the control quantities in the input and use it as the current given value of the current inner loop circuit; the current inner loop circuit is used to according to the current given value and An error signal between the second sampling currents generates a control signal; the pulse width modulation circuit is configured to generate the modulation signal according to the control signal.
在其中一个实施例中,所述电流外环电路、所述电压环电路以及所述电流内环电路均具有相同的电路结构;其中,所述电压环电路包括依次相连的减法器和比例积分调节器;所述减法器用于接收所述电压参考值和所述采样电压并获取二者的误差信号;所述比例积分调节器用于对所述减法器生成的误差信号进行调节得到所述电压控制量。In one of the embodiments, the current outer loop circuit, the voltage loop circuit and the current inner loop circuit all have the same circuit structure; wherein the voltage loop circuit includes a subtractor and a proportional integral adjustment connected in sequence The subtractor is used to receive the voltage reference value and the sampled voltage and obtain the error signal of the two; the proportional-integral regulator is used to adjust the error signal generated by the subtractor to obtain the voltage control quantity .
在其中一个实施例中,所述模式切换指令包括恒流模式切换指令和恒压模式切换指令;所述控制单元用于根据所述恒流模式切换指令或者所述恒压模式切换指令获取对应的目标恒定参数的目标恒定值,并将目标恒定参数的参考值调节为所述目标恒定值后将其他参数的参考值调整为额定值;所述目标恒定参数为电压或者电流。In one embodiment, the mode switching instruction includes a constant current mode switching instruction and a constant voltage mode switching instruction; the control unit is configured to obtain the corresponding The target constant value of the target constant parameter, and after adjusting the reference value of the target constant parameter to the target constant value, adjust the reference values of other parameters to the rated value; the target constant parameter is voltage or current.
在其中一个实施例中,还包括功率采样单元,用于采集所述负载单元的功率作为采样功率;所述负载调节单元还包括功率环电路;所述功率环电路分别与所述功率采样单元、所述控制单元以及所述选择电路连接;所述功率环电路用于接收所述控制单元输出的功率参考值并根据所述功率参考值和所述采样功率之间的误差信号生成功率控制量输出给所述选择电路。In one of the embodiments, a power sampling unit is further included for collecting the power of the load unit as sampling power; the load adjustment unit further includes a power loop circuit; the power loop circuit is respectively connected with the power sampling unit, the control unit and the selection circuit are connected; the power loop circuit is configured to receive the power reference value output by the control unit and generate a power control quantity output according to the error signal between the power reference value and the sampling power to the selection circuit.
在其中一个实施例中,所述模式切换指令包括恒流模式切换指令、恒压模式切换指令和恒功率模式切换指令;所述控制单元用于根据所述恒流模式切换指令、所述恒压模式切换指令或者所述恒功率模式切换指令获取对应的目标恒定参数的目标恒定值,并将目标恒定参数的参考值调节为所述目标恒定值后将其他参数的参考值调整为额定值;所述目标恒定参数为电压、电流或者功率。In one of the embodiments, the mode switching instruction includes a constant current mode switching instruction, a constant voltage mode switching instruction, and a constant power mode switching instruction; the control unit is configured to switch according to the constant current mode switching instruction, the constant voltage The mode switching command or the constant power mode switching command obtains the target constant value of the corresponding target constant parameter, and adjusts the reference value of the target constant parameter to the target constant value after adjusting the reference value of other parameters to the rated value; The target constant parameter is voltage, current or power.
在其中一个实施例中,所述模式切换指令还包括老化测试模式指令;所述控制单元还用于根据所述老化测试模式指令将所述电流参考值、所述电压参考值以及所述功率参考值设置为额定值以控制所述电子负载进入最大功率跟踪模式;或者In one embodiment, the mode switching instruction further includes a burn-in test mode instruction; the control unit is further configured to change the current reference value, the voltage reference value and the power reference value according to the burn-in test mode instruction value is set to the rated value to control the electronic load to enter maximum power tracking mode; or
所述控制单元还用于对所述采样电压进行监测并在监测到所述采样电压的瞬间压降大于预设值时控制所述电子负载进入最大功率跟踪模式。The control unit is further configured to monitor the sampled voltage and control the electronic load to enter a maximum power tracking mode when the instantaneous voltage drop of the sampled voltage is monitored to be greater than a preset value.
在其中一个实施例中,所述控制单元还用于在所述电子负载进入最大功率跟踪模式后在每预设周期执行以下步骤:In one of the embodiments, the control unit is further configured to perform the following steps every preset period after the electronic load enters the maximum power tracking mode:
获取当前时刻的采样功率作为第二功率;Obtain the sampling power at the current moment as the second power;
获取上一周期的采样功率作为第一功率;Obtain the sampling power of the previous cycle as the first power;
在所述第二功率大于所述第一功率且电流扰动方向为正时,将最大功率电流设置值加上电流扰动步长并将所述电流扰动方向设置为正;When the second power is greater than the first power and the current perturbation direction is positive, add the maximum power current setting value to the current perturbation step size and set the current perturbation direction to be positive;
在所述第二功率大于所述第一功率且电流扰动方向为负时,将所述最大功率电流设置值减去所述电流扰动步长并将所述电流扰动反向设置为负;When the second power is greater than the first power and the current disturbance direction is negative, subtracting the current disturbance step size from the maximum power current setting value and setting the current disturbance reverse to negative;
在所述第二功率小于或等于所述第一功率且电流扰动方向为正时,将所述最大功率电流设置值减去所述电流扰动步长并将所述电流扰动方向设置为负;when the second power is less than or equal to the first power and the current perturbation direction is positive, subtracting the current perturbation step size from the maximum power current setting value and setting the current perturbation direction to be negative;
在所述第二功率小于或等于所述第一功率且所述电流扰动方向为负时,将所述最大功率电流设置值加上所述电流扰动步长并将所述电流扰动方向设置为正;所述最大功率电流设置值作为所述电流参考值。When the second power is less than or equal to the first power and the current perturbation direction is negative, add the maximum power current setting value to the current perturbation step size and set the current perturbation direction to positive ; The maximum power current setting value is used as the current reference value.
在其中一个实施例中,所述控制单元以预设调节速率对所述电流参考值和所述电压参考值进行调节。In one of the embodiments, the control unit adjusts the current reference value and the voltage reference value at a preset adjustment rate.
附图说明Description of drawings
图1为一实施例中的电子负载的原理框图;1 is a schematic block diagram of an electronic load in an embodiment;
图2为一实施例中的负载单元的结构框图;2 is a structural block diagram of a load unit in an embodiment;
图3为一实施例中的模拟负载电路的电路原理图;3 is a circuit schematic diagram of an analog load circuit in an embodiment;
图4为一实施例中的负载调节单元的结构框图;4 is a structural block diagram of a load adjustment unit in an embodiment;
图5为一实施例中的负载调节单元的电路原理图;FIG. 5 is a schematic circuit diagram of a load adjustment unit in an embodiment;
图6为一实施例中的最大功率跟踪方法的流程图;6 is a flowchart of a maximum power tracking method in an embodiment;
图7为一实施例中的充电桩的外特性曲线图。FIG. 7 is an external characteristic curve diagram of a charging pile in an embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
本发明一实施例提供一种电子负载,用于与待测电源设备连接,作为待测电源设备的负载。待测电源设备可以包括充电桩、开关电源、线性电源、UPS电源、电池以及充电器等等需要进行恒流功能测试以及恒压功能测试的设备等。本实施例中以充电桩为例进行说明。An embodiment of the present invention provides an electronic load for connecting with a power supply device to be tested as a load of the power supply device to be tested. The power supply equipment to be tested may include charging piles, switching power supplies, linear power supplies, UPS power supplies, batteries and chargers, etc. that require constant current function tests and constant voltage function tests. In this embodiment, a charging pile is used as an example for description.
图1为一实施例中的电子负载的原理框图。参见图1,该电子负载包括负载单元110、电压采样单元120、电流采样单元130、负载调节单元140以及控制单元150。FIG. 1 is a schematic block diagram of an electronic load in an embodiment. Referring to FIG. 1 , the electronic load includes a
负载单元110用于与待测电源设备90连接,作为待测电源设备90的负载。电压采样单元120用于采集待测电源设备90的输出电压作为采样电压Vs。电流采样单元130则用于采集流经待测电源设备90的输出电流作为第一采样电流Is,并同时采集负载单元110中的储能元件上的电流作为第二采样电流Il。负载调节单元140分别与负载单元110、电压采样单元120以及电流采样单元130连接。负载调节单元140还与控制单元150连接。控制单元150用于接收模式切换指令,并根据模式切换指令对电流参考值Iset以及电压参考值Vset进行调节后输出给负载调节单元140。负载调节单元140接收电流参考值Iset、第一采样电流Il、第二采样电流Is、电压参考值Vset以及采样电压Vs,并根据其生成调制信号。该调制信号用于对负载单元110进行调节实现对待测电源设备90的输出控制。例如在恒流模式切换指令下,调制信号用于控制负载单元110侧的电流恒定,以实现对待测电源设备90的输出电流的恒定控制。The
上述电子负载可以通过控制单元150根据模式切换指令来对电流参考值Iset、电压参考值Vset进行调节,从而使得负载调节单元140可以根据调节后的电流参考值Iset、电压参考值Vset以及采样得到的采样电压Vs、第一采样电流Is以及第二采样电流Il来生成调制信号以对负载单元110进行调节从而实现对待测电源设备90的输出控制,从而满足待测电源设备90的测试要求,具有较好的便利性。The above-mentioned electronic load can adjust the current reference value Iset and the voltage reference value Vset through the
在一实施例中,负载单元110的结构框图如图2所示。负载单元110包括滤波电路112、模拟负载电路114以及能量回馈电路116。其中,模拟负载电路114的两端通过滤波电路112与待测电源设备90连接。而模拟负载电路114还与能量回馈电路116连接。能量回馈电路116的输出端还与市电连接。能量回馈电路116用于将电子负载的产生的能量转换为电能回馈至电网。因此,本实施例中的电子负载也可以称之为回馈型电子负载。回馈型电子负载通过将电能回馈至电网重复利用,相对于传统的电阻型负载而言,大大节约了能源,避免了能源的浪费。此时,电流采样单元130采集模拟负载电路114的储能元件上的电流,作为第二采样电流Il。在其他的实施例中,也可以将滤波电路112和模拟负载电路114作为一个整体。In an embodiment, a structural block diagram of the
在一具体实施例中,模拟负载电路114采用电感式DC-DC升压电路,滤波电路112采用滤波电容C2,如图3所示。此时,储能元件为储能电感L。能量回馈电路116则采用DC-AC电路。因此,第二采样电流也即为电感L上流经的电流Il。在一实施例中,DC-DC以及DC-AC都是双向的,可以满足充电桩200V到750V的宽电压范围的测试需求。前级DC-DC电路启动后会将待测电源设备90输出的电压升高作为DC-AC的输入。DC-AC用于并网并将能量回馈至电网,达到回馈电网的目的。DC-DC电路能够根据充电桩的输出动态调节DC-DC电路的输出电压,也即DC-AC的输入电压。具体地,DC-DC电路可以采用线性调节的方式,在充电桩输出的最低、最高电压对应满足DC-AC需要的电压值。例如,充电桩的测试电压是200V到750V,将对应的DC-DC电路的输出电压设置为550V到800V,电压升高的关系设置如下:In a specific embodiment, the
Vout=0.4545Vc+459。Vout=0.4545Vc+459.
其中,Vout为DC-DC电路的输出电压,Vc为充电桩的输出电压(也即采样电压),这样的话,充电桩的输出电压为200V时,DC-DC电路的输出电压为550V;充电桩的输出电压为750V时,DC-DC电路的输出电压为800V。Among them, Vout is the output voltage of the DC-DC circuit, and Vc is the output voltage of the charging pile (that is, the sampling voltage). In this case, when the output voltage of the charging pile is 200V, the output voltage of the DC-DC circuit is 550V; When the output voltage of the DC-DC circuit is 750V, the output voltage of the DC-DC circuit is 800V.
在一实施例中,负载调节单元140包括电压环电路210、电流外环电路220、选择电路230、电流内环电路240以及脉冲宽度调制电路(PWM调制电路)250,如图4所示。其中,电压环电路210用于根据电压参考值Vset和采样电压Vs之间的误差信号生成电压控制量给选择电路230。电流外环电路220则用于根据电流参考值Iset和第一采样电流Is之间的误差信号生成电流控制量输出给选择电路230。选择电路230则用于选取电压环电路210和电流外环电路220输出的控制量中最小控制量并作为电流内环电路240的电流给定值Ilref。电流内环电路240用于根据该电流给定值Ilref与第二采样电流Il之间的误差信号生成控制信号。PWM调制电路250用于根据该控制信号生成调制信号以对DC-DC电路中的功率管进行控制,实现对DC-DC电路中的电流以及电压的控制,进而最终实现对待测电源设备90的恒压或者恒流控制。In one embodiment, the
在本实施例中,电压环电路210、电流外环电路220以及电流内环电路240均具有相同的电路结构,具体如图5所示。下面以电压外环电路210为例进行说明。电压外环电路210包括依次相连的减法器212和比例积分调节器(PI调节器)214。其中,减法器212的一个输入端与电压采样单元120连接,另一个输入端则与控制单元150连接。减法器212接收电压采样单元120输出的采样电压Vs以及控制单元150输出的电压参考值Vset。减法器212用于将电压参考值Vset减去采样电压Vs获得二者之间的误差信号后输入至PI调节器214中。PI调节器214用于对减法器212生成的误差信号进行线性调节得到电压控制量。电流外环电路220同样会根据电流参考值Iset和第一采样电流Is形成电流控制量。In this embodiment, the
在本实施例中,模式切换指令包括恒流模式切换指令和恒压模式切换指令。模式切换指令可以由用户通过鼠标、键盘、触控键盘、语音识别等设备进行输入。恒流模式切换指令是指控制待测电源设备90处于恒流模式,因此其目标恒定参数为电流。恒压模式切换指令是指控制待测电源设备90处于恒压模式,因此其目标恒定参数为电压。控制单元150在接收到恒流模式切换指令后,将目标恒定参数也即电流调整至目标恒定值后,再将其他参数(此时为电压)调整为最额定值。因此,电压调整为额定值后,电压环电路210就会逐渐趋于饱和,此时只有电流外环电路220起作用,进而达到恒定待测电源设备90的输出电流的目的。控制单元150在接收到恒压模式切换指令后,将目标恒定参数也即电压调整为目标恒定值后,再将其他参数(此时为电流)调整为额定值。因此,电流调整为额定值后,电流外环电路220就会逐渐趋于饱和,此时只有电压环电路210起作用,进而达到恒定待测电源设备90的输出电压的目的。In this embodiment, the mode switching command includes a constant current mode switching command and a constant voltage mode switching command. The mode switching instruction can be input by the user through a mouse, a keyboard, a touch keyboard, voice recognition and other devices. The constant current mode switching instruction refers to controlling the
在一实施例中,还包括功率采样单元。功率采样单元用于采集待测电源设备90的输出功率。在一实施例中,功率采样单元分别与电流采样单元130和电压采样单元120连接,从而直接利用电流采样单元130采集得到的第一采样电流Is以及电压采样单元120采集到的采样电压Vs计算得到采样功率Ps。此时,负载调节单元140还包括功率环电路260,如图4所示。功率环电路260分别与功率采样单元、控制单元150以及选择电路230连接。功率环电路260用于接收控制单元150输出的功率参考值Pset和采样功率Ps之间的误差信号生成功率控制量后输出给选择电路230进行选择。功率环电路260和电压环电路210以及电流外环电路220具有相同的电路结构,如图5所示,此处不赘述。In one embodiment, a power sampling unit is also included. The power sampling unit is used to collect the output power of the
在本实施例中,模式切换指令还包括恒功率模式切换指令。恒功率模式切换指令用于控制待测电源设备的输出功率恒定。当控制单元150接收到恒功率模式切换指令时,控制功率参考值至目标恒定值后再将其他参数(此时包括电流和电压)调整至额定值。因此,电压环电路210和电流外环电路220均会逐渐趋于饱和,此时只有功率环电路260起作用,进而达到恒定待测电源设备90的输出功率的目的。控制单元150在接收到恒流或者恒压模式切换指令时,会将电流参考值或者电压参考值调整为目标值后再将其他参数均调整至额定值。通过先将目标恒定参数调整至目标值,再将其他参数调整至额定值,可以避免参数调整过程中负载功率过大超过待测电源设备90的最大功率的情况发生。In this embodiment, the mode switching instruction further includes a constant power mode switching instruction. The constant power mode switching command is used to control the output power of the power supply device to be tested to be constant. When the
在一实施例中,模式切换指令还包括老化测试模式指令。老化测试模式指令是指待测电源设备处于老化测试模式,也即电子负载作为待测电源设备老化测试过程中的负载。控制单元150可以在接收到老化测试模式指令后,将电流参考值Iset、电压参考值Vset以及功率参考值Pset设置为额定值以控制电子负载进入最大功率跟踪模式。或者控制单元150可以在监测到采样电压的瞬间压降Vdroop大于预设值时控制电子负载进入最大功率跟踪模式,从而对最大功率点进行跟踪来寻求最大功率值,进而确保待测电源设备90在功率最大点老化。具体地,当待测电源设备为充电桩时,其外特性曲线如图7所示。图7中以一个额定电压750V、额定电流20A,额定功率15KW的充电桩模式为例,其最大电流为22A。开机时,充电桩可以维持电压在750V,随着负载加大,输出电流、功率增加。当负载功率超过充电桩的功率时,会出现两种情况,一是将充电桩输出电压拉低,维持在另一个较低电压点,功率下降。再就是就直接将充电桩输出拉跨,告警关机。因此,根据输出特性,在小功率阶段是一段恒压过程,如果电压突然电压突降了一定的值Vdroop,则认为是负载功率过大,超过了充电桩的最大功率,这时进入到功率最大跟踪的模式中,并形成功率跟踪模式标志。在本实施例中,预设值Vdroop设置为Vdroop=(12+Vdc×0.025)V,Vdc是充电桩的额定电压,当下降了Vdroop时就强行进入到功率跟踪模式中。In one embodiment, the mode switch instruction further includes a burn-in test mode instruction. The burn-in test mode command means that the power supply device to be tested is in the burn-in test mode, that is, the electronic load is used as the load during the burn-in test process of the power supply device to be tested. After receiving the burn-in test mode instruction, the
在一实施例中,采用电流扰动的方法来进行最大功率点跟踪。控制单元150在电子负载进入最大功率跟踪模式后每预设周期执行如图6所示的步骤。在本实施例中,预设周期为20ms,在其他的实施例中,预设周期也可以根据需要设置。图6包括以下步骤:In one embodiment, the current perturbation method is used for maximum power point tracking. The
步骤S310,获取当前时刻的采样功率作为第二功率。Step S310, acquiring the sampling power at the current moment as the second power.
第二功率P1可以通过功率采样单元来获得。电子负载中还可以设置有存储设备来存储每次采集到的采样功率。The second power P1 can be obtained by a power sampling unit. The electronic load may also be provided with a storage device to store the sampling power collected each time.
步骤S320,获取上一周期的采样功率作为第一功率。Step S320, acquiring the sampling power of the previous cycle as the first power.
上一周期的采样功率可以直接从存储设备中进行读取。当无法读取到上一周期的采样功率时,将第一功率设置为0,也即第一功率P0的默认值为0。The sampled power of the previous cycle can be read directly from the storage device. When the sampling power of the previous cycle cannot be read, the first power is set to 0, that is, the default value of the first power P0 is 0.
步骤S330,判断第二功率是否大于第一功率。Step S330, determining whether the second power is greater than the first power.
第二功率P1大于第一功率P0时表示功率随时间而增大,则执行步骤S340,反之执行步骤S370。When the second power P1 is greater than the first power P0, it means that the power increases with time, and step S340 is performed, otherwise, step S370 is performed.
步骤S340,判断电流扰动方向是否为正。In step S340, it is determined whether the current disturbance direction is positive.
在一实施例中,电流扰动方向Idir的值为0或者1。当电流扰动方向为正时,Idir为0,电流扰动方向为负时,Idir为1。判断电流扰动方向为正还是为负,实际上就是判断Idir是否等于0的一个过程。当Idir等于0时,表示电流扰动方向为正,则执行步骤S350,否则执行步骤S360。In one embodiment, the value of the current disturbance direction Idir is 0 or 1. When the current perturbation direction is positive, Idir is 0, and when the current perturbation direction is negative, Idir is 1. Judging whether the current disturbance direction is positive or negative is actually a process of judging whether Idir is equal to 0. When Idir is equal to 0, it means that the current disturbance direction is positive, then step S350 is performed, otherwise, step S360 is performed.
步骤S350,将最大功率电流设置值增加电流扰动步长,将电流扰动方向设置为正。In step S350, the maximum power current setting value is increased by the current disturbance step size, and the current disturbance direction is set to be positive.
由于第二功率P1大于第一功率P0,且电流扰动方向为正,此时继续增大最大功率电流设置值Imppset以确定出最大功率点,同时将电流扰动方向设置为正。最大功率电流设置值Imppset作为老化测试模式下的电流参考值Iset。Since the second power P1 is greater than the first power P0 and the current disturbance direction is positive, the maximum power current setting value Imppset continues to be increased at this time to determine the maximum power point, and the current disturbance direction is set to be positive. The maximum power current setting value Imppset is used as the current reference value Iset in the burn-in test mode.
步骤S360,将最大功率电流设置值减去电流扰动步长,将电流扰动方向设置为负。Step S360, subtract the current disturbance step size from the maximum power current setting value, and set the current disturbance direction to be negative.
步骤S370,判断电流扰动方向是否为正。Step S370, determine whether the current disturbance direction is positive.
当Idir等于0时,表示电流扰动方向为正,则执行步骤S380,否则执行步骤S390。When Idir is equal to 0, it means that the current disturbance direction is positive, then step S380 is performed, otherwise, step S390 is performed.
步骤S380,将最大功率电流设置值减去电流扰动步长,将电流扰动方向设置为负。In step S380, the current disturbance step size is subtracted from the maximum power current setting value, and the current disturbance direction is set to be negative.
步骤S390,将最大功率电流设置值增加电流扰动步长,将电流扰动方向设置为正。In step S390, the maximum power current setting value is increased by the current disturbance step size, and the current disturbance direction is set to be positive.
通过上述方法,电子负载会在进入功率最大跟踪模式后,记录当前电流下对应的功率值,通过扰动电流(此时为正向扰动),扰动后在记录功率值,通过比较这两个功率的大小,当功率时增大时,则继续增大电流,当功率减小时则减小电流,不断的通过电流的调节来寻找最大功率值。当扰动电流为负向扰动时,则需要做相反的处理,也即减小电流来寻找最大功率值,使得待测电源设备的功率最大输出,达到最优的老化工况。在这个调节过程中,电流和电压都不会将其限定在额定值或者目标恒定值。Through the above method, the electronic load will record the power value corresponding to the current current after entering the maximum power tracking mode, and record the power value after the disturbance through the disturbance current (in this case, the forward disturbance). When the power increases, the current will continue to increase, and when the power decreases, the current will be decreased, and the maximum power value will be continuously adjusted by the current. When the disturbance current is a negative disturbance, the opposite processing is required, that is, the current is reduced to find the maximum power value, so that the power output of the power supply device to be tested is maximized and the optimal aging condition is achieved. During this adjustment process, neither the current nor the voltage will limit it to a nominal or target constant value.
在一实施例中,控制单元在对各参数的参考值进行调整的过程中并不会对某个参数进行突升或者突降,而是会以一定的调节速率来进行调节。参数的调节速率可以根据需要进行设定,例如可以将电压更新速率为100V/s,也即每0.1V/ms,所以每经过1ms,电压给定值Vset就改变0.1V。可以以相同的方法来设置电流参考值和功率参考值。调节速率可以由用户手动设置,也可以由系统默认设置。In one embodiment, the control unit does not suddenly increase or decrease a certain parameter during the process of adjusting the reference value of each parameter, but adjusts at a certain adjustment rate. The adjustment rate of the parameters can be set as required. For example, the voltage update rate can be set to 100V/s, that is, every 0.1V/ms, so every 1ms, the voltage set value Vset changes by 0.1V. The current reference and power reference can be set in the same way. The adjustment rate can be set manually by the user or by default by the system.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are more specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810826155.9A CN108776244B (en) | 2018-07-25 | 2018-07-25 | Electronic load |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810826155.9A CN108776244B (en) | 2018-07-25 | 2018-07-25 | Electronic load |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108776244A CN108776244A (en) | 2018-11-09 |
CN108776244B true CN108776244B (en) | 2020-10-09 |
Family
ID=64030069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810826155.9A Active CN108776244B (en) | 2018-07-25 | 2018-07-25 | Electronic load |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108776244B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109655763B (en) * | 2018-12-07 | 2021-07-06 | 武汉精能电子技术有限公司 | Control method and circuit of constant voltage mode direct current electronic load |
CN109839525B (en) * | 2019-03-13 | 2021-02-02 | 深圳市鼎阳科技股份有限公司 | Over-power protection method and protection device for electronic load |
CN110429817B (en) * | 2019-08-15 | 2021-03-23 | 山东艾诺仪器有限公司 | Double-loop control circuit and method for bidirectional direct current converter |
CN114325140A (en) * | 2020-09-28 | 2022-04-12 | 艾乐德电子(南京)有限公司 | Source-carrying all-in-one machine device |
CN112467998B (en) * | 2020-10-14 | 2022-03-29 | 华南理工大学 | Energy density adjustable multi-working mode plasma power supply |
CN112649672A (en) * | 2020-12-21 | 2021-04-13 | 北京大华无线电仪器有限责任公司 | Multi-module parallel electronic load |
CN113485503B (en) * | 2021-07-03 | 2022-10-18 | 南京博兰得电子科技有限公司 | Power supply and method for automatically calibrating output value |
CN115932639A (en) * | 2022-12-05 | 2023-04-07 | 七四九(南京)电子研究院有限公司 | Electronic load DC end control method and system |
CN119224632B (en) * | 2024-12-03 | 2025-03-07 | 南京嘉拓电子有限公司 | Programmable direct current electronic load based on multimode compatible topology and regulation and control method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100526892C (en) * | 2006-03-16 | 2009-08-12 | 西安爱科电子有限责任公司 | Energy feedback type AC/DC electronic load simulator |
CN102025167A (en) * | 2010-10-15 | 2011-04-20 | 陈林 | Energy-saving aging system of switching power supply |
KR101211815B1 (en) * | 2011-09-09 | 2012-12-12 | 임혁순 | Single and muti channel regeneration type electronic load device for electric energy saving |
CN103869857B (en) * | 2012-12-12 | 2016-12-21 | 深圳科士达科技股份有限公司 | Constant current and constant power realize circuit and method |
CN103149386B (en) * | 2013-03-05 | 2014-11-26 | 深圳市中科源电子有限公司 | Electronic load module of power supply aging test and power supply aging test system |
CN203084128U (en) * | 2013-03-12 | 2013-07-24 | 台州学院 | Portable intelligent direct-current electronic load device |
CN104638923A (en) * | 2013-11-08 | 2015-05-20 | 西安艾力特电子实业有限公司 | Novel electronic load circuit for direct-current power supply burn-in |
JP5955432B1 (en) * | 2015-03-30 | 2016-07-20 | 菊水電子工業株式会社 | Electronic load device |
CN105490313B (en) * | 2015-11-27 | 2018-11-20 | 许继电源有限公司 | A kind of alternating current-direct current shared electron load |
CN105656318B (en) * | 2016-02-02 | 2018-04-17 | 上海交通大学 | Alternating current-direct current energy regenerative type electronic simulation load device and its control method |
CN108281979A (en) * | 2017-10-17 | 2018-07-13 | 天津铁科运通轨道技术有限公司 | A kind of electronics feedback load circuit of suitable low-voltage, high-current input |
-
2018
- 2018-07-25 CN CN201810826155.9A patent/CN108776244B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108776244A (en) | 2018-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108776244B (en) | Electronic load | |
CN101499717B (en) | A control method and device for a four-switch buck-boost DC-DC converter | |
US8519688B2 (en) | Burst mode controller and method | |
TWI707218B (en) | Regulator with high speed nonlinear compensation and method of controlling the same | |
JP6462905B2 (en) | Phase shift full bridge charger control system and control method | |
JP6719332B2 (en) | Charger | |
US9991715B1 (en) | Maximum power point tracking method and apparatus | |
US20130257533A1 (en) | Switched-mode power supply and method of operation | |
KR102730537B1 (en) | Dc-dc converter | |
CN113497548A (en) | DC-DC converter | |
CN105659181A (en) | Solar power generation device and control method of solar power generation device | |
JP5984700B2 (en) | DC power supply device, storage battery charging method, and DC power supply monitor control device | |
JP2018014783A (en) | Solar power plant | |
CN113675919A (en) | Wake-up circuit, battery management system, wake-up circuit control method, battery pack and energy storage system | |
JP3949350B2 (en) | Interconnection device | |
CN110556816A (en) | Composite droop control method and system suitable for direct-current micro-grid | |
CN112117920B (en) | Power supply device, control method thereof and power supply system | |
WO2005067083A1 (en) | Fuel cell system and method of correcting fuel cell current | |
US10491018B2 (en) | Power output management apparatus of battery and managment method thereof | |
KR20140066055A (en) | Maximum power point tracking converter and method thereof | |
JP2018088073A (en) | Photovoltaic power generation control device | |
JP6029540B2 (en) | Solar cell control device and solar cell control method | |
US20200153423A1 (en) | Power inverter for reducing total harmonic distortion via duty cycle control | |
US20200387182A1 (en) | Power management integrated circuit for energy harvesting with multi power mode selection | |
CN114448038A (en) | A battery charging control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |